
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SECURITY-CONSTRAINED FINE-TUNING: PREVENT-
ING KNOWLEDGE RESTORATION IN UNLEARNED
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models face a critical vulnerability through relearning attacks,
where adversaries exploit fine-tuning to restore knowledge that was intentionally
removed via unlearning procedures. Current post-hoc safety evaluations detect
violations only after fine-tuning completion, creating security gaps and compu-
tational waste. We introduce a safety-constrained fine-tuning framework that
proactively prevents relearning attacks by formulating defense as constrained opti-
mization. Legitimate fine-tuning objectives are optimized subject to explicit con-
straints preventing restoration of forgotten knowledge. We present an efficient
Constraint-Aware Gradient Descent algorithm that replaces intractable nonlin-
ear constraints with first-order Taylor approximations, yielding convex quadratic
subproblems with closed-form solutions. Comprehensive experiments on Llama
models demonstrate robust defense against relearning attack scenarios while
maintaining legitimate fine-tuning performance.

1 INTRODUCTION

Large language models (LLMs) have become foundational components of modern AI systems, with
fine-tuning emerging as the primary mechanism for adapting general-purpose models to specialized
tasks and domains. Whether through API-based services offered by major providers OpenAI; Co-
here, on-premise deployment in enterprise settings, or edge device personalization, fine-tuning en-
ables significant advances across applications—from domain-specific assistants to personalized AI
systems. However, this widespread customization capability introduces a fundamental challenge:
how can we ensure that fine-tuning preserves essential safety properties, regulatory compliance re-
quirements, and behavioral constraints while still enabling legitimate performance improvements?
(Lyu et al., 2024; Zong et al., 2024; Qi et al., 2023; Wang et al., 2024)

Current approaches to safe fine-tuning rely predominantly on either heuristics Qi et al. (2024); Lyu
et al. (2024); Wang et al. (2024) or post-hoc evaluations: after fine-tuning concludes, the result-
ing model undergoes safety checks, and if violations are detected, the entire fine-tuned model is
rejected OpenAI. This binary accept-or-reject paradigm suffers from fundamental limitations. It
wastes computational resources when fine-tuning must be repeated with modified data, provides
poor user experience when legitimate use cases are rejected due to incidental constraint violations,
and offers no guidance for remediation. More critically, it treats safety as an afterthought rather
than an integral component of the optimization process—a particularly problematic approach as
fine-tuning becomes increasingly ubiquitous across deployment contexts.

We propose a fundamentally different approach: constraint-aware fine-tuning that incorporates
safety and compliance requirements directly into the optimization process. We formulate fine-tuning
as a constrained optimization problem where the primary objective—improving performance on
task-specific data—is optimized subject to explicit constraints that encode desired safety proper-
ties, regulatory requirements, or behavioral boundaries. This framework naturally handles diverse
scenarios across different deployment modalities: preventing relearning of unlearned knowledge in
API services, maintaining alignment during specialization in enterprise deployments, and preserving
privacy properties in personalized edge systems.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Unlearning

Relearning Attack +
Naïve Fine-tuning

LLM with Undesired Knowledge

TOFU
Retrain90

Relearning Attack +
Constraint-Aware
Finetuning

Real
Authors

World
Facts

TOFU
Forget10

Unlearned LLM

Real
Authors

World
Facts

TOFU
Retrain90

Successful Relearning Attack ❌

Real
Authors

TOFU
Retrain90

TOFU
Forget10

Blocked Relearning Attack ✅

Real
Authors

World
Facts

TOFU
Retrain90

TOFU
Clone

World
Facts

TOFU
Clone

Figure 1: Unlearning removes unwanted information from the LLMs memory. However, relearning
attacks can revert the model and utilize unlearned information. By using our constraint-aware fine-
tuning algorithm, we can prevent the restoration of unwanted information.

The central challenge is that enforcing non-convex constraints over billion-parameter models is in-
tractable. Building on the methodologies developed in varying fields Allibhoy & Cortés (2023);
Muehlebach & Jordan (2021), our key contribution is the development of Constraint-Aware Gra-
dient Descent, an efficient algorithm that replaces intractable constraint verification with first-order
approximations, yielding convex quadratic subproblems with closed-form solutions at each opti-
mization step. This approach seamlessly integrates with modern training infrastructure, supports
gradient accumulation and parameter-efficient methods like LoRA, and introduces negligible over-
head when constraint and objective functions share computational structure.

To demonstrate the effectiveness of our framework, we focus on a particularly challenging instan-
tiation: defending against relearning attacks on unlearned models. Machine unlearning removes
sensitive, harmful, or copyrighted knowledge from trained models Karamolegkou et al. (2023);
Deshpande et al. (2023), but recent work has shown that unlearned models remain vulnerable to
fine-tuning attacks that rapidly restore forgotten capabilities Lo et al. (2024); Yang et al. (2023). To
tackle this problem, we formulate defending against relearning attacks as a constrained optimization
and apply our constraint-aware gradient descent algorithm to it. Experiments on Llama models using
the TOFU benchmark demonstrate that constrained fine-tuning effectively prevents relearning while
maintaining performance on legitimate objectives. See Figure 1 for an illustration of the motivation
and placement of our work.

Our main contributions are:

• We introduce a principled framework for safe LLM fine-tuning that formulates safety require-
ments as explicit constraints rather than post-hoc checks, enabling proactive prevention of vio-
lations during optimization.

• We present constraint-aware gradient descent, an efficient algorithm based on continuous-time
gradient flows that solves constrained fine-tuning problems with closed-form update steps.

• We demonstrate that our method integrates seamlessly with existing optimization infrastructure,
supporting gradient accumulation and parameter-efficient fine-tuning with minimal computa-
tional overhead.

• We validate our framework on the challenging problem of preventing relearning attacks, showing
robust defense while maintaining fine-tuning performance across multiple model scales.

While we focus on relearning defense for concreteness, our framework applies broadly to scenarios
requiring safety-constrained model customization across diverse deployment contexts. We discuss
these extensions and their implications for deploying trustworthy LLM systems.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Machine Unlearning for LLMs: Machine unlearning aims to remove specific knowledge from
trained models without retraining from scratch Cao & Yang (2015). For large language models,
this problem has gained significant attention due to privacy regulations, copyright concerns, and
safety requirements (Eldan & Russinovich, 2023; Maini et al., 2024; Shi et al., 2024). Standard ap-
proaches formulate unlearning as regularized optimization, balancing a forgetting objective on the
target dataset Dfgt against a retention objective on remaining data Drtn Yao et al. (2024); Maini et al.
(2024); Zhang et al. (2024); Li et al. (2024). Other works formulate unlearning as a multi-objective
problem Pan et al. (2025); Bu et al. (2024), constrained optimization Entesari et al. (2025), task
arithmetic Ilharco et al. (2022), etc. Various loss formulations have been proposed, including gradi-
ent ascent with knowledge mismatch Yao et al. (2024), negative preference optimization Zhang et al.
(2024), representation misdirection for unlearning Li et al. (2024), self-distilation on adjusted logits
Dong et al. (2024), entropy maximization via logit-flattening Entesari et al. (2025), and more. Re-
cent surveys (Ren et al., 2025; Liu et al., 2025; Geng et al., 2025) provide comprehensive overviews
of unlearning methodologies and evaluation protocols.

Relearning Attacks: Despite progress in unlearning algorithms, several works have demonstrated
that unlearned models retain residual traces of forgotten knowledge that can be exploited through
relearning attacks (Hu et al., 2024; Fan et al., 2025; Łucki et al., 2024; Deeb & Roger, 2024). These
attacks reveal that successful unlearning—as measured by standard evaluation metrics—does not
guarantee robust knowledge deletion. By fine-tuning unlearned models on small subsets of the orig-
inal forget data, adversaries can rapidly recover supposedly erased capabilities, often achieving per-
formance comparable to pre-unlearning states Łucki et al. (2024). This vulnerability fundamentally
challenges the effectiveness of current unlearning approaches and motivates the need for defenses
that explicitly account for adversarial fine-tuning scenarios.

Safe and Constrained Optimization. Our work draws inspiration from control theory and safe
optimization, particularly control barrier functions (CBFs) (Ames et al., 2016; 2019) that guarantee
constraint satisfaction in dynamical systems. CBFs provide elegant frameworks for safety-critical
control by ensuring system trajectories remain within safe sets through real-time constraint enforce-
ment. Recently, Allibhoy & Cortés (2023) analyzed gradient flow and projected variations that map
to constrained optimization counterparts for CBFs. Inspired by safe gradient flow, Mestres et al.
(2025) studies an anytime-safe RL algorithm. In the field of unlearning, Feng et al. (2024) utilizes
safe gradient descent for controlled unlearning in image-to-image generative models.

Robust Fine-tuning and Alignment. The broader problem of maintaining safety properties during
model customization relates to alignment research and robust fine-tuning (Qi et al., 2023; Zhan et al.,
2023). Prior work has studied safety degradation from adversarial training data (Zong et al., 2024),
and heuristics to preserve desirable behaviors during fine-tuning Qi et al. (2024); Lyu et al. (2024);
Wang et al. (2024); Zhou et al. (2023); Hsu et al. (2024); Huang et al. (2024). Our constrained op-
timization framework provides a principled approach to this challenge, treating safety requirements
as hard constraints rather than soft preferences that can be traded off against performance.

3 METHODOLOGY

Let πθ denote a parameterized pretrained large language model (LLM) with parameters θ. Given a
dataset D, we measure performance using a loss function f(πθ,D). In addition to minimizing this
primary objective, we impose an auxiliary constraint of the form g(πθ,D′) ≤ 0, which enforces a
desired property of the model when evaluated on a possibly different datasetD′. For clarity, we omit
the explicit dataset dependence when it is clear from context, and write the objective and constraint
simply as f(θ) and g(θ), respectively.

3.1 GRADIENT FLOW FOR UNCONSTRAINED OPTIMIZATION

We begin by considering the unconstrained optimization problem:

min
θ

f(θ). (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The gradient flow associated with this problem is defined by the ordinary differential equation
(ODE):

dθ(t)

dt
= −∇θf(θ(t)), θ(0) = θ0, (2)

where θ(t) represents the continuous-time trajectory of parameters and θ0 denotes the initial param-
eters. The gradient flow is a continuous-time limit of gradient descent.

Standard gradient descent can be viewed as a discrete-time approximation of the gradient flow 2
obtained through forward Euler discretization with step size ηk: θk+1 = θk − ηk∇θf(θ

k).

This continuous-time perspective provides valuable geometric intuition and theoretical tools for an-
alyzing optimization dynamics, which we will leverage in developing our constrained optimization
framework.

3.2 CONSTRAINED OPTIMIZATION VIA CONSTRAINT-AWARE GRADIENT DESCENT

Figure 2: An illustrative example
of constraint-aware gradient descent.
When following the normal gradient
descent direction −∇f(θ) would vio-
late the linearized constraint, the cor-
rection term steers the updates to re-
main in the feasible set g(θ) ≤ 0.

We now consider the constrained problem

min
θ

f(θ) s.t. g(θ) ≤ 0. (3)

The unconstrained gradient flow 2 is insufficient here, since
it may drive the trajectory into the infeasible region where
g(θ) > 0. A natural alternative is the projected gradient flow,
which projects each update back onto the feasible set. How-
ever, the projection step is generally intractable for complex
nonconvex constraints.

An alternative approach, studied in the literature from different
perspectives, e.g., Muehlebach & Jordan (2021); Allibhoy &
Cortés (2023), is to perturb the gradient flow with a corrective
feedback term:

dθ(t)

dt
= −∇f(θ(t)) + u(θ(t)), (4)

where u(θ(t)) is chosen to minimally intervene so that the tra-
jectory remains in the feasible set {θ : g(θ) ≤ 0}. Formally,
the corrective term is obtained as the solution of the quadratic
program

u(θ(t))={argmin
u

1
2∥u∥

2 s.t. d
dtg(θ(t))+αg(θ(t))≤0}, (5)

with design parameter α ≥ 0. This construction coincides with the well-established framework of
Control Barrier Functions (CBFs) Ames et al. (2016), which guarantees forward invariance of the
feasible set. In particular, if u(θ(t)) is chosen according to 5, then any trajectory initialized strictly
inside the feasible set, i.e., with g(θ(0)) < 0, remains feasible for all t > 0. See Figure 2 for an
illustrative example of the modified flow steps. The parameter α ≥ 0 controls how aggressively the
barrier condition is enforced. Larger values of α allow trajectories to approach the boundary more
quickly, while still preventing constraint violation. Equivalently, increasing α enlarges the feasible
set of corrective controls in 5, which reduces the required intervention magnitude. In the limiting
case where α→∞, the barrier constraint becomes inactive, and the gradient projection flow method
converges to the standard projected gradient flow dynamics Allibhoy & Cortés (2023).

The QP 5 admits a closed-form solution (see Section A.1 for derivation):

u⋆(θ) = −
(
αg(θ)−∇θf(θ)

⊤∇θg(θ)
)
+

||∇θg(θ)||2
∇θg(θ)

Unlike projected gradient flow, which requires computing a potentially intractable projection onto
the nonconvex feasible set and is only well defined for convex constraints, the correction term u⋆(θ)
in Theorem 1 admits a simple closed-form expression that remains valid even when g(θ) is noncon-
vex.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Constraint-Aware Gradient Descent Analogous to standard gradient descent as a discretization
of the gradient flow 2, we discretize the modified flow 4 to obtain

θk+1 = θk − ηk

(
∇θf(θ

k) +

(
αkg(θk)−∇θf(θ

k)⊤∇θg(θ
k)
)
+

||∇θg(θk)||2
∇θg(θ

k)

)
where ηk > 0 is the step size and (·)+ returns the non-negative part of its argument. In the fol-
lowing theorem, we derive a sufficient condition for the step size ηk that ensures anytime constraint
satisfaction despite discretization errors.

Theorem 3.1 (Constraint-Aware Gradient Descent). Assume f, g are continuously differentiable
and that ∇g is Lg-Lipschitz, i.e.,

∥∇g(θ′)−∇g(θ)∥ ≤ Lg∥θ′ − θ∥ ∀ θ, θ′.

Let v(θ) := −∇f(θ) + u⋆(θ), and consider the update θk+1 = θk + ηkv(θk) with ηk > 0. Let

ηmax :=
αk g(θk) +

√
(αk)2 g(θk)2 − 2Lg g(θk) ∥v(θk)∥2

Lg ∥v(θk)∥2
.

If g(θk) < 0 and 0 < ηk < ηmax, then g(θk+1) < 0. Consequently, if the condition holds for all k
and g(θ0) < 0, the iterates remain feasible at every step.

Proof. As∇g is Lg-Lipschitz, we can apply the standard descent lemma Beck (2017) on the iterates
of g

g(θk+1) ≤ g(θk) + ηk∇g(θk)⊤v(θk) + Lgη
k2

2

∣∣∣∣v(θk)∣∣∣∣2
≤ g(θk)− αkηkg(θk) +

Lgη
k2

2

∣∣∣∣v(θk)∣∣∣∣2 ,
where we have used the fact that ∇g(θk)⊤v(θk) ≤ −αg(θk), based on the constraint of 5. As
g(θk) < 0, there exists an ηmax > 0 that zeros the right-hand side. This value is given by the
positive root of the quadratic equation and is the value proposed by the theorem.

Consequently, by choosing 0 < ηk < ηmax, given g(θk) < 0, we guarantee g(θk+1) < 0. It trivially
follows that by satisfying this at every step and given an initial g(θ0) < 0, the constraint will always
be satisfied.

Constraint-aware gradient descent integrates seamlessly with parameter-efficient fine-tuning meth-
ods such as Low Rank Adaptation (LoRA), in which only the calculation of the gradients∇g and∇f
are modified and are natively handled by auto-differentiation frameworks. Moreover, the integration
with memory optimization techniques such as gradient accumulation is also straightforward. That
is, if a minibatch B is broken down to B1, · · · , Bn, and gradients ∇g(θ;B1), · · · ,∇g(θ;Bn) and
∇f(θ;B1), · · · ,∇f(θ;Bn) are calculated in each step, respectively, then one simply needs to keep
running summations g = 1

n

∑n
i=1 g(θ;Bi), vg = 1

n

∑n
i=1∇g(θ;Bi), and vf = 1

n

∑n
i=1∇f(θ;Bi).

After every Bi is iterated over, the update direction is simply

d = −vf −
(αg − v⊤f vg)+

||vg||2
vg

Furthermore, in specific instances of Problem 3 where the loss functions f and g operate on identical
datasets (D = D′), our algorithm introduces negligible computational overhead. This efficiency
stems from the computational structure of auto-differentiation frameworks, which leverage the chain
rule for gradient computation. When the computation graphs of f(πθ) and g(πθ) differ only in
their final operations applied to model outputs, the substantial majority of intermediate gradient
calculations can be shared between the two functions, effectively amortizing the computational cost.

We present a high-level implementation of the stochastic variant of the constraint-aware gradient
descent in Algorithm 1, formulated for the general case of distinct datasets D and D′.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Stochastic constraint-aware gradient descent for solving problem 3
1: Input: D, D′, batch sampling algorithm R, reference parameters θref , loss functions f and g,

number of epochs T , barrier parameter α, Optimizer O
2: Output: Finetuned parameters θ
3: Initialize: θ ← θref
4: for t = 1, . . . , T do
5: for Bobj, Bcnt inR(D,D′) do ▷ Get corresponding batch from each dataset.
6: ∇f ← ∇θf(πθ, Bobj), ∇g ← ∇θg(πθ, Bcnt)

7: d← −∇f −
(
αg(πθ, Bcnt)−∇f⊤∇g

)
+

||∇g||2
∇g.

8: θ ← O(d). ▷ Use d in optimizer as the descent direction.
9: end for

10: end for
11: Return: θ

4 CONSTRAINED OPTIMIZATION FOR LLM FINE-TUNING

Motivated by contemporary real-world deployment practices in commercial LLM services, we in-
troduce a novel constrained fine-tuning optimization problem. Major commercial LLM providers,
including OpenAI, Google’s Vertex AI, and Cohere, offer proprietary models accessible through
application programming interfaces (APIs) with fine-tuning capabilities that allow end-users to cus-
tomize these models on custom proprietary datasets OpenAI; Cohere; Cloud. This functionality
enables users to specialize general-purpose models for domain-specific tasks, improving perfor-
mance on specialized applications while leveraging the substantial computational investments made
by these providers towards their high-end models.

However, this capability introduces significant security and safety vulnerabilities. Malicious actors
can exploit fine-tuning processes to induce harmful behaviors in models, extract sensitive infor-
mation embedded within the base model, or circumvent existing safety mechanisms. Furthermore,
even well-intentioned users may inadvertently introduce problematic content through noisy or insuf-
ficiently curated training data. Current industry practice for API-based fine-tuning typically involves
post-hoc safety evaluations: upon completion of fine-tuning, providers apply safety checks to the re-
sulting model. If the model fails to meet some safety specifications, the entire fine-tuned model is
discarded and access is denied to the user.

This binary accept-or-reject approach is suboptimal for many reasons. First, it wastes computational
resources when fine-tuning must be repeated with new data, and second, it provides a poor user
experience when legitimate use cases are rejected due to incidental safety violations.

We propose a constraint-aware fine-tuning framework that addresses these limitations by incorpo-
rating safety considerations directly into the optimization process:

min
θ

LCE(πθ,D) subject to LSafety(πθ,D′) ≤ ε, (6)

where LCE(πθ,D) represents the standard cross-entropy fine-tuning loss on the user’s desired
dataset D, and LSafety(πθ,D′) quantifies safety violations over a representative evaluation dataset
D′ maintained by the provider.

In this work, we focus specifically on robustness against relearning attacks as a concrete instantiation
of this framework. For this reason, we briefly discuss the problem of LLM unlearning and then
motivate defenses against relearning attacks.

LLM Unlearning As LLMs are trained on web-scale corpora with, at times, minimal oversight
on data quality, they may learn sensitive, copyrighted, or harmful information that must later be
removed. The computational cost of retraining from scratch necessitates machine unlearning tech-
niques that selectively remove knowledge without full retraining.

Unlearning is typically cast as a regularized optimization problem with loss functions Lfgt(πθ;Dfgt)
and Lrtn(πθ;Drtn) capturing forgetting quality and model utility, respectively,

min
θ

Lfgt(πθ;Dfgt) + λLrtn(πθ;Drtn) (7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where λ > 0 is a trade-off parameter, Dfgt is a dataset containing samples to forget, and Drtn is a
dataset of normal samples that the model should perform well on even post-unlearning.

Relearning Attacks. Despite the relative success of unlearning algorithms in removing undesired
knowledge from a model, several works have established that unlearned models are susceptible
to relearning attacks Hu et al. (2024); Fan et al. (2025). Relearning attacks represent adversarial
techniques that exploit residual traces of forgotten knowledge in unlearned models, demonstrating
that successful unlearning procedures may remain vulnerable to targeted reconstruction efforts.

The fundamental premise of relearning attacks is that unlearning methods, while effective at sup-
pressing access to specific knowledge during standard evaluation, may leave residual traces in the
model’s representational structure. The attack methodology is straightforward: adversaries perform
standard fine-tuning on the unlearned model using samples from the original forget dataset Dfgt.
That is, by fine-tuning the unlearned model using a limited number of samples from Dfgt, the model
rapidly recovers its ability to generate the supposedly forgotten content, often achieving performance
comparable to the pre-unlearning state.

For API providers operating unlearned models, these vulnerabilities pose serious risks. The origi-
nally unlearned knowledge was removed due to legitimate concerns. Successful relearning attacks
compromise technical integrity, create potential legal liability, and undermine stakeholder confi-
dence in responsible AI deployment. The threat model encompasses both malicious adversaries
attempting to restore harmful capabilities and well-intentioned users who inadvertently trigger re-
learning through legitimate fine-tuning on similar data.

Our constrained fine-tuning framework provides a proactive defense by incorporating explicit con-
straints that monitor and limit the model’s performance on forget-related content during fine-tuning,
preventing relearning while enabling legitimate customization objectives. The relearning-safe fine-
tuning procedure is thus cast as

min
θ

LCE(πθ,D) subject to Lfgt(πθ,D′
fgt) ≤ ε, (8)

where D′
fgt ⊆ Dfgt, and ε is an appropriate values based on Lfgt(πθ0 ,Dfgt).

Remark 4.1. The applications of our constrained fine-tuning formulation extend well beyond the
relearning attack scenario, encompassing a broad range of safety-critical deployment contexts.

Chiefly, our algorithm easily handles unlearning through the recent formulation of unlearning as
a constrained optimization by Entesari et al. (2025). We use this formulation in our experiments
and see that our algorithm also conducts unlearning successfully. This is verified by comparing the
unlearning metrics with those of Entesari et al. (2025).

Another particularly compelling application domain involves personalized AI assistants deployed
on edge devices, where privacy-preserving personalization must be balanced against safety and reg-
ulatory compliance. As smaller language models become increasingly capable and edge deployment
becomes more prevalent, users expect AI systems that adapt to their specific needs while maintaining
appropriate behavioral boundaries.

Our framework addresses this challenge by treating safety requirements as constraints rather than
post-hoc filters. This approach enables gradient-based optimization that naturally balances person-
alization objectives against safety requirements, potentially achieving superior outcomes compared
to traditional binary accept-or-reject paradigms that provide no guidance for remediation when
safety checks fail.

We defer comprehensive exploration of these extended applications and their specific technical re-
quirements to future work, focusing here on establishing the foundational methodology and demon-
strating its effectiveness in the relearning attack mitigation scenario.

5 EXPERIMENTS

Setup We focus on relearning attacks on the Task of Fictitious Unlearning (TOFU) Maini et al.
(2024). That is, we take a model that has undergone unlearning on the retain90/forget10 subset of
the TOFU dataset, and then study finetuning attempts using the same forget dataset. To study the
different effects of our framework on finetuning, we consider three finetuning setups:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Pure adversarial: The finetuning data is the forget subset from the unlearning task, i.e.,D = Dfgt.

• Normal data: The finetuning data non-adversarial with no element from Dfgt, i.e., D = Dnor.

• Adversarial shuffle: The finetuning data is made up of both non-adversarial data and also adver-
sarial forget data, i.e., D = Dfgt ∪ Dnor.

For Dfgt, we utilize the full forget10 data subset from TOFU. As for the normal non-adversarial
data Dnor, there are many publicly available datasets that could be utilized. However, each dataset
could potentially introduce mismatches from data format to domain knowledge. As such, in this
work, we propose to use a cloned version of the TOFU benchmark to prevent potential issues. That
is, using the same guidelines outlined in Maini et al. (2024), we prompt OpenAI’s ChatGPT 4.1
model to create a dataset of fictitious authors with a set of questions and answers on the authors. By
using a dataset in the same Question-Answer format and domain as that of the unlearned data, we
reduce the potential for uncontrolled factors interfering with our analysis. Slightly different from
Maini et al. (2024), we ask the LLM to create 25 questions per fictitious author (instead of the
normal 20) and retain 5 questions from each author for the evaluation subset.

As per unlearning literature precedent, we utilize the Llama family of models and use Llama 3.2 1B
and 3B and Llama 3.1 8B models for our experiments. Due to computational limitations, we uti-
lized parameter-efficient fine-tuning techniques for our experiments and used Low-Rank Adaptation
(LoRA) for all models. The details of the finetuning can be found in the Appendix.

We compare the success of our proposed method against the sole baseline of no defense, i.e., normal
fine-tuning, in which no defense mechanism is applied and a single cross-entropy loss on the model’s
completions is calculated.

To acquire models that have undergone unlearning, we utilize our Constraint-Aware Fine-tuning
methodology. For this, we utilize the recent work of Entesari et al. (2025), which formulates machine
unlearning as a constrained optimization problem. Whereas Entesari et al. (2025) uses a primal-dual
framework to solve the unlearning problem, we propose to use our algorithm on it. We see in
Table 1 that our methodology also performs exceptionally well in unlearning (Constraint-Aware
Unlearning), but we leave rigorous comparisons on this matter to future work.

Evaluation To evaluate our framework, we measure several factors. First, to study whether fine-
tuning has been successful, we calculate the ROUGE-L recall score on the train and validation
subsets of Dnor. Successful fine-tuning should yield models with high ROUGE scores. Second, to
measure the success or failure of relearning attacks and the defense against them, we utilize the
forgetting metrics ROUGE-L and Probability from the TOFU evaluation suite for the forget subset.
Models that have undergone unlearning would have low values for these metrics, and a high ROUGE
metric could be a sign of knowledge retention from the forget subset Dfgt. We aggregate these two
metrics into a single forgetting metric, which is calculated as their harmonic mean. Third, to study
the effect of finetuning on prior tasks, we report the model utility metric from the TOFU evaluation
suite. This metric represents the model performance on the TOFU retain90 task and other notions
of utility as described in Maini et al. (2024).

Results We present our main results in Table 1 for all three models and three fine-tuning scenarios.
Studying rows corresponding to the normal fine-tuning setup, i.e., D = Dnor, reveals that across all
models, our algorithm does not negatively impact the normal fine-tuning procedure and the model
learns the desired information. This is evident by comparing the ROUGE scores across the naive and
constraint-aware fine-tuning rows and contrasting them with the starting unlearned model. A very
high ROUGE-L Train score denotes a form of memorization, which happens with both fine-tuning
algorithms. It is expected that ROUGE-L Val should be smaller, and we see very similar numbers
using either fine-tuning algorithm.

Next, the adversarial shuffle entries, i.e., D = DNF, reveal the strength of our methodology. Com-
paring the ROUGE scores reveals that both fine-tuning algorithms learn the normal data pattern and
have similar performance on the ROUGE-L Val metric. However, studying the forgetting score re-
veals that the naive fine-tuning algorithm has done so whilst regaining its knowledge on the forget
dataset, whereas our algorithm has successfully defended against this attack and has maintained the
same performance as that of the starting unlearned model. We see this similar pattern in the case of
the pure adversarial attack, i.e., D = Dfgt.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Relearning attacks on Llama models unlearned on the TOFU dataset
(retain90/forget10). All metrics are bounded in [0, 1] and the arrows indicate whether larger
numbers are better or not. The second column denotes the dataset used for the fine-tuning task.
When D = {}, no fine-tuning is done and these entries establish baselines on the starting models.
’target’ is the model that has not been unlearned, with knowledge of Drtn and Dfgt, ’retrained’ only
has knowledge of Drtn, and ’unlearned’ is the target model that has undergone unlearning. We de-
fine DNF = Dnor ∪ Dfgt. For each experimental setup, i.e., each ’naive-Ours’ pair, if one method
significantly outperforms the other, we bolden that entry.

Constraint-Aware Unlearning (Ours)

D Methodology ROUGE-L Train↑ ROUGE-L Val↑ Forgetting ↓ Model Utility ↑

L
la

m
a

3.
2

1B

{}
target 0.5673 0.5747 0.8492 0.5992

retrained 0.5727 0.5739 0.1778 0.5911
unlearned 0.5159 0.5626 0.0000 0.5742

Dnor
naive 0.9198 0.6978 0.0000 0.4430
Ours 0.9049 0.7002 0.0000 0.4427

DNF
naive 0.8905 0.7001 0.8371 0.4947
Ours 0.7617 0.6924 0.0003 0.4561

Dfgt
naive 0.5838 0.5943 0.6842 0.5412
Ours 0.5477 0.5808 0.0001 0.5652

L
la

m
a

3.
2

3B

{}
target 0.5797 0.5870 0.9384 0.6661

retrained 0.5547 0.5890 0.1878 0.6498
unlearned 0.5440 0.5578 0.0000 0.6253

Dnor
naive 0.9100 0.7087 0.0045 0.4768
Ours 0.9381 0.7081 0.0000 0.4756

DNF
naive 0.9506 0.7070 0.9086 0.5607
Ours 0.7730 0.6935 0.0004 0.5145

Dfgt
naive 0.6156 0.5927 0.7548 0.6001
Ours 0.6026 0.5823 0.0001 0.6259

L
la

m
a

3.
1

8B

{}
target 0.6214 0.6004 0.9911 0.6276

retrained 0.5918 0.6072 0.1665 0.6461
unlearned 0.5879 0.5984 0.0000 0.7068

Dnor
naive 0.9491 0.7149 0.4901 0.4977
Ours 0.8764 0.7255 0.0000 0.2423

DNF
naive 0.9665 0.7123 0.9858 0.5841
Ours 0.7711 0.7230 0.0003 0.3089

Dfgt
naive 0.6050 0.5936 0.9976 0.6059
Ours 0.0000 0.0005 0.0000 0.0000

We see that for the larger 8B model, the algorithm successfully defends against the attacks as well.
In the pure adversarial setup Dfgt, our algorithm has successfully defended against the relearning
attack, but as there was no real fine-tuning objective at hand and since the capacity of the model is
much greater, our fine-tuning algorithm has also affected the utility of the model. If this is undesired,
it can be avoided with further hyperparameter modifications.

6 CONCLUSION

We introduced a security-constrained fine-tuning framework that formulates safety requirements as
explicit constraints rather than heuristics or post-hoc checks. Our constraint-aware gradient descent
algorithm efficiently handles such constraints through a modified flow application, yielding closed-
form solutions at each optimization step. Experiments on defending against relearning attacks on the
TOFU dataset using a range of Llama models demonstrate robust defense against relearning attacks
while maintaining legitimate fine-tuning performance.

While we focused on relearning defense, our framework applies broadly to safety-constrained model
customization. Future work includes comprehensive exploration of extended applications such as
personalized AI assistants on edge devices, rigorous comparison with existing unlearning baselines,
and evaluation across diverse safety-critical deployment scenarios. We defer these extensions to
establish the foundational methodology demonstrated here.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ahmed Allibhoy and Jorge Cortés. Control-barrier-function-based design of gradient flows for con-
strained nonlinear programming. IEEE Transactions on Automatic Control, 69(6):3499–3514,
2023.

Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):
3861–3876, 2016.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European
control conference (ECC), pp. 3420–3431. Ieee, 2019.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Zhiqi Bu, Xiaomeng Jin, Bhanukiran Vinzamuri, Anil Ramakrishna, Kai-Wei Chang, Volkan
Cevher, and Mingyi Hong. Unlearning as multi-task optimization: A normalized gradient dif-
ference approach with an adaptive learning rate. arXiv preprint arXiv:2410.22086, 2024.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015
IEEE symposium on security and privacy, pp. 463–480. IEEE, 2015.

Google Cloud. Tune gemini models by using supervised fine-tuning. URL
https://cloud.google.com/vertex-ai/generative-ai/docs/models/
gemini-use-supervised-tuning.

Cohere. Finetuning on cohere’s platform. URL https://docs.cohere.com/v2/page/
convfinqa-finetuning-wandb.

Aghyad Deeb and Fabien Roger. Do unlearning methods remove information from language model
weights? arXiv preprint arXiv:2410.08827, 2024.

Ameet Deshpande, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan, and Karthik
Narasimhan. Toxicity in chatgpt: Analyzing persona-assigned language models. arXiv preprint
arXiv:2304.05335, 2023.

Yijiang River Dong, Hongzhou Lin, Mikhail Belkin, Ramon Huerta, and Ivan Vulić. Undial: Self-
distillation with adjusted logits for robust unlearning in large language models. arXiv preprint
arXiv:2402.10052, 2024.

Vineeth Dorna, Anmol Mekala, Wenlong Zhao, Andrew McCallum, Zachary C Lipton, J Zico
Kolter, and Pratyush Maini. OpenUnlearning: Accelerating LLM unlearning via unified bench-
marking of methods and metrics. arXiv preprint arXiv:2506.12618, 2025. URL https:
//arxiv.org/abs/2506.12618.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning for llms. 2023.

Taha Entesari, Arman Hatami, Rinat Khaziev, Anil Ramakrishna, and Mahyar Fazlyab. Con-
strained entropic unlearning: A primal-dual framework for large language models. arXiv preprint
arXiv:2506.05314, 2025.

Chongyu Fan, Jinghan Jia, Yihua Zhang, Anil Ramakrishna, Mingyi Hong, and Sijia Liu. Towards
llm unlearning resilient to relearning attacks: A sharpness-aware minimization perspective and
beyond. arXiv preprint arXiv:2502.05374, 2025.

Xiaohua Feng, Yuyuan Li, Chaochao Chen, Li Zhang, Longfei Li, Jun Zhou, and Xiaolin Zheng.
Controllable unlearning for image-to-image generative models via ε-constrained optimization.
arXiv preprint arXiv:2408.01689, 2024.

Jiahui Geng, Qing Li, Herbert Woisetschlaeger, Zongxiong Chen, Fengyu Cai, Yuxia Wang, Preslav
Nakov, Hans-Arno Jacobsen, and Fakhri Karray. A comprehensive survey of machine unlearning
techniques for large language models. arXiv preprint arXiv:2503.01854, 2025.

10

https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini-use-supervised-tuning
https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini-use-supervised-tuning
https://docs.cohere.com/v2/page/convfinqa-finetuning-wandb
https://docs.cohere.com/v2/page/convfinqa-finetuning-wandb
https://arxiv.org/abs/2506.12618
https://arxiv.org/abs/2506.12618

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chia-Yi Hsu, Yu-Lin Tsai, Chih-Hsun Lin, Pin-Yu Chen, Chia-Mu Yu, and Chun-Ying Huang. Safe
lora: The silver lining of reducing safety risks when finetuning large language models. Advances
in Neural Information Processing Systems, 37:65072–65094, 2024.

Shengyuan Hu, Yiwei Fu, Steven Wu, and Virginia Smith. Jogging the memory of unlearned models
through targeted relearning attacks. In ICML 2024 Workshop on Foundation Models in the Wild,
2024.

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Tekin, and Ling Liu. Lisa: Lazy safety alignment
for large language models against harmful fine-tuning attack. Advances in Neural Information
Processing Systems, 37:104521–104555, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Antonia Karamolegkou, Jiaang Li, Li Zhou, and Anders Søgaard. Copyright violations and large
language models. arXiv preprint arXiv:2310.13771, 2023.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li,
Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring
and reducing malicious use with unlearning. arXiv preprint arXiv:2403.03218, 2024.

Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang
Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large
language models. Nature Machine Intelligence, pp. 1–14, 2025.

Michelle Lo, Shay B Cohen, and Fazl Barez. Large language models relearn removed concepts.
arXiv preprint arXiv:2401.01814, 2024.

Jakub Łucki, Boyi Wei, Yangsibo Huang, Peter Henderson, Florian Tramèr, and Javier Rando. An
adversarial perspective on machine unlearning for ai safety. arXiv preprint arXiv:2409.18025,
2024.

Kaifeng Lyu, Haoyu Zhao, Xinran Gu, Dingli Yu, Anirudh Goyal, and Sanjeev Arora. Keeping llms
aligned after fine-tuning: The crucial role of prompt templates. Advances in Neural Information
Processing Systems, 37:118603–118631, 2024.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task
of fictitious unlearning for llms. arXiv preprint arXiv:2401.06121, 2024.

Pol Mestres, Arnau Marzabal, and Jorge Cortés. Anytime safe reinforcement learning. arXiv
preprint arXiv:2504.16417, 2025.

Michael Muehlebach and Michael I Jordan. On constraints in first-order optimization: A view from
non-smooth dynamical systems. arXiv preprint arXiv:2107.08225, 2021.

OpenAI. Supervised fine-tuning. URL https://platform.openai.com/docs/guides/
supervised-fine-tuning.

Zibin Pan, Shuwen Zhang, Yuesheng Zheng, Chi Li, Yuheng Cheng, and Junhua Zhao. Multi-
objective large language model unlearning. In ICASSP 2025-2025 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2025.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to!
arXiv preprint arXiv:2310.03693, 2023.

Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek
Mittal, and Peter Henderson. Safety alignment should be made more than just a few tokens deep.
arXiv preprint arXiv:2406.05946, 2024.

Jie Ren, Yue Xing, Yingqian Cui, Charu C Aggarwal, and Hui Liu. Sok: Machine unlearning for
large language models. arXiv preprint arXiv:2506.09227, 2025.

11

https://platform.openai.com/docs/guides/supervised-fine-tuning
https://platform.openai.com/docs/guides/supervised-fine-tuning

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-way
evaluation for language models. arXiv preprint arXiv:2407.06460, 2024.

Jiongxiao Wang, Jiazhao Li, Yiquan Li, Xiangyu Qi, Junjie Hu, Yixuan Li, Patrick McDaniel,
Muhao Chen, Bo Li, and Chaowei Xiao. Mitigating fine-tuning based jailbreak attack with back-
door enhanced safety alignment. arXiv preprint arXiv:2402.14968, 2024.

Xianjun Yang, Xiao Wang, Qi Zhang, Linda Petzold, William Yang Wang, Xun Zhao, and Dahua
Lin. Shadow alignment: The ease of subverting safely-aligned language models. arXiv preprint
arXiv:2310.02949, 2023.

Yuanshun Yao, Xiaojun Xu, and Yang Liu. Large language model unlearning. Advances in Neural
Information Processing Systems, 37:105425–105475, 2024.

Qiusi Zhan, Richard Fang, Rohan Bindu, Akul Gupta, Tatsunori Hashimoto, and Daniel Kang.
Removing rlhf protections in gpt-4 via fine-tuning. arXiv preprint arXiv:2311.05553, 2023.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catas-
trophic collapse to effective unlearning. arXiv preprint arXiv:2404.05868, 2024.

Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Qi Zhang, and Xuanjing Huang. Making harmful behaviors
unlearnable for large language models. arXiv preprint arXiv:2311.02105, 2023.

Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, and Timothy Hospedales. Safety
fine-tuning at (almost) no cost: A baseline for vision large language models. arXiv preprint
arXiv:2402.02207, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DERIVATION OF CLOSED FORM SOLUTION OF PROBLEM 5

Proof. As problem 5 is convex in u and has only a single affine constraint, strong duality holds
Boyd & Vandenberghe (2004). As such, the solution can be acquired through the KKT conditions.
The Lagrangian for this problem is

L(u, λ) = 1

2
∥u(θ(t))∥22 + λ

(
αg(θ) +∇θg(θ)

⊤u(θ)−∇θg(θ)
⊤∇θf(θ)

)
.

Solving for∇uL(u, λ) = 0 yields u(θ) = −λ∇θg(θ). Using this in the primal feasibility condition
yields that

λ ≥ αg(θ)−∇θf(θ)
⊤∇θg(θ)

||∇g(θ)||2
.

Moreover, we know that λ ≥ 0. Putting all these together, along with the complementary slackness
condition, we find that

λ⋆ =

(
αg(θ)−∇θf(θ)

⊤∇θg(θ)
)
+

||∇θg(θ)||2
.

This concludes the proof.

A.2 EXPERIMENTS

A.2.1 IMPLEMENTATION DETAILS

Based on the memory requirements of different experiments, we conduct our experiments in two
setups. For the experiments using the LLAMA 3.2 1B/3B models, we use a single A100 GPU with
40GB of memory. For the LLAMA 3.1 8B model, we use a single H100 80 GB GPU.

We build our code on top of the open-unlearning Dorna et al. (2025) GitHub repository1. The
repository provides target and retrained models for the TOFU dataset. To perform unlearning, we
utilize mostly the default parameters of the repository with the addition of LoRA. We use LoRA
with α = r = 128 for unlearning. We apply the LoRA using the HuggingFace library to all linear
layers. For the 1B and 3B models, we use a learning rate of 0.001 (with the default warm-up and
decay), but for the 8B model we use a learning rate of 0.00001. We use a fixed effective batch size of
32. For the constrained unlearning framework, we set ε = 0.3 on the retention loss, as per Entesari
et al. (2025).

For all constraint-aware gradient descent implementations, we use αk = 1/ηk, i.e., at each step, α is
the reciprocal of the current learning rate. This choice is the maximal value allowed under one-step
approximation of the time derivative in problem 5, i.e., g(θk+1)−g(θk)

ηk +αg(θk) ≤ 0. For g(θk) ≤ 0,
in order to have g(θk+1) ≤ 0, we must have α ≤ 1

ηk .

For the fine-tuning experiments, we utilize LoRA with α = r = 64 applied on all linear layers. For
the 1B and 3B models, we use a learning rate of 0.0001, and a learning rate of 0.00005 for the 8B
model. Based on the value of the forget loss for the unlearned models Lfgt(πθ0 ,Dfgt), we use a fixed
ε = 10 for the constraint of the defense against relearning.

A.2.2 ABLATION

An important question with practical implications for the implementation of safety constraints in
LLM applications is the effect of the size of the dataset D′ needed for the constraint. In our setup
for the experiments in Table 1, we used the full forget10 subset from the TOFU dataset for the
constraint, and at each iteration, a minibatch would be sampled from this dataset and used for our
algorithm (as per Algorithm 1). In this section, we study the effect of the available samples in D′ on
the performance of our algorithm.

1https://github.com/locuslab/open-unlearning

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 2: Effect of the size of the auxiliary dataset used for the constraint. All metrics are bounded in
[0, 1] and the arrows indicate whether larger numbers are better or not. The second column denotes
the dataset used for the fine-tuning task. |D′|/|Dfgt| represents the ratio of the size of the auxiliary
dataset vs the full size. A value of |D′|/|Dfgt| = 0 represents the naive fine-tuning algorithm and
|D′|/|Dfgt| = 1 represents our full algorithm, as used in table Table 1. We let DNF = Dnor ∪ Dfgt

Constraint-Aware Unlearning (Ours)

D |D′|/|Dfgt| ROUGE-L Train↑ ROUGE-L Val↑ Forgetting ↓ Model Utility ↑

L
la

m
a

3.
2

1B

Dnor

0 0.9198 0.6978 0.0000 0.4430
0.2 0.9034 0.6980 0.0000 0.4418
0.5 0.9398 0.6992 0.0000 0.4468
1 0.9049 0.7002 0.0000 0.4427

DNF

0 0.8905 0.7001 0.8371 0.4947
0.2 0.7763 0.6917 0.4128 0.4624
0.5 0.7559 0.6868 0.0047 0.4597
1 0.7617 0.6924 0.0003 0.4561

Dfgt

0 0.5838 0.5943 0.6842 0.5412
0.2 0.5491 0.5800 0.0007 0.5654
0.5 0.5753 0.5707 0.0001 0.5688
1 0.5477 0.5808 0.0001 0.5652

L
la

m
a

3.
2

3B

Dnor

0 0.9100 0.7087 0.0045 0.4768
0.2 0.9246 0.7058 0.0000 0.4753
0.5 0.9464 0.7086 0.0000 0.4787
1 0.9381 0.7081 0.0000 0.4756

DNF

0 0.9506 0.7070 0.9086 0.5607
0.2 0.7933 0.7016 0.5816 0.5320
0.5 0.8350 0.6983 0.0349 0.5104
1 0.7730 0.6935 0.0004 0.5145

Dfgt

0 0.6156 0.5927 0.7548 0.6001
0.2 0.5588 0.5819 0.0019 0.6269
0.5 0.5745 0.5863 0.0003 0.6225
1 0.6026 0.5823 0.0001 0.6259

The TOFU dataset has 20 questions per fictitious author. We study the effect of using only 10 and
4 questions per author in Table 2, denoted with |D′|/|Dfgt| equal to 0.5 and 0.2, respectively. We
repeat the rows corresponding to the ’naive’ and ’Ours’ entries from Table 1 in rows with |D′|/|Dfgt|
equal to 0 and 1, respectively, for ease of comparison.

As expected, the larger D′ is, the better. We see that for this experimental setup, a ratio of 50% is
enough, and our algorithm prevents relearning by having access to half of the questions from each
author. Making the dataset further smaller hurts the algorithm’s capacity to keep the forgetting score
low, and with only 4 questions per author, there is some relearning done by the model.

14

	Introduction
	Related Work
	Methodology
	Gradient Flow for Unconstrained Optimization
	Constrained Optimization via Constraint-Aware Gradient Descent

	Constrained Optimization for LLM Fine-Tuning
	Experiments
	Conclusion
	Appendix
	Derivation of closed form solution of problem 5
	Experiments
	Implementation Details
	Ablation

