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Abstract001

This paper introduces a new taxonomy of multi-002
lingual alignment for English-centric language003
models through token perturbation techniques.004
We propose two methods within this paradigm:005
the Language-Aware Token Boosting (LATB),006
which directly adds perturbations to desired007
language tokens, and its adaptive variant, the008
Adaptive Language-Aware Token Boosting009
(Adaptive-LATB), which dynamically adjusts010
perturbations based on the model’s confidence011
in the intended language. Extensive experi-012
ments show that our methods effectively en-013
hance multilingual alignment. Compared to the014
fine-tuning method, our approaches achieve su-015
perior results in reducing language confusion016
and improving summarization quality without017
requiring additional fine-tuning. Our code will018
be publicly available soon.019

1 Introduction020

Large Language Models (LLMs) have shown im-021

pressive performance, but their English-centric022

development limits their effectiveness for non-023

English users (Hadi et al., 2024, 2023). Recent ef-024

forts (Xue et al., 2021; Workshop et al., 2023; Wei025

et al., 2023) aim to enhance multilingual capabili-026

ties, though English-centric models still underper-027

form in low-resource languages (Qin et al., 2024;028

OpenAI et al., 2024). One of the key issues is lan-029

guage confusion (Devine, 2024), where models fail030

to consistently generate the desired language, par-031

ticularly in non-English contexts (Marchisio et al.,032

2024). Techniques to mitigate this include tempera-033

ture lowering, few-shot prompting, and fine-tuning034

(Marchisio et al., 2024), but these come with limita-035

tions such as reduced responses diversity (Agarwal036

et al., 2024; Renze and Guven, 2024) or increased037

computational costs.038

We propose a novel tuning-free paradigm for039

multilingual alignment, using perturbations di-040

rectly on the logits. This approach eliminates the041

Figure 1: Language-Aware Token Boosting (LATB)
enhances target language generation confidence by se-
lectively boosting target language tokens.

need for fine-tuning and aligns the model’s out- 042

puts with the desired language, incurring mini- 043

mal additional computational costs during infer- 044

ence. We introduce two methods within this 045

paradigm: Language-Aware Token Boosting 046

(LATB), which applies language-specific token 047

perturbations, and Adaptive Language-Aware To- 048

ken Boosting (Adaptive-LATB), which adapts 049

perturbations by introducing perturbations selec- 050

tively—only when the LLM exhibits uncertainty in 051

generating one language over another. 052

We evaluate our methods on the XLSUM mul- 053

tilingual summarization benchmark (Hasan et al., 054

2021) across eight languages. Both LATB and 055

Adaptive-LATB effectively reduce language con- 056

fusion and enhance summarization performance 057

compared to their respective base models and the 058

multilingual-tuned model. We also analyze the ef- 059

fects of hyperparameters, including perturbation 060

values and confidence difference thresholds. 061

In summary, our contributions are as follows: 062

1. We propose a novel tuning-free multilingual 063
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alignment paradigm based on logits pertur-064

bation, introducing two methods: LATB and065

Adaptive-LATB.066

2. We evaluate our methods on the XLSUM067

benchmark, showing reduced language confu-068

sion and improved summarization quality.069

3. We provide an analysis of the impact of hy-070

perparameters on the language confusion and071

summarization quality.072

2 Related Work073

Multilingual Large Language Models. Multi-074

lingual Large Language Models (MLLMs) are de-075

signed to process multiple languages simultane-076

ously. The approaches for developing and opti-077

mizing these models can be broadly categorized078

into two main types: parameter-tuning alignment079

(PTA) and parameter-frozen alignment (PFA) (Qin080

et al., 2024). The PTA approach involves tuning the081

model’s parameters to enable multilingual capabili-082

ties. This tuning can occur at various stages, includ-083

ing pretraining (Xue et al., 2021; Chowdhery et al.,084

2022; Workshop et al., 2023; Jiang et al., 2023,085

2024), supervised fine-tuning (SFT) (Chung et al.,086

2022; Muennighoff et al., 2023; Devine, 2024; Pi-087

patanakul et al., 2023), reinforcement learning with088

human feedback (RLHF) (Lai et al., 2023b; Tou-089

vron et al., 2023; GLM et al., 2024; Bai et al., 2023),090

and downstream task fine-tuning (Lepikhin et al.,091

2020; Rosenbaum et al., 2022). In contrast, PFA092

methods do not require parameter tuning for mul-093

tilingual alignment. Instead, they primarily rely094

on prompting techniques (Abdelali et al., 2024;095

Winata et al., 2023; Lu et al., 2024; Puduppully096

et al., 2023) and retrieval-augmented alignment097

(He et al., 2023; Zhang et al., 2023; Conia et al.,098

2023). Our proposed method falls within the PFA099

category. To the best of our knowledge, our study100

is the first to introduce a new taxonomy for logits101

perturbation-based multilingual alignment.102

Language Confusion. Language confusion103

refers to the inconsistent ability of LLMs to104

generate responses in a target language. This105

phenomenon has been observed across various106

NLP tasks, such as machine translation (Vu et al.,107

2022; Li and Murray, 2023), summarization108

(Wang et al., 2023; Yu et al., 2022), and question109

answering (Holtermann et al., 2024). While110

this issue has been systematically studied with111

various proposed methods mitigating it (Marchisio112

et al., 2024), our study introduces a novel and 113

cost-effective approach to mitigate language 114

confusion using token perturbation methods. 115

3 Approach 116

3.1 Token Language Identification 117

We identify tokens to boost based on the target lan- 118

guage using a Unicode filtering method following 119

(Wen-Yi and Mimno, 2023). Specifically, a token 120

is considered valid if all its characters belong to the 121

Unicode set defined for the target language. We 122

also include numbers, special characters, and the 123

end of sentence tokens in the desired set. 124

3.2 Perturbation Vector 125

We construct a perturbation vector, p, based on the 126

set of desired token indices I . Each element corre- 127

sponding to an index in I is assigned a perturbation 128

value α ≥ 0, as defined in Equation 1. 129

pi =

{
α if i ∈ I,

0 otherwise.
(1) 130

3.3 Logits Perturbation Methods 131

In this study, we explore two variants of the Logits 132

Perturbation Method: LATB and Adaptive-LATB. 133

3.3.1 Language-Aware Token Boosting 134

(LATB) 135

We introduce perturbations to the logits by adding 136

a perturbation value α to the selected logits to align 137

them with the desired language. The method is 138

detailed in Algorithm 1. 139

Algorithm 1 Vanilla LATB

logits← LLM(x)
logits′ ← logits + p ▷ Logits Perturbation
y← Softmax(logits′)

3.3.2 Adaptive Language-Aware Token 140

Boosting (Adaptive-LATB) 141

Adding logits in the vanilla LATB may suppress 142

the ability to express tokens in another language 143

when necessary. In contrast, the Adaptive LATB 144

perturbs logits only when the LLM is not confi- 145

dent about the language it intends to express. The 146

confidence difference threshold, controlled by the 147

hyperparameter β (0 ≤ β ≤ 1), determines the 148

model’s confidence difference threshold in one lan- 149

guage over another. This design enables the model 150
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to switch languages when it is highly confident.151

The details of the Adaptive LATB algorithm are152

provided in Algorithm 2.153

Algorithm 2 Adaptive LATB

logits← LLM(x)
y← Softmax(logits)
a← max({yi | yi ∈ y and i ∈ I})
b← max({yi | yi ∈ y and i ̸∈ I})
if |a− b| < β then

logits′ ← logits + p ▷ Logits Perturbation
y← Softmax(logits′)

end if

4 Evaluation Metrics154

We evaluate the model based on two key aspects:155

Language Confusion, which measures the model’s156

misalignment with the target language, and Perfor-157

mance, which assesses the quality of the generated158

summaries.159

4.1 Language Confusion Metrics160

We evaluate language confusion at three distinct161

levels to capture both fine-grained and overall ef-162

fects: token-level, line-level, and response-level163

language confusion.164

Token-level Language Confusion. We deter-165

mine each token’s language based on its Unicode166

and calculate token-level misalignment rates for167

each response. These rates are then averaged across168

all responses to report the final metric.169

Line-level Language Confusion. We segment170

each response by line and utilize an off-the-shelf171

language identification (LID) tool, FastText (Grave172

et al., 2018), to determine the language of each line.173

We calculate the average language misalignment174

per response and report the overall average across175

all responses.176

Response-level Language Confusion. We input177

the entire response into the FastText (Grave et al.,178

2018) language identification and calculate the av-179

erage language misalignment across all responses,180

reporting this as the final metric.181

4.2 Performance Metrics182

We assess summarization performance using three183

widely adopted metrics: ROUGE-1, ROUGE-2,184

and ROUGE-L (Lin, 2004). These metrics evalu-185

ate the overlap of unigrams, bigrams, and longest186

common subsequences, respectively, between the 187

generated summaries and the reference summaries. 188

5 Experiments 189

Models. We use Llama3 8B Instruct (Lai et al., 190

2023a) as the base English-centric model. To assess 191

our method’s effectiveness, we compare it against 192

Suzume 8B Multilingual (Devine, 2024), a multi- 193

lingual fine-tuned version of Llama3 8B Instruct 194

trained on a multilingual conversational dataset. 195

Benchmark. We adopt the multilingual summa- 196

rization XLSUM dataset (Hasan et al., 2021) as 197

the benchmark for our evaluation. This dataset is 198

particularly suitable for our study as it allows mod- 199

els to generate extended responses, which can be 200

systematically evaluated using quantitative metrics. 201

In our study, we select 4 High Resource Lan- 202

guages (HRL): Russian (ru), Simplified Chinese 203

(zh), Japanese (ja), and French (fr), as well as 4 204

Medium Resource Languages (MRL): Korean (ko), 205

Thai (th), Hindi (hi), and Arabic (ar). The catego- 206

rization of languages follows (Lai et al., 2023a). 207

For each language, we utilize the test split from 208

the dataset and sample up to 1,000 examples for 209

evaluation. 210

Language Confusion Results. We compare our 211

methods with Llama3 8B Instruct (Grattafiori et al., 212

2024) and Suzume 8B Multilingual (Devine, 2024). 213

Our methods demonstrate effectiveness in reducing 214

language confusion compared to its base model. 215

Furthermore, our methods outperform the multi- 216

lingual fine-tuned model, highlighting their effec- 217

tiveness in reducing language confusion without 218

incurring the cost of fine-tuning. The language 219

confusion results are presented in Table 1. 220

Summarization Quality Results. The results re- 221

ported in Table 2 demonstrate that our methods 222

generate higher-quality responses compared to both 223

the Llama3 baseline model (Grattafiori et al., 2024) 224

and the Suzume 8B Multilingual model (Devine, 225

2024) without additional fine-tuning requirements. 226

6 Analysis 227

Impact of Hyperparameters. In LATB, increas- 228

ing α reduces language confusion, with ROUGE 229

scores rising initially before declining. At the α 230

yielding the highest ROUGE scores, the model bal- 231

ances effectively expressing technical terms in En- 232

glish while minimizing language confusion at both 233

line and response levels. Beyond this optimal point, 234
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Table 1: Language confusion across different methods evaluated on eight languages, reported as Token-level/Line-
level/Response-level language confusion in percentage.

Llama3 8B-I Suzume 8B-Multilingual Llama3 8B-I + LATB (Ours) Llama3 8B-I + Adaptive LATB (Ours)

High Resource Languages (HRL)
ru 5.02/4.10/2.90 3.04/2.30/2.10 0.28/0.44/0.10 0.48/0.38/0.10
zh 14.17/9.69/9.10 7.56/0.89/0.90 4.78/0.00/0.00 5.37/0.10/0.00
ja 10.15/9.29/4.16 5.96/0.73/0.67 3.51/0.70/0.11 4.05/0.16/0.11
fr 0.26/0.39/0.20 0.31/0.37/0.30 0.11/0.35/0.20 0.18/0.25/0.30

Medium Resource Languages (MRL)
ko 16.72/30.79/27.27 8.28/11.74/12.36 3.45/9.98/10.36 4.56/10.12/11.45
th 3.67/9.80/2.30 2.16/1.16/0.84 0.43/0.18/0.00 0.38/0.00/0.00
hi 1.67/8.59/0.40 2.77/3.36/2.50 0.23/0.74/0.10 0.26/0.89/0.00
ar 9.98/11.94/5.60 5.63/2.95/2.60 0.37/0.28/0.00 0.54/0.22/0.00

Table 2: Summarization performance across different methods evaluated on eight languages, reported as ROUGE-
1/ROUGE-2/ROUGE-L in percentage.

Llama3 8B-I Suzume 8B-Multilingual Llama3 8B-I + LATB (Ours) Llama3 8B-I + Adaptive LATB (Ours)

High Resource Languages (HRL)
ru 20.44/9.26/13.41 19.35/8.32/12.42 20.83/9.46/13.60 21.00/9.42/13.58
zh 19.41/8.99/13.73 19.31/8.59/13.38 20.70/9.44/14.64 20.55/9.28/14.52
ja 26.48/12.43/16.97 26.13/11.73/16.55 27.54/12.95/17.70 27.89/12.92/17.89
fr 19.98/8.90/13.71 18.56/7.89/12.47 20.13/9.05/13.74 19.97/8.89/13.59

Medium Resource Languages (MRL)
ko 14.66/6.14/10.16 15.30/6.13/10.47 16.41/6.78/11.38 16.88/7.03/11.67
th 29.24/13.99/15.62 28.99/13.29/15.14 29.77/14.07/15.79 30.97/14.74/16.41
hi 29.83/16.41/19.03 27.71/14.78/17.52 29.68/16.41/19.00 29.77/16.41/19.05
ar 19.22/7.46/11.66 19.60/7.09/11.69 20.44/8.02/12.45 19.79/7.62/11.84

higher α values suppress tokens in non-target lan-235

guages, leading to a performance drop. The effect236

of α is depicted in Figure 3 in Appendix C.237

For Adaptive LATB, higher β values also reduce238

language confusion, with ROUGE scores improv-239

ing slightly until an inflection point. Excessively240

high β values hinder the model’s ability to generate241

tokens in non-target languages, resulting in a slight242

performance decline. The effect of β is illustrated243

in Figure 4 in Appendix C.244

Performance Improvements. Our analysis high-245

lights a strong correlation between performance246

improvements from LATB and the degree of lan-247

guage confusion without LATB. This finding sug-248

gests that language confusion contributes to per-249

formance degradation. By incorporating LATB,250

we effectively mitigate this issue, leading to per-251

formance gains. The relationship is illustrated in252

Figure 5 in Appendix D.253

7 Conclusion254

This paper introduces a novel approach to mul-255

tilingual alignment for English-centric language256

models through token perturbation techniques. We 257

proposed the Language-Aware Token Boosting 258

(LATB) and its adaptive variant, Adaptive-LATB. 259

Extensive experiments demonstrate that our meth- 260

ods significantly reduce language confusion com- 261

pared to base model and outperform its multilingual 262

fine-tuned model. This highlights the efficiency 263

and practicality of our approach for enhancing mul- 264

tilingual language model capabilities. 265

Limitations and Future Work 266

Our work shows promising results but has several 267

limitations. First, the methods struggle with align- 268

ing LLMs to untrained or out-of-vocabulary (OOV) 269

tokens. Second, reliance on Unicode-based lan- 270

guage identification is less effective for languages 271

with significant overlap with Latin scripts. Finally, 272

hyperparameter tuning is needed to balance lan- 273

guage confusion and multilingual expression. Fu- 274

ture work could improve OOV token handling, de- 275

velop better token-based language identification 276

techniques, and design language-agnostic hyperpa- 277

rameter selection methods. 278

4



References279

Ahmed Abdelali, Hamdy Mubarak, Shammur Absar280
Chowdhury, Maram Hasanain, Basel Mousi, Sabri281
Boughorbel, Yassine El Kheir, Daniel Izham, Fahim282
Dalvi, Majd Hawasly, et al. 2024. Larabench:283
Benchmarking arabic ai with large language mod-284
els. Preprint, arXiv:2305.14982.285

Arav Agarwal, Karthik Mittal, Aidan Doyle, Pragnya286
Sridhar, Zipiao Wan, Jacob Arthur Doughty, Jaromir287
Savelka, and Majd Sakr. 2024. Understanding the288
role of temperature in diverse question generation by289
gpt-4. In Proceedings of the 55th ACM Technical290
Symposium on Computer Science Education V. 2,291
SIGCSE 2024, page 1550–1551. ACM.292

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,293
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei294
Huang, et al. 2023. Qwen technical report. Preprint,295
arXiv:2309.16609.296

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,297
Maarten Bosma, Gaurav Mishra, Adam Roberts,298
Paul Barham, Hyung Won Chung, Charles Sutton,299
Sebastian Gehrmann, et al. 2022. Palm: Scal-300
ing language modeling with pathways. Preprint,301
arXiv:2204.02311.302

Hyung Won Chung, Le Hou, Shayne Longpre, Barret303
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi304
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.305
2022. Scaling instruction-finetuned language models.306
Preprint, arXiv:2210.11416.307

Simone Conia, Min Li, Daniel Lee, Umar Farooq Min-308
has, Ihab Ilyas, and Yunyao Li. 2023. Increasing cov-309
erage and precision of textual information in multilin-310
gual knowledge graphs. Preprint, arXiv:2311.15781.311

Peter Devine. 2024. Tagengo: A multilingual chat312
dataset. Preprint, arXiv:2405.12612.313

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang,314
Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,315
Guanyu Feng, Hanlin Zhao, et al. 2024. Chatglm: A316
family of large language models from glm-130b to317
glm-4 all tools. Preprint, arXiv:2406.12793.318

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,319
Abhinav Pandey, Abhishek Kadian, Ahmad Al-320
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,321
Alex Vaughan, et al. 2024. The llama 3 herd of mod-322
els. Preprint, arXiv:2407.21783.323

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-324
mand Joulin, and Tomas Mikolov. 2018. Learning325
word vectors for 157 languages. In Proceedings of326
the International Conference on Language Resources327
and Evaluation (LREC 2018).328

Muhammad Usman Hadi, Qasem Al Tashi, Abbas Shah,329
Rizwan Qureshi, Amgad Muneer, Muhammad Ir-330
fan, Anas Zafar, Muhammad Bilal Shaikh, Naveed331

Akhtar, Jia Wu, et al. 2024. Large language mod- 332
els: a comprehensive survey of its applications, chal- 333
lenges, limitations, and future prospects. Authorea 334
Preprints. 335

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, 336
Muhammad Irfan, Anas Zafar, Muhammad Bilal 337
Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, 338
et al. 2023. A survey on large language models: 339
Applications, challenges, limitations, and practical 340
usage. Authorea Preprints. 341

Tahmid Hasan, Abhik Bhattacharjee, Md Saiful Islam, 342
Kazi Samin, Yuan-Fang Li, Yong-Bin Kang, M. So- 343
hel Rahman, and Rifat Shahriyar. 2021. Xl-sum: 344
Large-scale multilingual abstractive summarization 345
for 44 languages. Preprint, arXiv:2106.13822. 346

Zhiwei He, Tian Liang, Wenxiang Jiao, Zhuosheng 347
Zhang, Yujiu Yang, Rui Wang, Zhaopeng Tu, Shum- 348
ing Shi, and Xing Wang. 2023. Exploring human- 349
like translation strategy with large language models. 350
Preprint, arXiv:2305.04118. 351

Carolin Holtermann, Paul Röttger, Timm Dill, and Anne 352
Lauscher. 2024. Evaluating the elementary multi- 353
lingual capabilities of large language models with 354
multiq. Preprint, arXiv:2403.03814. 355

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 356
sch, Chris Bamford, Devendra Singh Chaplot, Diego 357
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 358
laume Lample, Lucile Saulnier, et al. 2023. Mistral 359
7b. Preprint, arXiv:2310.06825. 360

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 361
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 362
ford, Devendra Singh Chaplot, Diego de las Casas, 363
Emma Bou Hanna, Florian Bressand, et al. 2024. 364
Mixtral of experts. Preprint, arXiv:2401.04088. 365

Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben 366
Veyseh, Hieu Man, Franck Dernoncourt, Trung Bui, 367
and Thien Huu Nguyen. 2023a. Chatgpt beyond en- 368
glish: Towards a comprehensive evaluation of large 369
language models in multilingual learning. Preprint, 370
arXiv:2304.05613. 371

Viet Dac Lai, Chien Van Nguyen, Nghia Trung Ngo, 372
Thuat Nguyen, Franck Dernoncourt, Ryan A. Rossi, 373
and Thien Huu Nguyen. 2023b. Okapi: Instruction- 374
tuned large language models in multiple languages 375
with reinforcement learning from human feedback. 376
Preprint, arXiv:2307.16039. 377

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, 378
Dehao Chen, Orhan Firat, Yanping Huang, Maxim 379
Krikun, Noam Shazeer, and Zhifeng Chen. 2020. 380
Gshard: Scaling giant models with conditional 381
computation and automatic sharding. Preprint, 382
arXiv:2006.16668. 383

Tianjian Li and Kenton Murray. 2023. Why does zero- 384
shot cross-lingual generation fail? an explanation and 385
a solution. Preprint, arXiv:2305.17325. 386

5

https://arxiv.org/abs/2305.14982
https://arxiv.org/abs/2305.14982
https://arxiv.org/abs/2305.14982
https://arxiv.org/abs/2305.14982
https://arxiv.org/abs/2305.14982
https://doi.org/10.1145/3626253.3635608
https://doi.org/10.1145/3626253.3635608
https://doi.org/10.1145/3626253.3635608
https://doi.org/10.1145/3626253.3635608
https://doi.org/10.1145/3626253.3635608
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2311.15781
https://arxiv.org/abs/2311.15781
https://arxiv.org/abs/2311.15781
https://arxiv.org/abs/2311.15781
https://arxiv.org/abs/2311.15781
https://arxiv.org/abs/2405.12612
https://arxiv.org/abs/2405.12612
https://arxiv.org/abs/2405.12612
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2106.13822
https://arxiv.org/abs/2106.13822
https://arxiv.org/abs/2106.13822
https://arxiv.org/abs/2106.13822
https://arxiv.org/abs/2106.13822
https://arxiv.org/abs/2305.04118
https://arxiv.org/abs/2305.04118
https://arxiv.org/abs/2305.04118
https://arxiv.org/abs/2403.03814
https://arxiv.org/abs/2403.03814
https://arxiv.org/abs/2403.03814
https://arxiv.org/abs/2403.03814
https://arxiv.org/abs/2403.03814
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2304.05613
https://arxiv.org/abs/2304.05613
https://arxiv.org/abs/2304.05613
https://arxiv.org/abs/2304.05613
https://arxiv.org/abs/2304.05613
https://arxiv.org/abs/2307.16039
https://arxiv.org/abs/2307.16039
https://arxiv.org/abs/2307.16039
https://arxiv.org/abs/2307.16039
https://arxiv.org/abs/2307.16039
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2305.17325
https://arxiv.org/abs/2305.17325
https://arxiv.org/abs/2305.17325
https://arxiv.org/abs/2305.17325
https://arxiv.org/abs/2305.17325


Chin-Yew Lin. 2004. ROUGE: A package for auto-387
matic evaluation of summaries. In Text Summariza-388
tion Branches Out, pages 74–81, Barcelona, Spain.389
Association for Computational Linguistics.390

Hongyuan Lu, Haoran Yang, Haoyang Huang, Dong-391
dong Zhang, Wai Lam, and Furu Wei. 2024. Chain-392
of-dictionary prompting elicits translation in large393
language models. Preprint, arXiv:2305.06575.394

Kelly Marchisio, Wei-Yin Ko, Alexandre Bérard, Théo395
Dehaze, and Sebastian Ruder. 2024. Understanding396
and mitigating language confusion in llms. Preprint,397
arXiv:2406.20052.398

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,399
Adam Roberts, Stella Biderman, Teven Le Scao,400
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hai-401
ley Schoelkopf, et al. 2023. Crosslingual gener-402
alization through multitask finetuning. Preprint,403
arXiv:2211.01786.404

OpenAI, Josh Achiam, Steven Adler, Sandhini Agar-405
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni406
Aleman, Diogo Almeida, Janko Altenschmidt, Sam407
Altman, et al. 2024. Gpt-4 technical report. Preprint,408
arXiv:2303.08774.409

Kunat Pipatanakul, Phatrasek Jirabovonvisut, Potsawee410
Manakul, Sittipong Sripaisarnmongkol, Ruangsak411
Patomwong, Pathomporn Chokchainant, and Kasima412
Tharnpipitchai. 2023. Typhoon: Thai large language413
models. Preprint, arXiv:2312.13951.414

Ratish Puduppully, Anoop Kunchukuttan, Raj Dabre,415
Ai Ti Aw, and Nancy F. Chen. 2023. Decomposed416
prompting for machine translation between related417
languages using large language models. Preprint,418
arXiv:2305.13085.419

Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen,420
Yinghui Li, Lizi Liao, Min Li, Wanxiang Che, and421
Philip S. Yu. 2024. Multilingual large language422
model: A survey of resources, taxonomy and fron-423
tiers. Preprint, arXiv:2404.04925.424

Matthew Renze and Erhan Guven. 2024. The effect of425
sampling temperature on problem solving in large426
language models. Preprint, arXiv:2402.05201.427

Andy Rosenbaum, Saleh Soltan, Wael Hamza, Yannick428
Versley, and Markus Boese. 2022. Linguist: Lan-429
guage model instruction tuning to generate annotated430
utterances for intent classification and slot tagging.431
Preprint, arXiv:2209.09900.432

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-433
bert, Amjad Almahairi, Yasmine Babaei, Nikolay434
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti435
Bhosale, et al. 2023. Llama 2: Open foundation and436
fine-tuned chat models. Preprint, arXiv:2307.09288.437

Tu Vu, Aditya Barua, Brian Lester, Daniel Cer, Mo-438
hit Iyyer, and Noah Constant. 2022. Overcoming439
catastrophic forgetting in zero-shot cross-lingual gen-440
eration. Preprint, arXiv:2205.12647.441

Jiaan Wang, Fandong Meng, Yunlong Liang, Tingyi 442
Zhang, Jiarong Xu, Zhixu Li, and Jie Zhou. 2023. 443
Understanding translationese in cross-lingual sum- 444
marization. Preprint, arXiv:2212.07220. 445

Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li, 446
Pei Zhang, Xingzhang Ren, Mei Li, Yu Wan, Zhi- 447
wei Cao, Binbin Xie, et al. 2023. Polylm: An open 448
source polyglot large language model. Preprint, 449
arXiv:2307.06018. 450

Andrea W Wen-Yi and David Mimno. 2023. Hyperpoly- 451
glot LLMs: Cross-lingual interpretability in token 452
embeddings. In Proceedings of the 2023 Conference 453
on Empirical Methods in Natural Language Process- 454
ing, pages 1124–1131, Singapore. Association for 455
Computational Linguistics. 456

Genta Indra Winata, Alham Fikri Aji, Zheng-Xin 457
Yong, and Thamar Solorio. 2023. The decades 458
progress on code-switching research in nlp: A sys- 459
tematic survey on trends and challenges. Preprint, 460
arXiv:2212.09660. 461

BigScience Workshop, :, Teven Le Scao, Angela Fan, 462
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel 463
Hesslow, Roman Castagné, Alexandra Sasha Luc- 464
cioni, François Yvon, et al. 2023. Bloom: A 176b- 465
parameter open-access multilingual language model. 466
Preprint, arXiv:2211.05100. 467

Linting Xue, Noah Constant, Adam Roberts, Mihir 468
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, 469
and Colin Raffel. 2021. mt5: A massively multilin- 470
gual pre-trained text-to-text transformer. Preprint, 471
arXiv:2010.11934. 472

Sicheng Yu, Qianru Sun, Hao Zhang, and Jing Jiang. 473
2022. Translate-train embracing translationese arti- 474
facts. In Proceedings of the 60th Annual Meeting of 475
the Association for Computational Linguistics (Vol- 476
ume 2: Short Papers), pages 362–370, Dublin, Ire- 477
land. Association for Computational Linguistics. 478

Min Zhang, Limin Liu, Zhao Yanqing, Xiaosong Qiao, 479
Su Chang, Xiaofeng Zhao, Junhao Zhu, Ming Zhu, 480
Song Peng, Yinglu Li, et al. 2023. Leveraging mul- 481
tilingual knowledge graph to boost domain-specific 482
entity translation of ChatGPT. In Proceedings of Ma- 483
chine Translation Summit XIX, Vol. 2: Users Track, 484
pages 77–87, Macau SAR, China. Asia-Pacific Asso- 485
ciation for Machine Translation. 486
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struct model (Grattafiori et al., 2024) on eight dif- 489

ferent languages from the XLSUM dataset (Hasan 490

et al., 2021). The prompts utilized for this exper- 491

iment are detailed in Appendix B. All responses 492

are generated with the sampling parameters set to 493

a temperature of 1.0 and a top-p value of 1.0. For 494

LATB, the perturbation value α is set to 5. For 495
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Adaptive LATB, the perturbation value is set to496

α = 1000, and the confidence difference threshold497

is set to β = 0.8.498

B Prompt Templates499

Figure 2: Prompt templates used in the experiment

We design language-specific prompt templates to500

ensure consistency and adaptability across different501

languages during text generation. Each template502

provides a structured format where {} is replaced503

by the input text to summarize. The prompt tem-504

plates are shown in Figure 2.505

C Impacts of Hyperparameters506

In LATB, the perturbation parameter α influences507

the generated responses. To analyze its impact, we508

varied α from 0 to 50 and recorded the correspond-509

ing results. These results are presented in Figure 3,510

illustrating the effect of α on language confusion511

and summarization quality.512

In Adaptive-LATB, we investigated the influence513

of the confidence difference threshold, denoted as514

β. Specifically, we varied β from 0 to 0.9 while515

keeping the perturbation value α fixed at 1000. The516

outcomes of this experiment are visualized in Fig-517

ure 4, highlighting how changes in β affect lan-518

guage confusion and summarization quality.519

All responses across the experiments were gener-520

ated using a temperature setting of 1.0 and a top-p521

value of 1.0, ensuring consistency in sampling pa-522

rameters throughout the evaluations.523

D Performance Improvements524

The relationship is illustrated in Figure 5, which525

demonstrates a strong correlation between perfor-526

mance improvements using LATB and language527

confusion.528
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Figure 3: Impact of the Perturbation Value α on Language Confusion and Performance in LATB

Figure 4: Impact of the Confidence Difference Threshold β on Language Confusion and Performance in Adaptive-
LATB with α fixed at 1000

Figure 5: Performance improvements with LATB corre-
late strongly with language confusion levels

8


	Introduction
	Related Work
	Approach
	Token Language Identification
	Perturbation Vector
	Logits Perturbation Methods
	Language-Aware Token Boosting (LATB)
	Adaptive Language-Aware Token Boosting (Adaptive-LATB)


	Evaluation Metrics
	Language Confusion Metrics
	Performance Metrics

	Experiments
	Analysis
	Conclusion
	Experiment Details
	Prompt Templates
	Impacts of Hyperparameters
	Performance Improvements

