
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TIME-AWARE PRIOR FITTED NETWORKS FOR ZERO-
SHOT FORECASTING WITH EXOGENOUS VARIABLES

Anonymous authors
Paper under double-blind review

ABSTRACT

In many forecasting settings, the target series comes with exogenous covariates:
promotions and prices for retail demand, temperature for energy load, calen-
dar/holiday flags for traffic or sales, and grid load or fuel costs for electricity
prices. Ignoring such exogenous covariates can seriously degrade forecasting
accuracy, especially when they signal phase changes or spikes in the target se-
ries. Most current time-series foundation models (e.g., Chronos, Sundial,
TimesFM, TimeMoE, TimeLLM, and LagLlama) ignore exogenous covariates
and make forecasts solely from the time-series history, limiting their performance.
In this paper we focus on bridging this gap by developing ApolloPFN, a prior-
data fitted network (PFN) that is time-aware (unlike prior PFNs) and that natively
incorporates exogenous covariates (unlike prior univariate forecasters). Our de-
sign introduces two major advances: (i) a synthetic data generation procedure tai-
lored to resolve the failure modes that arise when tabular (non-temporal) PFNs are
applied to time-series, and (ii) time-aware architectural modifications that embed
the inductive biases needed to fully exploit the time-series context. We demon-
strate that ApolloPFN achieves state-of-the-art results across benchmarks con-
taining exogenous information such as M5 and electric price forecasting.

1 INTRODUCTION

In many high-impact forecasting scenarios, leveraging exogenous information, i.e. inputs beyond
the raw target time-series values, is essential. For example, in electricity price forecasting and
consumer demand forecasting, information about planned prices and promotions, merchandising
changes, holidays and local events, weather forecasts, and competitor pricing, are naturally encoded
categorically and can shift demand sharply. Ignoring this information often induces large, system-
atic errors as seen in Figure 1. In spite of the value of exogenous information, the vast majority of
current time-series foundation models (TSFMs) such as Chronos (Ansari et al., 2024), Sundial
(Liu et al., 2025), TimesFM (Das et al., 2023), TimeMoE (Shi et al., 2025), TimeLLM (Jin et al.,
2024), and LagLlama (Rasul et al., 2023) cannot handle exogenous covariates directly, or they
require fine-tuning on the data (Arango et al., 2025; Wang et al., 2024; Potapczynski et al., 2024a).
Fine-tuning is often undesirable as it adds runtime, complicates the inference pipeline, increases de-
ployment costs, and weakens the anonymity and isolation of downstream customer data. Therefore,
a practical TSFM should be able to natively incorporate accompanying exogenous covariates when
they are available.

There are a few foundation-like models that accept exogenous covariates in a zero-shot setting: in
particular, TabPFN-TS (Hoo et al., 2025) and Moirai (Woo et al., 2024). Assessing Moirai’s
true zero-shot capability is complicated as it was exposed to almost all public time-series bench-
marks (including large-scale suites such as Gift-Eval Aksu et al. (2024)) during training; there-
fore, finding benchmarks with non-overlapping training and testing observations is difficult. Even
so, it often ranks below TabPFN-TS, even against the benchmarks it was trained on. Crucially,
though, TabPFN-TS is not a time-series model per se—instead, it simply appends a handful of
time-series features to a tabular foundation model. Therefore, it lacks core temporal inductive biases.
As we discovered and describe below, the central problem is that the architecture of TabPFN-TS
is invariant to the order of the data. Order invariance is a reasonable inductive bias in the tabular
i.i.d. case, but it is not a reasonable inductive bias for the time-series context, where the arrow of
time defines an important ordering. In practice, this bias leads to characteristic failure modes when

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ApolloPFN
ApolloPFN (without exogenous)

Data
TabPFN

Price (exogenous)
Promo (exogenous)

2012-12 2013-12 2014-12 2015-12
0

10

20

30

40

50

60
Sa

le
s

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

Pr
ice

(a) M5 weekly sales

480 490 500 510 520 530 540
time

0

1

2

3

4

y

(b) time-series with promotional activity

Figure 1: (a) Not using exogenous information leads to catastrophic forecasting errors. We compare
the predictions of ApolloPFN with and without using exogenous information for the weekly sales of a real
product from the M5 benchmark. Ignoring the rise in price leads the forecaster to predict a decreased demand
as previously observed in the past (brown). In contrast, using exogenous information, the same model predicts a
higher demand (red). (b) Prior-data fitted networks such as TabPFN-TS fail to capture ordered patterns.
We compare the prediction of TabPFN-TS and ApolloPFN for a synthetic time-series that has a recurrent
pattern of a ramp-up period before a promotion, a spike on the promotion, a ramp-down period, and then a
subsequent decrease in demand. The exogenous promotion information is encoded as a binary indicator. Train
data is to the left of the black line and forecasts are to the right.

forecasting with TabPFN-TS. Such failure modes include disregarding order-dependent patterns,
inability to work well across unseen frequencies, weak trend extrapolation, insufficient emphasis on
recent context, and poorly calibrated confidence intervals.

In this paper, we show how to effectively leverage exogenous variables for zero-shot forecasting,
including the following contributions:

• We provide a detailed characterization of the shortcomings of existing PFNs such as TabPFN-TS
for time-series forecasting. In particular, we show that TabPFN-TS has intrinsic limitations due
to the i.i.d. assumption that informs how the synthetic training data is generated, as well as its
architectural specification. For these reasons, it fails to understand temporal autocorrelations,
making it challenging to accurately predict ordered patterns, as illustrated in Figure 1 (b). Based
on these findings, we argue that existing PFNs are not suitable as time-series FMs (Section 3.)

• We introduce ApolloPFN, a model that circumvents the limitations of TabPFN-TS through
a novel data generation procedure and architectural choices (Section 4). This consists of two
complementary components. First, we introduce a synthetic data generation procedure for time-
series that relies on a new graph generation algorithm (which accelerates learning as seen in Figure
3) coupled with time-dependent root nodes (see Section 4.1). Second, we incorporate inductive
biases into our architecture that reflect the importance of order in time-series data (Section 4.2)
and present several ablations on real and synthetic data to bolster our choices (Section 4.3).

• We extensively compare ApolloPFN against SOTA baselines, including TabPFN-TS and
Moirai, in several datasets spanning more than 90K time series that have accompanying ex-
ogenous covariates, demonstrating the broad effectiveness of ApolloPFN. (Section 5.)

2 BACKGROUND

2.1 NOTATION

Since our method is based on a tabular foundation model TabPFN (Hollmann et al., 2023; 2025), our
notation refers tabular datasets in some contexts, and to time series in others. In the tabular context
the data is indexed by i as Dtrain = (xi, yi)

Ntrain
i=1 where we would make predictions for (yi)Ntest

i=1 using
Dtrain and the covariates (xi)

Ntest
i=1 . In contrast, when forecasting, we index our data by t as Dtrain =

(xt, yt)
T
t=1 where we therefore have T previous time steps as history and would make predictions

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for a horizon H (yt)
T+H
t=T+1 using all of Dtrain and the future covariate information (xt)

T+H
t=T+1 (when

available). Most of the neural forecasters in the literature solely provide predictions of the form
(yT , . . . , yT+H) = fθ(y1, . . . , yT), ignoring all xt. However, as seen in Figure 1 (a), the covariates
provide crucial information to maintain accurate predictions. In this paper, we will provide a model
that makes predictions of the type (yT , . . . , yT+H) = fθ(y1, . . . , yT ,x1, . . . ,xT+H) for varying T
and F , where F is the covariate dimensionality xt ∈ RF .

2.2 PFNS

Müller et al. (2022; 2025) introduced a novel paradigm to perform Bayesian inference through prior-
fitted networks (PFNs). First, a user defines an algorithm to sample datasets Dtrain = (xi, yi)

Ntrain
i=1

usually by sampling a vector or graph ξ ∼ p(ξ) and then sampling (xi, yi) ∼ p(x, y|ξ). By defining
a neural network qθ that minimizes the following loss

L(θ) = − E
p(x,y)

log qθ(ytest|xtest,Dtrain)

the neural network qθ(ytest|xtest,Dtrain) approximates the posterior predictive distribution (PPD)
p(ytest|xtest,Dtrain) directly (Müller et al., 2022). The key insight is that by having the neural net-
work qθ approximate the PPD, we circumvent the need to approximate a high-dimensional posterior
p(ξ|Dtrain) or define a closed-form likelihood p(y|x, ξ), which is how the PPD is usually computed:
p(ytest|xtest,Dtrain) =

∫
p(ytest|xtest, ξ)p(ξ|Dtrain)dξ (Murphy, 2012; Hoffman & Gelman, 2014; Wil-

son & Izmailov, 2020).

The data creation in TabPFN (Hollmann et al., 2023; 2025) is illustrative of how a user can generate
implicit priors through sampling. TabPFN uses structured causal models (SCMs) which are directed
acyclical graphs (DAG) where the nodes zi are defined by the relationship with their parent nodes
PA(i) as zi = fi(zPA(i)) + ϵi where fi is some function and ϵi is measurement noise. To generate
SCMs, at a high level, Hollmann et al. (2025) samples DAGs from the random growing networks
with preferential attachment process from Krapivsky & Redner (2023) and then defines fi as either
MLPs (with distinct activations), categorical functions or decision trees (with distinct depths). To
generate N observations, we pass random noise to the root nodes and propagate the values through
the graph in topological order. We then pick some F nodes and set them as the features xi ∈ RF

and a node as yi ∈ R for each i = 1, . . . , N . See Section 4.1 and Appendix B for more details on
the synthetic data generation.

The architecture in TabPFN (Hollmann et al., 2025) closely resembles the transformer architecture
from Radford et al. (2019). Given a tensor Z ∈ RN×F×D where N is the number of observations
(both train and test, N = Ntrain +Ntest), F the number of features and D the embedding dimension,
we have that the main blocks of the TabPFN architecture work as follows

Z ← LN(ℓ)
1 (Z + AttnFeat(ℓ)(Z))

Z ← LN(ℓ)
2 (Z + AttnSamp(ℓ)(Z))

Z ← LN(ℓ)
3 (Z + MLP(ℓ)(Z))

(1)

for ℓ = 1, . . . , L layers. Appendix A explains how we embed the input data (yi)
Ntrain
i=1 and (xi)

N
i=1

into Z. The first and second operations are variants of the classical attention mechanism (Vaswani
et al., 2017), LN(·) stands for layer normalization (Ba et al., 2016) and MLP(·) is a MLP applied to
the embedding dimension. AttnFeat assumes the F axis is the variable part of the mechanism, the
D axis is the embedding, and the remaining axes are batch axes. In contrast, AttnSamp assumes
that the N axis is the variable part of the mechanism, the D axis is the embedding and the remaining
axes are also treated as batch axes. Moreover, the attention matrix Af,:,: ∈ RN×N is going to avoid
interactions between test points that we are trying to fill-in. That is, Af,i,j = 0 if both i and j belong
to test indices.

The previous architecture thus allows for a variable number of observations N and a variable number
of features F . Moreover, as no positional encodings are used for AttnSamp the mechanism is
permutation invariant, which is sensible for i.i.d. data.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ApolloPFN TabPFN TabPFN (no freq) Data

2003-07 2007-07

10000

20000

30000

40000

(a) Reliance on manual frequency features

1998 2002 2006

6000

8000

10000

12000

(b) Weak trend extrapolation

2014-03 2015-03 2016-03
0

20

40

60

(c) Lack of recency bias

1978 1982

600

700

800

900

1978 1982

(d) Poorly calibrated confidence intervals

Figure 2: Failure modes of TabPFN-TS for time-series data that ApolloPFN addresses. We show
some illustrative examples of each failure case with different real time-series: we use a time-series in Tourism
Monthly for (a), in Tourism Yearly for (b), in M5 Weekly for (c) and in M1 Monthly for (d). In the plots,
the train data is to the left of the black line and the forecasts to the right. (a) When TabPFN-TS is not given
frequency features it predicts an average of prior history (green line). In contrast, TabPFN-TS might capture
some time patterns when frequency features are available but miss others outside the frequency range (it does
not capture the largest spikes). (b) TabPFN-TS has problems extrapolating trends especially in short context
cases. (c) The predictions of TabPFN-TS erroneously revert back to zero as that is the most common value in
the context. (d) The range of the 90% confidence intervals in TabPFN-TS substantially increases to capture
previously seen values rather than reflect the uncertainty over the trend of the time series.

3 FAILURE MODES OF TABPFN-TS

TabPFN-TS (Hoo et al., 2025) introduces a series of manually engineered time-series features into
the tabular foundational model TabPFN-v2 (Hollmann et al., 2025) in order to make forecasts.
Although TabPFN-TS achieves competitive performance on several time-series forecasting bench-
marks, it exhibits fundamental failure modes due to the absence of time-series specific inductive
biases, raising concerns about the deployment of such models in industry-critical applications.

Inability to learn ordered patterns. Ordered seasonal patterns that span across multiple time steps
are very common in industry applications such as demand forecasting (where a product has a gradual
increase in demand until its promotion date and sharply drops after it) and energy consumption
(where usage steadily builds up toward peak hours and then declines overnight). These types of
patterns are not purely cyclical, but instead they reflect structured temporal dependencies that unfold
over multiple horizons. An example of such a pattern is shown in Figure 1(b), which shows that
TabPFN-TS cannot capture in-context a sequence of events as it lacks temporal inductive biases.
Instead, the model resolves to outputing a smaller spike in the promotional event.

Dependency on manually engineered frequency features. TabPFN-TS relies on a running index
feature as well as frequency features that are taken from the timestamp of the data (such as day-of-
week, day-of-month, month-of-year, etc.) or estimated frequencies obtained through a FFT decom-
position of the time-series (Hoo et al., 2025). That is, xt,j = sin(2π τ(t)

Pj
) or xt,j = cos(2π τ(t)

Pj
)

where for example, in the case of day-of-week τ(t) ∈ {1, · · · , 7} and Pj = 7 and so forth. As
seen in Figure 2(a), if the frequencies are not used then TabPFN-TS only estimates the mean of
the previous observations. However, TabPFN-TS makes accurate predictions when the relevant

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

SNGN RGN

20 40 60 80 100
Steps (K)

0.2

0.3

0.4

M
1

Ye
ar

ly
 (s

CR
PS

)

20 40 60 80 100
Steps (K)

0.1

0.2

M
4

Da
ily

 (s
CR

PS
)

Figure 3: Our graph generation algorithm accelerates learning. We compare the test benchmark perfor-
mance of our ApolloPFN model trained with the random growing network algorithm (RGN) and our single
node growing network algorithm (SNGN) at different training steps. With SNGN we achieve better perfor-
mance at 20K iterations than at 80K with RGN.

frequencies are explicitly included in the data, but it struggles to capture patterns that do not align
with regular calendar structures.

Weak trend extrapolation. Already noted in (Hoo et al., 2025), TabPFN-TS demonstrates a
limited ability to extrapolate time-series trends as seen in Figure 2(b). This phenomenon most likely
results from the model’s inability to consider the order of the data when estimating the trend.

Lack of a recency bias. TabPFN-TS treats all historical time points equally when making pre-
dictions. Many applications operate in environments with constant distribution shifts, e.g., the un-
derlying data changes over time due to factors like promotions, policy changes, or macroeconomic
conditions. Accurately predicting under these distribution shifts is critical for a reliable deployment
of time-series models. Figure 2(c) shows that TabPFN-TS struggles to capture a sudden uptick in
demand, failing to forecast based on the most recent observations.

Poorly calibrated confidence intervals. TabPFN-TS produces confidence intervals that empha-
size the entire historical context rather than weighting observations according to their consistency
with the prevailing trend in the time series. Figure 2(d) clearly shows this phenomenon where the
huge confidence interval simply reflects values obtained in the distant past. This failure undermines
trust and complicates decision-making in industry critical time-series applications.

The underlying reason as to why TabPFN-TS suffers from the aforementioned failure modes is
because it was trained and developed for i.i.d. data! While the model incorporates some time-series-
specific features, it fails to capture relevant temporal relationships in the data.

4 APOLLOPFN

We now present the architectural and data interventions that allows us to develop ApolloPFN, a
PFN model that leverages the order and temporal relationship of time-series data.

4.1 TEMPORAL TABLES

To follow the TabPFN training procedure in Hollmann et al. (2025), we have to create synthetic
tabular data in the following manner. First, we sample a DAG G ∼ p(G) via random growing
networks (RGN) with preferential attachment (Krapivsky & Redner, 2023) (see Algorithm 1). The
graph G then determines the parent nodes PA(j) for each node j in G. We then define the following
structural causal model (SCM) as in Pearl (2009): Vj = fj(VPA(j)) + ϵj where fj is either a MLP,
a categorical encoding or a decision tree, and ϵj is measurement noise. In this context, the different
nodes j in G represent different features with their relationships given by the SCM. The graphs G
that we sample using Algorithm 1 are characterized by having several root nodes and short paths as
seen in Figure 6 (top) in Appendix B.1.

Then, to generate a tabular dataset DG = (xi, yi)
N
i=1 with xi ∈ RF and yi ∈ R, we first sample

the numbers of observations that we need N ∼ p(N) as well as the features F ∼ p(F). Once N
and F are determined, we then start sampling i.i.d. noise vi,r ∼ p(η) for each root note r in G and
for each i = 1, . . . , N , and then propagate these root values in topological order through the SCM
such that vi,j = fj(vi,j1 , . . . , vi,jk) + ϵi where PA(j) = {j1, . . . , jk} for all j in G. Once we obtain

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(vi,1, . . . , vi,|G|)
N
i=1, where |G| denotes the numbers of nodes in G, we then randomly select F + 1

features (excluding root nodes) and set xi,j = vi,π(j) and yi = vi,π(F+1) where π(·) represents the
random selection.

There are two key modifications that we introduce to the previous synthetic data generation pro-
cedure. First, we develop a new graph generation algorithm (Algorithm 2), named single node
growing network (SNGN), which generates graphs with a single node and various paths that con-
nect the nodes, as seen in Figure 6 (bottom). More importantly, as seen in Figure 3, our use of SNGN
dramatically increases the speed at which the model starts to make accurate predictions. For Figure
3, we trained two different ApolloPFN models, one with RGN and one with SNGN, leaving the
rest of the hyperparameters fixed. We then evaluated the performance of the model checkpoints
every 10K iterations on different benchmarks. We consistently see the model trained with SNGN
achieves a better performance faster than the model trained with RGN. See Appendix B for details.

Then, we sample the values of root nodes (vt,r)
T
t=1 through some stochastic process, thereby in-

troducing a time dependency. In particular, we make the root nodes a combination between a sine
and cosine function with randomly sampled frequencies (ϕ

(r)
1 , ϕ(r)

2) and amplitudes (α
(r)
1 , α(r)

2).
That is, vt,r = α

(r)
1 sin(ϕ

(r)
1 t) + α

(r)
2 cos(ϕ

(r)
2 t) for all t = 1, . . . , T . As a result, we now gener-

ate datasets DG = (xt, yt)
T
t=1 where nearby values like yt+1 are correlated with yt, and so on, in

contrast to sampling root nodes as vi,r independently for each i. After we define the temporal root
nodes, we then propagate the values in the graph to obtain the rest of the features, as in Hollmann
et al. (2025). We still follow the input normalization procedure from TabPFN. That is, we z-score
the data (yt)

T
t=1 before passing it to the model and then we invert the z-scoring when outputting the

predictions (yt)T+H
t=T+1. Note that our mean µT and standard deviation σT only depend on the data

up to T to avoid leaking future information.

4.2 ARCHITECTURAL MODIFICATIONS

4.2.1 POSITIONAL ENCODINGS

Once we have a data generation procedure that has a time dependency, it then makes sense to
introduce an inductive bias to the attention mechanism that reflects these time relationships. A
natural choice is to incorporate RoPE embeddings (Su et al., 2023) to the attention mechanism in
AttnSampl(ℓ)(·) because RoPEwould then make the keys and query interactions obey q⊺

t+hRhkt,
where Rh is a weight matrix such that q⊺

t+hRhkt → 0 as h → ∞. In other words, the keys and
queries of nearby observations are weighted more highly.

RoPE solely incorporates a notion of relative distance between the observations. To incorporate an
absolute notion we use a similar construction to Vaswani et al. (2017) and define absolute positional
encodings of the form Ω ∈ RT×D

Ωt,2d+1 = sin

(
2πt

22d+1

212

)
and Ωt,2d = cos

(
2πt

22d

212

)
which we add to Zf ← Zf +Ω for all f = 1, . . . , F (see Equation 1).

4.2.2 EXPANDING ATTENTION

Given that TabPFN (Hollmann et al., 2023; 2025) was trained on i.i.d. data, a key modification in
the attention mechanism of AttnSampl(ℓ)(·) is that test observations do not attend to each other
but only to the train observations. Therefore when making M predictions for (xj)

Ntest
j=1 we use

the PPD of the form p(yj |xj , (xi, yi)
N
i=1) for each j = 1, . . . , Ntest independently of each other.

However, in the case of time-series, if we are to make H predictions we require that all future ex-
ogenous information (if present) then informs the current predictions. In other words, we expect
that p(yT+h|(xt)

T+H
t=T+1, (xt, yt)

T
t=1) for all h = 1, . . . ,H . To achieve the previous relationship we

simply allow all points to attend to each other on AttnSampl(ℓ)(·).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.3 IMPACT OF MODIFICATIONS

In Figure 2 we observe how our new time-series synthetic data generation process coupled with the
architectural changes presented in the previous sections enables ApolloPFN to resolve the failure
modes of TabPFN-TS. In Figure 4 we perform an ablation to show the performance improvement
when training ApolloPFN with only our time-dependent data ApolloPFN(-), then training the
model with positional encodings ApolloPFN(RoPE) and, finally, allowing the attention mecha-
nism to learn interactions between all the predictions ApolloPFN(RoPE+Full). The baseline
for Figure 4 is TabPFN-TS (Hollmann et al., 2025). Figure 4 shows a clear trend (across test
benchmarks) of how we achieve the best performance once all the modifications are introduced.
In particular, the most important change happens once the positional encodings are incorporated.
RoPE is likely the main driver of this behavior, as it is making the model prioritize closer points
to inform its predictions. However, in the remaining cases it is only feasible to achieve the desired
behavior when combining all the modifications together, such as when learning ordered patterns.

ApolloPFN(-) ApolloPFN(RoPE) ApolloPFN(RoPE+Full)

M3(M) M3(O) Tour(M) Tour(Y) M4(D) M4(M)
Benchmarks

0

50

%
 c

ha
ng

e

Figure 4: Our interventions improve performance on time-series data. Ablation on the use of
RoPE and full attention. We compare the effect of progressively adding RoPE and full attention in
several benchmarks against the baseline of TabPFN-TS.

5 EMPIRICAL EVALUATION

We now comprehensively compare ApolloPFN in several forecasting scenarios and against differ-
ent forecasting models. Overall, ApolloPFN performs incredibly well on challenging time-series
benchmarks that have exogenous information (Table 1 and Table 2). Furthermore, ApolloPFN has
strong zero-short performance on classical benchmarks which do not contain exogenous informa-
tion (Table 3), even against much larger models like Moirai-Large and Chronos-Large, which have
30− 70× more parameters than ApolloPFN, which only has 11M parameters.

5.1 ZERO-SHOT PERFORMANCE WITH EXOGENOUS FEATURES

Unfortunately, most publicly available time-series benchmarks in literature do not contain exoge-
nous features (see GIFT-Eval (Aksu et al., 2024)) and we are restricted to a limited set such as the
electricity price forecasting (Lago et al., 2021) or the M5 competition (Makridakis et al., 2022).

The electricity price forecasting dataset consist of hourly measurements of electric prices (Lago
et al., 2021) for five major markets in Europe, namely Nord Pool (NP), PJM (COMED zone), France
(FR), Belgium (BE), and Germany (DE). These datasets contain exogenous variables such as system
load and power generation measurements. We provide a detailed description of the time spans and
exogenous features for each market in Appendix C.2.

The M-series suite of benchmarks constitutes a comprehensive evaluation on how a model would
perform across varying prediction lengths, different frequencies (hourly, daily, weekly, quarterly,
yearly), and distinct sources of data, resulting in widely different time-series behaviors. It is worth
mentioning that these M-series competitions: M1 (Makridakis & Hibon, 1979), M2 (Makridakis
et al., 1993), M3 (Makridakis & Hibon, 2000), M4 (Makridakis et al., 2020) and, M5 (Makridakis
et al., 2022) have been a consistent benchmark to evaluate forecasting models throughout the years.
However, despite its breadth, only the M5 competition dataset (Makridakis et al., 2022) contains

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

sCRPS DE(24) NP(24) FR(24) BE(24) PJM(24) DE(48) NP(48) FR(48) BE(48) PJM(48)

ApolloPFN(0x) 0.040 0.038 0.040 0.042 0.040 0.056 0.053 0.069 0.058 0.057
TabPFN-TS(0x) 0.033 0.048 0.067 0.048 0.047 0.065 0.055 0.068 0.073 0.069

Moirai-Large(†x) 0.078 0.082 0.079 0.082 0.078 0.120 0.124 0.121 0.123 0.121

Chronos-Large(0) 0.119 0.110 0.139 0.117 0.107 0.088 0.106 0.105 0.089 0.094

Sundial-Base(0) 0.152 0.147 0.151 0.150 0.149 0.097 0.099 0.096 0.095 0.097

Table 1: ApolloPFN beats other neural forecasters that leverage exogenous information. sCRPS
results on electric price forecasting across different datasets and prediction horizons (24, 48). (0x)

denotes zero-shot forecasters that leverage exogenous information. (†x) denotes forecasters that
leverage exogenous information but were exposed to the data during training. (0) denotes zero-shot
univariate forecasters that do not use exogenous information. Best results for each dataset are bold
and second best are underlined.

Level RMSSE M5(D-B) M5(W-B) M5(M-B) M5(D-S) M5(W-S) M5(M-S)

St
at

e

ApolloPFN(0x) 0.580 1.652 2.191 0.973 1.561 2.588
TabPFN-TS(0x) 0.608 1.253 2.580 1.006 1.666 2.636

Moirai-Large(†x) 0.844 1.669 3.546 0.992 1.710 2.882

Chronos-Large(0) 0.655 1.237 2.484 1.007 1.847 2.788

Sundial-Base(0) 0.720 2.010 2.405 0.933 1.649 2.841

St
or

e

ApolloPFN(0x) 0.675 1.829 2.208 0.990 1.449 2.049
TabPFN-TS(0x) 0.651 1.729 2.278 1.024 1.572 2.119

Moirai-Large(†x) 0.900 2.004 3.053 0.984 1.539 2.334

Chronos-Large(0) 0.709 1.715 2.272 0.998 1.601 2.250

Sundial-Base(0) 0.733 2.108 2.536 0.922 1.452 2.202

Table 2: RMSSE results on M5 at a state and store level for different data aggregations. We have
brand level data (B) on the left and SKU level data (S) on the right for the following frequencies:
Daily (D), Weekly (W), and Monthly (M). (0x) denotes zero-shot forecasters that leverage exoge-
nous information. (†x) denotes forecasters that leverage exogenous information but were exposed
to the data during training. (0) denotes zero-shot univariate forecasters that do not use exogenous
information. Best results for each dataset-level are bold, and second best are underlined.

exogenous information such as price and promotional events to inform the predictions. The M5
dataset contains units sold daily for a given SKU (product) with identifying attributes such as brand,
store and state. At the SKU and store level, M5 contains over 30K time-series. We create multiple
versions of the M5 dataset by aggregating across time (to weekly and monthly grains) and across
geographies (to state and store grains).

Tables 1 and 2 compare the ApolloPFN model against foundational forecasters that leverage ex-
ogenous information such as TabPFN-TS and Moirai-Large, and univariate foundational fore-
casters such as Chronos-Large and Sundial-Base against electricity forecasting and M5
aggregations benchmarks. In the electricity forecasting benchmark, ApolloPFN achieves on aver-
age 12% improvement over the next best model (TabPFN-TS), and achieves SOTA across most
datasets. In the M5 aggregations benchmark, it achieves SOTA performance on most aggregation
levels and remains highly competitive with much larger foundational models.

5.2 PERFORMANCE ON CLASSICAL UNIVARIATE BENCHMARKS

Given the limited availability of large-scale publicly accessible time-series datasets, most neural
forecasting models in the literature utilize all or a substantial portion of the M-competition data for

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

sCRPS M1(M) M1(Y) M3(M) M3(O) M4(D) M4(M) M4(Y) Tou(M) Tou(Y)

ApolloPFN 0.152 0.142 0.094 0.034 0.023 0.092 0.113 0.084 0.137

TabPFN-TS 0.169 0.123 0.106 0.035 0.027 0.096 0.115 0.203 0.146

Moirai-Large 0.135 0.210 0.093 0.035 0.033 0.117 0.187 0.275 0.275

Chronos-Large 0.173 0.119 0.113 0.036 0.028 0.108 0.106 0.155 0.103
Sundial-Base 0.157 0.183 0.121 0.047 0.026 0.116 0.160 0.126 0.174

Table 3: ApolloPFN performance in classical univariate benchmarks. Best results for each
dataset are bold, and second best are underlined.

training. Consequently, this practice complicates a fair and unbiased comparison of zero-shot model
performance on these benchmarks. In Table 3, we compare ApolloPFN against several of the best
performing univariate foundational models. Most notably, ApolloPFN performs 10% better than
TabPFN-TS on average and achieves SOTA across the different benchmarks.

6 CONCLUSION

ApolloPFN provides a time-series specific PFN model that gracefully accommodates exogenous
variables, and achieves state-of-the-art zero-shot forecasting performance. The strong performance
of this new PFN model is enabled through proposing architectural innovations, and a synthetic data
generation process. It is notable that ApolloPFN can modulate the effect of different exogenous
covariates on each time-series independently of each other. For example, if there is a product that
does not respond to promotional events then ApolloPFN would not predict a lift for future promo-
tional events, while other models might do if the majority of the products had a positive response
during training.

Given the strong performance of ApolloPFN, it would be exciting to investigate further devel-
opments in the future. For example, the current reliance on standard quadratic attention prohibits
applicability to very long series (>10K). It would also be enlightening to theoretically analyze the
connection between the complexity of the synthetic data, and the performance and generality of
the model. Moreover, it could be possible to further enhance the efficiency and time-series spe-
cific biases of the architecture through representing model parameters and attention with structured
matrices (Potapczynski et al., 2024b).

REFERENCES

Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong, and
Doyen Sahoo. GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation.
arXiv 2410.10393, 2024.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, An-
drew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the
Language of Time Series. arXiv:2403.07815, 2024.

Sebastian Pineda Arango, Pedro Mercado, Shubham Kapoor, Abdul Fatir Ansari, Lorenzo Stella,
Huibin Shen, Hugo Senetaire, Caner Turkmen, Oleksandr Shchur, Danielle C. Maddix, Michael
Bohlke-Schneider, Yuyang Wang, and Syama Sundar Rangapuram. ChronosX: Adapting Pre-
trained Time Series Models with Exogenous Variables. International Conference on Artificial
Intelligence and Statistics (AISTATS), 2025.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. arXiv 1607.06450,
2016.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv 2310.10688, 2023.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15 1593-1623,
2014.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A Trans-
former That Solves Small Tabular Classification Problems in a Second. International Conference
on Learning Representations (ICLR), 2023.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature 637, 319-326, 2025.

Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. From Tables to Time: How TabPFN-
v2 Outperforms Specialized Time Series Forecasting Models . arXiv:2501.02945, 2025.

Rob J Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with Exponential
Smoothing: the State Space Approach. Springer, 2008.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time Series Forecasting by
Reprogramming Large Language Models. International Conference on Learning Representations
(ICLR), 2024.

P. L. Krapivsky and S. Redner. The Magic of Networks Grown by Redirection. arXiv 2305.10628,
2023.

Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, and Rafal Weron. Forecasting day-ahead electric-
ity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark.
Applied Energy, Volume 293, 2021.

Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, and
Mingsheng Long. Sundial: A Family of Highly Capable Time Series Foundation Models. arXiv
2502.00816, 2025.

Spyros Makridakis and Michele Hibon. Accuracy of Forecasting: An Empirical Investigation. Jour-
nal of the Royal Statistical Society, 1979.

Spyros Makridakis and Michele Hibon. The M3-Competition: results, conclusions and implications.
International Journal of Forecasting, 2000.

Spyros Makridakis, Chris Chatfield, Michele Hibon, Michael Lawrence, Terence Mills, Keith Ord,
and LeRoy F. Simmons. The M2-competition: A real-time judgmentally based forecasting study.
International Journal of Forecasting, 1993.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M4 Competition:
100,000 time series and 61 forecasting methods. International Journal of Forecasting, 2020.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. M5 accuracy competition:
Results, findings, and conclusions. International Journal of Forecasting, 2022.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers Can Do Bayesian Inference. International Conference on Learning Representations
(ICLR), 2022.

Samuel Müller, Arik Reuter, Noah Hollmann, David Rügamer, and Frank Hutter. Position: The
Future of Bayesian Prediction Is Prior-Fitted. International Conference on Machine Learning
(ICML), 2025.

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.

Andres Potapczynski, Kin G. Olivares, Malcolm Wolff, Andrew Gordon Wilson, Dmitry Efimov,
and Vincent Quenneville-Belair. Effectively Leveraging Exogenous Information across Neural
Forecasters. NeurIPS TSALM 2024, 2024a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andres Potapczynski, Shikai Qiu, Marc Finzi, Christopher Ferri, Zixi Chen, Micah Goldblum,
C Bayan Bruss, Christopher De, and Andrew G Wilson. Searching for efficient linear layers over
a continuous space of structured matrices. Advances in Neural Information Processing Systems,
37:3857–3881, 2024b.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. OpenAI, 2019.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian
Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir
Hassen, Marin Biloš, Sahil Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin,
Valentina Zantedeschi, Yuriy Nevmyvaka, and Irina Rish. Lag-Llama: Towards Foundation Mod-
els for Probabilistic Time Series Forecasting. arXiv:2310.08278, 2023.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-
MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts. International Con-
ference on Learning Representations (ICLR), 2025.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: En-
hanced Transformer with Rotary Position Embedding. arXiv 2104.09864, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jian-
min Wang, and Mingsheng Long. TimeXer: Empowering Transformers for Time Series Forecast-
ing with Exogenous Variables. Advances in Neural Information Processing Systems (NeurIPS),
2024.

Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective
of generalization. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified Training of Universal Time Series Forecasting Transformers. International Conference
on Machine Learning (ICML), 2024.

APPENDIX OUTLINE

The appendix is composed of the following sections

• Appendix A discusses the architectural details of TabPFN (Hollmann et al., 2023; 2025).
• Appendix B motivates and explains the different graph generation algorithms used during

training.
• Appendix C elaborates on different details for the benchmark evaluations such as the eval-

uation metrics and the data sources.

A TABPFN ARCHITECTURE

In this section we elaborate on additional details that were not covered in Section 2.2. Assume that
we have the following Ntrain observations for our target (yi)Ntrain

i=1 , N = Ntrain +Ntest observations for
covariate information (xi)

N
i=1 where each xi ∈ RF ′

and we want to make Ntest predictions for the
target (yi)Ntest

i=1 .

The goal of the preprocessing step is to transform the information of (xi)
N
i=1 and (yi)

Ntrain
i=1 into an

embedding Z ∈ RN×F×D as used in Equation 1. In terms of the target, we first create a tensor Ỹ ∈
RN×2 by first z-scoring all the train targets, Ỹi,1 = (yi − µtrain)/σtrain where µtrain = 1

Ntrain

∑Ntrain
i=1 yi

and σ2
train = 1

Ntrain−1

∑Ntrain
i=1 (yi − µtrain)

2 for the positions of i = 1, . . . , Ntrain and then by setting

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

the rest of the Ntest positions i = Ntrain + 1, . . . , N as Ỹi,1 = µtrain. Then the other column of
Ỹ would be filled with Ỹi,2 = 0 if the entry is observed (i = 1, . . . , Ntrain) and Ỹi,2 = −2 if not
(i = Ntrain + 1, . . . , N). After than we create Y ∈ RN×D by embedding Ỹ with a linear layer on a
D dimensional space as Y = Ỹ WY where WY ∈ R2×D.

An analogous procedure is done for each of the features in xi ∈ RF ′
after first grouping them

in pairs as discussed in Hollmann et al. (2025). The grouping can done easily with a reshape as
follows. If we have X̃ ′

i = xi, then X̃ = Reshape(X̃′, (N,F ′/2, 2)) would have the desired effect
(assuming that F ′ is divisible by 2, else we 0 pad the feature dimension). After z-scoring each of
the f = 1, . . . , F ′/2 features we then compute X = X̃WX ∈ RN×F−1×D where WX ∈ R2×D

and F = F ′/2 + 1. After the embedding X is constructed we then add a fixed random positional
encoding Ω ∈ RF−1×D to each feature shared across all N samples. In other words we do Xi ←
Xi + Ω for all i = 1, . . . , N . Finally, we set Z = [X,Y] ∈ RN×F×D which would then be the
embedding pass to the architecture seen in Figure 5 and discussed in Section 2.2 Equation 1.

Figure 5: How TabPFN combines attention across features and samples. Taken from Hollmann
et al. (2025), the figure illustrates the main components of the TabPFN architecture discussed in
Equation 1 plus the translation of the embedding into a Riemann distribution approximation of the
PPD p(ytest|xtest,Dtrain).

The transformation of Z ∈ RN×F×D into the Riemman approximation of the PPD is done with
another linear layer as ZNtrain:,−1,:WZ ∈ RNtest×Q where WZ ∈ RD×Q and Q is the number of
quantiles needed to compute the PPD.

B DATA GENERATION

B.1 GRAPH ALGORITHMS

As explained in Section 2.2 and Section 4.1 we need to randomly generate graphs (DAGs) to define
diverse SCMs for our synthetic data procedure. The initial procedure to construct a graph (Hollmann
et al., 2023) was through a MLP, where each node is connected to all other nodes in the next layer
and the depth of the MLP is the depth of the graph which culminates with 1 node at the end which
would be the target. To illustrate, if we have a 3-layered MLP with a width of 10 then we would
have a graph with 21 = 10 + 10 + 1 nodes and 110 = 10 × 10 + 10 × 1 edges (assuming that the
MLP is fully connected). A step to reduce the density of the graph is to drop some edges uniformly
at random or by blocks (Hollmann et al., 2023).

In Hollmann et al. (2025), the authors adopted a “more realistic” DAG generation by using a classical
algorithm in the study of random networks called the random growing network with redirection
(Krapivsky & Redner, 2023) which is represented in Algorithm 1.

As seen in Figure 6 (Top), a characteristic of Algorithm 1 is that it generates graphs with many
root nodes (as each added root node in might never get an incoming edge) and, if the redirection
probability ρ is high then several of the root nodes might point to the first node. When selecting
which features to use from a graph the root nodes are always excluded (Hollmann et al., 2025) and
so having a graph that has many root nodes is not necessarily optimal. Furthermore, if the graph
happens to concentrate in a few nodes, then many of the features would not be related (that is, there

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 Random Growing Network with Redirection and Preferential Attachment

Require: V : total number of nodes, ρ redirection probability
1: Initialize graph G with nodes n = 0, n = 1 and edge (1, 0)
2: Initialize in-degree kj = 0 for all j ̸= 0, k0 = 1
3: for n = 2, . . . , V − 1 do
4: Compute attachment probabilities for all nodes i < n
5: Πi =

ki+1∑n−1
j=0 (kj+1)

6: Select target node t with probability Πt

7: Sample u ∼ U(0, 1)
8: if u < ρ then
9: Connect with target, add edge (n, t)

10: Update: kt ← kt + 1
11: else
12: Connect with target’s only descendant, add edge (n, d)
13: Update: kd ← kd + 1
14: end if
15: end for
16: return DAG G = (V,E)

would not be a path that connects them) making many of the features in the dataset not informative
about the target.

Algorithm 2 Single Root Node Random Growing Network

Require: V : total number of nodes, ρ additional attachment probability
1: Initialize graph G with nodes n = 0, n = 1 and edge (1, 0)
2: Initialize in-degree kj = 0 for all j ̸= 0, k0 = 1
3: for n = 2, . . . , V − 1 do
4: Compute attachment probabilities for all nodes i < n
5: Πi =

ki+1∑n−1
j=0 (kj+1)

6: Select target node t with probability Πt

7: Select an additional source node uniformly at random from s ∈ {0, . . . , n− 1} \ {t}
8: Source node connects to new node, add edge (s, n)
9: Update: kn ← kn + 1

10: Sample u ∼ U(0, 1)
11: if u < ρ then
12: Target connects to new node, add edge (t, n)
13: Update: kn ← kn + 1
14: end if
15: end for
16: Eliminate cycles in G (if any)
17: return DAG G = (V,E)

To generate our graphs to train ApolloPFN, we essentially reverse the mechanisms of Algorithm
1 that makes the output graphs have several nodes and unconnected features. That is, we always
incorporate nodes in a graph by having a prior node connect to it, and also, make it connect to
a popular node with probability ρ. All the steps are in Algorithm 2 and we can see in Figure 6
(Bottom) how we generate graphs that are connected via some path and that only have one single
root node by construction. We show that generating data using Algorithm 2 accelerates training
as seen in Figure 3. Similar to Hollmann et al. (2025) we sample the number of total nodes as
log V ∼ U [a, b] but we sample ρ ∼ B(α, β) using a Beta distribution instead of the Truncated
Gamma distribution used in Hollmann et al. (2025).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0

1

2

3

4

5

6

0

1 2

3

4

5

6

Figure 6: Example graphs from distinct graph generation algorithms. (Top) Example graph sampled via
growing random networks with redirection and preferential attachment (Krapivsky & Redner, 2023). (Bottom)
Example graph using our single root node growing random network.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

C.1 EVALUATION METRICS

In this section we document the evaluation metrics for our experiments.

Given α1 < · · · < αQ quantiles, with αj ∈ (0, 1) sCRPS is defined as:

sCRPS(y, ŷ) =

∑T+H
t=T+1

2
Q

∑Q
j=1 αj

(
yt − ŷ

αj

t

)
+
+ (1− αj)

(
yt − ŷ

αj

t

)
−∑T+H

t=T+1 |yt|

where (·)+ is the positive part and (·)− the negative part functions. Additionally, ŷαj

t represents
the αj-th quantile prediction for time step t. The sCRPS captures how well our accurate are our
probabilistic predictions but we scale them by the norm of the values of the SKU to weight all SKUs
equally.

To evaluate M5, we used the suggested RMSSE metric from Makridakis et al. (2022). This metric
is defined as:

RMSSE(y, ŷ) =
1
H

∑T+H
t=T+1(yt − ŷt)

2

1
T−1

∑T
t=2(yt − yt−1)2

The motivation for RMSSE is three-fold. First, it compares the predictions against a naive one
baseline, giving us a sense of how easy or hard it is to make predictions for this SKU. Second, it
down weights SKUs that might have not many sales in the beginning periods similar to the case in
Figure 2 (c). Third, it focuses on a square error with penalizes models that do not capture spikes in
behavior.

C.2 DATA

All the dataset that we used are publicly available and can be found either the GiftEval (Aksu
et al., 2024) repository or the LOTSA (Woo et al., 2024) huggingface repository.

Below we have a Table 4 with the dataset and citations for reference

Dataset Source

M1 Makridakis & Hibon (1979)
M3 Makridakis & Hibon (2000)
M4 Makridakis et al. (2020)

Tourism Hyndman et al. (2008)

M5 Makridakis et al. (2022)
Electric Price Lago et al. (2021)

Table 4: Data sources used for benchmarking.

In terms of electric prices (Lago et al., 2021), we have: the Nord pool (NP) market which is one of
the largest European power markets containing hourly measurements from 2023-01-01 to 2018-12-
24. The NP dataset comes with exogenous variables measuring the grid load and wind power. We
then have the zonal prices for the COMED area of Pennsylvania, New Jersey and Maryland (PJM)
containing hourly measurements from 2023-01-01 to 2018-12-14. The PJM dataset comes with
exogenous measurements of the system load and zonal load. Next, we have the French electricity
market (FR) containing hourly measurements from 2011-01-09 to 2016-12-31. The FR dataset
contains exogenous measurements of system load and power generation. Then, we have the Belgian
electricity market (BE) containing hourly measurements from 2011-01-09 to 2016-12-31. The BE
dataset contains exogenous measurements of system load and power generation. Finally, we have the
German electricity market (DE) containing hourly measurements from 2012-01-09 to 2017-12-31.
The DE dataset contains exogenous measurements of zonal load and both solar and wind generation
measurements.

15

	Introduction
	Background
	Notation
	PFNs

	Failure Modes of TabPFN-TS
	ApolloPFN
	Temporal Tables
	Architectural modifications
	Positional Encodings
	Expanding Attention

	Impact of modifications

	Empirical evaluation
	Zero-shot performance with exogenous features
	Performance on classical univariate benchmarks

	Conclusion
	TabPFN Architecture
	Data Generation
	Graph Algorithms

	Experimental Details
	Evaluation Metrics
	Data

