

000 001 002 003 004 005 TIME-AWARE PRIOR FITTED NETWORKS FOR ZERO- 006 SHOT FORECASTING WITH EXOGENOUS VARIABLES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

011 In many forecasting settings, the target series comes with exogenous covariates:
012 promotions and prices for retail demand, temperature for energy load, calen-
013 dar/holiday flags for traffic or sales, and grid load or fuel costs for electricity
014 prices. Ignoring such exogenous covariates can seriously degrade forecasting
015 accuracy, especially when they signal phase changes or spikes in the target se-
016 ries. Most current time-series foundation models (e.g., Chronos, Sundial,
017 TimesFM, TimeMoE, TimeLLM, and LagLlama) ignore exogenous covariates
018 and make forecasts solely from the time-series history, limiting their performance.
019 In this paper we focus on bridging this gap by developing ApolloPFN, a prior-
020 data fitted network (PFN) that is time-aware (unlike prior PFNs) and that natively
021 incorporates exogenous covariates (unlike prior univariate forecasters). Our de-
022 sign introduces two major advances: (i) a synthetic data generation procedure tai-
023 lored to resolve the failure modes that arise when tabular (non-temporal) PFNs are
024 applied to time-series, and (ii) time-aware architectural modifications that embed
025 the inductive biases needed to fully exploit the time-series context. We demon-
026 strate that ApolloPFN achieves state-of-the-art results across benchmarks con-
027 taining *exogenous* information such as M5 and electric price forecasting.
028

1 INTRODUCTION

029 In many high-impact forecasting scenarios, leveraging *exogenous* information, i.e. inputs beyond
030 the raw target time-series values, is essential. For example, in electricity price forecasting and
031 consumer demand forecasting, information about planned prices and promotions, merchandising
032 changes, holidays and local events, weather forecasts, and competitor pricing, are naturally encoded
033 categorically and can shift demand sharply. Ignoring this information often induces large, system-
034 atic errors as seen in Figure 1. In spite of the value of exogenous information, the vast majority of
035 current time-series foundation models (TSFMs) such as Chronos (Ansari et al., 2024), Sundial
036 (Liu et al., 2025), TimesFM (Das et al., 2023), TimeMoE (Shi et al., 2025), TimeLLM (Jin et al.,
037 2024), and LagLlama (Rasul et al., 2023) cannot handle exogenous covariates directly, or they
038 require fine-tuning on the data (Arango et al., 2025; Wang et al., 2024; Potapczynski et al., 2024a).
039 Fine-tuning is often undesirable as it adds runtime, complicates the inference pipeline, increases de-
040 ployment costs, and weakens the anonymity and isolation of downstream customer data. Therefore,
041 a practical TSFM should be able to natively incorporate accompanying exogenous covariates when
042 they are available.
043

044 There are a few foundation-like models that accept exogenous covariates in a zero-shot setting: in
045 particular, TabPFN-TS (Hoo et al., 2025) and Moirai (Woo et al., 2024). Assessing Moirai’s
046 true zero-shot capability is complicated as it was exposed to almost all public time-series bench-
047 marks (including large-scale suites such as Gift-Eval Aksu et al. (2024)) during training; there-
048 fore, finding benchmarks with non-overlapping training and testing observations is difficult. Even
049 so, it often ranks below TabPFN-TS, even against the benchmarks it was trained on. Crucially,
050 though, TabPFN-TS is *not* a time-series model *per se*—instead, it simply appends a handful of
051 time-series features to a tabular foundation model. Therefore, it lacks core temporal inductive biases.
052 As we discovered and describe below, the central problem is that the architecture of TabPFN-TS
053 is invariant to the order of the data. Order invariance is a reasonable inductive bias in the tabular
i.i.d. case, but it is *not* a reasonable inductive bias for the time-series context, where the arrow of
time defines an important ordering. In practice, this bias leads to characteristic failure modes when

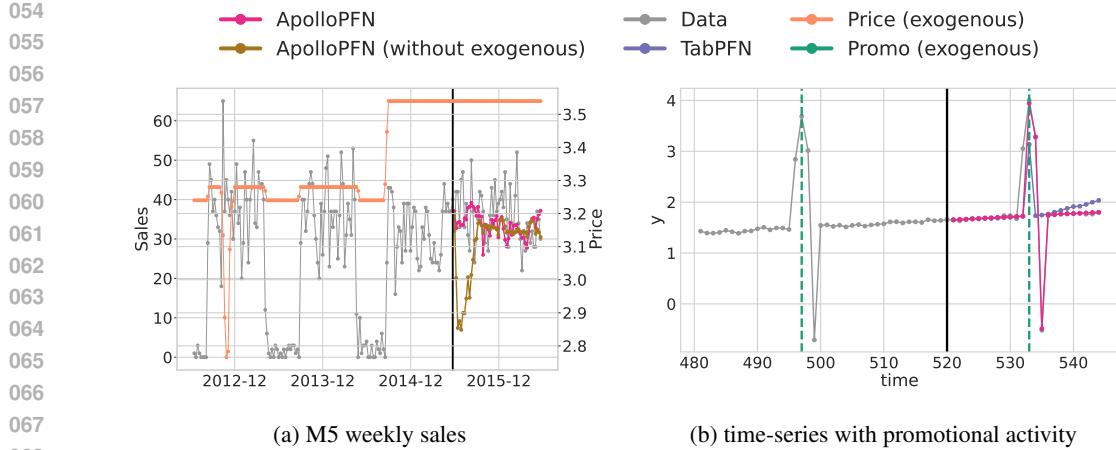


Figure 1: (a) **Not using exogenous information leads to catastrophic forecasting errors.** We compare the predictions of ApolloPFN with and without using exogenous information for the weekly sales of a real product from the M5 benchmark. Ignoring the rise in price leads the forecaster to predict a decreased demand as previously observed in the past (brown). In contrast, using exogenous information, the same model predicts a higher demand (red). (b) **Prior-data fitted networks such as TabPFN-TS fail to capture ordered patterns.** We compare the prediction of TabPFN-TS and ApolloPFN for a synthetic time-series that has a recurrent pattern of a ramp-up period before a promotion, a spike on the promotion, a ramp-down period, and then a subsequent decrease in demand. The exogenous promotion information is encoded as a binary indicator. Train data is to the left of the black line and forecasts are to the right.

forecasting with TabPFN-TS. Such failure modes include disregarding order-dependent patterns, inability to work well across unseen frequencies, weak trend extrapolation, insufficient emphasis on recent context, and poorly calibrated confidence intervals.

In this paper, we show how to effectively leverage exogenous variables for zero-shot forecasting, including the following contributions:

- We provide a detailed characterization of the shortcomings of existing PFNs such as TabPFN-TS *for time-series forecasting*. In particular, we show that TabPFN-TS has intrinsic limitations due to the i.i.d. assumption that informs how the synthetic training data is generated, as well as its architectural specification. For these reasons, it fails to understand temporal autocorrelations, making it challenging to accurately predict ordered patterns, as illustrated in Figure 1 (b). Based on these findings, we argue that existing PFNs are *not* suitable as *time-series* FMs (Section 3.)
- We introduce ApolloPFN, a model that circumvents the limitations of TabPFN-TS through a novel data generation procedure and architectural choices (Section 4). This consists of two complementary components. First, we introduce a synthetic data generation procedure for time-series that relies on a new graph generation algorithm (which accelerates learning as seen in Figure 3) coupled with time-dependent root nodes (see Section 4.1). Second, we incorporate inductive biases into our architecture that reflect the importance of order in time-series data (Section 4.2) and present several ablations on real and synthetic data to bolster our choices (Section 4.3).
- We extensively compare ApolloPFN against SOTA baselines, including TabPFN-TS and Moirai, in several datasets spanning more than 90K time series that have accompanying exogenous covariates, demonstrating the broad effectiveness of ApolloPFN. (Section 5.)

2 BACKGROUND

2.1 NOTATION

Since our method is based on a tabular foundation model TabPFN (Hollmann et al., 2023; 2025), our notation refers tabular datasets in some contexts, and to time series in others. In the tabular context the data is indexed by i as $\mathcal{D}_{\text{train}} = (\mathbf{x}_i, y_i)_{i=1}^{N_{\text{train}}}$ where we would make predictions for $(y_i)_{i=1}^{N_{\text{test}}}$ using $\mathcal{D}_{\text{train}}$ and the covariates $(\mathbf{x}_i)_{i=1}^{N_{\text{test}}}$. In contrast, when forecasting, we index our data by t as $\mathcal{D}_{\text{train}} = (\mathbf{x}_t, y_t)_{t=1}^T$ where we therefore have T previous time steps as history and would make predictions

108 for a horizon H $(y_t)_{t=T+1}^{T+H}$ using all of $\mathcal{D}_{\text{train}}$ and the future covariate information $(\mathbf{x}_t)_{t=T+1}^{T+H}$ (when
 109 available). Most of the neural forecasters in the literature solely provide predictions of the form
 110 $(y_T, \dots, y_{T+H}) = f_\theta(y_1, \dots, y_T)$, ignoring all \mathbf{x}_t . However, as seen in Figure 1 (a), the covariates
 111 provide crucial information to maintain accurate predictions. In this paper, we will provide a model
 112 that makes predictions of the type $(y_T, \dots, y_{T+H}) = f_\theta(y_1, \dots, y_T, \mathbf{x}_1, \dots, \mathbf{x}_{T+H})$ for varying T
 113 and F , where F is the covariate dimensionality $\mathbf{x}_t \in \mathbb{R}^F$.

114

115 2.2 PFNs

116 Müller et al. (2022; 2025) introduced a novel paradigm to perform Bayesian inference through prior-
 117 fitted networks (PFNs). First, a user defines an algorithm to sample datasets $\mathcal{D}_{\text{train}} = (\mathbf{x}_i, y_i)_{i=1}^{N_{\text{train}}}$
 118 usually by sampling a vector or graph $\xi \sim p(\xi)$ and then sampling $(\mathbf{x}_i, y_i) \sim p(\mathbf{x}, y | \xi)$. By defining
 119 a neural network q_θ that minimizes the following loss

120

$$122 \mathcal{L}(\theta) = - \mathbb{E}_{p(\mathbf{x}, y)} \log q_\theta(y_{\text{test}} | \mathbf{x}_{\text{test}}, \mathcal{D}_{\text{train}})$$

124

125 the neural network $q_\theta(y_{\text{test}} | \mathbf{x}_{\text{test}}, \mathcal{D}_{\text{train}})$ approximates the posterior predictive distribution (PPD)
 126 $p(y_{\text{test}} | \mathbf{x}_{\text{test}}, \mathcal{D}_{\text{train}})$ directly (Müller et al., 2022). The key insight is that by having the neural net-
 127 work q_θ approximate the PPD, we circumvent the need to approximate a high-dimensional posterior
 128 $p(\xi | \mathcal{D}_{\text{train}})$ or define a closed-form likelihood $p(y | \mathbf{x}, \xi)$, which is how the PPD is usually computed:
 129 $p(y_{\text{test}} | \mathbf{x}_{\text{test}}, \mathcal{D}_{\text{train}}) = \int p(y_{\text{test}} | \mathbf{x}_{\text{test}}, \xi) p(\xi | \mathcal{D}_{\text{train}}) d\xi$ (Murphy, 2012; Hoffman & Gelman, 2014; Wil-
 130 son & Izmailov, 2020).

131

132 The data creation in TabPFN (Hollmann et al., 2023; 2025) is illustrative of how a user can generate
 133 implicit priors through sampling. TabPFN uses structured causal models (SCMs) which are directed
 134 acyclical graphs (DAG) where the nodes z_i are defined by the relationship with their parent nodes
 135 $\text{PA}(i)$ as $z_i = f_i(z_{\text{PA}(i)}) + \epsilon_i$ where f_i is some function and ϵ_i is measurement noise. To generate
 136 SCMs, at a high level, Hollmann et al. (2025) samples DAGs from the random growing networks
 137 with preferential attachment process from Krapivsky & Redner (2023) and then defines f_i as either
 138 MLPs (with distinct activations), categorical functions or decision trees (with distinct depths). To
 139 generate N observations, we pass random noise to the root nodes and propagate the values through
 140 the graph in topological order. We then pick some F nodes and set them as the features $\mathbf{x}_i \in \mathbb{R}^F$
 141 and a node as $y_i \in \mathbb{R}$ for each $i = 1, \dots, N$. See Section 4.1 and Appendix B for more details on
 142 the synthetic data generation.

143

144 The architecture in TabPFN (Hollmann et al., 2025) closely resembles the transformer architecture
 145 from Radford et al. (2019). Given a tensor $\mathbf{Z} \in \mathbb{R}^{N \times F \times D}$ where N is the number of observations
 146 (both train and test, $N = N_{\text{train}} + N_{\text{test}}$), F the number of features and D the embedding dimension,
 147 we have that the main blocks of the TabPFN architecture work as follows

148

$$149 \begin{aligned} \mathbf{Z} &\leftarrow \text{LN}_1^{(\ell)}(\mathbf{Z} + \text{AttnFeat}^{(\ell)}(\mathbf{Z})) \\ \mathbf{Z} &\leftarrow \text{LN}_2^{(\ell)}(\mathbf{Z} + \text{AttnSamp}^{(\ell)}(\mathbf{Z})) \\ \mathbf{Z} &\leftarrow \text{LN}_3^{(\ell)}(\mathbf{Z} + \text{MLP}^{(\ell)}(\mathbf{Z})) \end{aligned} \quad (1)$$

150

151

152 for $\ell = 1, \dots, L$ layers. Appendix A explains how we embed the input data $(y_i)_{i=1}^{N_{\text{train}}}$ and $(\mathbf{x}_i)_{i=1}^N$
 153 into \mathbf{Z} . The first and second operations are variants of the classical attention mechanism (Vaswani
 154 et al., 2017), $\text{LN}(\cdot)$ stands for layer normalization (Ba et al., 2016) and $\text{MLP}(\cdot)$ is a MLP applied to
 155 the embedding dimension. AttnFeat assumes the F axis is the variable part of the mechanism, the
 156 D axis is the embedding, and the remaining axes are batch axes. In contrast, AttnSamp assumes
 157 that the N axis is the variable part of the mechanism, the D axis is the embedding and the remaining
 158 axes are also treated as batch axes. Moreover, the attention matrix $\mathbf{A}_{f, \dots} \in \mathbb{R}^{N \times N}$ is going to avoid
 159 interactions between test points that we are trying to fill-in. That is, $\mathbf{A}_{f, i, j} = 0$ if both i and j belong
 160 to test indices.

161

162 The previous architecture thus allows for a variable number of observations N and a variable number
 163 of features F . Moreover, as no positional encodings are used for AttnSamp the mechanism is
 164 permutation invariant, which is sensible for i.i.d. data.

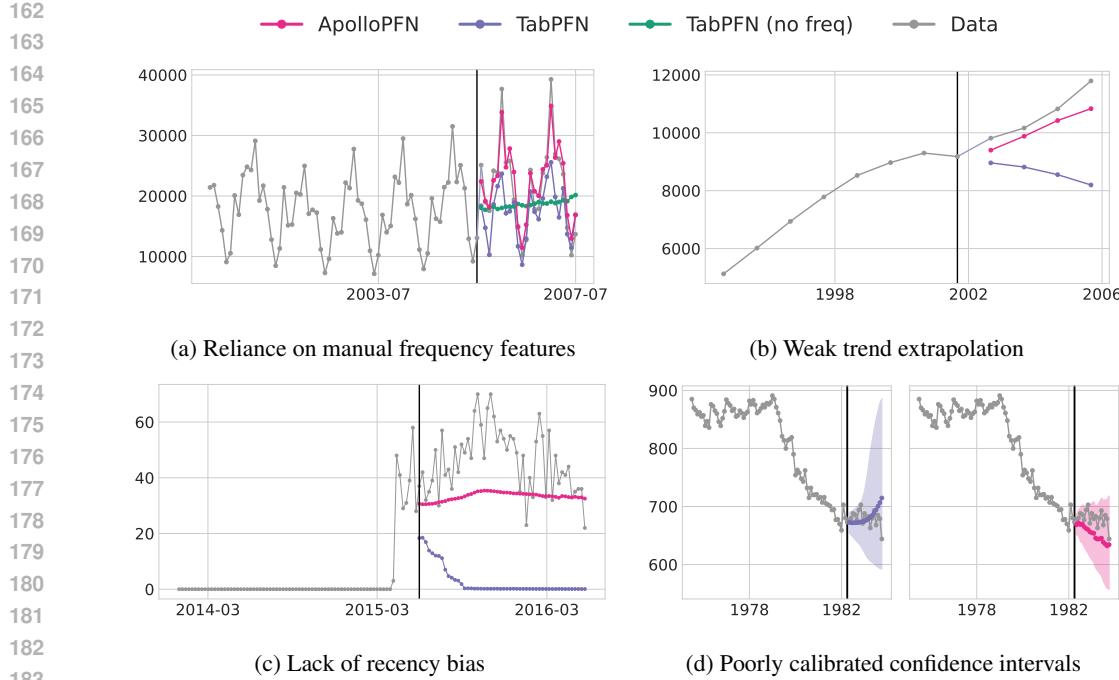


Figure 2: **Failure modes of TabPFN-TS for time-series data that ApolloPFN addresses.** We show some illustrative examples of each failure case with different real time-series: we use a time-series in Tourism Monthly for (a), in Tourism Yearly for (b), in M5 Weekly for (c) and in M1 Monthly for (d). In the plots, the train data is to the left of the black line and the forecasts to the right. (a) When TabPFN-TS is not given frequency features it predicts an average of prior history (green line). In contrast, TabPFN-TS might capture some time patterns when frequency features are available but miss others outside the frequency range (it does not capture the largest spikes). (b) TabPFN-TS has problems extrapolating trends especially in short context cases. (c) The predictions of TabPFN-TS erroneously revert back to zero as that is the most common value in the context. (d) The range of the 90% confidence intervals in TabPFN-TS substantially increases to capture previously seen values rather than reflect the uncertainty over the trend of the time series.

3 FAILURE MODES OF TABPFN-TS

TabPFN-TS (Hoo et al., 2025) introduces a series of manually engineered time-series features into the tabular foundational model TabPFN-v2 (Hollmann et al., 2025) in order to make forecasts. Although TabPFN-TS achieves competitive performance on several time-series forecasting benchmarks, it exhibits fundamental failure modes due to the absence of time-series specific inductive biases, raising concerns about the deployment of such models in industry-critical applications.

Inability to learn ordered patterns. Ordered seasonal patterns that span across multiple time steps are very common in industry applications such as demand forecasting (where a product has a gradual increase in demand until its promotion date and sharply drops after it) and energy consumption (where usage steadily builds up toward peak hours and then declines overnight). These types of patterns are not purely cyclical, but instead they reflect structured temporal dependencies that unfold over multiple horizons. An example of such a pattern is shown in Figure 1(b), which shows that TabPFN-TS cannot capture in-context a sequence of events as it lacks temporal inductive biases. Instead, the model resolves to outputting a smaller spike in the promotional event.

Dependency on manually engineered frequency features. TabPFN-TS relies on a running index feature as well as frequency features that are taken from the timestamp of the data (such as day-of-week, day-of-month, month-of-year, etc.) or estimated frequencies obtained through a FFT decomposition of the time-series (Hoo et al., 2025). That is, $x_{t,j} = \sin(2\pi \frac{\tau(t)}{P_j})$ or $x_{t,j} = \cos(2\pi \frac{\tau(t)}{P_j})$ where for example, in the case of day-of-week $\tau(t) \in \{1, \dots, 7\}$ and $P_j = 7$ and so forth. As seen in Figure 2(a), if the frequencies are not used then TabPFN-TS only estimates the mean of the previous observations. However, TabPFN-TS makes accurate predictions when the relevant

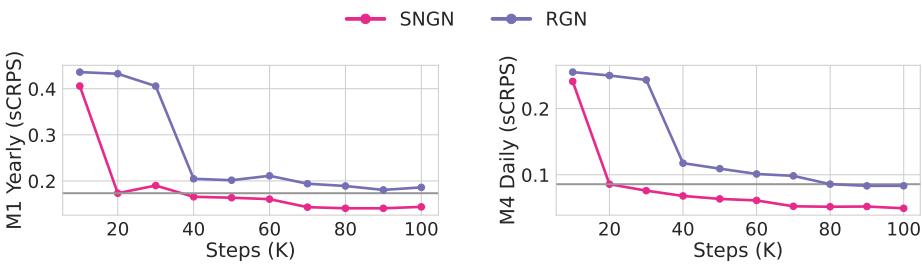


Figure 3: **Our graph generation algorithm accelerates learning.** We compare the test benchmark performance of our ApolloPFN model trained with the random growing network algorithm (RGN) and our single node growing network algorithm (SNGN) at different training steps. With SNGN we achieve better performance at 20K iterations than at 80K with RGN.

frequencies are explicitly included in the data, but it struggles to capture patterns that do not align with regular calendar structures.

Weak trend extrapolation. Already noted in (Hoo et al., 2025), TabPFN-TS demonstrates a limited ability to extrapolate time-series trends as seen in Figure 2(b). This phenomenon most likely results from the model’s inability to consider the order of the data when estimating the trend.

Lack of a recency bias. TabPFN-TS treats all historical time points equally when making predictions. Many applications operate in environments with constant distribution shifts, e.g., the underlying data changes over time due to factors like promotions, policy changes, or macroeconomic conditions. Accurately predicting under these distribution shifts is critical for a reliable deployment of time-series models. Figure 2(c) shows that TabPFN-TS struggles to capture a sudden uptick in demand, failing to forecast based on the most recent observations.

Poorly calibrated confidence intervals. TabPFN-TS produces confidence intervals that emphasize the entire historical context rather than weighting observations according to their consistency with the prevailing trend in the time series. Figure 2(d) clearly shows this phenomenon where the huge confidence interval simply reflects values obtained in the distant past. This failure undermines trust and complicates decision-making in industry critical time-series applications.

The underlying reason as to why TabPFN-TS suffers from the aforementioned failure modes is because it was trained and developed for i.i.d. data! While the model incorporates some time-series-specific features, it fails to capture relevant temporal relationships in the data.

4 APOLLOPFN

We now present the architectural and data interventions that allows us to develop ApolloPFN, a PFN model that leverages the order and temporal relationship of time-series data.

4.1 TEMPORAL TABLES

To follow the TabPFN training procedure in Hollmann et al. (2025), we have to create synthetic tabular data in the following manner. First, we sample a DAG $\mathcal{G} \sim p(\mathcal{G})$ via random growing networks (RGN) with preferential attachment (Krapivsky & Redner, 2023) (see Algorithm 1). The graph \mathcal{G} then determines the parent nodes $\text{PA}(j)$ for each node j in \mathcal{G} . We then define the following structural causal model (SCM) as in Pearl (2009): $V_j = f_j(V_{\text{PA}(j)}) + \epsilon_j$ where f_j is either a MLP, a categorical encoding or a decision tree, and ϵ_j is measurement noise. In this context, the different nodes j in \mathcal{G} represent different features with their relationships given by the SCM. The graphs \mathcal{G} that we sample using Algorithm 1 are characterized by having several root nodes and short paths as seen in Figure 6 (top) in Appendix B.1.

Then, to generate a tabular dataset $\mathcal{D}_{\mathcal{G}} = (\mathbf{x}_i, y_i)_{i=1}^N$ with $\mathbf{x}_i \in \mathbb{R}^F$ and $y_i \in \mathbb{R}$, we first sample the numbers of observations that we need $N \sim p(N)$ as well as the features $F \sim p(F)$. Once N and F are determined, we then start sampling i.i.d. noise $v_{i,r} \sim p(\eta)$ for each root note r in \mathcal{G} and for each $i = 1, \dots, N$, and then propagate these root values in topological order through the SCM such that $v_{i,j} = f_j(v_{i,j_1}, \dots, v_{i,j_k}) + \epsilon_i$ where $\text{PA}(j) = \{j_1, \dots, j_k\}$ for all j in \mathcal{G} . Once we obtain

($v_{i,1}, \dots, v_{i,|\mathcal{G}|}\right)_{i=1}^N$, where $|\mathcal{G}|$ denotes the numbers of nodes in \mathcal{G} , we then randomly select $F + 1$ features (excluding root nodes) and set $x_{i,j} = v_{i,\pi(j)}$ and $y_i = v_{i,\pi(F+1)}$ where $\pi(\cdot)$ represents the random selection.

There are two key modifications that we introduce to the previous synthetic data generation procedure. First, we develop a new graph generation algorithm (Algorithm 2), named single node growing network (SNGN), which generates graphs with a single node and various paths that connect the nodes, as seen in Figure 6 (bottom). More importantly, as seen in Figure 3, our use of SNGN dramatically increases the speed at which the model starts to make accurate predictions. For Figure 3, we trained two different ApolloPFN models, one with RGN and one with SNGN, leaving the rest of the hyperparameters fixed. We then evaluated the performance of the model checkpoints every 10K iterations on different benchmarks. We consistently see the model trained with SNGN achieves a better performance faster than the model trained with RGN. See Appendix B for details.

Then, we sample the values of root nodes $(v_{t,r})_{t=1}^T$ through some stochastic process, thereby introducing a time dependency. In particular, we make the root nodes a combination between a sine and cosine function with randomly sampled frequencies $(\phi_1^{(r)}, \phi_2^{(r)})$ and amplitudes $(\alpha_1^{(r)}, \alpha_2^{(r)})$. That is, $v_{t,r} = \alpha_1^{(r)} \sin(\phi_1^{(r)} t) + \alpha_2^{(r)} \cos(\phi_2^{(r)} t)$ for all $t = 1, \dots, T$. As a result, we now generate datasets $\mathcal{D}_{\mathcal{G}} = (\mathbf{x}_t, y_t)_{t=1}^T$ where nearby values like y_{t+1} are correlated with y_t , and so on, in contrast to sampling root nodes as $v_{i,r}$ independently for each i . After we define the temporal root nodes, we then propagate the values in the graph to obtain the rest of the features, as in Hollmann et al. (2025). We still follow the input normalization procedure from TabPFN. That is, we z-score the data $(y_t)_{t=1}^T$ before passing it to the model and then we invert the z-scoring when outputting the predictions $(y_t)_{t=T+1}^{T+H}$. Note that our mean μ_T and standard deviation σ_T only depend on the data up to T to avoid leaking future information.

4.2 ARCHITECTURAL MODIFICATIONS

4.2.1 POSITIONAL ENCODINGS

Once we have a data generation procedure that has a time dependency, it then makes sense to introduce an inductive bias to the attention mechanism that reflects these time relationships. A natural choice is to incorporate RoPE embeddings (Su et al., 2023) to the attention mechanism in $\text{AttnSamp}^{(\ell)}(\cdot)$ because RoPE would then make the keys and query interactions obey $\mathbf{q}_{t+h}^T \mathbf{R}_h \mathbf{k}_t$, where \mathbf{R}_h is a weight matrix such that $\mathbf{q}_{t+h}^T \mathbf{R}_h \mathbf{k}_t \rightarrow 0$ as $h \rightarrow \infty$. In other words, the keys and queries of nearby observations are weighted more highly.

RoPE solely incorporates a notion of relative distance between the observations. To incorporate an absolute notion we use a similar construction to Vaswani et al. (2017) and define absolute positional encodings of the form $\boldsymbol{\Omega} \in \mathbb{R}^{T \times D}$

$$\Omega_{t,2d+1} = \sin\left(2\pi t \frac{2^{2d+1}}{2^{12}}\right) \quad \text{and} \quad \Omega_{t,2d} = \cos\left(2\pi t \frac{2^{2d}}{2^{12}}\right)$$

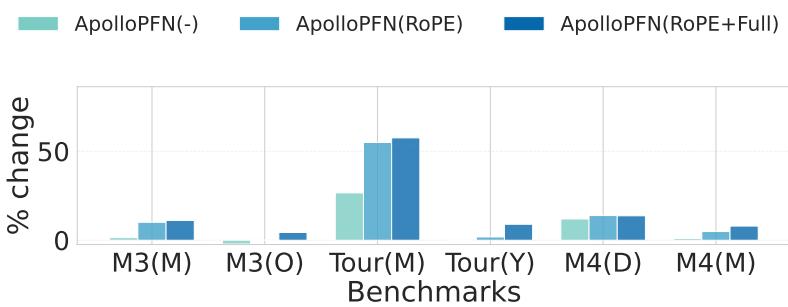
which we add to $\mathbf{Z}_f \leftarrow \mathbf{Z}_f + \boldsymbol{\Omega}$ for all $f = 1, \dots, F$ (see Equation 1).

4.2.2 EXPANDING ATTENTION

Given that TabPFN (Hollmann et al., 2023; 2025) was trained on i.i.d. data, a key modification in the attention mechanism of $\text{AttnSamp}^{(\ell)}(\cdot)$ is that test observations do not attend to each other but only to the train observations. Therefore when making M predictions for $(\mathbf{x}_j)_{j=1}^{N_{\text{test}}}$ we use the PPD of the form $p(y_j | \mathbf{x}_j, (\mathbf{x}_i, y_i)_{i=1}^N)$ for each $j = 1, \dots, N_{\text{test}}$ independently of each other. However, in the case of time-series, if we are to make H predictions we require that all future *exogenous* information (if present) then informs the current predictions. In other words, we expect that $p(y_{T+h} | (\mathbf{x}_t)_{t=T+1}^{T+H}, (\mathbf{x}_t, y_t)_{t=1}^T)$ for all $h = 1, \dots, H$. To achieve the previous relationship we simply allow all points to attend to each other on $\text{AttnSamp}^{(\ell)}(\cdot)$.

324 4.3 IMPACT OF MODIFICATIONS
325

326 In Figure 2 we observe how our new time-series synthetic data generation process coupled with the
327 architectural changes presented in the previous sections enables ApolloPFN to resolve the failure
328 modes of TabPFN-TS. In Figure 4 we perform an ablation to show the performance improvement
329 when training ApolloPFN with only our time-dependent data ApolloPFN(-), then training the
330 model with positional encodings ApolloPFN(RoPE) and, finally, allowing the attention mecha-
331 nism to learn interactions between all the predictions ApolloPFN(RoPE+Full). The baseline for
332 Figure 4 is TabPFN-TS (Hollmann et al., 2025). Figure 4 shows a clear trend (across test
333 benchmarks) of how we achieve the best performance once all the modifications are introduced.
334 In particular, the most important change happens once the positional encodings are incorporated.
335 RoPE is likely the main driver of this behavior, as it is making the model prioritize closer points
336 to inform its predictions. However, in the remaining cases it is only feasible to achieve the desired
337 behavior when combining all the modifications together, such as when learning ordered patterns.
338



349 **Figure 4: Our interventions improve performance on time-series data.** Ablation on the use of
350 RoPE and full attention. We compare the effect of progressively adding RoPE and full attention in
351 several benchmarks against the baseline of TabPFN-TS.

353 5 EMPIRICAL EVALUATION
354

356 We now comprehensively compare ApolloPFN in several forecasting scenarios and against different
357 forecasting models. Overall, ApolloPFN performs incredibly well on challenging time-series
358 benchmarks that have exogenous information (Table 1 and Table 2). Furthermore, ApolloPFN has
359 strong zero-short performance on classical benchmarks which do not contain exogenous information
360 (Table 3), even against much larger models like Moirai-Large and Chronos-Large, which have
361 $30 - 70 \times$ more parameters than ApolloPFN, which only has 11M parameters.

362 5.1 ZERO-SHOT PERFORMANCE WITH EXOGENOUS FEATURES
363

364 Unfortunately, most publicly available time-series benchmarks in literature do not contain exogenous
365 features (see GIFT-Eval (Aksu et al., 2024)) and we are restricted to a limited set such as the
366 electricity price forecasting (Lago et al., 2021) or the M5 competition (Makridakis et al., 2022).

367 The electricity price forecasting dataset consist of hourly measurements of electric prices (Lago
368 et al., 2021) for five major markets in Europe, namely Nord Pool (NP), PJM (COMED zone), France
369 (FR), Belgium (BE), and Germany (DE). These datasets contain exogenous variables such as system
370 load and power generation measurements. We provide a detailed description of the time spans and
371 exogenous features for each market in Appendix C.2.

372 The M-series suite of benchmarks constitutes a comprehensive evaluation on how a model would
373 perform across varying prediction lengths, different frequencies (hourly, daily, weekly, quarterly,
374 yearly), and distinct sources of data, resulting in widely different time-series behaviors. It is worth
375 mentioning that these M-series competitions: M1 (Makridakis & Hibon, 1979), M2 (Makridakis
376 et al., 1993), M3 (Makridakis & Hibon, 2000), M4 (Makridakis et al., 2020) and, M5 (Makridakis
377 et al., 2022) have been a consistent benchmark to evaluate forecasting models throughout the years.
378 However, despite its breadth, only the M5 competition dataset (Makridakis et al., 2022) contains

	sCRPS	DE(24)	NP(24)	FR(24)	BE(24)	PJM(24)	DE(48)	NP(48)	FR(48)	BE(48)	PJM(48)
378	ApolloPFN ^(0x)	<u>0.040</u>	0.038	0.040	0.042	0.040	0.056	0.053	<u>0.069</u>	0.058	0.057
379	TabPFN-TS ^(0x)	0.033	<u>0.048</u>	<u>0.067</u>	<u>0.048</u>	<u>0.047</u>	<u>0.065</u>	<u>0.055</u>	0.068	<u>0.073</u>	<u>0.069</u>
380	Moirai-Large ^(†x)	0.078	0.082	0.079	0.082	0.078	0.120	0.124	0.121	0.123	0.121
381	Chronos-Large ⁽⁰⁾	0.119	0.110	0.139	0.117	0.107	0.088	0.106	0.105	0.089	0.094
382	Sundial-Base ⁽⁰⁾	0.152	0.147	0.151	0.150	0.149	0.097	0.099	0.096	0.095	0.097
383											
384											
385											
386											
387											
388	Table 1: ApolloPFN beats other neural forecasters that leverage exogenous information. sCRPS										
389	results on electric price forecasting across different datasets and prediction horizons (24, 48). ^(0x)										
390	^(0x) denotes zero-shot forecasters that leverage exogenous information. ^(†x) denotes forecasters that										
391	leverage exogenous information but were exposed to the data during training. ⁽⁰⁾ denotes zero-shot										
392	univariate forecasters that do not use exogenous information. Best results for each dataset are bold										
393	and second best are <u>underlined</u> .										
394											
395											

Level	RMSSE	M5(D-B)	M5(W-B)	M5(M-B)	M5(D-S)	M5(W-S)	M5(M-S)
State	ApolloPFN ^(0x)	0.580	1.652	2.191	<u>0.973</u>	1.561	2.588
	TabPFN-TS ^(0x)	<u>0.608</u>	<u>1.253</u>	2.580	1.006	1.666	<u>2.636</u>
	Moirai-Large ^(†x)	0.844	1.669	3.546	0.992	1.710	2.882
	Chronos-Large ⁽⁰⁾	0.655	1.237	2.484	1.007	1.847	2.788
	Sundial-Base ⁽⁰⁾	0.720	2.010	<u>2.405</u>	0.933	<u>1.649</u>	2.841
Store	ApolloPFN ^(0x)	<u>0.675</u>	1.829	2.208	0.990	1.449	2.049
	TabPFN-TS ^(0x)	0.651	<u>1.729</u>	2.278	1.024	1.572	<u>2.119</u>
	Moirai-Large ^(†x)	0.900	2.004	3.053	<u>0.984</u>	1.539	2.334
	Chronos-Large ⁽⁰⁾	0.709	1.715	<u>2.272</u>	0.998	1.601	2.250
	Sundial-Base ⁽⁰⁾	0.733	2.108	2.536	0.922	<u>1.452</u>	2.202

Table 2: RMSSE results on M5 at a state and store level for different data aggregations. We have brand level data (B) on the left and SKU level data (S) on the right for the following frequencies: Daily (D), Weekly (W), and Monthly (M). ^(0x) denotes zero-shot forecasters that leverage exogenous information. ^(†x) denotes forecasters that leverage exogenous information but were exposed to the data during training. ⁽⁰⁾ denotes zero-shot univariate forecasters that do not use exogenous information. Best results for each dataset-level are **bold**, and second best are underlined.

exogenous information such as price and promotional events to inform the predictions. The M5 dataset contains units sold daily for a given SKU (product) with identifying attributes such as brand, store and state. At the SKU and store level, M5 contains over 30K time-series. We create multiple versions of the M5 dataset by aggregating across time (to weekly and monthly grains) and across geographies (to state and store grains).

Tables 1 and 2 compare the ApolloPFN model against foundational forecasters that leverage exogenous information such as TabPFN-TS and Moirai-Large, and univariate foundational forecasters such as Chronos-Large and Sundial-Base against electricity forecasting and M5 aggregations benchmarks. In the electricity forecasting benchmark, ApolloPFN achieves on average 12% improvement over the next best model (TabPFN-TS), and achieves SOTA across most datasets. In the M5 aggregations benchmark, it achieves SOTA performance on most aggregation levels and remains highly competitive with much larger foundational models.

5.2 PERFORMANCE ON CLASSICAL UNIVARIATE BENCHMARKS

Given the limited availability of large-scale publicly accessible time-series datasets, most neural forecasting models in the literature utilize all or a substantial portion of the M-competition data for

sCRPS	M1(M)	M1(Y)	M3(M)	M3(O)	M4(D)	M4(M)	M4(Y)	Tou(M)	Tou(Y)
ApolloPFN	<u>0.152</u>	0.142	<u>0.094</u>	0.034	0.023	0.092	<u>0.113</u>	0.084	<u>0.137</u>
TabPFN-TS	0.169	<u>0.123</u>	0.106	<u>0.035</u>	0.027	<u>0.096</u>	0.115	0.203	0.146
Moirai-Large	0.135	0.210	0.093	0.035	0.033	0.117	0.187	0.275	0.275
Chronos-Large	0.173	0.119	0.113	0.036	0.028	0.108	0.106	0.155	0.103
Sundial-Base	0.157	0.183	0.121	0.047	<u>0.026</u>	0.116	0.160	<u>0.126</u>	0.174

Table 3: **ApolloPFN performance in classical univariate benchmarks.** Best results for each dataset are **bold**, and second best are underlined.

training. Consequently, this practice complicates a fair and unbiased comparison of zero-shot model performance on these benchmarks. In Table 3, we compare ApolloPFN against several of the best performing univariate foundational models. Most notably, ApolloPFN performs 10% better than TabPFN-TS on average and achieves SOTA across the different benchmarks.

6 CONCLUSION

ApolloPFN provides a time-series specific PFN model that gracefully accommodates exogenous variables, and achieves state-of-the-art zero-shot forecasting performance. The strong performance of this new PFN model is enabled through proposing architectural innovations, and a synthetic data generation process. It is notable that ApolloPFN can modulate the effect of different exogenous covariates on each time-series independently of each other. For example, if there is a product that does not respond to promotional events then ApolloPFN would not predict a lift for future promotional events, while other models might do if the majority of the products had a positive response during training.

Given the strong performance of ApolloPFN, it would be exciting to investigate further developments in the future. For example, the current reliance on standard quadratic attention prohibits applicability to very long series ($>10K$). It would also be enlightening to theoretically analyze the connection between the complexity of the synthetic data, and the performance and generality of the model. Moreover, it could be possible to further enhance the efficiency and time-series specific biases of the architecture through representing model parameters and attention with structured matrices (Potapczynski et al., 2024b).

REFERENCES

Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong, and Doyen Sahoo. GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation. *arXiv 2410.10393*, 2024.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the Language of Time Series. *arXiv:2403.07815*, 2024.

Sebastian Pineda Arango, Pedro Mercado, Shubham Kapoor, Abdul Fatir Ansari, Lorenzo Stella, Huibin Shen, Hugo Senetaire, Caner Turkmen, Oleksandr Shchur, Danielle C. Maddix, Michael Bohlke-Schneider, Yuyang Wang, and Syama Sundar Rangapuram. ChronosX: Adapting Pre-trained Time Series Models with Exogenous Variables. *International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2025.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. *arXiv 1607.06450*, 2016.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for time-series forecasting. *arXiv 2310.10688*, 2023.

486 Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path
 487 Lengths in Hamiltonian Monte Carlo. *Journal of Machine Learning Research* 15 1593-1623,
 488 2014.

489 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A Trans-
 490 former That Solves Small Tabular Classification Problems in a Second. *International Conference*
 491 *on Learning Representations (ICLR)*, 2023.

492 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
 493 Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
 494 foundation model. *Nature* 637, 319-326, 2025.

495 Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. From Tables to Time: How TabPFN-
 496 v2 Outperforms Specialized Time Series Forecasting Models . *arXiv:2501.02945*, 2025.

497 Rob J Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with Exponential
 498 Smoothing: the State Space Approach. *Springer*, 2008.

499 Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
 500 uan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time Series Forecasting by
 501 Reprogramming Large Language Models. *International Conference on Learning Representations*
 502 *(ICLR)*, 2024.

503 P. L. Krapivsky and S. Redner. The Magic of Networks Grown by Redirection. *arXiv 2305.10628*,
 504 2023.

505 Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, and Rafal Weron. Forecasting day-ahead electric-
 506 ity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark.
 507 *Applied Energy*, Volume 293, 2021.

508 Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, and
 509 Mingsheng Long. Sundial: A Family of Highly Capable Time Series Foundation Models. *arXiv*
 510 2502.00816, 2025.

511 Spyros Makridakis and Michele Hibon. Accuracy of Forecasting: An Empirical Investigation. *Jour-
 512 nal of the Royal Statistical Society*, 1979.

513 Spyros Makridakis and Michele Hibon. The M3-Competition: results, conclusions and implications.
 514 *International Journal of Forecasting*, 2000.

515 Spyros Makridakis, Chris Chatfield, Michele Hibon, Michael Lawrence, Terence Mills, Keith Ord,
 516 and LeRoy F. Simmons. The M2-competition: A real-time judgmentally based forecasting study.
 517 *International Journal of Forecasting*, 1993.

518 Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M4 Competition:
 519 100,000 time series and 61 forecasting methods. *International Journal of Forecasting*, 2020.

520 Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. M5 accuracy competition:
 521 Results, findings, and conclusions. *International Journal of Forecasting*, 2022.

522 Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
 523 formers Can Do Bayesian Inference. *International Conference on Learning Representations*
 524 *(ICLR)*, 2022.

525 Samuel Müller, Arik Reuter, Noah Hollmann, David Rügamer, and Frank Hutter. Position: The
 526 Future of Bayesian Prediction Is Prior-Fitted. *International Conference on Machine Learning*
 527 *(ICML)*, 2025.

528 Kevin P. Murphy. *Machine Learning: A Probabilistic Perspective*. MIT Press, 2012.

529 Judea Pearl. Causality: Models, Reasoning and Inference. *Cambridge University Press*, 2009.

530 Andres Potapczynski, Kin G. Olivares, Malcolm Wolff, Andrew Gordon Wilson, Dmitry Efimov,
 531 and Vincent Quenneville-Belair. Effectively Leveraging Exogenous Information across Neural
 532 Forecasters. *NeurIPS TSALM 2024*, 2024a.

540 Andres Potapczynski, Shikai Qiu, Marc Finzi, Christopher Ferri, Zixi Chen, Micah Goldblum,
 541 C Bayan Bruss, Christopher De, and Andrew G Wilson. Searching for efficient linear layers over
 542 a continuous space of structured matrices. *Advances in Neural Information Processing Systems*,
 543 37:3857–3881, 2024b.

544 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 545 Models are Unsupervised Multitask Learners. *OpenAI*, 2019.

546 Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian
 547 Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir
 548 Hassen, Marin Biloš, Sahil Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin,
 549 Valentina Zantedeschi, Yuriy Nevmyvaka, and Irina Rish. Lag-Llama: Towards Foundation Mod-
 550 el-
 551 el-
 552 el-
 553 el-
 554 el-
 555 el-
 556 el-
 557 el-
 558 el-
 559 el-
 560 el-
 561 el-
 562 el-
 563 el-
 564 el-
 565 el-
 566 el-
 567 el-
 568 el-
 569 el-
 570 el-
 571 el-
 572 el-
 573 el-
 574 el-
 575 el-
 576 el-
 577 el-
 578 el-
 579 el-
 580 el-
 581 el-
 582 el-
 583 el-
 584 el-
 585 el-
 586 el-
 587 el-
 588 el-
 589 el-
 590 el-
 591 el-
 592 el-
 593 el-

Andres Potapczynski, Shikai Qiu, Marc Finzi, Christopher Ferri, Zixi Chen, Micah Goldblum, C Bayan Bruss, Christopher De, and Andrew G Wilson. Searching for efficient linear layers over a continuous space of structured matrices. *Advances in Neural Information Processing Systems*, 37:3857–3881, 2024b.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language Models are Unsupervised Multitask Learners. *OpenAI*, 2019.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir Hassen, Marin Biloš, Sahil Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin, Valentina Zantedeschi, Yuriy Nevmyvaka, and Irina Rish. Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting. *arXiv:2310.08278*, 2023.

Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts. *International Conference on Learning Representations (ICLR)*, 2025.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: Enhanced Transformer with Rotary Position Embedding. *arXiv 2104.09864*, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jianmin Wang, and Mingsheng Long. TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables. *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of generalization. *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Unified Training of Universal Time Series Forecasting Transformers. *International Conference on Machine Learning (ICML)*, 2024.

APPENDIX OUTLINE

The appendix is composed of the following sections

- Appendix A discusses the architectural details of TabPFN (Hollmann et al., 2023; 2025).
- Appendix B motivates and explains the different graph generation algorithms used during training.
- Appendix C elaborates on different details for the benchmark evaluations such as the evaluation metrics and the data sources.

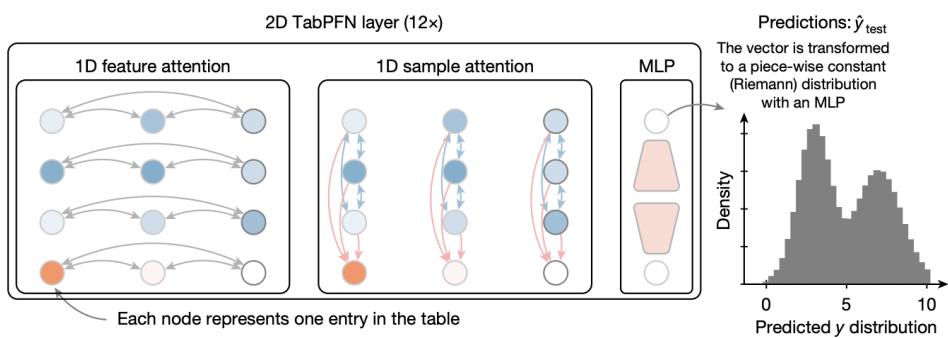
A TABPFN ARCHITECTURE

In this section we elaborate on additional details that were not covered in Section 2.2. Assume that we have the following N_{train} observations for our target $(y_i)_{i=1}^{N_{\text{train}}}$, $N = N_{\text{train}} + N_{\text{test}}$ observations for covariate information $(\mathbf{x}_i)_{i=1}^N$ where each $\mathbf{x}_i \in \mathbb{R}^{F'}$ and we want to make N_{test} predictions for the target $(y_i)_{i=1}^{N_{\text{test}}}$.

The goal of the preprocessing step is to transform the information of $(\mathbf{x}_i)_{i=1}^N$ and $(y_i)_{i=1}^{N_{\text{train}}}$ into an embedding $\mathbf{Z} \in \mathbb{R}^{N \times F \times D}$ as used in Equation 1. In terms of the target, we first create a tensor $\tilde{\mathbf{Y}} \in \mathbb{R}^{N \times 2}$ by first z-scoring all the train targets, $\tilde{Y}_{i,1} = (y_i - \mu_{\text{train}})/\sigma_{\text{train}}$ where $\mu_{\text{train}} = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} y_i$ and $\sigma_{\text{train}}^2 = \frac{1}{N_{\text{train}}-1} \sum_{i=1}^{N_{\text{train}}} (y_i - \mu_{\text{train}})^2$ for the positions of $i = 1, \dots, N_{\text{train}}$ and then by setting

594 the rest of the N_{test} positions $i = N_{\text{train}} + 1, \dots, N$ as $\tilde{Y}_{i,1} = \mu_{\text{train}}$. Then the other column of
 595 $\tilde{\mathbf{Y}}$ would be filled with $\tilde{Y}_{i,2} = 0$ if the entry is observed ($i = 1, \dots, N_{\text{train}}$) and $\tilde{Y}_{i,2} = -2$ if not
 596 ($i = N_{\text{train}} + 1, \dots, N$). After that we create $\mathbf{Y} \in \mathbb{R}^{N \times D}$ by embedding $\tilde{\mathbf{Y}}$ with a linear layer on a
 597 D dimensional space as $\mathbf{Y} = \tilde{\mathbf{Y}} \mathbf{W}_{\mathbf{Y}}$ where $\mathbf{W}_{\mathbf{Y}} \in \mathbb{R}^{2 \times D}$.
 598

599 An analogous procedure is done for each of the features in $\mathbf{x}_i \in \mathbb{R}^{F'}$ after first grouping them
 600 in pairs as discussed in Hollmann et al. (2025). The grouping can be done easily with a reshape as
 601 follows. If we have $\tilde{\mathbf{X}}'_i = \mathbf{x}_i$, then $\tilde{\mathbf{X}} = \text{Reshape}(\tilde{\mathbf{X}}'_i, (N, F'/2, 2))$ would have the desired effect
 602 (assuming that F' is divisible by 2, else we 0 pad the feature dimension). After z-scoring each of
 603 the $f = 1, \dots, F'/2$ features we then compute $\mathbf{X} = \tilde{\mathbf{X}} \mathbf{W}_{\mathbf{X}} \in \mathbb{R}^{N \times F-1 \times D}$ where $\mathbf{W}_{\mathbf{X}} \in \mathbb{R}^{2 \times D}$
 604 and $F = F'/2 + 1$. After the embedding \mathbf{X} is constructed we then add a fixed random positional
 605 encoding $\Omega \in \mathbb{R}^{F-1 \times D}$ to each feature shared across all N samples. In other words we do $\mathbf{X}_i \leftarrow$
 606 $\mathbf{X}_i + \Omega$ for all $i = 1, \dots, N$. Finally, we set $\mathbf{Z} = [\mathbf{X}, \mathbf{Y}] \in \mathbb{R}^{N \times F \times D}$ which would then be the
 607 embedding pass to the architecture seen in Figure 5 and discussed in Section 2.2 Equation 1.



610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1

648 **Algorithm 1** Random Growing Network with Redirection and Preferential Attachment

649
Require: V : total number of nodes, ρ redirection probability

650 1: Initialize graph G with nodes $n = 0, n = 1$ and edge $(1, 0)$

651 2: Initialize in-degree $k_j = 0$ for all $j \neq 0, k_0 = 1$

652 3: **for** $n = 2, \dots, V - 1$ **do**

653 4: Compute attachment probabilities for all nodes $i < n$

654 5: $\Pi_i = \frac{k_i+1}{\sum_{j=0}^{n-1} (k_j+1)}$

655 6: Select target node t with probability Π_t

656 7: Sample $u \sim U(0, 1)$

657 8: **if** $u < \rho$ **then**

658 9: Connect with target, add edge (n, t)

659 10: Update: $k_t \leftarrow k_t + 1$

660 **else**

661 12: Connect with target's only descendant, add edge (n, d)

662 13: Update: $k_d \leftarrow k_d + 1$

663 **end if**

664 **end for**

665 16: **return** DAG $G = (V, E)$

666
667
668

669 would not be a path that connects them) making many of the features in the dataset not informative
670 about the target.

673 **Algorithm 2** Single Root Node Random Growing Network

674
Require: V : total number of nodes, ρ additional attachment probability

675 1: Initialize graph G with nodes $n = 0, n = 1$ and edge $(1, 0)$

676 2: Initialize in-degree $k_j = 0$ for all $j \neq 0, k_0 = 1$

677 3: **for** $n = 2, \dots, V - 1$ **do**

678 4: Compute attachment probabilities for all nodes $i < n$

679 5: $\Pi_i = \frac{k_i+1}{\sum_{j=0}^{n-1} (k_j+1)}$

680 6: Select target node t with probability Π_t

681 7: Select an additional source node uniformly at random from $s \in \{0, \dots, n - 1\} \setminus \{t\}$

682 8: Source node connects to new node, add edge (s, n)

683 9: Update: $k_n \leftarrow k_n + 1$

684 10: Sample $u \sim U(0, 1)$

685 11: **if** $u < \rho$ **then**

686 12: Target connects to new node, add edge (t, n)

687 13: Update: $k_n \leftarrow k_n + 1$

688 **end if**

689 **end for**

690 16: Eliminate cycles in G (if any)

691 17: **return** DAG $G = (V, E)$

692
693

694 To generate our graphs to train `ApolloPFN`, we essentially reverse the mechanisms of Algorithm
695 1 that makes the output graphs have several nodes and unconnected features. That is, we always
696 incorporate nodes in a graph by having a prior node connect to it, and also, make it connect to
697 a popular node with probability ρ . All the steps are in Algorithm 2 and we can see in Figure 6
698 (*Bottom*) how we generate graphs that are connected via some path and that only have one single
699 root node by construction. We show that generating data using Algorithm 2 accelerates training
700 as seen in Figure 3. Similar to Hollmann et al. (2025) we sample the number of total nodes as
701 $\log V \sim \mathcal{U}[a, b]$ but we sample $\rho \sim \mathcal{B}(\alpha, \beta)$ using a Beta distribution instead of the Truncated
Gamma distribution used in Hollmann et al. (2025).

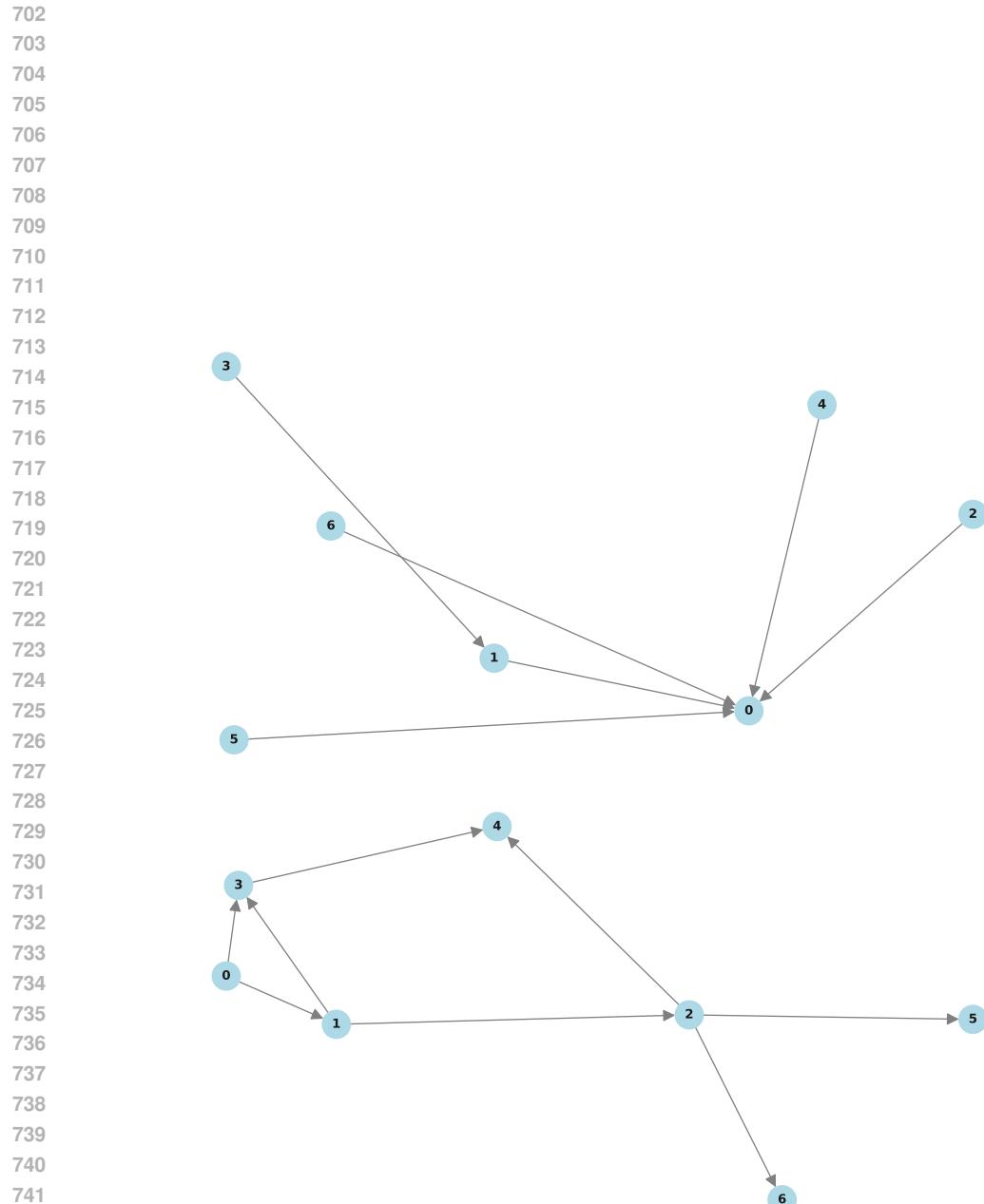


Figure 6: **Example graphs from distinct graph generation algorithms.** (Top) Example graph sampled via growing random networks with redirection and preferential attachment (Krapivsky & Redner, 2023). (Bottom) Example graph using our single root node growing random network.

C EXPERIMENTAL DETAILS

C.1 EVALUATION METRICS

In this section we document the evaluation metrics for our experiments.

Given $\alpha_1 < \dots < \alpha_Q$ quantiles, with $\alpha_j \in (0, 1)$ sCRPS is defined as:

$$\text{sCRPS}(y, \hat{y}) = \frac{\sum_{t=T+1}^{T+H} \frac{2}{Q} \sum_{j=1}^Q \alpha_j (y_t - \hat{y}_t^{\alpha_j})_+ + (1 - \alpha_j) (y_t - \hat{y}_t^{\alpha_j})_-}{\sum_{t=T+1}^{T+H} |y_t|}$$

where $(\cdot)_+$ is the positive part and $(\cdot)_-$ the negative part functions. Additionally, $\hat{y}_t^{\alpha_j}$ represents the α_j -th quantile prediction for time step t . The sCRPS captures how well our accurate are our probabilistic predictions but we scale them by the norm of the values of the SKU to weight all SKUs equally.

To evaluate M5, we used the suggested RMSSE metric from Makridakis et al. (2022). This metric is defined as:

$$\text{RMSSE}(y, \hat{y}) = \frac{\frac{1}{H} \sum_{t=T+1}^{T+H} (y_t - \hat{y}_t)^2}{\frac{1}{T-1} \sum_{t=2}^T (y_t - y_{t-1})^2}$$

The motivation for RMSSE is three-fold. First, it compares the predictions against a naive one baseline, giving us a sense of how easy or hard it is to make predictions for this SKU. Second, it down weights SKUs that might have not many sales in the beginning periods similar to the case in Figure 2 (c). Third, it focuses on a square error with penalizes models that do not capture spikes in behavior.

C.2 DATA

All the dataset that we used are publicly available and can be found either the GiftEval (Aksu et al., 2024) repository or the LOTSA (Woo et al., 2024) huggingface repository.

Below we have a Table 4 with the dataset and citations for reference

Dataset	Source
M1	Makridakis & Hibon (1979)
M3	Makridakis & Hibon (2000)
M4	Makridakis et al. (2020)
Tourism	Hyndman et al. (2008)
M5	Makridakis et al. (2022)
Electric Price	Lago et al. (2021)

Table 4: Data sources used for benchmarking.

In terms of electric prices (Lago et al., 2021), we have: the Nord pool (NP) market which is one of the largest European power markets containing hourly measurements from 2023-01-01 to 2018-12-24. The NP dataset comes with exogenous variables measuring the grid load and wind power. We then have the zonal prices for the COMED area of Pennsylvania, New Jersey and Maryland (PJM) containing hourly measurements from 2023-01-01 to 2018-12-14. The PJM dataset comes with exogenous measurements of the system load and zonal load. Next, we have the French electricity market (FR) containing hourly measurements from 2011-01-09 to 2016-12-31. The FR dataset contains exogenous measurements of system load and power generation. Then, we have the Belgian electricity market (BE) containing hourly measurements from 2011-01-09 to 2016-12-31. The BE dataset contains exogenous measurements of system load and power generation. Finally, we have the German electricity market (DE) containing hourly measurements from 2012-01-09 to 2017-12-31. The DE dataset contains exogenous measurements of zonal load and both solar and wind generation measurements.

	sCRPS	ApolloPFN	TabPFN-TS
Favorita(S)	0.073	0.081	
Favorita(C)	0.075	0.099	
Favorita(St)	0.095	0.105	

Table 5: sCRPS results on weekly Favorita at the state (S), city (C) and store (St) level.

Level	RMSSE	M5(D-B)	M5(W-B)	M5(M-B)	M5(D-S)	M5(W-S)	M5(M-S)
State	ApolloPFN	0.580	1.652	2.191	0.973	1.561	2.588
	TabPFN-TS	0.651	1.729	2.278	1.024	1.572	2.119
	SimpleApolloPFN	1.358	4.650	1.667	1.042	5.058	3.443
Store	ApolloPFN	0.675	1.829	2.208	0.990	1.449	2.049
	TabPFN-TS	0.651	1.729	2.278	1.024	1.572	2.119
	SimpleApolloPFN	1.201	7.20	1.827	1.355	3.901	2.977

Table 6: RMSSE results on M5 at a state and store level for different data aggregations. We have brand level data (B) on the left and SKU level data (S) on the right for the following frequencies: Daily (D), Weekly (W), and Monthly (M). SimpleApolloPFN is our PFN method trained with no SCMs but rather simple exogenous interventions like promotional spikes or decreases and upward or downward phase shifts in the time series.

D HYPERPARAMETER DETAILS

D.1 SCM GENERATION

The sampling procedure for our SCMs is the following. We selected the number of nodes uniformly from a minimum of 20 to a maximum of 150. Each node then contains a state of dimensionality 6 which we propagate through the graph. Moreover, when using a MLP edge we select our activation from the following options: tanh, sine, abs, identity, log, sigmoid, smooth relu, modulo and step wise (or indicator). The entries weights of the layers in the MLPs are sampled from $\mathcal{N}(0, 1)$. The sample frequencies ϕ are sampled from $\log \phi \sim \mathcal{U}(1, 10)$ and the amplitudes $\alpha \sim \mathcal{N}(0, 1)$.

D.2 TRAINING

We train our models for 300K steps using a batch size of 64 with a learning rate of 1e-4, no weight decay, 20K linear warm-up steps and we used a cosine annealing schedule that terminates with a learning rate of 1e-6. We vary the number of samples and number of features available to the model for each batch. The number of samples ranges from 34 to 512 and the number of features from 2 to 64 and we predict for a horizon of up to 128.

E ADDITIONAL ABLATIONS

This section contains several experiments. The performance comparison of weekly Favorita across different geographical aggregations 5. Favorita is a grocery demand forecasting task with data from the ecuadorian Corporación Favorita (Favorita). This datasets consist of weekly unit demand across several products with indicators of promotional activity that we use as exogenous information. The dataset can be found here <https://www.kaggle.com/c/favorita-grocery-sales-forecasting>.

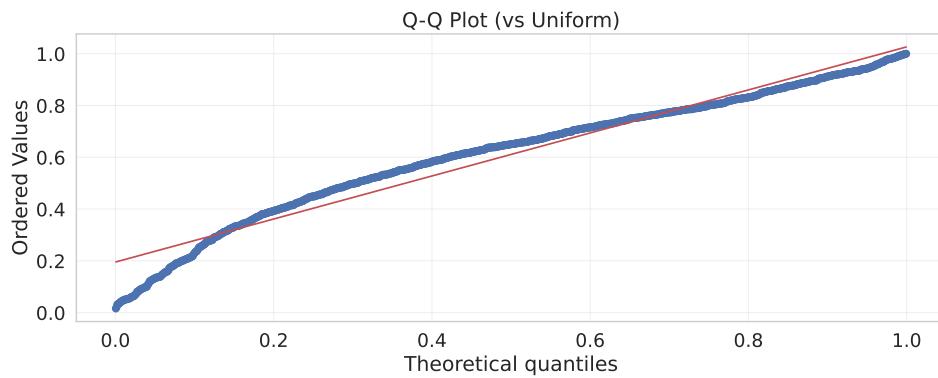
In Table 8 we showed the effect of adding causal masking to the attention mechanism. As we can see, forcing the model to only look backward imposes a performance limitation into it. In contrast, allowing the model to simultaneously make predictions by considering the influence of predictions ahead aid in performance.

864
865
866
867
868

sCRPS	M1(M)	M1(Q)	M1(Y)	M3(M)	M3(O)	M3(Q)	M3(Y)	M4(D)	M4(M)	Tour(M)	Tour(Q)	Tour(Y)	AVG
None	0.178	0.100	0.113	0.101	0.035	0.078	0.135	0.024	0.098	0.168	0.112	0.121	0.105
Sine	0.169	0.089	0.125	0.101	0.035	0.077	0.132	0.076	0.099	0.163	0.098	0.123	0.107
Learnt	0.177	0.106	0.121	0.100	0.034	0.076	0.136	0.023	0.096	0.130	0.090	0.159	0.104
RoPE	0.151	0.086	0.146	0.093	0.034	0.068	0.130	0.022	0.091	0.085	0.070	0.147	0.094

874
875 Table 7: RoPE embeddings is the best performing positional encoding strategy across different
876 benchmarks.
877
878
879
880
881
882
883
884

sCRPS	M1(M)	M1(Q)	M1(Y)	M3(M)	M3(O)	M3(Q)	M3(Y)	M4(D)	M4(M)	Tour(M)	Tour(Q)	Tour(Y)	AVG
Causal	0.346	0.123	0.127	0.212	0.096	0.149	0.209	0.097	0.246	0.346	0.192	0.155	0.191
Non	0.151	0.086	0.146	0.093	0.034	0.068	0.130	0.022	0.091	0.085	0.070	0.147	0.094

885
886 Table 8: Adding causal masking (Causal) into the architecture significantly decreases performance
887 compare to not using it (Non).
888
889
890
891
892
893
894
895
896
897
898
899
900901
902 Figure 7: Q-Q plot comparing ApolloPFN's CDF over the true targets against a $\mathcal{U}[0, 1]$ distribution.
903
904 Most of the quantiles are well calibrated except the lower ones.
905
906
907
908
909
910
911
912
913
914
915
916
917