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ABSTRACT

In many forecasting settings, the target series comes with exogenous covariates:
promotions and prices for retail demand, temperature for energy load, calen-
dar/holiday flags for traffic or sales, and grid load or fuel costs for electricity
prices. Ignoring such exogenous covariates can seriously degrade forecasting
accuracy, especially when they signal phase changes or spikes in the target se-
ries. Most current time-series foundation models (e.g., Chronos, Sundial,
TimesFM, TimeMoE, TimeLLM, and LagLlama) ignore exogenous covariates
and make forecasts solely from the time-series history, limiting their performance.
In this paper we focus on bridging this gap by developing ApolloPFN, a prior-
data fitted network (PFN) that is time-aware (unlike prior PFNs) and that natively
incorporates exogenous covariates (unlike prior univariate forecasters). Our de-
sign introduces two major advances: (i) a synthetic data generation procedure tai-
lored to resolve the failure modes that arise when tabular (non-temporal) PFNs are
applied to time-series, and (ii) time-aware architectural modifications that embed
the inductive biases needed to fully exploit the time-series context. We demon-
strate that ApolloPFN achieves state-of-the-art results across benchmarks con-
taining exogenous information such as M5 and electric price forecasting.

1 INTRODUCTION

In many high-impact forecasting scenarios, leveraging exogenous information, i.e. inputs beyond
the raw target time-series values, is essential. For example, in electricity price forecasting and
consumer demand forecasting, information about planned prices and promotions, merchandising
changes, holidays and local events, weather forecasts, and competitor pricing, are naturally encoded
categorically and can shift demand sharply. Ignoring this information often induces large, system-
atic errors as seen in Figure 1. In spite of the value of exogenous information, the vast majority of
current time-series foundation models (TSFMs) such as Chronos (Ansari et al., 2024), Sundial
(Liu et al., 2025), TimesFM (Das et al., 2023), TimeMoE (Shi et al., 2025), TimeLLM (Jin et al.,
2024), and LagLlama (Rasul et al., 2023) cannot handle exogenous covariates directly, or they
require fine-tuning on the data (Arango et al., 2025; Wang et al., 2024; Potapczynski et al., 2024a).
Fine-tuning is often undesirable as it adds runtime, complicates the inference pipeline, increases de-
ployment costs, and weakens the anonymity and isolation of downstream customer data. Therefore,
a practical TSFM should be able to natively incorporate accompanying exogenous covariates when
they are available.

There are a few foundation-like models that accept exogenous covariates in a zero-shot setting: in
particular, TabPFN-TS (Hoo et al., 2025) and Moirai (Woo et al., 2024). Assessing Moirai’s
true zero-shot capability is complicated as it was exposed to almost all public time-series bench-
marks (including large-scale suites such as Gift-Eval Aksu et al. (2024)) during training; there-
fore, finding benchmarks with non-overlapping training and testing observations is difficult. Even
so, it often ranks below TabPFN-TS, even against the benchmarks it was trained on. Crucially,
though, TabPFN-TS is not a time-series model per se—instead, it simply appends a handful of
time-series features to a tabular foundation model. Therefore, it lacks core temporal inductive biases.
As we discovered and describe below, the central problem is that the architecture of TabPFN-TS
is invariant to the order of the data. Order invariance is a reasonable inductive bias in the tabular
i.i.d. case, but it is not a reasonable inductive bias for the time-series context, where the arrow of
time defines an important ordering. In practice, this bias leads to characteristic failure modes when
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Figure 1: (a) Not using exogenous information leads to catastrophic forecasting errors. We compare
the predictions of ApolloPFN with and without using exogenous information for the weekly sales of a real
product from the M5 benchmark. Ignoring the rise in price leads the forecaster to predict a decreased demand
as previously observed in the past (brown). In contrast, using exogenous information, the same model predicts a
higher demand (red). (b) Prior-data fitted networks such as TabPFN-TS fail to capture ordered patterns.
We compare the prediction of TabPFN-TS and ApolloPFN for a synthetic time-series that has a recurrent
pattern of a ramp-up period before a promotion, a spike on the promotion, a ramp-down period, and then a
subsequent decrease in demand. The exogenous promotion information is encoded as a binary indicator. Train
data is to the left of the black line and forecasts are to the right.

forecasting with TabPFN-TS. Such failure modes include disregarding order-dependent patterns,
inability to work well across unseen frequencies, weak trend extrapolation, insufficient emphasis on
recent context, and poorly calibrated confidence intervals.

In this paper, we show how to effectively leverage exogenous variables for zero-shot forecasting,
including the following contributions:

• We provide a detailed characterization of the shortcomings of existing PFNs such as TabPFN-TS
for time-series forecasting. In particular, we show that TabPFN-TS has intrinsic limitations due
to the i.i.d. assumption that informs how the synthetic training data is generated, as well as its
architectural specification. For these reasons, it fails to understand temporal autocorrelations,
making it challenging to accurately predict ordered patterns, as illustrated in Figure 1 (b). Based
on these findings, we argue that existing PFNs are not suitable as time-series FMs (Section 3.)

• We introduce ApolloPFN, a model that circumvents the limitations of TabPFN-TS through
a novel data generation procedure and architectural choices (Section 4). This consists of two
complementary components. First, we introduce a synthetic data generation procedure for time-
series that relies on a new graph generation algorithm (which accelerates learning as seen in Figure
3) coupled with time-dependent root nodes (see Section 4.1). Second, we incorporate inductive
biases into our architecture that reflect the importance of order in time-series data (Section 4.2)
and present several ablations on real and synthetic data to bolster our choices (Section 4.3).

• We extensively compare ApolloPFN against SOTA baselines, including TabPFN-TS and
Moirai, in several datasets spanning more than 90K time series that have accompanying ex-
ogenous covariates, demonstrating the broad effectiveness of ApolloPFN. (Section 5.)

2 BACKGROUND

2.1 NOTATION

Since our method is based on a tabular foundation model TabPFN (Hollmann et al., 2023; 2025), our
notation refers tabular datasets in some contexts, and to time series in others. In the tabular context
the data is indexed by i as Dtrain = (xi, yi)

Ntrain
i=1 where we would make predictions for (yi)Ntest

i=1 using
Dtrain and the covariates (xi)

Ntest
i=1 . In contrast, when forecasting, we index our data by t as Dtrain =

(xt, yt)
T
t=1 where we therefore have T previous time steps as history and would make predictions

2
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for a horizon H (yt)
T+H
t=T+1 using all of Dtrain and the future covariate information (xt)

T+H
t=T+1 (when

available). Most of the neural forecasters in the literature solely provide predictions of the form
(yT , . . . , yT+H) = fθ(y1, . . . , yT ), ignoring all xt. However, as seen in Figure 1 (a), the covariates
provide crucial information to maintain accurate predictions. In this paper, we will provide a model
that makes predictions of the type (yT , . . . , yT+H) = fθ(y1, . . . , yT ,x1, . . . ,xT+H) for varying T
and F , where F is the covariate dimensionality xt ∈ RF .

2.2 PFNS

Müller et al. (2022; 2025) introduced a novel paradigm to perform Bayesian inference through prior-
fitted networks (PFNs). First, a user defines an algorithm to sample datasets Dtrain = (xi, yi)

Ntrain
i=1

usually by sampling a vector or graph ξ ∼ p(ξ) and then sampling (xi, yi) ∼ p(x, y|ξ). By defining
a neural network qθ that minimizes the following loss

L(θ) = − E
p(x,y)

log qθ(ytest|xtest,Dtrain)

the neural network qθ(ytest|xtest,Dtrain) approximates the posterior predictive distribution (PPD)
p(ytest|xtest,Dtrain) directly (Müller et al., 2022). The key insight is that by having the neural net-
work qθ approximate the PPD, we circumvent the need to approximate a high-dimensional posterior
p(ξ|Dtrain) or define a closed-form likelihood p(y|x, ξ), which is how the PPD is usually computed:
p(ytest|xtest,Dtrain) =

∫
p(ytest|xtest, ξ)p(ξ|Dtrain)dξ (Murphy, 2012; Hoffman & Gelman, 2014; Wil-

son & Izmailov, 2020).

The data creation in TabPFN (Hollmann et al., 2023; 2025) is illustrative of how a user can generate
implicit priors through sampling. TabPFN uses structured causal models (SCMs) which are directed
acyclical graphs (DAG) where the nodes zi are defined by the relationship with their parent nodes
PA(i) as zi = fi(zPA(i)) + ϵi where fi is some function and ϵi is measurement noise. To generate
SCMs, at a high level, Hollmann et al. (2025) samples DAGs from the random growing networks
with preferential attachment process from Krapivsky & Redner (2023) and then defines fi as either
MLPs (with distinct activations), categorical functions or decision trees (with distinct depths). To
generate N observations, we pass random noise to the root nodes and propagate the values through
the graph in topological order. We then pick some F nodes and set them as the features xi ∈ RF

and a node as yi ∈ R for each i = 1, . . . , N . See Section 4.1 and Appendix B for more details on
the synthetic data generation.

The architecture in TabPFN (Hollmann et al., 2025) closely resembles the transformer architecture
from Radford et al. (2019). Given a tensor Z ∈ RN×F×D where N is the number of observations
(both train and test, N = Ntrain +Ntest), F the number of features and D the embedding dimension,
we have that the main blocks of the TabPFN architecture work as follows

Z ← LN(ℓ)
1 (Z + AttnFeat(ℓ)(Z))

Z ← LN(ℓ)
2 (Z + AttnSamp(ℓ)(Z))

Z ← LN(ℓ)
3 (Z + MLP(ℓ)(Z))

(1)

for ℓ = 1, . . . , L layers. Appendix A explains how we embed the input data (yi)
Ntrain
i=1 and (xi)

N
i=1

into Z. The first and second operations are variants of the classical attention mechanism (Vaswani
et al., 2017), LN(·) stands for layer normalization (Ba et al., 2016) and MLP(·) is a MLP applied to
the embedding dimension. AttnFeat assumes the F axis is the variable part of the mechanism, the
D axis is the embedding, and the remaining axes are batch axes. In contrast, AttnSamp assumes
that the N axis is the variable part of the mechanism, the D axis is the embedding and the remaining
axes are also treated as batch axes. Moreover, the attention matrix Af,:,: ∈ RN×N is going to avoid
interactions between test points that we are trying to fill-in. That is, Af,i,j = 0 if both i and j belong
to test indices.

The previous architecture thus allows for a variable number of observations N and a variable number
of features F . Moreover, as no positional encodings are used for AttnSamp the mechanism is
permutation invariant, which is sensible for i.i.d. data.
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Figure 2: Failure modes of TabPFN-TS for time-series data that ApolloPFN addresses. We show
some illustrative examples of each failure case with different real time-series: we use a time-series in Tourism
Monthly for (a), in Tourism Yearly for (b), in M5 Weekly for (c) and in M1 Monthly for (d). In the plots,
the train data is to the left of the black line and the forecasts to the right. (a) When TabPFN-TS is not given
frequency features it predicts an average of prior history (green line). In contrast, TabPFN-TS might capture
some time patterns when frequency features are available but miss others outside the frequency range (it does
not capture the largest spikes). (b) TabPFN-TS has problems extrapolating trends especially in short context
cases. (c) The predictions of TabPFN-TS erroneously revert back to zero as that is the most common value in
the context. (d) The range of the 90% confidence intervals in TabPFN-TS substantially increases to capture
previously seen values rather than reflect the uncertainty over the trend of the time series.

3 FAILURE MODES OF TABPFN-TS

TabPFN-TS (Hoo et al., 2025) introduces a series of manually engineered time-series features into
the tabular foundational model TabPFN-v2 (Hollmann et al., 2025) in order to make forecasts.
Although TabPFN-TS achieves competitive performance on several time-series forecasting bench-
marks, it exhibits fundamental failure modes due to the absence of time-series specific inductive
biases, raising concerns about the deployment of such models in industry-critical applications.

Inability to learn ordered patterns. Ordered seasonal patterns that span across multiple time steps
are very common in industry applications such as demand forecasting (where a product has a gradual
increase in demand until its promotion date and sharply drops after it) and energy consumption
(where usage steadily builds up toward peak hours and then declines overnight). These types of
patterns are not purely cyclical, but instead they reflect structured temporal dependencies that unfold
over multiple horizons. An example of such a pattern is shown in Figure 1(b), which shows that
TabPFN-TS cannot capture in-context a sequence of events as it lacks temporal inductive biases.
Instead, the model resolves to outputing a smaller spike in the promotional event.

Dependency on manually engineered frequency features. TabPFN-TS relies on a running index
feature as well as frequency features that are taken from the timestamp of the data (such as day-of-
week, day-of-month, month-of-year, etc.) or estimated frequencies obtained through a FFT decom-
position of the time-series (Hoo et al., 2025). That is, xt,j = sin(2π τ(t)

Pj
) or xt,j = cos(2π τ(t)

Pj
)

where for example, in the case of day-of-week τ(t) ∈ {1, · · · , 7} and Pj = 7 and so forth. As
seen in Figure 2(a), if the frequencies are not used then TabPFN-TS only estimates the mean of
the previous observations. However, TabPFN-TS makes accurate predictions when the relevant
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Figure 3: Our graph generation algorithm accelerates learning. We compare the test benchmark perfor-
mance of our ApolloPFN model trained with the random growing network algorithm (RGN) and our single
node growing network algorithm (SNGN) at different training steps. With SNGN we achieve better perfor-
mance at 20K iterations than at 80K with RGN.

frequencies are explicitly included in the data, but it struggles to capture patterns that do not align
with regular calendar structures.

Weak trend extrapolation. Already noted in (Hoo et al., 2025), TabPFN-TS demonstrates a
limited ability to extrapolate time-series trends as seen in Figure 2(b). This phenomenon most likely
results from the model’s inability to consider the order of the data when estimating the trend.

Lack of a recency bias. TabPFN-TS treats all historical time points equally when making pre-
dictions. Many applications operate in environments with constant distribution shifts, e.g., the un-
derlying data changes over time due to factors like promotions, policy changes, or macroeconomic
conditions. Accurately predicting under these distribution shifts is critical for a reliable deployment
of time-series models. Figure 2(c) shows that TabPFN-TS struggles to capture a sudden uptick in
demand, failing to forecast based on the most recent observations.

Poorly calibrated confidence intervals. TabPFN-TS produces confidence intervals that empha-
size the entire historical context rather than weighting observations according to their consistency
with the prevailing trend in the time series. Figure 2(d) clearly shows this phenomenon where the
huge confidence interval simply reflects values obtained in the distant past. This failure undermines
trust and complicates decision-making in industry critical time-series applications.

The underlying reason as to why TabPFN-TS suffers from the aforementioned failure modes is
because it was trained and developed for i.i.d. data! While the model incorporates some time-series-
specific features, it fails to capture relevant temporal relationships in the data.

4 APOLLOPFN

We now present the architectural and data interventions that allows us to develop ApolloPFN, a
PFN model that leverages the order and temporal relationship of time-series data.

4.1 TEMPORAL TABLES

To follow the TabPFN training procedure in Hollmann et al. (2025), we have to create synthetic
tabular data in the following manner. First, we sample a DAG G ∼ p(G) via random growing
networks (RGN) with preferential attachment (Krapivsky & Redner, 2023) (see Algorithm 1). The
graph G then determines the parent nodes PA(j) for each node j in G. We then define the following
structural causal model (SCM) as in Pearl (2009): Vj = fj(VPA(j)) + ϵj where fj is either a MLP,
a categorical encoding or a decision tree, and ϵj is measurement noise. In this context, the different
nodes j in G represent different features with their relationships given by the SCM. The graphs G
that we sample using Algorithm 1 are characterized by having several root nodes and short paths as
seen in Figure 6 (top) in Appendix B.1.

Then, to generate a tabular dataset DG = (xi, yi)
N
i=1 with xi ∈ RF and yi ∈ R, we first sample

the numbers of observations that we need N ∼ p(N) as well as the features F ∼ p(F ). Once N
and F are determined, we then start sampling i.i.d. noise vi,r ∼ p(η) for each root note r in G and
for each i = 1, . . . , N , and then propagate these root values in topological order through the SCM
such that vi,j = fj(vi,j1 , . . . , vi,jk) + ϵi where PA(j) = {j1, . . . , jk} for all j in G. Once we obtain
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(vi,1, . . . , vi,|G|)
N
i=1, where |G| denotes the numbers of nodes in G, we then randomly select F + 1

features (excluding root nodes) and set xi,j = vi,π(j) and yi = vi,π(F+1) where π(·) represents the
random selection.

There are two key modifications that we introduce to the previous synthetic data generation pro-
cedure. First, we develop a new graph generation algorithm (Algorithm 2), named single node
growing network (SNGN), which generates graphs with a single node and various paths that con-
nect the nodes, as seen in Figure 6 (bottom). More importantly, as seen in Figure 3, our use of SNGN
dramatically increases the speed at which the model starts to make accurate predictions. For Figure
3, we trained two different ApolloPFN models, one with RGN and one with SNGN, leaving the
rest of the hyperparameters fixed. We then evaluated the performance of the model checkpoints
every 10K iterations on different benchmarks. We consistently see the model trained with SNGN
achieves a better performance faster than the model trained with RGN. See Appendix B for details.

Then, we sample the values of root nodes (vt,r)
T
t=1 through some stochastic process, thereby in-

troducing a time dependency. In particular, we make the root nodes a combination between a sine
and cosine function with randomly sampled frequencies (ϕ

(r)
1 , ϕ(r)

2 ) and amplitudes (α
(r)
1 , α(r)

2 ).
That is, vt,r = α

(r)
1 sin(ϕ

(r)
1 t) + α

(r)
2 cos(ϕ

(r)
2 t) for all t = 1, . . . , T . As a result, we now gener-

ate datasets DG = (xt, yt)
T
t=1 where nearby values like yt+1 are correlated with yt, and so on, in

contrast to sampling root nodes as vi,r independently for each i. After we define the temporal root
nodes, we then propagate the values in the graph to obtain the rest of the features, as in Hollmann
et al. (2025). We still follow the input normalization procedure from TabPFN. That is, we z-score
the data (yt)

T
t=1 before passing it to the model and then we invert the z-scoring when outputting the

predictions (yt)T+H
t=T+1. Note that our mean µT and standard deviation σT only depend on the data

up to T to avoid leaking future information.

4.2 ARCHITECTURAL MODIFICATIONS

4.2.1 POSITIONAL ENCODINGS

Once we have a data generation procedure that has a time dependency, it then makes sense to
introduce an inductive bias to the attention mechanism that reflects these time relationships. A
natural choice is to incorporate RoPE embeddings (Su et al., 2023) to the attention mechanism in
AttnSampl(ℓ)(·) because RoPEwould then make the keys and query interactions obey q⊺

t+hRhkt,
where Rh is a weight matrix such that q⊺

t+hRhkt → 0 as h → ∞. In other words, the keys and
queries of nearby observations are weighted more highly.

RoPE solely incorporates a notion of relative distance between the observations. To incorporate an
absolute notion we use a similar construction to Vaswani et al. (2017) and define absolute positional
encodings of the form Ω ∈ RT×D

Ωt,2d+1 = sin

(
2πt

22d+1

212

)
and Ωt,2d = cos

(
2πt

22d

212

)
which we add to Zf ← Zf +Ω for all f = 1, . . . , F (see Equation 1).

4.2.2 EXPANDING ATTENTION

Given that TabPFN (Hollmann et al., 2023; 2025) was trained on i.i.d. data, a key modification in
the attention mechanism of AttnSampl(ℓ)(·) is that test observations do not attend to each other
but only to the train observations. Therefore when making M predictions for (xj)

Ntest
j=1 we use

the PPD of the form p(yj |xj , (xi, yi)
N
i=1) for each j = 1, . . . , Ntest independently of each other.

However, in the case of time-series, if we are to make H predictions we require that all future ex-
ogenous information (if present) then informs the current predictions. In other words, we expect
that p(yT+h|(xt)

T+H
t=T+1, (xt, yt)

T
t=1) for all h = 1, . . . ,H . To achieve the previous relationship we

simply allow all points to attend to each other on AttnSampl(ℓ)(·).
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4.3 IMPACT OF MODIFICATIONS

In Figure 2 we observe how our new time-series synthetic data generation process coupled with the
architectural changes presented in the previous sections enables ApolloPFN to resolve the failure
modes of TabPFN-TS. In Figure 4 we perform an ablation to show the performance improvement
when training ApolloPFN with only our time-dependent data ApolloPFN(-), then training the
model with positional encodings ApolloPFN(RoPE) and, finally, allowing the attention mecha-
nism to learn interactions between all the predictions ApolloPFN(RoPE+Full). The baseline
for Figure 4 is TabPFN-TS (Hollmann et al., 2025). Figure 4 shows a clear trend (across test
benchmarks) of how we achieve the best performance once all the modifications are introduced.
In particular, the most important change happens once the positional encodings are incorporated.
RoPE is likely the main driver of this behavior, as it is making the model prioritize closer points
to inform its predictions. However, in the remaining cases it is only feasible to achieve the desired
behavior when combining all the modifications together, such as when learning ordered patterns.

ApolloPFN(-) ApolloPFN(RoPE) ApolloPFN(RoPE+Full)

M3(M) M3(O) Tour(M) Tour(Y) M4(D) M4(M)
Benchmarks

0

50

%
 c

ha
ng

e

Figure 4: Our interventions improve performance on time-series data. Ablation on the use of
RoPE and full attention. We compare the effect of progressively adding RoPE and full attention in
several benchmarks against the baseline of TabPFN-TS.

5 EMPIRICAL EVALUATION

We now comprehensively compare ApolloPFN in several forecasting scenarios and against differ-
ent forecasting models. Overall, ApolloPFN performs incredibly well on challenging time-series
benchmarks that have exogenous information (Table 1 and Table 2). Furthermore, ApolloPFN has
strong zero-short performance on classical benchmarks which do not contain exogenous informa-
tion (Table 3), even against much larger models like Moirai-Large and Chronos-Large, which have
30− 70× more parameters than ApolloPFN, which only has 11M parameters.

5.1 ZERO-SHOT PERFORMANCE WITH EXOGENOUS FEATURES

Unfortunately, most publicly available time-series benchmarks in literature do not contain exoge-
nous features (see GIFT-Eval (Aksu et al., 2024)) and we are restricted to a limited set such as the
electricity price forecasting (Lago et al., 2021) or the M5 competition (Makridakis et al., 2022).

The electricity price forecasting dataset consist of hourly measurements of electric prices (Lago
et al., 2021) for five major markets in Europe, namely Nord Pool (NP), PJM (COMED zone), France
(FR), Belgium (BE), and Germany (DE). These datasets contain exogenous variables such as system
load and power generation measurements. We provide a detailed description of the time spans and
exogenous features for each market in Appendix C.2.

The M-series suite of benchmarks constitutes a comprehensive evaluation on how a model would
perform across varying prediction lengths, different frequencies (hourly, daily, weekly, quarterly,
yearly), and distinct sources of data, resulting in widely different time-series behaviors. It is worth
mentioning that these M-series competitions: M1 (Makridakis & Hibon, 1979), M2 (Makridakis
et al., 1993), M3 (Makridakis & Hibon, 2000), M4 (Makridakis et al., 2020) and, M5 (Makridakis
et al., 2022) have been a consistent benchmark to evaluate forecasting models throughout the years.
However, despite its breadth, only the M5 competition dataset (Makridakis et al., 2022) contains
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sCRPS DE(24) NP(24) FR(24) BE(24) PJM(24) DE(48) NP(48) FR(48) BE(48) PJM(48)

ApolloPFN(0x) 0.040 0.038 0.040 0.042 0.040 0.056 0.053 0.069 0.058 0.057
TabPFN-TS(0x) 0.033 0.048 0.067 0.048 0.047 0.065 0.055 0.068 0.073 0.069

Moirai-Large(†x) 0.078 0.082 0.079 0.082 0.078 0.120 0.124 0.121 0.123 0.121

Chronos-Large(0) 0.119 0.110 0.139 0.117 0.107 0.088 0.106 0.105 0.089 0.094

Sundial-Base(0) 0.152 0.147 0.151 0.150 0.149 0.097 0.099 0.096 0.095 0.097

Table 1: ApolloPFN beats other neural forecasters that leverage exogenous information. sCRPS
results on electric price forecasting across different datasets and prediction horizons (24, 48). (0x)

denotes zero-shot forecasters that leverage exogenous information. (†x) denotes forecasters that
leverage exogenous information but were exposed to the data during training. (0) denotes zero-shot
univariate forecasters that do not use exogenous information. Best results for each dataset are bold
and second best are underlined.

Level RMSSE M5(D-B) M5(W-B) M5(M-B) M5(D-S) M5(W-S) M5(M-S)

St
at

e

ApolloPFN(0x) 0.580 1.652 2.191 0.973 1.561 2.588
TabPFN-TS(0x) 0.608 1.253 2.580 1.006 1.666 2.636

Moirai-Large(†x) 0.844 1.669 3.546 0.992 1.710 2.882

Chronos-Large(0) 0.655 1.237 2.484 1.007 1.847 2.788

Sundial-Base(0) 0.720 2.010 2.405 0.933 1.649 2.841

St
or

e

ApolloPFN(0x) 0.675 1.829 2.208 0.990 1.449 2.049
TabPFN-TS(0x) 0.651 1.729 2.278 1.024 1.572 2.119

Moirai-Large(†x) 0.900 2.004 3.053 0.984 1.539 2.334

Chronos-Large(0) 0.709 1.715 2.272 0.998 1.601 2.250

Sundial-Base(0) 0.733 2.108 2.536 0.922 1.452 2.202

Table 2: RMSSE results on M5 at a state and store level for different data aggregations. We have
brand level data (B) on the left and SKU level data (S) on the right for the following frequencies:
Daily (D), Weekly (W), and Monthly (M). (0x) denotes zero-shot forecasters that leverage exoge-
nous information. (†x) denotes forecasters that leverage exogenous information but were exposed
to the data during training. (0) denotes zero-shot univariate forecasters that do not use exogenous
information. Best results for each dataset-level are bold, and second best are underlined.

exogenous information such as price and promotional events to inform the predictions. The M5
dataset contains units sold daily for a given SKU (product) with identifying attributes such as brand,
store and state. At the SKU and store level, M5 contains over 30K time-series. We create multiple
versions of the M5 dataset by aggregating across time (to weekly and monthly grains) and across
geographies (to state and store grains).

Tables 1 and 2 compare the ApolloPFN model against foundational forecasters that leverage ex-
ogenous information such as TabPFN-TS and Moirai-Large, and univariate foundational fore-
casters such as Chronos-Large and Sundial-Base against electricity forecasting and M5
aggregations benchmarks. In the electricity forecasting benchmark, ApolloPFN achieves on aver-
age 12% improvement over the next best model (TabPFN-TS), and achieves SOTA across most
datasets. In the M5 aggregations benchmark, it achieves SOTA performance on most aggregation
levels and remains highly competitive with much larger foundational models.

5.2 PERFORMANCE ON CLASSICAL UNIVARIATE BENCHMARKS

Given the limited availability of large-scale publicly accessible time-series datasets, most neural
forecasting models in the literature utilize all or a substantial portion of the M-competition data for
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sCRPS M1(M) M1(Y) M3(M) M3(O) M4(D) M4(M) M4(Y) Tou(M) Tou(Y)

ApolloPFN 0.152 0.142 0.094 0.034 0.023 0.092 0.113 0.084 0.137

TabPFN-TS 0.169 0.123 0.106 0.035 0.027 0.096 0.115 0.203 0.146

Moirai-Large 0.135 0.210 0.093 0.035 0.033 0.117 0.187 0.275 0.275

Chronos-Large 0.173 0.119 0.113 0.036 0.028 0.108 0.106 0.155 0.103
Sundial-Base 0.157 0.183 0.121 0.047 0.026 0.116 0.160 0.126 0.174

Table 3: ApolloPFN performance in classical univariate benchmarks. Best results for each
dataset are bold, and second best are underlined.

training. Consequently, this practice complicates a fair and unbiased comparison of zero-shot model
performance on these benchmarks. In Table 3, we compare ApolloPFN against several of the best
performing univariate foundational models. Most notably, ApolloPFN performs 10% better than
TabPFN-TS on average and achieves SOTA across the different benchmarks.

6 CONCLUSION

ApolloPFN provides a time-series specific PFN model that gracefully accommodates exogenous
variables, and achieves state-of-the-art zero-shot forecasting performance. The strong performance
of this new PFN model is enabled through proposing architectural innovations, and a synthetic data
generation process. It is notable that ApolloPFN can modulate the effect of different exogenous
covariates on each time-series independently of each other. For example, if there is a product that
does not respond to promotional events then ApolloPFN would not predict a lift for future promo-
tional events, while other models might do if the majority of the products had a positive response
during training.

Given the strong performance of ApolloPFN, it would be exciting to investigate further devel-
opments in the future. For example, the current reliance on standard quadratic attention prohibits
applicability to very long series (>10K). It would also be enlightening to theoretically analyze the
connection between the complexity of the synthetic data, and the performance and generality of
the model. Moreover, it could be possible to further enhance the efficiency and time-series spe-
cific biases of the architecture through representing model parameters and attention with structured
matrices (Potapczynski et al., 2024b).
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APPENDIX OUTLINE

The appendix is composed of the following sections

• Appendix A discusses the architectural details of TabPFN (Hollmann et al., 2023; 2025).
• Appendix B motivates and explains the different graph generation algorithms used during

training.
• Appendix C elaborates on different details for the benchmark evaluations such as the eval-

uation metrics and the data sources.

A TABPFN ARCHITECTURE

In this section we elaborate on additional details that were not covered in Section 2.2. Assume that
we have the following Ntrain observations for our target (yi)Ntrain

i=1 , N = Ntrain +Ntest observations for
covariate information (xi)

N
i=1 where each xi ∈ RF ′

and we want to make Ntest predictions for the
target (yi)Ntest

i=1 .

The goal of the preprocessing step is to transform the information of (xi)
N
i=1 and (yi)

Ntrain
i=1 into an

embedding Z ∈ RN×F×D as used in Equation 1. In terms of the target, we first create a tensor Ỹ ∈
RN×2 by first z-scoring all the train targets, Ỹi,1 = (yi − µtrain)/σtrain where µtrain = 1

Ntrain

∑Ntrain
i=1 yi

and σ2
train = 1

Ntrain−1

∑Ntrain
i=1 (yi − µtrain)

2 for the positions of i = 1, . . . , Ntrain and then by setting
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the rest of the Ntest positions i = Ntrain + 1, . . . , N as Ỹi,1 = µtrain. Then the other column of
Ỹ would be filled with Ỹi,2 = 0 if the entry is observed (i = 1, . . . , Ntrain) and Ỹi,2 = −2 if not
(i = Ntrain + 1, . . . , N ). After than we create Y ∈ RN×D by embedding Ỹ with a linear layer on a
D dimensional space as Y = Ỹ WY where WY ∈ R2×D.

An analogous procedure is done for each of the features in xi ∈ RF ′
after first grouping them

in pairs as discussed in Hollmann et al. (2025). The grouping can done easily with a reshape as
follows. If we have X̃ ′

i = xi, then X̃ = Reshape(X̃′, (N,F ′/2, 2)) would have the desired effect
(assuming that F ′ is divisible by 2, else we 0 pad the feature dimension). After z-scoring each of
the f = 1, . . . , F ′/2 features we then compute X = X̃WX ∈ RN×F−1×D where WX ∈ R2×D

and F = F ′/2 + 1. After the embedding X is constructed we then add a fixed random positional
encoding Ω ∈ RF−1×D to each feature shared across all N samples. In other words we do Xi ←
Xi + Ω for all i = 1, . . . , N . Finally, we set Z = [X,Y ] ∈ RN×F×D which would then be the
embedding pass to the architecture seen in Figure 5 and discussed in Section 2.2 Equation 1.

Figure 5: How TabPFN combines attention across features and samples. Taken from Hollmann
et al. (2025), the figure illustrates the main components of the TabPFN architecture discussed in
Equation 1 plus the translation of the embedding into a Riemann distribution approximation of the
PPD p(ytest|xtest,Dtrain).

The transformation of Z ∈ RN×F×D into the Riemman approximation of the PPD is done with
another linear layer as ZNtrain:,−1,:WZ ∈ RNtest×Q where WZ ∈ RD×Q and Q is the number of
quantiles needed to compute the PPD.

B DATA GENERATION

B.1 GRAPH ALGORITHMS

As explained in Section 2.2 and Section 4.1 we need to randomly generate graphs (DAGs) to define
diverse SCMs for our synthetic data procedure. The initial procedure to construct a graph (Hollmann
et al., 2023) was through a MLP, where each node is connected to all other nodes in the next layer
and the depth of the MLP is the depth of the graph which culminates with 1 node at the end which
would be the target. To illustrate, if we have a 3-layered MLP with a width of 10 then we would
have a graph with 21 = 10 + 10 + 1 nodes and 110 = 10 × 10 + 10 × 1 edges (assuming that the
MLP is fully connected). A step to reduce the density of the graph is to drop some edges uniformly
at random or by blocks (Hollmann et al., 2023).

In Hollmann et al. (2025), the authors adopted a “more realistic” DAG generation by using a classical
algorithm in the study of random networks called the random growing network with redirection
(Krapivsky & Redner, 2023) which is represented in Algorithm 1.

As seen in Figure 6 (Top), a characteristic of Algorithm 1 is that it generates graphs with many
root nodes (as each added root node in might never get an incoming edge) and, if the redirection
probability ρ is high then several of the root nodes might point to the first node. When selecting
which features to use from a graph the root nodes are always excluded (Hollmann et al., 2025) and
so having a graph that has many root nodes is not necessarily optimal. Furthermore, if the graph
happens to concentrate in a few nodes, then many of the features would not be related (that is, there
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Algorithm 1 Random Growing Network with Redirection and Preferential Attachment

Require: V : total number of nodes, ρ redirection probability
1: Initialize graph G with nodes n = 0, n = 1 and edge (1, 0)
2: Initialize in-degree kj = 0 for all j ̸= 0, k0 = 1
3: for n = 2, . . . , V − 1 do
4: Compute attachment probabilities for all nodes i < n
5: Πi =

ki+1∑n−1
j=0 (kj+1)

6: Select target node t with probability Πt

7: Sample u ∼ U(0, 1)
8: if u < ρ then
9: Connect with target, add edge (n, t)

10: Update: kt ← kt + 1
11: else
12: Connect with target’s only descendant, add edge (n, d)
13: Update: kd ← kd + 1
14: end if
15: end for
16: return DAG G = (V,E)

would not be a path that connects them) making many of the features in the dataset not informative
about the target.

Algorithm 2 Single Root Node Random Growing Network

Require: V : total number of nodes, ρ additional attachment probability
1: Initialize graph G with nodes n = 0, n = 1 and edge (1, 0)
2: Initialize in-degree kj = 0 for all j ̸= 0, k0 = 1
3: for n = 2, . . . , V − 1 do
4: Compute attachment probabilities for all nodes i < n
5: Πi =

ki+1∑n−1
j=0 (kj+1)

6: Select target node t with probability Πt

7: Select an additional source node uniformly at random from s ∈ {0, . . . , n− 1} \ {t}
8: Source node connects to new node, add edge (s, n)
9: Update: kn ← kn + 1

10: Sample u ∼ U(0, 1)
11: if u < ρ then
12: Target connects to new node, add edge (t, n)
13: Update: kn ← kn + 1
14: end if
15: end for
16: Eliminate cycles in G (if any)
17: return DAG G = (V,E)

To generate our graphs to train ApolloPFN, we essentially reverse the mechanisms of Algorithm
1 that makes the output graphs have several nodes and unconnected features. That is, we always
incorporate nodes in a graph by having a prior node connect to it, and also, make it connect to
a popular node with probability ρ. All the steps are in Algorithm 2 and we can see in Figure 6
(Bottom) how we generate graphs that are connected via some path and that only have one single
root node by construction. We show that generating data using Algorithm 2 accelerates training
as seen in Figure 3. Similar to Hollmann et al. (2025) we sample the number of total nodes as
log V ∼ U [a, b] but we sample ρ ∼ B(α, β) using a Beta distribution instead of the Truncated
Gamma distribution used in Hollmann et al. (2025).
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Figure 6: Example graphs from distinct graph generation algorithms. (Top) Example graph sampled via
growing random networks with redirection and preferential attachment (Krapivsky & Redner, 2023). (Bottom)
Example graph using our single root node growing random network.
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C EXPERIMENTAL DETAILS

C.1 EVALUATION METRICS

In this section we document the evaluation metrics for our experiments.

Given α1 < · · · < αQ quantiles, with αj ∈ (0, 1) sCRPS is defined as:

sCRPS(y, ŷ) =

∑T+H
t=T+1

2
Q

∑Q
j=1 αj

(
yt − ŷ

αj

t

)
+
+ (1− αj)

(
yt − ŷ

αj

t

)
−∑T+H

t=T+1 |yt|

where (·)+ is the positive part and (·)− the negative part functions. Additionally, ŷαj

t represents
the αj-th quantile prediction for time step t. The sCRPS captures how well our accurate are our
probabilistic predictions but we scale them by the norm of the values of the SKU to weight all SKUs
equally.

To evaluate M5, we used the suggested RMSSE metric from Makridakis et al. (2022). This metric
is defined as:

RMSSE(y, ŷ) =
1
H

∑T+H
t=T+1(yt − ŷt)

2

1
T−1

∑T
t=2(yt − yt−1)2

The motivation for RMSSE is three-fold. First, it compares the predictions against a naive one
baseline, giving us a sense of how easy or hard it is to make predictions for this SKU. Second, it
down weights SKUs that might have not many sales in the beginning periods similar to the case in
Figure 2 (c). Third, it focuses on a square error with penalizes models that do not capture spikes in
behavior.

C.2 DATA

All the dataset that we used are publicly available and can be found either the GiftEval (Aksu
et al., 2024) repository or the LOTSA (Woo et al., 2024) huggingface repository.

Below we have a Table 4 with the dataset and citations for reference

Dataset Source

M1 Makridakis & Hibon (1979)
M3 Makridakis & Hibon (2000)
M4 Makridakis et al. (2020)

Tourism Hyndman et al. (2008)

M5 Makridakis et al. (2022)
Electric Price Lago et al. (2021)

Table 4: Data sources used for benchmarking.

In terms of electric prices (Lago et al., 2021), we have: the Nord pool (NP) market which is one of
the largest European power markets containing hourly measurements from 2023-01-01 to 2018-12-
24. The NP dataset comes with exogenous variables measuring the grid load and wind power. We
then have the zonal prices for the COMED area of Pennsylvania, New Jersey and Maryland (PJM)
containing hourly measurements from 2023-01-01 to 2018-12-14. The PJM dataset comes with
exogenous measurements of the system load and zonal load. Next, we have the French electricity
market (FR) containing hourly measurements from 2011-01-09 to 2016-12-31. The FR dataset
contains exogenous measurements of system load and power generation. Then, we have the Belgian
electricity market (BE) containing hourly measurements from 2011-01-09 to 2016-12-31. The BE
dataset contains exogenous measurements of system load and power generation. Finally, we have the
German electricity market (DE) containing hourly measurements from 2012-01-09 to 2017-12-31.
The DE dataset contains exogenous measurements of zonal load and both solar and wind generation
measurements.
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sCRPS ApolloPFN TabPFN-TS

Favorita(S) 0.073 0.081
Favorita(C) 0.075 0.099
Favorita(St) 0.095 0.105

Table 5: sCRPS results on weekly Favorita at the state (S), city (C) and store (St) level.

Level RMSSE M5(D-B) M5(W-B) M5(M-B) M5(D-S) M5(W-S) M5(M-S)

St
at

e ApolloPFN 0.580 1.652 2.191 0.973 1.561 2.588
TabPFN-TS 0.651 1.729 2.278 1.024 1.572 2.119

SimpleApolloPFN 1.358 4.650 1.667 1.042 5.058 3.443

St
or

e ApolloPFN 0.675 1.829 2.208 0.990 1.449 2.049
TabPFN-TS 0.651 1.729 2.278 1.024 1.572 2.119

SimpleApolloPFN 1.201 7.20 1.827 1.355 3.901 2.977

Table 6: RMSSE results on M5 at a state and store level for different data aggregations. We have
brand level data (B) on the left and SKU level data (S) on the right for the following frequencies:
Daily (D), Weekly (W), and Monthly (M). SimpleApolloPFN is our PFN method trained with no
SCMs but rather simple exogenous interventions like promotional spikes or decreases and upward
or downard phase shifts in the time series.

D HYPERPARAMETER DETAILS

D.1 SCM GENERATION

The sampling procedure for our SCMs is the following. We selected the number of nodes uniformly
from a minimum of 20 to a maximum of 150. Each node then contains a state of dimensionality 6
which we propagate through the graph. Moreover, when using a MLP edge we select our activation
from the following options: tanh, sine, abs, identity, log, sigmoid, smooth relu, modulo and step
wise (or indicator). The entries weights of the layers in the MLPs are sampled from N (0, 1). The
sample frequencies ϕ are sampled from log ϕ ∼ U (1, 10) and the amplitudes α ∼ N (0, 1).

D.2 TRAINING

We train our models for 300K steps using a batch size of 64 with a learning rate of 1e-4, no weight
decay, 20K linear warm-up steps and we used a cosine annealing schedule that terminates with a
learning rate of 1e-6. We vary the number of samples and number of features available to the model
for each batch. The number of samples ranges from 34 to 512 and the number of features from 2 to
64 and we predict for a horizon of up to 128.

E ADDITIONAL ABLATIONS

This section contains several experiments. The performance comparison of weekly Favorita
across different geographical aggregations 5. Favorita is a grocery demand forecasting task
with data from the ecuadorian Corporación Favorita (Favorita). This datasets consist of weekly
unit demand across several products with indicators of promotional activity that we use as
exogenous information. The dataset can be found here https://www.kaggle.com/c/
favorita-grocery-sales-forecasting.

In Table 8 we showed the effect of adding causal masking to the attention mechanism. As we can
see, forcing the model to only look backward imposes a performance limitation into it. In contrast,
allowing the model to simultaneously make predictions by considering the influence of predictions
ahead aid in performance.
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sCRPS M1(M) M1(Q) M1(Y) M3(M) M3(O) M3(Q) M3(Y) M4(D) M4(M) Tour(M) Tour(Q) Tour(Y) AVG

None 0.178 0.100 0.113 0.101 0.035 0.078 0.135 0.024 0.098 0.168 0.112 0.121 0.105
Sine 0.169 0.089 0.125 0.101 0.035 0.077 0.132 0.076 0.099 0.163 0.098 0.123 0.107
Learnt 0.177 0.106 0.121 0.100 0.034 0.076 0.136 0.023 0.096 0.130 0.090 0.159 0.104
RoPE 0.151 0.086 0.146 0.093 0.034 0.068 0.130 0.022 0.091 0.085 0.070 0.147 0.094

Table 7: RoPE embeddings is the best performing positional encoding strategy across different
benchmarks.

sCRPS M1(M) M1(Q) M1(Y) M3(M) M3(O) M3(Q) M3(Y) M4(D) M4(M) Tour(M) Tour(Q) Tour(Y) AVG

Causal 0.346 0.123 0.127 0.212 0.096 0.149 0.209 0.097 0.246 0.346 0.192 0.155 0.191
Non 0.151 0.086 0.146 0.093 0.034 0.068 0.130 0.022 0.091 0.085 0.070 0.147 0.094

Table 8: Adding causal masking (Causal) into the architecutre significantly decreases performance
compare to not using it (Non).
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Figure 7: Q-Q plot comparing ApolloPFN’s CDF over the true targets against a U [0, 1] distribution.
Most of the quantiles are well calibrated except the lower ones.
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