TIME-AWARE PRIOR FITTED NETWORKS FOR ZERO-SHOT FORECASTING WITH EXOGENOUS VARIABLES

Anonymous authors

Paper under double-blind review

ABSTRACT

In many forecasting settings, the target series comes with exogenous covariates: promotions and prices for retail demand, temperature for energy load, calendar/holiday flags for traffic or sales, and grid load or fuel costs for electricity prices. Ignoring such exogenous covariates can seriously degrade forecasting accuracy, especially when they signal phase changes or spikes in the target series. Most current time-series foundation models (e.g., Chronos, Sundial, TimesFM, TimeMoE, TimeLLM, and LagLlama) ignore exogenous covariates and make forecasts solely from the time-series history, limiting their performance. In this paper we focus on bridging this gap by developing ApolloPFN, a priordata fitted network (PFN) that is time-aware (unlike prior PFNs) and that natively incorporates exogenous covariates (unlike prior univariate forecasters). Our design introduces two major advances: (i) a synthetic data generation procedure tailored to resolve the failure modes that arise when tabular (non-temporal) PFNs are applied to time-series, and (ii) time-aware architectural modifications that embed the inductive biases needed to fully exploit the time-series context. We demonstrate that ApolloPFN achieves state-of-the-art results across benchmarks containing exogenous information such as M5 and electric price forecasting.

1 Introduction

In many high-impact forecasting scenarios, leveraging *exogenous* information, i.e. inputs beyond the raw target time-series values, is essential. For example, in electricity price forecasting and consumer demand forecasting, information about planned prices and promotions, merchandising changes, holidays and local events, weather forecasts, and competitor pricing, are naturally encoded categorically and can shift demand sharply. Ignoring this information often induces large, systematic errors as seen in Figure 1. In spite of the value of exogenous information, the vast majority of current time-series foundation models (TSFMs) such as Chronos (Ansari et al., 2024), Sundial (Liu et al., 2025), TimesFM (Das et al., 2023), TimeMoE (Shi et al., 2025), TimeLLM (Jin et al., 2024), and LagLlama (Rasul et al., 2023) cannot handle exogenous covariates directly, or they require fine-tuning on the data (Arango et al., 2025; Wang et al., 2024; Potapczynski et al., 2024a). Fine-tuning is often undesirable as it adds runtime, complicates the inference pipeline, increases deployment costs, and weakens the anonymity and isolation of downstream customer data. Therefore, a practical TSFM should be able to natively incorporate accompanying exogenous covariates when they are available.

There are a few foundation-like models that accept exogenous covariates in a zero-shot setting: in particular, TabPFN-TS (Hoo et al., 2025) and Moirai (Woo et al., 2024). Assessing Moirai's true zero-shot capability is complicated as it was exposed to almost all public time-series benchmarks (including large-scale suites such as Gift-Eval Aksu et al. (2024)) during training; therefore, finding benchmarks with non-overlapping training and testing observations is difficult. Even so, it often ranks below TabPFN-TS, even against the benchmarks it was trained on. Crucially, though, TabPFN-TS is not a time-series model per se—instead, it simply appends a handful of time-series features to a tabular foundation model. Therefore, it lacks core temporal inductive biases. As we discovered and describe below, the central problem is that the architecture of TabPFN-TS is invariant to the order of the data. Order invariance is a reasonable inductive bias in the tabular i.i.d. case, but it is not a reasonable inductive bias for the time-series context, where the arrow of time defines an important ordering. In practice, this bias leads to characteristic failure modes when

Figure 1: (a) **Not using exogenous information leads to catastrophic forecasting errors.** We compare the predictions of Apollopfn with and without using exogenous information for the weekly sales of a real product from the M5 benchmark. Ignoring the rise in price leads the forecaster to predict a decreased demand as previously observed in the past (brown). In contrast, using exogenous information, the same model predicts a higher demand (red). (b) **Prior-data fitted networks such as TabPfn-TS fail to capture ordered patterns.** We compare the prediction of Tabpfn-TS and Apollopfn for a synthetic time-series that has a recurrent pattern of a ramp-up period before a promotion, a spike on the promotion, a ramp-down period, and then a subsequent decrease in demand. The exogenous promotion information is encoded as a binary indicator. Train data is to the left of the black line and forecasts are to the right.

forecasting with TabPFN-TS. Such failure modes include disregarding order-dependent patterns, inability to work well across unseen frequencies, weak trend extrapolation, insufficient emphasis on recent context, and poorly calibrated confidence intervals.

In this paper, we show how to effectively leverage exogenous variables for zero-shot forecasting, including the following contributions:

- We provide a detailed characterization of the shortcomings of existing PFNs such as TabPFN-TS for time-series forecasting. In particular, we show that TabPFN-TS has intrinsic limitations due to the i.i.d. assumption that informs how the synthetic training data is generated, as well as its architectural specification. For these reasons, it fails to understand temporal autocorrelations, making it challenging to accurately predict ordered patterns, as illustrated in Figure 1 (b). Based on these findings, we argue that existing PFNs are not suitable as time-series FMs (Section 3.)
- We introduce ApolloPFN, a model that circumvents the limitations of TabPFN-TS through a novel data generation procedure and architectural choices (Section 4). This consists of two complementary components. First, we introduce a synthetic data generation procedure for time-series that relies on a new graph generation algorithm (which accelerates learning as seen in Figure 3) coupled with time-dependent root nodes (see Section 4.1). Second, we incorporate inductive biases into our architecture that reflect the importance of order in time-series data (Section 4.2) and present several ablations on real and synthetic data to bolster our choices (Section 4.3).
- We extensively compare ApolloPFN against SOTA baselines, including TabPFN-TS and Moirai, in several datasets spanning more than 90K time series that have accompanying exogenous covariates, demonstrating the broad effectiveness of ApolloPFN. (Section 5.)

2 Background

2.1 NOTATION

Since our method is based on a tabular foundation model TabPFN (Hollmann et al., 2023; 2025), our notation refers tabular datasets in some contexts, and to time series in others. In the tabular context the data is indexed by i as $\mathcal{D}_{\text{train}} = (\boldsymbol{x}_i, y_i)_{i=1}^{N_{\text{train}}}$ where we would make predictions for $(y_i)_{i=1}^{N_{\text{test}}}$ using $\mathcal{D}_{\text{train}}$ and the covariates $(\boldsymbol{x}_i)_{i=1}^{N_{\text{test}}}$. In contrast, when forecasting, we index our data by t as $\mathcal{D}_{\text{train}} = (\boldsymbol{x}_t, y_t)_{t=1}^T$ where we therefore have T previous time steps as history and would make predictions

for a horizon H $(y_t)_{t=T+1}^{T+H}$ using all of $\mathcal{D}_{\text{train}}$ and the future covariate information $(\boldsymbol{x}_t)_{t=T+1}^{T+H}$ (when available). Most of the neural forecasters in the literature solely provide predictions of the form $(y_T,\ldots,y_{T+H})=f_{\theta}(y_1,\ldots,y_T)$, ignoring all \boldsymbol{x}_t . However, as seen in Figure 1 (a), the covariates provide crucial information to maintain accurate predictions. In this paper, we will provide a model that makes predictions of the type $(y_T,\ldots,y_{T+H})=f_{\theta}(y_1,\ldots,y_T,\boldsymbol{x}_1,\ldots,\boldsymbol{x}_{T+H})$ for varying T and F, where F is the covariate dimensionality $\boldsymbol{x}_t \in \mathbb{R}^F$.

2.2 PFNs

Müller et al. (2022; 2025) introduced a novel paradigm to perform Bayesian inference through prior-fitted networks (PFNs). First, a user defines an algorithm to sample datasets $\mathcal{D}_{\text{train}} = (\boldsymbol{x}_i, y_i)_{i=1}^{N_{\text{train}}}$ usually by sampling a vector or graph $\xi \sim p(\xi)$ and then sampling $(\boldsymbol{x}_i, y_i) \sim p(\boldsymbol{x}, y | \xi)$. By defining a neural network q_θ that minimizes the following loss

$$\mathcal{L}(heta) = - \mathop{\mathbb{E}}_{p(oldsymbol{x},y)} \log q_{ heta}(y_{\mathsf{test}} | oldsymbol{x}_{\mathsf{test}}, \mathcal{D}_{\mathsf{train}})$$

the neural network $q_{\theta}(y_{\text{test}}|\boldsymbol{x}_{\text{test}}, \mathcal{D}_{\text{train}})$ approximates the posterior predictive distribution (PPD) $p(y_{\text{test}}|\boldsymbol{x}_{\text{test}}, \mathcal{D}_{\text{train}})$ directly (Müller et al., 2022). The key insight is that by having the neural network q_{θ} approximate the PPD, we circumvent the need to approximate a high-dimensional posterior $p(\xi|\mathcal{D}_{\text{train}})$ or define a closed-form likelihood $p(y|\boldsymbol{x},\xi)$, which is how the PPD is usually computed: $p(y_{\text{test}}|\boldsymbol{x}_{\text{test}}, \mathcal{D}_{\text{train}}) = \int p(y_{\text{test}}|\boldsymbol{x}_{\text{test}}, \xi)p(\xi|\mathcal{D}_{\text{train}})d\xi$ (Murphy, 2012; Hoffman & Gelman, 2014; Wilson & Izmailov, 2020).

The data creation in TabPFN (Hollmann et al., 2023; 2025) is illustrative of how a user can generate implicit priors through sampling. TabPFN uses structured causal models (SCMs) which are directed acyclical graphs (DAG) where the nodes z_i are defined by the relationship with their parent nodes PA(i) as $z_i = f_i(z_{PA(i)}) + \epsilon_i$ where f_i is some function and ϵ_i is measurement noise. To generate SCMs, at a high level, Hollmann et al. (2025) samples DAGs from the random growing networks with preferential attachment process from Krapivsky & Redner (2023) and then defines f_i as either MLPs (with distinct activations), categorical functions or decision trees (with distinct depths). To generate N observations, we pass random noise to the root nodes and propagate the values through the graph in topological order. We then pick some F nodes and set them as the features $x_i \in \mathbb{R}^F$ and a node as $y_i \in \mathbb{R}$ for each $i=1,\ldots,N$. See Section 4.1 and Appendix B for more details on the synthetic data generation.

The architecture in TabPFN (Hollmann et al., 2025) closely resembles the transformer architecture from Radford et al. (2019). Given a tensor $Z \in \mathbb{R}^{N \times F \times D}$ where N is the number of observations (both train and test, $N = N_{\text{train}} + N_{\text{test}}$), F the number of features and D the embedding dimension, we have that the main blocks of the TabPFN architecture work as follows

$$\begin{split} \boldsymbol{Z} &\leftarrow \operatorname{LN}_1^{(\ell)}(\boldsymbol{Z} + \operatorname{AttnFeat}^{(\ell)}(\boldsymbol{Z})) \\ \boldsymbol{Z} &\leftarrow \operatorname{LN}_2^{(\ell)}(\boldsymbol{Z} + \operatorname{AttnSamp}^{(\ell)}(\boldsymbol{Z})) \\ \boldsymbol{Z} &\leftarrow \operatorname{LN}_3^{(\ell)}(\boldsymbol{Z} + \operatorname{MLP}^{(\ell)}(\boldsymbol{Z})) \end{split} \tag{1}$$

for $\ell=1,\ldots,L$ layers. Appendix A explains how we embed the input data $(y_i)_{i=1}^{N_{\text{train}}}$ and $(x_i)_{i=1}^{N}$ into Z. The first and second operations are variants of the classical attention mechanism (Vaswani et al., 2017), $\text{LN}(\cdot)$ stands for layer normalization (Ba et al., 2016) and $\text{MLP}(\cdot)$ is a MLP applied to the embedding dimension. AttnFeat assumes the F axis is the variable part of the mechanism, the D axis is the embedding, and the remaining axes are batch axes. In contrast, AttnSamp assumes that the N axis is the variable part of the mechanism, the D axis is the embedding and the remaining axes are also treated as batch axes. Moreover, the attention matrix $A_{f,i,j} \in \mathbb{R}^{N \times N}$ is going to avoid interactions between test points that we are trying to fill-in. That is, $A_{f,i,j} = 0$ if both i and j belong to test indices.

The previous architecture thus allows for a variable number of observations N and a variable number of features F. Moreover, as no positional encodings are used for AttnSamp the mechanism is permutation invariant, which is sensible for i.i.d. data.

Figure 2: Failure modes of TabPFN-TS for time-series data that ApolloPFN addresses. We show some illustrative examples of each failure case with different real time-series: we use a time-series in Tourism Monthly for (a), in Tourism Yearly for (b), in M5 Weekly for (c) and in M1 Monthly for (d). In the plots, the train data is to the left of the black line and the forecasts to the right. (a) When TabPFN-TS is not given frequency features it predicts an average of prior history (green line). In contrast, TabPFN-TS might capture some time patterns when frequency features are available but miss others outside the frequency range (it does not capture the largest spikes). (b) TabPFN-TS has problems extrapolating trends especially in short context cases. (c) The predictions of TabPFN-TS erroneously revert back to zero as that is the most common value in the context. (d) The range of the 90% confidence intervals in TabPFN-TS substantially increases to capture previously seen values rather than reflect the uncertainty over the trend of the time series.

3 FAILURE MODES OF TABPENTS

TabPFN-TS (Hoo et al., 2025) introduces a series of manually engineered time-series features into the tabular foundational model TabPFN-v2 (Hollmann et al., 2025) in order to make forecasts. Although TabPFN-TS achieves competitive performance on several time-series forecasting benchmarks, it exhibits fundamental failure modes due to the absence of time-series specific inductive biases, raising concerns about the deployment of such models in industry-critical applications.

Inability to learn ordered patterns. Ordered seasonal patterns that span across multiple time steps are very common in industry applications such as demand forecasting (where a product has a gradual increase in demand until its promotion date and sharply drops after it) and energy consumption (where usage steadily builds up toward peak hours and then declines overnight). These types of patterns are not purely cyclical, but instead they reflect structured temporal dependencies that unfold over multiple horizons. An example of such a pattern is shown in Figure 1(b), which shows that TabPFN-TS cannot capture in-context a sequence of events as it lacks temporal inductive biases. Instead, the model resolves to outputing a smaller spike in the promotional event.

Dependency on manually engineered frequency features. TabPFN-TS relies on a running index feature as well as frequency features that are taken from the timestamp of the data (such as day-of-week, day-of-month, month-of-year, etc.) or estimated frequencies obtained through a FFT decomposition of the time-series (Hoo et al., 2025). That is, $x_{t,j} = \sin(2\pi\frac{\tau(t)}{P_j})$ or $x_{t,j} = \cos(2\pi\frac{\tau(t)}{P_j})$ where for example, in the case of day-of-week $\tau(t) \in \{1, \cdots, 7\}$ and $P_j = 7$ and so forth. As seen in Figure 2(a), if the frequencies are not used then TabPFN-TS only estimates the mean of the previous observations. However, TabPFN-TS makes accurate predictions when the relevant

Figure 3: Our graph generation algorithm accelerates learning. We compare the test benchmark performance of our ApolloPFN model trained with the random growing network algorithm (RGN) and our single node growing network algorithm (SNGN) at different training steps. With SNGN we achieve better performance at 20K iterations than at 80K with RGN.

frequencies are explicitly included in the data, but it struggles to capture patterns that do not align with regular calendar structures.

Weak trend extrapolation. Already noted in (Hoo et al., 2025), TabPFN-TS demonstrates a limited ability to extrapolate time-series trends as seen in Figure 2(b). This phenomenon most likely results from the model's inability to consider the order of the data when estimating the trend.

Lack of a recency bias. TabPFN-TS treats all historical time points equally when making predictions. Many applications operate in environments with constant distribution shifts, e.g., the underlying data changes over time due to factors like promotions, policy changes, or macroeconomic conditions. Accurately predicting under these distribution shifts is critical for a reliable deployment of time-series models. Figure 2(c) shows that TabPFN-TS struggles to capture a sudden uptick in demand, failing to forecast based on the most recent observations.

Poorly calibrated confidence intervals. TabPFN-TS produces confidence intervals that emphasize the entire historical context rather than weighting observations according to their consistency with the prevailing trend in the time series. Figure 2(d) clearly shows this phenomenon where the huge confidence interval simply reflects values obtained in the distant past. This failure undermines trust and complicates decision-making in industry critical time-series applications.

The underlying reason as to why TabPFN-TS suffers from the aforementioned failure modes is because it was trained and developed for i.i.d. data! While the model incorporates some time-series-specific features, it fails to capture relevant temporal relationships in the data.

4 APOLLOPFN

We now present the architectural and data interventions that allows us to develop ApolloPFN, a PFN model that leverages the order and temporal relationship of time-series data.

4.1 TEMPORAL TABLES

To follow the TabPFN training procedure in Hollmann et al. (2025), we have to create synthetic tabular data in the following manner. First, we sample a DAG $\mathcal{G} \sim p(\mathcal{G})$ via random growing networks (RGN) with preferential attachment (Krapivsky & Redner, 2023) (see Algorithm 1). The graph \mathcal{G} then determines the parent nodes PA(j) for each node j in \mathcal{G} . We then define the following structural causal model (SCM) as in Pearl (2009): $V_j = f_j(V_{PA(j)}) + \epsilon_j$ where f_j is either a MLP, a categorical encoding or a decision tree, and ϵ_j is measurement noise. In this context, the different nodes j in \mathcal{G} represent different features with their relationships given by the SCM. The graphs \mathcal{G} that we sample using Algorithm 1 are characterized by having several root nodes and short paths as seen in Figure 6 (top) in Appendix B.1.

Then, to generate a tabular dataset $\mathcal{D}_{\mathcal{G}}=(\boldsymbol{x}_i,y_i)_{i=1}^N$ with $\boldsymbol{x}_i\in\mathbb{R}^F$ and $y_i\in\mathbb{R}$, we first sample the numbers of observations that we need $N\sim p(N)$ as well as the features $F\sim p(F)$. Once N and F are determined, we then start sampling i.i.d. noise $v_{i,r}\sim p(\eta)$ for each root note r in \mathcal{G} and for each $i=1,\ldots,N$, and then propagate these root values in topological order through the SCM such that $v_{i,j}=f_j(v_{i,j_1},\ldots,v_{i,j_k})+\epsilon_i$ where $\mathrm{PA}(j)=\{j_1,\ldots,j_k\}$ for all j in \mathcal{G} . Once we obtain

 $(v_{i,1},\ldots,v_{i,|\mathcal{G}|})_{i=1}^N$, where $|\mathcal{G}|$ denotes the numbers of nodes in \mathcal{G} , we then randomly select F+1 features (excluding root nodes) and set $x_{i,j}=v_{i,\pi(j)}$ and $y_i=v_{i,\pi(F+1)}$ where $\pi(\cdot)$ represents the random selection.

There are two key modifications that we introduce to the previous synthetic data generation procedure. First, we develop a new graph generation algorithm (Algorithm 2), named single node growing network (SNGN), which generates graphs with a single node and various paths that connect the nodes, as seen in Figure 6 (bottom). More importantly, as seen in Figure 3, our use of SNGN dramatically increases the speed at which the model starts to make accurate predictions. For Figure 3, we trained two different Apollopfn models, one with RGN and one with SNGN, leaving the rest of the hyperparameters fixed. We then evaluated the performance of the model checkpoints every 10K iterations on different benchmarks. We consistently see the model trained with SNGN achieves a better performance faster than the model trained with RGN. See Appendix B for details.

Then, we sample the values of root nodes $(v_{t,r})_{t=1}^T$ through some stochastic process, thereby introducing a time dependency. In particular, we make the root nodes a combination between a sine and cosine function with randomly sampled frequencies $(\phi_1^{(r)}, \phi_2^{(r)})$ and amplitudes $(\alpha_1^{(r)}, \alpha_2^{(r)})$. That is, $v_{t,r} = \alpha_1^{(r)} \sin(\phi_1^{(r)}t) + \alpha_2^{(r)} \cos(\phi_2^{(r)}t)$ for all $t=1,\ldots,T$. As a result, we now generate datasets $\mathcal{D}_{\mathcal{G}} = (x_t, y_t)_{t=1}^T$ where nearby values like y_{t+1} are correlated with y_t , and so on, in contrast to sampling root nodes as $v_{i,r}$ independently for each i. After we define the temporal root nodes, we then propagate the values in the graph to obtain the rest of the features, as in Hollmann et al. (2025). We still follow the input normalization procedure from TabPFN. That is, we z-score the data $(y_t)_{t=1}^T$ before passing it to the model and then we invert the z-scoring when outputting the predictions $(y_t)_{t=T+1}^{T+H}$. Note that our mean μ_T and standard deviation σ_T only depend on the data up to T to avoid leaking future information.

4.2 ARCHITECTURAL MODIFICATIONS

4.2.1 Positional Encodings

Once we have a data generation procedure that has a time dependency, it then makes sense to introduce an inductive bias to the attention mechanism that reflects these time relationships. A natural choice is to incorporate RoPE embeddings (Su et al., 2023) to the attention mechanism in AttnSampl $^{(\ell)}(\cdot)$ because RoPE would then make the keys and query interactions obey $q_{t+h}^\mathsf{T} R_h k_t$, where R_h is a weight matrix such that $q_{t+h}^\mathsf{T} R_h k_t \to 0$ as $h \to \infty$. In other words, the keys and queries of nearby observations are weighted more highly.

ROPE solely incorporates a notion of relative distance between the observations. To incorporate an absolute notion we use a similar construction to Vaswani et al. (2017) and define absolute positional encodings of the form $\Omega \in \mathbb{R}^{T \times D}$

$$\Omega_{t,2d+1} = \sin\left(2\pi t \frac{2^{2d+1}}{2^{12}}\right) \quad \text{and} \quad \Omega_{t,2d} = \cos\left(2\pi t \frac{2^{2d}}{2^{12}}\right)$$

which we add to $\mathbf{Z}_f \leftarrow \mathbf{Z}_f + \mathbf{\Omega}$ for all $f = 1, \dots, F$ (see Equation 1).

4.2.2 EXPANDING ATTENTION

Given that TabPFN (Hollmann et al., 2023; 2025) was trained on i.i.d. data, a key modification in the attention mechanism of AttnSampl $^{(\ell)}(\cdot)$ is that test observations do not attend to each other but only to the train observations. Therefore when making M predictions for $(x_j)_{j=1}^{N_{\text{test}}}$ we use the PPD of the form $p(y_j|x_j,(x_i,y_i)_{i=1}^N)$ for each $j=1,\ldots,N_{\text{test}}$ independently of each other. However, in the case of time-series, if we are to make H predictions we require that all future ex-ogenous information (if present) then informs the current predictions. In other words, we expect that $p(y_{T+h}|(x_t)_{t=T+1}^{T+H},(x_t,y_t)_{t=1}^T)$ for all $h=1,\ldots,H$. To achieve the previous relationship we simply allow all points to attend to each other on AttnSampl $^{(\ell)}(\cdot)$.

4.3 IMPACT OF MODIFICATIONS

In Figure 2 we observe how our new time-series synthetic data generation process coupled with the architectural changes presented in the previous sections enables <code>ApollopFN</code> to resolve the failure modes of <code>TabPFN-TS</code>. In Figure 4 we perform an ablation to show the performance improvement when training <code>ApollopFN</code> with only our time-dependent data <code>ApollopFN</code>(-), then training the model with positional encodings <code>ApollopFN</code>(RopE) and, finally, allowing the attention mechanism to learn interactions between all the predictions <code>ApollopFN</code>(RopE+Full). The baseline for Figure 4 is <code>TabPFN-TS</code> (Hollmann et al., 2025). Figure 4 shows a clear trend (across test benchmarks) of how we achieve the best performance once all the modifications are introduced. In particular, the most important change happens once the positional encodings are incorporated. RopE is likely the main driver of this behavior, as it is making the model prioritize closer points to inform its predictions. However, in the remaining cases it is only feasible to achieve the desired behavior when combining all the modifications together, such as when learning ordered patterns.

Figure 4: **Our interventions improve performance on time-series data.** Ablation on the use of RoPE and full attention. We compare the effect of progressively adding RoPE and full attention in several benchmarks against the baseline of TabPFN-TS.

5 EMPIRICAL EVALUATION

We now comprehensively compare ApolloPFN in several forecasting scenarios and against different forecasting models. Overall, ApolloPFN performs incredibly well on challenging time-series benchmarks that have exogenous information (Table 1 and Table 2). Furthermore, ApolloPFN has strong zero-short performance on classical benchmarks which do not contain exogenous information (Table 3), even against much larger models like Moirai-Large and Chronos-Large, which have $30-70\times$ more parameters than ApolloPFN, which only has 11M parameters.

5.1 ZERO-SHOT PERFORMANCE WITH EXOGENOUS FEATURES

Unfortunately, most publicly available time-series benchmarks in literature do not contain exogenous features (see GIFT-Eval (Aksu et al., 2024)) and we are restricted to a limited set such as the electricity price forecasting (Lago et al., 2021) or the M5 competition (Makridakis et al., 2022).

The electricity price forecasting dataset consist of hourly measurements of electric prices (Lago et al., 2021) for five major markets in Europe, namely Nord Pool (NP), PJM (COMED zone), France (FR), Belgium (BE), and Germany (DE). These datasets contain exogenous variables such as system load and power generation measurements. We provide a detailed description of the time spans and exogenous features for each market in Appendix C.2.

The M-series suite of benchmarks constitutes a comprehensive evaluation on how a model would perform across varying prediction lengths, different frequencies (hourly, daily, weekly, quarterly, yearly), and distinct sources of data, resulting in widely different time-series behaviors. It is worth mentioning that these M-series competitions: M1 (Makridakis & Hibon, 1979), M2 (Makridakis et al., 1993), M3 (Makridakis & Hibon, 2000), M4 (Makridakis et al., 2020) and, M5 (Makridakis et al., 2022) have been a consistent benchmark to evaluate forecasting models throughout the years. However, despite its breadth, only the M5 competition dataset (Makridakis et al., 2022) contains

sCRPS	DE(24)	NP(24)	FR(24)	BE(24)	PJM(24)	DE(48)	NP(48)	FR(48)	BE(48)	PJM(48)
$ApolloPFN^{(0x)}$	<u>0.040</u>	0.038	0.040	0.042	0.040	0.056	0.053	0.069	0.058	0.057
TabPFN-TS $^{(0x)}$	0.033	0.048	0.067	0.048	0.047	0.065	0.055	0.068	0.073	0.069
Moirai-Large ^(†x)	0.078	0.082	0.079	0.082	0.078	0.120	0.124	0.121	0.123	0.121
Chronos-Large ⁽⁰⁾	0.119	0.110	0.139	0.117	0.107	0.088	0.106	0.105	0.089	0.094
Sundial-Base ⁽⁰⁾	0.152	0.147	0.151	0.150	0.149	0.097	0.099	0.096	0.095	0.097

Table 1: **ApolloPFN beats other neural forecasters that leverage exogenous information.** sCRPS results on electric price forecasting across different datasets and prediction horizons (24, 48). denotes zero-shot forecasters that leverage exogenous information. $^{(\dagger x)}$ denotes forecasters that leverage exogenous information but were exposed to the data during training. $^{(0)}$ denotes zero-shot univariate forecasters that do not use exogenous information. Best results for each dataset are **bold** and second best are underlined.

Level	RMSSE	M5(D-B)	M5(W-B)	M5(M-B)	M5(D-S)	M5(W-S)	M5(M-S)
	$ApolloPFN^{(0x)}$	0.580	1.652	2.191	0.973	1.561	2.588
State	TabPFN-TS $^{(0x)}$	0.608	1.253	2.580	1.006	1.666	2.636
St	Moirai-Large ^(†x)	0.844	1.669	3.546	0.992	1.710	2.882
	$\hbox{\it Chronos-Large}^{(0)}$	0.655	1.237	2.484	1.007	1.847	2.788
	Sundial-Base ⁽⁰⁾	0.720	2.010	2.405	0.933	1.649	2.841
	$ApolloPFN^{(0x)}$	0.675	1.829	2.208	0.990	1.449	2.049
Store	TabPFN-TS $^{(0x)}$	0.651	1.729	2.278	1.024	1.572	2.119
Š	Moirai-Large ^(†x)	0.900	2.004	3.053	0.984	1.539	2.334
	$\hbox{\it Chronos-Large}^{(0)}$	0.709	1.715	2.272	0.998	1.601	2.250
	Sundial-Base ⁽⁰⁾	0.733	2.108	2.536	0.922	1.452	2.202

Table 2: RMSSE results on M5 at a state and store level for different data aggregations. We have brand level data (B) on the left and SKU level data (S) on the right for the following frequencies: Daily (D), Weekly (W), and Monthly (M). $^{(0x)}$ denotes zero-shot forecasters that leverage exogenous information. $^{(\dagger x)}$ denotes forecasters that leverage exogenous information but were exposed to the data during training. $^{(0)}$ denotes zero-shot univariate forecasters that do not use exogenous information. Best results for each dataset-level are **bold**, and second best are <u>underlined</u>.

exogenous information such as price and promotional events to inform the predictions. The M5 dataset contains units sold daily for a given SKU (product) with identifying attributes such as brand, store and state. At the SKU and store level, M5 contains over 30K time-series. We create multiple versions of the M5 dataset by aggregating across time (to weekly and monthly grains) and across geographies (to state and store grains).

Tables 1 and 2 compare the ApolloPFN model against foundational forecasters that leverage exogenous information such as TabPFN-TS and Moirai-Large, and univariate foundational forecasters such as Chronos-Large and Sundial-Base against electricity forecasting and M5 aggregations benchmarks. In the electricity forecasting benchmark, ApolloPFN achieves on average 12% improvement over the next best model (TabPFN-TS), and achieves SOTA across most datasets. In the M5 aggregations benchmark, it achieves SOTA performance on most aggregation levels and remains highly competitive with much larger foundational models.

5.2 PERFORMANCE ON CLASSICAL UNIVARIATE BENCHMARKS

Given the limited availability of large-scale publicly accessible time-series datasets, most neural forecasting models in the literature utilize all or a substantial portion of the M-competition data for

sCRPS	M1(M)	M1(Y)	M3(M)	M3(O)	M4(D)	M4(M)	M4(Y)	Tou(M)	Tou(Y)
ApolloPFN	0.152	0.142	0.094	0.034	0.023	0.092	0.113	0.084	0.137
TabPFN-TS	0.169	0.123	0.106	0.035	0.027	0.096	0.115	0.203	0.146
Moirai-Large	0.135	0.210	0.093	0.035	0.033	0.117	0.187	0.275	0.275
Chronos-Large	0.173	0.119	0.113	0.036	0.028	0.108	0.106	0.155	0.103
Sundial-Base	0.157	0.183	0.121	0.047	0.026	0.116	0.160	0.126	0.174

Table 3: **ApolloPFN performance in classical univariate benchmarks.** Best results for each dataset are **bold**, and second best are <u>underlined</u>.

training. Consequently, this practice complicates a fair and unbiased comparison of zero-shot model performance on these benchmarks. In Table 3, we compare ApolloPFN against several of the best performing univariate foundational models. Most notably, ApolloPFN performs 10% better than TabPFN-TS on average and achieves SOTA across the different benchmarks.

6 CONCLUSION

ApolloPFN provides a time-series specific PFN model that gracefully accommodates exogenous variables, and achieves state-of-the-art zero-shot forecasting performance. The strong performance of this new PFN model is enabled through proposing architectural innovations, and a synthetic data generation process. It is notable that ApolloPFN can modulate the effect of different exogenous covariates on each time-series independently of each other. For example, if there is a product that does not respond to promotional events then ApolloPFN would not predict a lift for future promotional events, while other models might do if the majority of the products had a positive response during training.

Given the strong performance of ApolloPFN, it would be exciting to investigate further developments in the future. For example, the current reliance on standard quadratic attention prohibits applicability to very long series (>10K). It would also be enlightening to theoretically analyze the connection between the complexity of the synthetic data, and the performance and generality of the model. Moreover, it could be possible to further enhance the efficiency and time-series specific biases of the architecture through representing model parameters and attention with structured matrices (Potapczynski et al., 2024b).

REFERENCES

Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong, and Doyen Sahoo. GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation. *arXiv* 2410.10393, 2024.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen, Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, Andrew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the Language of Time Series. *arXiv:2403.07815*, 2024.

Sebastian Pineda Arango, Pedro Mercado, Shubham Kapoor, Abdul Fatir Ansari, Lorenzo Stella, Huibin Shen, Hugo Senetaire, Caner Turkmen, Oleksandr Shchur, Danielle C. Maddix, Michael Bohlke-Schneider, Yuyang Wang, and Syama Sundar Rangapuram. ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables. *International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2025.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. *arXiv* 1607.06450, 2016.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for time-series forecasting. *arXiv* 2310.10688, 2023.

- Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. *Journal of Machine Learning Research* 15 1593-1623, 2014.
 - Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second. *International Conference on Learning Representations (ICLR)*, 2023.
 - Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular foundation model. *Nature* 637, 319-326, 2025.
 - Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. From Tables to Time: How TabPFN-v2 Outperforms Specialized Time Series Forecasting Models . *arXiv:2501.02945*, 2025.
 - Rob J Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with Exponential Smoothing: the State Space Approach. *Springer*, 2008.
 - Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-LLM: Time Series Forecasting by Reprogramming Large Language Models. *International Conference on Learning Representations* (*ICLR*), 2024.
 - P. L. Krapivsky and S. Redner. The Magic of Networks Grown by Redirection. arXiv 2305.10628, 2023.
 - Jesus Lago, Grzegorz Marcjasz, Bart De Schutter, and Rafal Weron. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. *Applied Energy, Volume 293*, 2021.
 - Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Sundial: A Family of Highly Capable Time Series Foundation Models. *arXiv* 2502.00816, 2025.
 - Spyros Makridakis and Michele Hibon. Accuracy of Forecasting: An Empirical Investigation. *Journal of the Royal Statistical Society*, 1979.
 - Spyros Makridakis and Michele Hibon. The M3-Competition: results, conclusions and implications. *International Journal of Forecasting*, 2000.
 - Spyros Makridakis, Chris Chatfield, Michele Hibon, Michael Lawrence, Terence Mills, Keith Ord, and LeRoy F. Simmons. The M2-competition: A real-time judgmentally based forecasting study. *International Journal of Forecasting*, 1993.
 - Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The M4 Competition: 100,000 time series and 61 forecasting methods. *International Journal of Forecasting*, 2020.
 - Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. M5 accuracy competition: Results, findings, and conclusions. *International Journal of Forecasting*, 2022.
 - Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Transformers Can Do Bayesian Inference. *International Conference on Learning Representations (ICLR)*, 2022.
 - Samuel Müller, Arik Reuter, Noah Hollmann, David Rügamer, and Frank Hutter. Position: The Future of Bayesian Prediction Is Prior-Fitted. *International Conference on Machine Learning (ICML)*, 2025.
- Kevin P. Murphy. *Machine Learning: A Probabilistic Perspective*. MIT Press, 2012.
 - Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2009.
 - Andres Potapczynski, Kin G. Olivares, Malcolm Wolff, Andrew Gordon Wilson, Dmitry Efimov, and Vincent Quenneville-Belair. Effectively Leveraging Exogenous Information across Neural Forecasters. *NeurIPS TSALM 2024*, 2024a.

- Andres Potapczynski, Shikai Qiu, Marc Finzi, Christopher Ferri, Zixi Chen, Micah Goldblum, C Bayan Bruss, Christopher De, and Andrew G Wilson. Searching for efficient linear layers over a continuous space of structured matrices. *Advances in Neural Information Processing Systems*, 37:3857–3881, 2024b.
 - Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language Models are Unsupervised Multitask Learners. *OpenAI*, 2019.
 - Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir Hassen, Marin Biloš, Sahil Garg, Anderson Schneider, Nicolas Chapados, Alexandre Drouin, Valentina Zantedeschi, Yuriy Nevmyvaka, and Irina Rish. Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting. *arXiv:2310.08278*, 2023.
 - Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts. *International Conference on Learning Representations (ICLR)*, 2025.
 - Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: Enhanced Transformer with Rotary Position Embedding. *arXiv* 2104.09864, 2023.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. *Advances in Neural Information Processing Systems (NeurIPS)*, 2017.
 - Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jianmin Wang, and Mingsheng Long. TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables. *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.
 - Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of generalization. *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
 - Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Unified Training of Universal Time Series Forecasting Transformers. *International Conference on Machine Learning (ICML)*, 2024.

APPENDIX OUTLINE

The appendix is composed of the following sections

- Appendix A discusses the architectural details of TabPFN (Hollmann et al., 2023; 2025).
- Appendix B motivates and explains the different graph generation algorithms used during training.
- Appendix C elaborates on different details for the benchmark evaluations such as the evaluation metrics and the data sources.

A TABPFN ARCHITECTURE

In this section we elaborate on additional details that were not covered in Section 2.2. Assume that we have the following N_{train} observations for our target $(y_i)_{i=1}^{N_{\text{train}}}, N = N_{\text{train}} + N_{\text{test}}$ observations for covariate information $(\boldsymbol{x}_i)_{i=1}^N$ where each $\boldsymbol{x}_i \in \mathbb{R}^{F'}$ and we want to make N_{test} predictions for the target $(y_i)_{i=1}^{N_{\text{test}}}$.

The goal of the preprocessing step is to transform the information of $(x_i)_{i=1}^N$ and $(y_i)_{i=1}^{N_{\text{train}}}$ into an embedding $Z \in \mathbb{R}^{N \times F \times D}$ as used in Equation 1. In terms of the target, we first create a tensor $\tilde{Y} \in \mathbb{R}^{N \times 2}$ by first z-scoring all the train targets, $\tilde{Y}_{i,1} = (y_i - \mu_{\text{train}})/\sigma_{\text{train}}$ where $\mu_{\text{train}} = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} y_i$ and $\sigma_{\text{train}}^2 = \frac{1}{N_{\text{train}}} \sum_{i=1}^{N_{\text{train}}} (y_i - \mu_{\text{train}})^2$ for the positions of $i = 1, \ldots, N_{\text{train}}$ and then by setting

the rest of the N_{test} positions $i=N_{\text{train}}+1,\ldots,N$ as $\tilde{Y}_{i,1}=\mu_{\text{train}}$. Then the other column of $\tilde{\boldsymbol{Y}}$ would be filled with $\tilde{Y}_{i,2}=0$ if the entry is observed $(i=1,\ldots,N_{\text{train}})$ and $\tilde{Y}_{i,2}=-2$ if not $(i=N_{\text{train}}+1,\ldots,N)$. After than we create $\boldsymbol{Y}\in\mathbb{R}^{N\times D}$ by embedding $\tilde{\boldsymbol{Y}}$ with a linear layer on a D dimensional space as $\boldsymbol{Y}=\tilde{\boldsymbol{Y}}\boldsymbol{W_Y}$ where $\boldsymbol{W_Y}\in\mathbb{R}^{2\times D}$.

An analogous procedure is done for each of the features in $\boldsymbol{x}_i \in \mathbb{R}^{F'}$ after first grouping them in pairs as discussed in Hollmann et al. (2025). The grouping can done easily with a reshape as follows. If we have $\tilde{\boldsymbol{X}}_i' = \boldsymbol{x}_i$, then $\tilde{\boldsymbol{X}} = \operatorname{Reshape}(\tilde{\boldsymbol{X}}', (N, F'/2, 2))$ would have the desired effect (assuming that F' is divisible by 2, else we 0 pad the feature dimension). After z-scoring each of the $f = 1, \ldots, F'/2$ features we then compute $\boldsymbol{X} = \tilde{\boldsymbol{X}} \boldsymbol{W}_{\boldsymbol{X}} \in \mathbb{R}^{N \times F - 1 \times D}$ where $\boldsymbol{W}_{\boldsymbol{X}} \in \mathbb{R}^{2 \times D}$ and F = F'/2 + 1. After the embedding \boldsymbol{X} is constructed we then add a fixed random positional encoding $\boldsymbol{\Omega} \in \mathbb{R}^{F-1 \times D}$ to each feature shared across all N samples. In other words we do $\boldsymbol{X}_i \leftarrow \boldsymbol{X}_i + \boldsymbol{\Omega}$ for all $i = 1, \ldots, N$. Finally, we set $\boldsymbol{Z} = [\boldsymbol{X}, \boldsymbol{Y}] \in \mathbb{R}^{N \times F \times D}$ which would then be the embedding pass to the architecture seen in Figure 5 and discussed in Section 2.2 Equation 1.

Figure 5: How TabPFN combines attention across features and samples. Taken from Hollmann et al. (2025), the figure illustrates the main components of the TabPFN architecture discussed in Equation 1 plus the translation of the embedding into a Riemann distribution approximation of the PPD $p(y_{\text{test}}|\boldsymbol{x}_{\text{test}}, \mathcal{D}_{\text{train}})$.

The transformation of $Z \in \mathbb{R}^{N \times F \times D}$ into the Riemman approximation of the PPD is done with another linear layer as $Z_{N_{\text{train}};-1,:} W_Z \in \mathbb{R}^{N_{\text{test}} \times Q}$ where $W_Z \in \mathbb{R}^{D \times Q}$ and Q is the number of quantiles needed to compute the PPD.

B DATA GENERATION

B.1 GRAPH ALGORITHMS

As explained in Section 2.2 and Section 4.1 we need to randomly generate graphs (DAGs) to define diverse SCMs for our synthetic data procedure. The initial procedure to construct a graph (Hollmann et al., 2023) was through a MLP, where each node is connected to all other nodes in the next layer and the depth of the MLP is the depth of the graph which culminates with 1 node at the end which would be the target. To illustrate, if we have a 3-layered MLP with a width of 10 then we would have a graph with 21 = 10 + 10 + 1 nodes and $110 = 10 \times 10 + 10 \times 1$ edges (assuming that the MLP is fully connected). A step to reduce the density of the graph is to drop some edges uniformly at random or by blocks (Hollmann et al., 2023).

In Hollmann et al. (2025), the authors adopted a "more realistic" DAG generation by using a classical algorithm in the study of random networks called the random growing network with redirection (Krapivsky & Redner, 2023) which is represented in Algorithm 1.

As seen in Figure 6 (Top), a characteristic of Algorithm 1 is that it generates graphs with many root nodes (as each added root node in might never get an incoming edge) and, if the redirection probability ρ is high then several of the root nodes might point to the first node. When selecting which features to use from a graph the root nodes are always excluded (Hollmann et al., 2025) and so having a graph that has many root nodes is not necessarily optimal. Furthermore, if the graph happens to concentrate in a few nodes, then many of the features would not be related (that is, there

666667668669

670

671 672 673

674

675

676

677

678

679

680

682

683

684

685

686

687

688

689

690

696

697

699

700

701

Algorithm 1 Random Growing Network with Redirection and Preferential Attachment

```
649
          Require: V: total number of nodes, \rho redirection probability
650
           1: Initialize graph G with nodes n = 0, n = 1 and edge (1,0)
651
           2: Initialize in-degree k_i = 0 for all j \neq 0, k_0 = 1
652
              for n = 2, ..., V - 1 do
653
                 Compute attachment probabilities for all nodes i < n
           4:
654
                 \Pi_i = \frac{k_i + 1}{\sum_{j=0}^{n-1} (k_j + 1)}
           5:
655
           6:
                 Select target node t with probability \Pi_t
656
           7:
                 Sample u \sim U(0,1)
657
           8:
                 if u < \rho then
658
           9:
                    Connect with target, add edge (n, t)
659
          10:
                    Update: k_t \leftarrow k_t + 1
          11:
661
          12:
                    Connect with target's only descendant, add edge (n, d)
662
          13:
                    Update: k_d \leftarrow k_d + 1
          14:
                 end if
663
          15: end for
664
          16: return DAG G = (V, E)
```

would not be a path that connects them) making many of the features in the dataset not informative about the target.

Algorithm 2 Single Root Node Random Growing Network

```
Require: V: total number of nodes, \rho additional attachment probability
 1: Initialize graph G with nodes n = 0, n = 1 and edge (1,0)
 2: Initialize in-degree k_j = 0 for all j \neq 0, k_0 = 1
 3: for n = 2, ..., V - 1 do
       Compute attachment probabilities for all nodes i < n
 4:
             \frac{k_i + 1}{\sum_{j=0}^{n-1} (k_j + 1)}
 5:
 6:
       Select target node t with probability \Pi_t
       Select an additional source node uniformly at random from s \in \{0, ..., n-1\} \setminus \{t\}
 7:
 8:
       Source node connects to new node, add edge (s, n)
 9:
       Update: k_n \leftarrow k_n + 1
       Sample u \sim U(0,1)
10:
11:
       if u < \rho then
12:
         Target connects to new node, add edge (t, n)
13:
          Update: k_n \leftarrow k_n + 1
       end if
14:
15: end for
16: Eliminate cycles in G (if any)
17: return DAG G = (V, E)
```

To generate our graphs to train ApolloPFN, we essentially reverse the mechanisms of Algorithm 1 that makes the output graphs have several nodes and unconnected features. That is, we always incorporate nodes in a graph by having a prior node connect to it, and also, make it connect to a popular node with probability ρ . All the steps are in Algorithm 2 and we can see in Figure 6 (Bottom) how we generate graphs that are connected via some path and that only have one single root node by construction. We show that generating data using Algorithm 2 accelerates training as seen in Figure 3. Similar to Hollmann et al. (2025) we sample the number of total nodes as $\log V \sim \mathcal{U}[a,b]$ but we sample $\rho \sim \mathcal{B}(\alpha,\beta)$ using a Beta distribution instead of the Truncated Gamma distribution used in Hollmann et al. (2025).

Figure 6: Example graphs from distinct graph generation algorithms. (*Top*) Example graph sampled via growing random networks with redirection and preferential attachment (Krapivsky & Redner, 2023). (*Bottom*) Example graph using our single root node growing random network.

C EXPERIMENTAL DETAILS

C.1 EVALUATION METRICS

In this section we document the evaluation metrics for our experiments.

Given $\alpha_1 < \cdots < \alpha_Q$ quantiles, with $\alpha_i \in (0,1)$ sCRPS is defined as:

$$\text{sCRPS}(y, \hat{y}) = \frac{\sum_{t=T+1}^{T+H} \frac{2}{Q} \sum_{j=1}^{Q} \alpha_{j} \left(y_{t} - \hat{y}_{t}^{\alpha_{j}} \right)_{+} + \left(1 - \alpha_{j} \right) \left(y_{t} - \hat{y}_{t}^{\alpha_{j}} \right)_{-}}{\sum_{t=T+1}^{T+H} |y_{t}|}$$

where $(\cdot)_+$ is the positive part and $(\cdot)_-$ the negative part functions. Additionally, $\hat{y}_t^{\alpha_j}$ represents the α_j -th quantile prediction for time step t. The sCRPS captures how well our accurate are our probabilistic predictions but we scale them by the norm of the values of the SKU to weight all SKUs equally.

To evaluate M5, we used the suggested RMSSE metric from Makridakis et al. (2022). This metric is defined as:

$$RMSSE(y, \hat{y}) = \frac{\frac{1}{H} \sum_{t=T+1}^{T+H} (y_t - \hat{y}_t)^2}{\frac{1}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})^2}$$

The motivation for RMSSE is three-fold. First, it compares the predictions against a naive one baseline, giving us a sense of how easy or hard it is to make predictions for this SKU. Second, it down weights SKUs that might have not many sales in the beginning periods similar to the case in Figure 2 (c). Third, it focuses on a square error with penalizes models that do not capture spikes in behavior.

C.2 DATA

All the dataset that we used are publicly available and can be found either the GiftEval (Aksu et al., 2024) repository or the LOTSA (Woo et al., 2024) huggingface repository.

Below we have a Table 4 with the dataset and citations for reference

Dataset	Source				
M1	Makridakis & Hibon (1979)				
M3	Makridakis & Hibon (2000)				
M4	Makridakis et al. (2020)				
Tourism	Hyndman et al. (2008)				
M5	Makridakis et al. (2022)				
Electric Price	Lago et al. (2021)				

Table 4: Data sources used for benchmarking.

In terms of electric prices (Lago et al., 2021), we have: the Nord pool (NP) market which is one of the largest European power markets containing hourly measurements from 2023-01-01 to 2018-12-24. The NP dataset comes with exogenous variables measuring the grid load and wind power. We then have the zonal prices for the COMED area of Pennsylvania, New Jersey and Maryland (PJM) containing hourly measurements from 2023-01-01 to 2018-12-14. The PJM dataset comes with exogenous measurements of the system load and zonal load. Next, we have the French electricity market (FR) containing hourly measurements from 2011-01-09 to 2016-12-31. The FR dataset contains exogenous measurements of system load and power generation. Then, we have the Belgian electricity market (BE) containing hourly measurements from 2011-01-09 to 2016-12-31. The BE dataset contains exogenous measurements of system load and power generation. Finally, we have the German electricity market (DE) containing hourly measurements from 2012-01-09 to 2017-12-31. The DE dataset contains exogenous measurements of zonal load and both solar and wind generation measurements.