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Abstract

Consider the domain of multiclass classification within the adversarial online set-
ting. What is the price of relying on bandit feedback as opposed to full information?
To what extent can an adaptive adversary amplify the loss compared to an obliv-
ious one? To what extent can a randomized learner reduce the loss compared to
a deterministic one? We study these questions in the mistake bound model and
provide nearly tight answers. We demonstrate that the optimal mistake bound under
bandit feedback is at most O(k) times higher than the optimal mistake bound in
the full information case, where k represents the number of labels. This bound
is tight and provides an answer to an open question previously posed and studied
by Daniely and Helbertal [’13] and by Long [’17, ’20], who focused on determin-
istic learners. Moreover, we present nearly optimal bounds of Θ̃(k) on the gap
between randomized and deterministic learners, as well as between adaptive and
oblivious adversaries in the bandit feedback setting. This stands in contrast to the
full information scenario, where adaptive and oblivious adversaries are equivalent,
and the gap in mistake bounds between randomized and deterministic learners is
a constant multiplicative factor of 2. In addition, our results imply that in some
cases the optimal randomized mistake bound is approximately the square-root of
its deterministic parallel. Previous results show that this is essentially the smallest
it can get. Some of our results are proved via a reduction to prediction with expert
advice under bandit feedback, a problem interesting on its own right. For this
problem, we provide a randomized algorithm which is nearly optimal in some
scenarios.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



1 Introduction

The primary focus of this work is the study of multiclass online learning of hypothesis classes in the
realizable setting (in which some hypothesis perfectly labels the input). Online learning is a repeated
game between a learner and an adversary. Each round t in the game proceeds as follows:

(i) The adversary sends an instance xt ∈ X to the learner.
(ii) The learner predicts ŷt ∈ Y (possibly at random).

(iii) The adversary provides information (feedback) to the learner.

This problem suggests a wide and appealing landscape of possible different setups, each granting
or preventing various resources from the learner or the adversary which generates the input. The
resources we discuss are the information provided by the adversary, the adaptivity of the adversary,
and the randomness of the learner. Full-information feedback means that the learner learns the correct
label yt at the end of every round. Bandit feedback means that the learner only receives an indication
whether ŷt = yt or not. If the learner predicts ŷt deterministically for every t, then the learner is
deterministic. See Section A for formal and self-contained definitions.

We are interested in how the optimal mistake bound is affected by granting or preventing each of
those resources. Below, we discuss these questions and present our results.

1.1 Main questions and results

We assume that a concept class H ∈ YX is given, where X is a domain of instances and Y is a label
set. Unless stated otherwise, we restrict the learning scenario to the realizable case, in which the
input provided by the adversary is consistent with a concept from H.

In order to state the results, we define some notation. For a concept class H, let optrandfull (H) denote
the optimal mistake bound for H achievable with full-information feedback. Let optdetfull(H) denote
the same as optrandfull (H), with the additional restriction that the learner is deterministic. In the bandit
feedback model, define optdetbandit(H) analogously to optdetfull(H). When the learner is allowed to be
randomized, the mistake bound in the bandit feedback model might change if the game is played
against an oblivious or adaptive adversary (we define these types of adversaries below).1 Therefore,
we define the notations optoblbandit(H) and optadapbandit(H) to denote the optimal mistake bounds of a
randomized learner which receives bandit feedback on its predictions, when the adversary is oblivious
or adaptive, respectively. Unless stated otherwise, O and Ω notations hide universal constants that do
not depend on any parameter of the problem.

1.1.1 Information

In the full-information feedback model, the learner learns the correct label at the end of each round,
regardless of its prediction. In the bandit feedback model, significantly less information is provided
at the end of each round: the adversary only reveals whether the learner’s prediction was correct or
incorrect. This raises the following natural question studied e.g. by Auer and Long [1999], Daniely
and Helbertal [2013], Daniely, Sabato, Ben-David, and Shalev-Shwartz [2015], Long [2020].

What is the price the learner pays for receiving only bandit feedback?

The answer for this question is known for deterministic learners. Auer and Long [1999] proved the
upper bound

optdetbandit(H) = O(optdetfull(H) · |Y| log |Y|) (1)
for every concept class H. A matching lower bound was given in [Long, 2020, Geneson, 2021],
which showed that for every natural k ≥ 2 there exists a concept class H with label set of size

1In the full-information model there is no essential difference between oblivious and adaptive adversaries
(as long as the learner uses fresh randomness in every round) [Cesa-Bianchi and Lugosi, 2006, Lemma 4.1].
Essentially, the reason is that in the full-information model the feedback is deterministic, even if the learner is
randomized.
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|Y| = k such that
optdetbandit(H) = Ω(optdetfull(H) · |Y| log |Y|). (2)

They also find tight guarantees on the constants hidden in the O,Ω notations.

Finding an analogous result for randomized learners was raised as an open problem in [Daniely and
Helbertal, 2013].2 We solve this open problem by proving the upper bound stated in the following
theorem.
Theorem 1.1 (Full-information vs. Bandit-feedback). For every concept class H it holds that

optadapbandit(H) = O(optrandfull (H) · |Y|).
Furthermore, for every natural k ≥ 2 there exists a concept class H with |Y| = k such that

optoblbandit(H) = Ω(optrandfull (H) · |Y|).

The lower bound was noted e.g. in [Daniely and Helbertal, 2013]. We complement it by proving an
upper bound that holds for all classes. We prove Theorem 1.1 in Section D. Note that optrandfull (H)
is precisely characterized by a combinatorial parameter of H called the randomized Littlestone
dimension [Filmus, Hanneke, Mehalel, and Moran, 2023] (and characterized up to a multiplicative
factor of 2 by the standard Littlestone dimension [Littlestone, 1988]).

The techniques developed to prove this upper bound include new bounds for prediction with expert
advice with bandit feedback, which is the main technical contribution of this work. These bounds are
presented in Section 1.2, and a technical overview of the proof can be found in Section 2.

A generalization to the agnostic setting. We also generalize results in the spirit of Theorem 1.1
to the agnostic case, in which the best hypothesis in class is inconsistent with the input in r⋆ many
rounds. Our results do not require that r⋆ (or some bound r ≥ r⋆ on it) is given to the learner.
However, throughout most of the paper we assume the stronger r-realizability assumption, in which
an upper bound r ≥ r⋆ is given to the learner. That is, under r-realizability assumption the learner
knows in advance that some hypothesis will be inconsistent with the feedback in at most r many
rounds. We explain in Section G how to remove this assumption using a standard “doubling trick".
Bounds for various setups in the agnostic setting are summarized in Table 1.

In the agnostic setting, learning algorithms are often measured by their expected regret (which
is the mistake bound minus the number of mistakes made by the best hypothesis). While in this
work we measure algorithms by their mistake bound, note that a mistake bound of an algorithm is
always at least as large as its regret. Therefore, since our bounds demonstrate no dependence on
the number of rounds T , in some cases they provide improvements over the known regret bound

Õ

(√
T |Y|optdetfull(H)

)
of [Daniely and Helbertal, 2013]. Specifically, when r⋆ = O(optdetfull(H)),

our results imply a regret bound of O(|Y|optdetfull(H)), for all T .

1.1.2 Adaptivity

In Section 1.1.1 we showed that randomness is necessary for obtaining optimal bounds on the cost of
bandit feedback. However, within the setup of a randomized learner which receives bandit feedback,
there are (at least) two types of adversaries to consider: an oblivious adversary which must decide on
the entire input in advance, and an adaptive adversary that can decide on the input on the fly. This
raises the following natural question.

Within the bandit feedback model, what is the price the learner pays for playing against an
adaptive adversary?

We solve this question up to logarithmic factors. However, our nearly tight lower bound uses pattern
classes, which are a generalization of concept classes. In more detail, a pattern class is a set of

2The setting considered in [Daniely and Helbertal, 2013], is, however, more general than the setting we
consider. They consider an adversary which can decide on a few correct labels in each round, and not only one.
Generalizing this work to their multilabel setting is an interesting direction for future work.
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Learner

Adversary
Oblivious Adaptive

Randomized
O
(
|Y|(optdetfull(H) + r⋆)

)
Ω
(
|Y| · optdetfull(H) + r⋆

) Θ
(
|Y|(optdetfull(H) + r⋆)

)

Deterministic
O
(
|Y| log |Y|(optdetfull(H) + r⋆)

)
Ω
(
|Y|(optdetfull(H) log |Y|+ r⋆)

)
Table 1: Worst-case mistake bounds for learning concept classes with bandit feedback in the agnostic
setting, in which the best concept in class is inconsistent with the feedback in r⋆ many rounds. No
prior knowledge on r⋆ is required. The bounds for the randomized setup are obtained by applying
Theorem D.3 to the upper bound in Theorem D.1 and to the lower bounds in Lemma C.11 and in
[Daniely and Helbertal, 2013]. The bounds for the deterministic setup are obtained by applying the
same theorem to the upper bound of Auer and Long [1999], and to the lower bounds of Lemma C.5
and Long [2020]. The same (up to constant) deterministic bounds were proved independently in
[Geneson and Tang, 2024] (however, their bounds are in terms of a given bound r ≥ r⋆).

patterns p ∈ (X × Y)⋆ which is downwards closed (i.e. closed under sub-patterns). Proving the
lower bound in the theorem below using only concept classes or showing that this is not possible is
an interesting and main problem left open by this work.

Theorem 1.2 (Oblivious vs. Adaptive Adversaries). For every concept class H it holds that

optadapbandit(H) = O(optoblbandit(H) · |Y| log |Y|).

Furthermore, for every natural k ≥ 2 there exists a pattern class P with |Y| = k and so that

optadapbandit(P) = Ω(optoblbandit(P) · |Y|).

The upper bound is an immediate corollary of the upper bound (1). We prove the lower bound in
Section E. The proof idea of the lower bound is to consider the classic adversarial |Y|-armed bandit
problem of Auer, Cesa-Bianchi, Freund, and Schapire [2002] with an r-realizability assumption. This
setting can be simulated using a pattern class, but not using a concept class. For this problem, an
adaptive adversary can force a mistake bound of Ω(r · |Y|), while the best an oblivious adversary can
do is O(r + |Y|).
Remark 1.3 (Concept classes vs. Pattern classes). Pattern classes are a more expressive general-
ization of concept classes (see a formal definition in Section A). Most desirably, we would like to
prove upper bounds for all pattern classes, accompanied with tight lower bounds that hold for hard
concept classes. We manage to do so in all of our results (for the sake of simplicity, we omitted it
from the theorem statements), except for Theorem 1.2, in which the upper bound does hold for all
pattern classes, but the lower bound holds only for hard pattern classes.

1.1.3 Randomness

In Section 1.1.2 we discussed two different adversarial models within the setup of randomized
learners. However, what happens if the learner cannot use randomness? A folklore result on the
full-information feedback model states that for every concept class H with |Y| = 2 it holds that

optrandfull (H) ≤ optdetfull(H) ≤ 2 · optrandfull (H), (3)

and that there are classes attaining each equality. Extending this to |Y| > 2 is straightforward by
noting the following randomized-to-deterministic full-information algorithm conversion: If A is a
randomized algorithm, then the mistake bound of the deterministic algorithm A′ who always predicts
the most probable prediction of A is at most twice the mistake bound of A. Indeed, whenever A′

makes a mistake, A makes a mistake with probability at least 1/2. This raises the following natural
question, also asked in [Daniely and Helbertal, 2013].
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Within the bandit feedback model, what is the price the learner pays for not using
randomness?

We resolve this question up to logarithmic factors.
Theorem 1.4 (Randomized vs. Deterministic). For every concept class H it holds that

optdetbandit(H) = O(optoblbandit(H) · |Y| log |Y|).

Furthermore, for every natural k ≥ 2 there exists a concept class H with |Y| = k such that

optdetbandit(H) = Ω(optadapbandit(H) · |Y|).

The upper bound is an immediate corollary of the upper bound (1). The proof idea of the lower
bound is to construct a class which is hard for a deterministic learner, but becomes easy if the learner
may use randomness. Concretely, we prove the following result from which Theorem 1.4 follows, in
Section F.
Theorem 1.5. For every d ≥ 1 and k ≥ 2 there exists a concept class H ⊂ YX with Y =
{0, 1, . . . , k} such that

1. optdetfull(H) = d+ 1.

2. optdetbandit(H) = Θ(d · k).

3. optadapbandit(H) = Θ(d+ k).

The lower bound in Theorem 1.4 has a significant consequence on the problem of finding a combi-
natorial dimension that quantifies the optimal mistake bound of randomized learners in the bandit
feedback model. In the full-information model, the optimal deterministic mistake bound, which
is captured precisely by the combinatorial Littlestone dimension [Littlestone, 1988], quantifies the
optimal mistake bound of randomized learners as well, as demonstrated in (3). In [Daniely, Sabato,
Ben-David, and Shalev-Shwartz, 2015], a new combinatorial dimension, coined the Bandit-Littlestone
dimension, is introduced and proved to capture the exact optimal mistake bound of deterministic
learners within the bandit feedback model. In [Daniely and Helbertal, 2013], some hope is expressed
for this dimension to quantify the mistake bound of randomized learners as well, similarly to the case
of full-information feedback. However, our lower bound shows that this is not the case. As we show
in Section F, the classes used in the lower bound may be chosen such that optadapbandit(H) = O(|Y|),
and thus optadapbandit(H) is only roughly

√
optdetbandit(H). On the other hand, the upper bound in

Theorem 1.4 together with the bound optoblbandit(H) ≥ |Y|−1
2 (e.g. by Daniely and Helbertal [2013])

shows that
√
optdetbandit(H) is roughly the smallest that optoblbandit(H) can get.

1.2 Bounds for prediction with expert advice

A main technical result proved in this work, which is interesting in its own right, is a nearly optimal
randomized mistake bound for the problem of prediction with expert advice in the r-realizable setting.
In this problem, n experts make deterministic predictions in every round, and it is promised that the
best expert is inconsistent with the feedback for at most r many times throughout the entire game.
As in Section 1.1.1, the knowledge of r is actually not required, and r can be replaced with the
actual number of inconsistencies of the best expert, r⋆. In Section G, we explain how to remove the
assumption that r is given to the learner.

The learner should aggregate the experts’ predictions to make their own (possibly randomized)
predictions, while minimizing the expected number of mistakes made. This problem was extensively
studied in the binary (|Y| = 2) setting, starting with the seminal works of Vovk [1990], Littlestone
and Warmuth [1994] who showed that the optimal mistake bound when |Y| = 2 is Θ(log n+ r) for
both randomized and deterministic learners. Later, Cesa-Bianchi, Freund, Helmbold, and Warmuth
[1996] proved fine-grained bounds for deterministic learners. Cesa-Bianchi, Freund, Haussler,
Helmbold, Schapire, and Warmuth [1997], Abernethy, Langford, and Warmuth [2006], Filmus,
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Learner

Adversary
Oblivious Adaptive

Randomized
O(k(logk n+ r⋆))

Ω(k logk n+ r⋆)
Θ(k(logk n+ r⋆))

Deterministic Θ(k(log(n/k) + r⋆ + 1))

Table 2: Mistake bounds for prediction with expert advice. The size of the label set is k ≥ 2, there
are n ≥ k experts, and the best expert is inconsistent with the feedback for r⋆ many times. No prior
knowledge on r⋆ is required. The randomized bounds are due to Theorem C.7 and Lemmas C.10
and C.11. The deterministic bounds are stated in Theorem C.1.

Hanneke, Mehalel, and Moran [2023] further refined and improved randomized mistake bounds.
Mukherjee and Schapire [2010] studied a variation where the experts are randomized and the learner
is deterministic. Similarly to this paper, Brânzei and Peres [2019] studied the multiclass scenario, but
with full-information-feedback, which is substantially easier to the learner.

In this work, we consider this problem in the bandit feedback model. Most previous works on
prediction with expert advice under bandit feedback studied the best achievable regret, obtaining
results that depend on the number of rounds T , a dependence from which we seek to avoid in this
work (see Section 3.4 for more details).

The main tool used to prove Theorem 1.1 is the following optimal (up to constant factors) bound on
optadapbandit(n, k, r), which is the optimal mistake bound achievable by a randomized learner which
plays against an adaptive adversary that provides bandit feedback, when there are k ≥ 2 many labels,
n ≥ k many experts, and the best expert is inconsistent with the feedback for at most r ≥ 0 many
times.
Theorem 1.6. For every n ≥ k ≥ 2 and r ≥ 0 it holds that

optadapbandit(n, k, r) = Θ(k(logk n+ r)).

This bound generalizes the result optadapbandit(n, 2, r) = Θ(log n+ r) mentioned above.3 In the case
where the adversary is oblivious, we prove the inferior lower bound

optoblbandit(n, k, r) = Ω(k logk n+ r)

which is tight as long as r = O(logk n). Proving tight bounds against an oblivious adversary for all
values of r remains open.

We also consider this problem in the deterministic (learner) setting, for the sake of completeness (we
do not use the deterministic bound to prove any other results). We prove all bounds in Section C,
and summarize them in Table 2. Similarly to the results in Section 1.1.1, since our mistake bounds
demonstrate no dependence on the number of rounds T , they improve over the known regret bound
O
(√

Tk log n
)

of Auer, Cesa-Bianchi, Freund, and Schapire [2002] whenever r = O(log n).

2 Technical overview

In this section, we explain the idea behind the proof of the upper bound optadapbandit(H) =

O(optrandfull (H) · |Y|) in Theorem 1.1, which is our main technical contribution.

There are two main ingredients used in the proof of Theorem 1.1:

1. A reduction from the problem of learning a concept class H to an instance of prediction with
expert advice with |Y|optdet

full(H) many experts, |Y| many labels, and where the best expert is
inconsistent with the feedback for at most optdetfull(H) many rounds.

3When there are only 2 labels, full-information and bandit feedback are the same.
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2. The upper bound for prediction with expert advice stated in Theorem 1.6.

Indeed, having both items, we take the upper bound of item (2) with the parameters specified in
item (1), obtaining

optadapbandit

(
|Y|opt

det
full(H), |Y|, optdetfull(H)

)
= O

(
|Y| · optdetfull(H)

)
.

By item (1), this bound holds also for the problem of learning the concept class H. Since optdetfull(H) ≤
2optrandfull (H), we can replace optdetfull(H) with optrandfull (H). It remains to sketch the ideas behind the
proofs of items (1) and (2), which we do in the following subsections. Of the two items, the proof of
Item (2) is the main technical novelty.

2.1 Proof idea of Item (1)

In the problem of prediction with expert advice, the expert predictions are generated in a completely
adversarial fashion. That is, no assumptions are made on the way those predictions are generated.
Therefore, any upper bound for prediction with expert advice holds in particular for the case where
the expert predictions are determined by an algorithm chosen by the learner. We can exploit this
property to reduce the problem of learning a concept class H to an instance of prediction with expert
advice with |Y|optdet

full(H) many experts, |Y| many labels, and where the best expert is inconsistent
with the feedback for at most optdetfull(H) many rounds. The idea, described below, is inspired by
Long [2020], Hanneke, Livni, and Moran [2021].

Let A be an optimal deterministic algorithm for learning H given full-information feedback. We run
in parallel several copies of A arranged in tree form. These copies will function as the experts fed
into an optimal algorithm for prediction with expert advice.

Initially, there is a single copy of A. At every round, for each copy of A, if its prediction is consistent
with the bandit feedback, we do nothing. Otherwise, if the copy is at depth D < optdetfull(H), we split
it into |Y| different copies at depth D + 1, each “guessing” a different full-information feedback for
the problematic example; if the copy is at depth D, we do nothing.

Since the tree has depth at most optdetfull(H), there are at most |Y|optdetfull(H) many copies of A. The copy
of A which always guessed correctly corresponds to an expert whose predictions are inconsistent
with the feedback for at most optdetfull(H) many rounds.

A formal statement (and proof) of this reduction can be found in Proposition D.2.

2.2 Proof idea of Item (2)

In the context of classification problems, the realizable case in which some concept from the learned
class accurately explains the correct classification is often simpler than the agnostic case. Therefore,
for the sake of understanding the proof of the upper bound on optadapbandit(n, k, r) stated in Theorem 1.6,
we first outline a proof for the upper bound on optadapbandit(n, k) := optadapbandit(n, k, 0). This proof has
the same flavor of the proof for general r, but is simpler. We then explain how to adapt the proof for
general r.

When r = 0, all living experts (that is, experts which have been consistent with the feedback so far)
are identical: every expert which is inconsistent with the feedback in some round is immediately
eliminated, and its predictions need not be taken into account any longer. By applying the law of
total expectation, the optimal mistake bound can thus be described by the following optimization
problem. Fix k ≥ 2, and for every n ≥ 1, let V (n) = optadapbandit(n, k). We have

V (n) = max
α⃗

min
π

max
y∈Y

πyV (αyn) +
∑
y′ ̸=y

πy′(1 + V ((1− αy′)n))

, (4)

where α⃗ ∈ [0, 1]k is a k-ary vector whose y’th entry specifies the fraction of living experts predicting
y; π is the distribution used by the learner to draw the prediction; and y ∈ Y is the correct label
chosen by the adversary.
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Since all living experts are identical, the natural intuition suggests that the optimal choice of α⃗ is to
let every entry in it be 1/k, in which case the optimal choice of π would be the uniform distribution.
In this case, it does not matter which y the adversary chooses as the correct label. Applying this
intuition to (4) results in the recurrence relation

V (n) ≤ V (n/k)/k + (1− 1/k)(1 + V ((1− 1/k)n)). (5)

Solving this recurrence relation gives V (n) ≤ k logb(k) n, where b(k) = kk

(k−1)k−1 , which implies
the statement in Theorem 1.6 since b(k) ≥ k. It remains to show that the intuition that led us from (4)
to (5) is indeed correct. A natural approach would be to directly prove that V (n), as defined in (4),
satisfies V (n) ≤ k logb(k) n by induction on n. However, note that (4) contains k different recursive
calls, so an inductive proof seems complicated. To overcome this, we use minimax duality, which
significantly simplifies (4), as we now explain.

Observe that once α⃗ is fixed, each round of the game is a zero-sum game between two randomized
parties.4 Therefore, we can apply von Neumann’s minimax theorem and obtain a dual game which is
equivalent to the primal (original) game in terms of its optimal mistake bound.5 In the dual game, the
adversary first chooses a distribution over the labels from which the correct label is drawn, and then
the learner chooses its prediction. When the dual game is considered, the definition of V (n) from (4)
becomes

V (n) = max
α⃗,π

min
y∈Y

[πyV (αyn) + (1− πy)(1 + V ((1− αy)n))]. (6)

The notation is the same as in (4), except that now π is the distribution used by the adversary to draw
the correct label, and y ∈ Y is the learner’s prediction. Eq. (6) contains only two recursive calls,
making an inductive proof much easier (but still quite technical).

We now explain how to adapt this approach to work for general r, when r is given. In Section G, we
explain how to remove the assumption that r is given to the learner. When r > 0, there is an inherent
difference between the experts: different experts have been inconsistent with the feedback for a
different number of rounds, and so can afford a different number of future inconsistencies. Therefore,
we need some mechanism that differentiates between experts with different inconsistency budgets.

Inspired by weighted prediction techniques (See [Cesa-Bianchi and Lugosi, 2006, Section 2.1] and
bibliographic remarks of Section 2), we rely on the fact that experts with higher budgets have higher
potential to damage the learner, so we choose an expert potential function that matches the potential
of an expert to damage the learner. As such, the potential should be an increasing function of the
budget. Choosing the potential as a function of the budget is a known method (see, e.g., [Cesa-Bianchi
and Lugosi, 2006, Corollary 2.4]. We use exponential potentials and give an expert with budget i
(corresponding to i more allowed inconsistencies) a potential of k2i. We now employ roughly the
same argument outlined above for the realizable case. The main difference is that V (·) depends on
the total potential rather than on the number of living experts. As a result, the initial number of living
experts n is replaced with the initial total potential n · k2r, which gives

V (n · k2r) ≤ k logk(n · k2r) = k logk n+ 2kr,

as stated in Theorem 1.6.

3 Related work

We outline connections between previous work to the problems in the focus of this work: the role
of various resources in realizable multiclass online learning of concept classes, and prediction with
expert advice with bandit feedback.

4The adversary described in (4) is deterministic, but we can allow it to be randomized without changing the
value of V (n).

5Similar usage of minimax duality appears in previous work, for example [Abernethy, Agarwal, Bartlett, and
Rakhlin, 2009].
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3.1 Information

The role of information in learning concept classes was previously studied in [Auer and Long, 1999,
Daniely, Sabato, Ben-David, and Shalev-Shwartz, 2015, Daniely and Helbertal, 2013, Long, 2020].
To the best of our knowledge, [Auer and Long, 1999] was the first to show that optdetbandit(H) =
O(optdetfull(H)|Y| log |Y|) for every class H. Long [2020], Geneson [2021] improved the constant in
the upper bound of Auer and Long [1999], and showed that it is in fact tight up to a 1 + o(1) factor
by finding a sequence of concept classes demonstrating a matching separation between optdetbandit(H)
and optdetfull(H). Our work proves an analogous result for randomized learners (Theorem 1.1), with
the exception that we do not identify the exact leading constant in the optimal mistake bound.

The agnostic case was studied in [Daniely and Helbertal, 2013], which proved the upper bound

Õ

(√
T |Y|optdetfull(H)

)
on the optimal regret, where T is the horizon, and showed that the upper

bound is best-possible up to logarithmic factors. The PAC learning setting was studied in [Daniely,
Sabato, Ben-David, and Shalev-Shwartz, 2015], which showed that the price of bandit feedback is
Õ(|Y|) in this setting as well.

3.2 Adaptivity

In the setting of full-information feedback, adaptive and oblivious adversaries are essentially equiva-
lent [Cesa-Bianchi and Lugosi, 2006, Lemma 4.1]. Indeed, full-information feedback, in its essence,
implies that the feedback never depends on the prediction drawn by the learner in a specific execution
of the game. In the bandit feedback setting, to the best of our knowledge, the existing literature on
adaptive adversaries focuses on the agnostic setting and analyze different notions of regret. Notable
examples are [Merhav, Ordentlich, Seroussi, and Weinberger, 2002, Farias and Megiddo, 2006, Arora,
Dekel, and Tewari, 2012].

3.3 Randomness

In the full-information feedback model, the Littlestone dimension [Littlestone, 1988, Daniely, Sabato,
Ben-David, and Shalev-Shwartz, 2015] captures optdetfull(H) precisely, and optrandfull (H) up to a multi-
plicative factor of 2. The paper [Daniely et al., 2015] suggests a new combinatorial dimension, the
Bandit Littlestone dimension, and proves that it captures optdetbandit(H) precisely. The paper [Raman,
Raman, Subedi, Mehalel, and Tewari, 2023] shows that the Bandit Littlestone dimension qualitatively
characterizes learnability also in the agnostic and randomized setting, even when |Y| = ∞.

The papers [Daniely and Helbertal, 2013, Raman et al., 2023] ask whether the Bandit Littlestone
dimension is a good quantitative proxy for optoblbandit(H). Theorem 1.4 (and Theorem F.1 in a more
detailed version) shows that this dimension is far from quantifying even optadapbandit(H).

3.4 Prediction with expert advice

The problem of prediction with expert advice in the r-realizable setting was introduced in [Vovk,
1990, Littlestone and Warmuth, 1994] for the binary case (|Y| = 2). Since then, this problem
has been well-studied, with papers spanning the past 30 years [Cesa-Bianchi, Freund, Helmbold,
and Warmuth, 1996, Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth, 1997,
Abernethy, Langford, and Warmuth, 2006, Mukherjee and Schapire, 2010, Filmus, Hanneke, Mehalel,
and Moran, 2023]. The full-information setting for |Y| > 2 and small r was studied in [Brânzei and
Peres, 2019].

The bandit feedback variation of the problem was introduced in [Auer, Cesa-Bianchi, Freund, and
Schapire, 2002], in a more general version that considers rewards instead of losses (or mistakes).
However, there is a major difference between how they define r-realizability and how we define it (in
the setting of an adaptive adversary). In their definition, there must be an expert which makes at most
r mistakes, whereas we only assume that there must be an expert whose predictions are inconsistent
with the bandit feedback at most r times.

When the adversary is oblivious, both notions of r-realizability coincide (see Remark A.1 for more
details). Therefore, it is possible that their techniques can be used to obtain tight bounds for the
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oblivious setting for all values of r; our bounds for the adaptive setting are tight in the oblivious
setting only for small r values (see Theorem C.12).

Unfortunately, to the best of our knowledge, when converting rewards to losses and applying the
bounds of Auer, Cesa-Bianchi, Freund, and Schapire [2002], a dependence on the number of rounds
T emerges (see for example [Bubeck and Cesa-Bianchi, 2012, Theorem 3.1] and [Cesa-Bianchi and
Lugosi, 2006, Theorem 6.10]), which is undesirable when studying the mistake bound model (rather
than the regret model). In this work we are mainly interested in the experts setting as a means for
proving Theorem 1.1, and our proof specifically requires the adaptive setting. We leave for future
work the question of finding mistake bounds against oblivious adversaries which are tight for large
values of r.

4 Open questions and future work

Our work leaves some interesting open questions and directions for future work.

4.1 Open questions

The price of adaptivity for concept classes. Our proof of Theorem E.1 uses pattern classes. Can
we prove it using only concept classes, similarly to Theorem F.1? If not, what is the price of adaptivity
when learning concept classes?

The exact role of randomness. There is a Θ(log k) gap between the lower and upper bounds in
Theorem 1.4. What is the correct worst case price of not using randomness?

The agnostic setting with oblivious adversaries. Our mistake bounds in the agnostic setting are
not tight for large r⋆ when the adversary is oblivious, both for the problem of learning a concept
class (Table 1), and for prediction with expert advice (Table 2). It would be interesting to obtain
bounds that are tight for large r⋆ against an oblivious adversary for both problems. One possible
approach towards proving such bounds for prediction with expert advice is to use the techniques of
Auer, Cesa-Bianchi, Freund, and Schapire [2002], and specifically the Exp4 algorithm.

A natural algorithm for the experts setting. Our randomized algorithm for prediction with expert
advice is optimal, but not very natural nor efficient, as it relies on the calculation of minimax values.
While the analysis of our algorithm employs the well-known paradigm of potential-based weighted
experts, the learning algorithm itself does not make any use of these weights to devise its predictions.
This is in contrast to many learning algorithms that integrate the weights into the prediction process
(See [Cesa-Bianchi and Lugosi, 2006, Section 2.1] and bibliographic remarks in Section 2). Can
we design a natural algorithm, in the spirit of algorithms such as weighted majority [Littlestone
and Warmuth, 1994] and Exp4 [Auer, Cesa-Bianchi, Freund, and Schapire, 2002], that achieves the
guarantees of Theorem C.7, up to constant factors?

4.2 Future research

The multilabel setting. It would be interesting to generalize the results of this work to the multilabel
setting considered in [Daniely and Helbertal, 2013], in which the adversary is allowed to choose
several correct labels in each round. When the adversary is adaptive, it is not hard to see that this
is equivalent to the single-label setting considered in this work with a deterministic learner. What
happens when the adversary is oblivious?

Other types of feedback. This work considers the full information and bandit feedback models.
However, one can think of other types of feedback. Consider for example the comparison feedback
model: if the true label is y and the prediction is z, the adversary provides the feedback op ∈ {<,=
, >} such that z op y. An interesting direction for future research is to prove results in the spirit of
this work for comparison feedback, or for other natural types of feedback.
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A Definitions

Let X be a domain, and let Y be a countable label set. Unless stated otherwise, we assume that
Y = [k] for some natural k ≥ 2. A pair (x, y) ∈ X × Y is called an example, and an element x ∈ X
is called an instance or an unlabeled example. A function h : X → Y is called a hypothesis or a
concept. A hypothesis class, or concept class, is a non-empty set H ⊂ YX . We note here that it is
generally assumed that there exists an instance x ∈ X such that for every y ∈ Y there exists h ∈ H
satisfying h(x) = y. This assumption is reasonable since when this is not the case, the hypothesis
class H has an essentially isomorphic class H′ with label set strictly smaller than Y (see [Raman,
Raman, Subedi, Mehalel, and Tewari, 2023]).

We will mostly consider the more general notion of pattern classes. A pattern p ∈ (X × Y)⋆ is a
finite sequence of examples. A pattern class is a non-empty set of patterns P which is downwards
closed, meaning that for every p ∈ P , every sub-pattern p′ of p (obtained by removing examples
arbitrarily) is in P as well. Let p, q be sequences (which can be either patterns or some other type
of sequences). we denote by pI the sub-sequence of p consisting only of the indices in I . The set I
might be given by a clear and well-known notation. For example, if p = x1, . . . , xT , then for some
t ≤ T , the notation p≤t represents the sub-sequence x1, . . . , xt. Denote the concatenation of p, q by
p ◦ q. If p is a sub-sequence of q, we denote p ⊂ q.

Note that pattern classes generalize concept classes: for every concept class H we may define the
induced pattern class

P(H) =

p ∈ (X × Y)⋆ : min
h∈H

∑
(x,y)∈p

1[h(x) ̸= y] = 0

 . (7)

In words, P(H) contains all patterns that are consistent with H, and thus from an online-learning
perspective there is no essential difference between H and P(H). Therefore, throughout this section
we consider only pattern classes.

In this work, we consider multiclass online learning of pattern classes in the realizable setting. Online
learning is a repeated game between a learner and an adversary. Each round t in the game proceeds
as follows:

(i) The adversary sends an instance xt ∈ X to the learner.
(ii) The learner predicts ŷt ∈ Y (possibly at random).

(iii) The adversary provides (full-information or bandit) feedback to the learner.

Full-information feedback means that the learner learns the correct label yt at the end of every round.
Bandit feedback means that the learner only receives an indication whether ŷt = yt or not. If the
learner predicts ŷt deterministically for every t, then the learner is deterministic.

In the bandit feedback setting, we model learners as functions Lrn : ((X × {→, ̸→} × Y)⋆ ×X ) →
Π[Y] from the set of pairs of a feedback sequence and an instance, to the set Π[Y] of all probability
distributions over Y . For π ∈ Π[Y] we denote the probability of y in π by πy. In a feedback
sequence (x1, op1, ŷ1), . . . , (xT , opT , ŷT ), the triplet (xt, opt, ŷt) represents the fact that in round
t the instance was xt, and that ŷt = yt if op =→, or ŷt ̸= yt if op ≠→. The learner’s predictions
thus may depend on past feedback as well as on past and current instances. In the full-information
feedback model, op =→ at all times, and so we omit it and use the pair (xt, yt) instead of the triplet
(xt, op, ŷt).

Given a learner Lrn and a fixed input sequence of examples S = (x1, y1), . . . , (xT , yT ), we denote
the expected number of mistakes that Lrn makes when executed on the sequence S by Mfull(Lrn;S) if
it receives full-information feedback, and by Mbandit(Lrn;S) if it receives bandit feedback. We define
the optimal mistake bound of P when the adversary is oblivious to be

optrandfull (P) = inf
Lrn

sup
S∈P

Mfull(Lrn;S), optoblbandit(P) = inf
Lrn

sup
S∈P

Mbandit(Lrn;S), (8)

in the full information and bandit feedback models, respectively.
Remark A.1 (Strong vs. Weak Realizability). The restriction S ∈ P that the supremum is taken over
is called strong realizability, which requires that the input sequence is taken from the class P . On
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the other hand, unless stated otherwise, in this work we consider the weak realizability assumption.
Under this assumption, it is only required that for any learner, the feedback provided by the adversary
is consistent with some pattern from P with probability 1. When the adversary is oblivious and the
input sequence S is chosen beforehand, strong and weak realizability coincide. Indeed, note that for
any learner who never predicts a label with probability 0, strong realizability must hold in order to
satisfy weak realizability.

The adversary in the above definition is indeed oblivious to the learner’s actions, in the sense that it
must choose the target pattern S ∈ P before the beginning of the game. In contrast, in the setting of
the bandit feedback model we will also consider a stronger adaptive adversary which is allowed to
choose the target pattern on the fly, as long as it satisfies the weak realizability assumption, meaning
that the feedback provided to the learner is consistent with some p ∈ P with probability 1. In addition,
it is allowed to choose the correct label at random.6

When the adversary is adaptive, the online learning game defined above operates as follows in every
round t:

(i) The adversary sends an instance xt ∈ X to the learner.

(ii) The learner chooses a probability distribution π(t) over Y and reveals it to the adversary.

(iii) The adversary chooses a probability distribution τ (t) over Y .

(iv) The learner draws a prediction ŷt ∈ Y from π(t) and reveals it to the adversary.

(v) The adversary draws the correct label yt from τ (t) and tells the learner if its prediction was
correct or not.

We formalize an adaptive adversary as a pair of functions

Advx : (X × {→, ̸→} × Y)⋆ → X , Advy : (X × {→, ̸→} × Y)⋆ ×X ×Π[Y] → Π[Y].

In every round t, Advx is used in the first step to choose the instance xt, and Advy is used in the
third step to determine the distribution from which the correct label yt ∈ Y is drawn. In more detail,
let F ∈ (X × {→, ̸→} × Y)⋆ be the feedback sequence given to the learner before round t. The
adversary sends the instance xt = Advx(F ) to the learner in the first step. In the third step, the
adversary computes the distribution τ (t) = Advy(F, xt, π

(t)).

A feedback sequence F ∈ (X × {→, ̸→} × Y)⋆ is realizable by P if there exists a pattern in P that
is consistent with F . An adaptive adversary is consistent with P if for every feedback sequence
F ∈ (X × {→, ̸→} × Y)⋆ which is realizable by P and for every π ∈ Π[Y], the following holds.
Let x = Advx(F ). If Advy(F, x, π) = τ , then the feedback sequence F ◦ (x,→, y) is realizable for
every y in the support of τ .

Given a learner Lrn and an adaptive adversary Adv which provides bandit feedback, we denote
the expected number of mistakes that Lrn makes against Adv by Mbandit(Lrn;Adv). We define the
optimal mistake bound of P against an adaptive adversary which provides bandit feedback by

optadapbandit(P) = inf
Lrn

sup
Adv

M(Lrn;Adv), (9)

where the supremum is taken over all adaptive adversaries which are consistent with P .

We denote by optdetfull(P) and optdetbandit(P) the optimal deterministic mistake bounds7 of P with
full-information and bandit feedback, respectively. That is, in these settings we require the additional
restriction that Lrn must be deterministic. We may sometimes refer to mistake bounds as the learner’s
loss throughout the entire game. Unless stated otherwise, the notations O,Ω,Θ hide universal
constants which do not depend on any parameter of the problem.

B The primal and dual games

In this section we describe a game-theoretic formulation of optadapbandit, and apply the minimax theorem
to obtain a dual formulation which will be useful in Section C. We term the game defined in Section A

6It is explained in the sequel that being randomized does not really help the adversary
7One can verify that in the deterministic case, oblivious and adaptive adversaries are equivalent.
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when played against an adaptive adversary as the primal game. In the dual game, we basically just
switch the order of the second and third steps of the primal game (together with some other required
but not meaningful minor changes). We can think of the primal and dual games as the same game,
only that after the adversary chooses xt, in the primal game the learner chooses a distribution (over
the labels) first, and in the dual game the adversary chooses a distribution first. Formally, the dual
game operates as follows in each round t:

(i) The adversary picks an instance xt ∈ X and a probability distribution τ (t) over Y . It reveals
both to the learner.

(ii) The learner chooses a probability distribution π(t) over Y , draws a prediction ŷt ∈ Y from π(t),
and reveals it to the adversary.

(iii) The adversary draws the correct label yt from τ (t) and tells the learner if its prediction was
correct or not.

In this section, we show that the primal and dual games are equivalent in terms of their optimal
mistake bounds. The motivation behind this is that the target function of the optimization problem
describing the optimal mistake bound in the dual game will turn out to be simpler. This will enable
the analysis in Section C, and might be of further interest. The equivalence will mainly follow from
von Neumann’s minimax theorem [von Neumann, 1928]. Using minimax duality to analyze minimax
target functions of online learning problems has proved useful in previous works. Notable examples
are [Abernethy, Agarwal, Bartlett, and Rakhlin, 2009, Rakhlin, Sridharan, and Tewari, 2010, Rakhlin,
Shamir, and Sridharan, 2012].

We now get into the details. In the dual game, π(t) depends on the distribution τ (t) chosen by the
adversary, and the distribution τ (t) does not depend on the distribution π(t). Therefore we have to
change the formal definitions of a learner and an adversary in the dual game. The adversary is defined
as a single function Adv : (X × {→, ̸→} × Y)⋆ → (X ×Π[Y]). The learner is defined as a function
Lrn : (X × {→, ̸→} × Y)⋆ × X × Π[Y] → Π[Y]. The optimal mistake bounds in the primal and
dual games are defined in a dual manner:

optadapbandit(P) = inf
Lrn

sup
Adv

M(Lrn;Adv), opt_dadapbandit(P) = sup
Adv

inf
Lrn

M(Lrn;Adv). (10)

First, we provide explicit definitions for optadapbandit(P) and opt_dadapbandit(P) in terms of simpler classes,
based on the instance and feedback provided by the adversary in every round. For every instance x
define the class:

Px = {p ∈ P : (x, y) ◦ p ∈ P for some y ∈ Y}.
Additionally, define the following classes for every pair of an instance and a label (x, y):

Px→y = {p ∈ P : (x, y) ◦ p ∈ P}, Px ̸→y = Px\Px→y.

To simplify presentation, we assume that in the primal game the adversary is deterministic, and in
the dual game the learner is deterministic. This is reasonable since after the first player has made its
choice, the optimal choice of the second player is deterministic. Let us now define optadapbandit(P) and
opt_dadapbandit(P) in terms of classes of the form Px→y and Px ̸→y:

optadapbandit(P) = sup
x

inf
π

sup
y∈Y

πy · optadapbandit(Px→y) +
∑
y′ ̸=y

πy′

(
1 + optadapbandit(Px ̸→y′)

), (11)

opt_dadapbandit(P) = sup
x,τ

inf
y∈Y

[
τy · opt_dadapbandit(Px→y) + (1− τy)

(
1 + opt_dadapbandit(Px̸→y)

)]
. (12)

For these equations to be well-defined, it is technically convenient to define optadapbandit(∅) =

opt_dadapbandit(∅) = −∞. Now, by the law of total expectation, for every pattern class P the above
equations indeed define the optimal losses in the primal and dual games. We can now prove the
equivalence.
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Lemma B.1. For every pattern class P:

optadapbandit(P) = opt_dadapbandit(P).

Proof. For a horizon (number of rounds) T , let optadapbandit(P, T ), opt_dadapbandit(P, T ) be the analogue
notations to optadapbandit(P), opt_dadapbandit(P), with the additional restriction that the game is played for
T rounds. We adapt (11) and (12) to those definitions in the obvious way. Note that

optadapbandit(P) = sup
T∈N,x∈X

optadapbandit(Px, T ),

and similarly for opt_dadapbandit(P). Therefore, to prove the lemma, it suffices to show that
optadapbandit(Px, T ) = opt_dadapbandit(Px, T ) for all x, T such that Px ̸= ∅ (when Px = ∅ both are
−∞ for all T ). Let x ∈ X be such that Px ̸= ∅. For T = 0 we have optadapbandit(Px, 0) = 0 =

opt_dadapbandit(Px, 0).

For the induction step, note that the expression for opt_dadapbandit(Px, T ) suggested by (12) describes
a zero-sum game in which the adversary goes first, and both the learner and adversary choose
distributions over Y to draw a label from: the learner draws a prediction and the adversary draws
the correct label. The target function is the optimal loss to be suffered by the learner in the sequel,
after the distributions are fixed. The adversary’s goal is to maximize it and the learner’s goal is to
minimize it. Since this is a zero-sum game, by the minimax theorem [von Neumann, 1928] we can
let the learner go first instead, without changing the value of opt_dadapbandit(Px, T ). Therefore we can
write opt_dadapbandit(Px, T ) as:

inf
π

sup
y∈Y

πy · opt_dadapbandit(Px→y, T − 1) +
∑
y′ ̸=y

πy′(1 + opt_dadapbandit(Px̸→y′ , T − 1))

.
By the induction hypothesis, we can change every opt_dadapbandit to optadapbandit, which gives:

inf
π

sup
y∈Y

πy · optadapbandit(Px→y, T − 1) +
∑
y′ ̸=y

πy′(1 + optadapbandit(Px ̸→y′ , T − 1))

. (13)

By applying (13), observe that opt_dadapbandit(Px, T ) = optadapbandit(Px, T ), as required.

B.1 An optimal learner for the primal game

The optimal randomized algorithm achieving optadapbandit(P) suggests itself from (11). For complete-
ness, we explicitly write it in Figure 1. The algorithm may be implemented using straightforward
dynamic programming for finite hypothesis classes, even in the r-realizable case where the best
hypothesis is inconsistent with the feedback in at most r many indices.
Proposition B.2. The algorithm BanditRandSOA is well-defined and optimal.

Proof. The choice of π(t) is well defined because (14) is a feasible linear optimization problem, and
as such it has a solution. The algorithm is optimal due to (11).

C Prediction with expert advice

In this section we are interested in optimal mistake bounds for the bandit feedback setup of prediction
with expert advice in the r-realizable setting. In this problem, n experts are making predictions in
each round, and it is promised that the best expert is inconsistent with the adversary’s feedback in at
most r many rounds. An adversary following this limitation is called r-consistent. Nothing else is
assumed about how the experts decide on their predictions. Furthermore, in Section G we explain
how to remove the assumption that r is given to the learner with only a constant factor degradation in
the mistake bound. Based on the experts’ predictions, the learner should make its own prediction
for each round, while minimizing the expected number of mistakes it makes in the entire game. In
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BanditRandSOA

Input: A pattern class P .

For t = 1, 2, . . .

1. Receive instance xt ∈ X .
2. Construct a distribution π(t) such that

π(t) ∈ argmin
π∈Π[Y]

max
y∈Y

πyopt
adap
bandit(Px→y) +

∑
y′ ̸=y

πy′(1 + optadapbandit(Px ̸→y′))

.
(14)

3. Draw the prediction ŷt from π(t).
4. If the feedback is positive, update P := Px→ŷt

, and otherwise update P := Px ̸→ŷt
.

Figure 1: BanditRandSOA is an optimal randomized learner for online learning with bandit feedback
of pattern classes, where the adversary is allowed to be adaptive. It is inspired by the RandSOA
algorithm of Filmus, Hanneke, Mehalel, and Moran [2023], which is a randomized variant of
Littlestnoe’s [Littlestone, 1988] well-known SOA algorithm.

the binary or full-information feedback model, this problem is well-studied, and tight bounds were
proved for both deterministic and randomized learners [Vovk, 1990, Littlestone and Warmuth, 1994,
Cesa-Bianchi, Freund, Helmbold, and Warmuth, 1996, Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth, 1997, Abernethy, Langford, and Warmuth, 2006, Brânzei and Peres, 2019,
Filmus, Hanneke, Mehalel, and Moran, 2023].

In this work, we are mostly interested in the randomized (learner) and adaptive (adversary) setup with
bandit feedback, and the bound we prove for it plays a central role in the proof of Theorem 1.1. For
the sake of better completeness and exhaustiveness, we consider the other deterministic (learner) and
oblivious (adversary) setups as well. Our results for all three setups are summarized in Table 2.

We adapt the notation for learning pattern classes. Suppose that there are k ≥ 2 many labels and
n ≥ k many experts, where the best expert is inconsistent with the feedback in at most r ≥ 0
many rounds. We assume that n ≥ k, since if n < k then having k labels is equivalent to having n
labels. When the learner is deterministic, the optimal mistake bound is denoted by optdetbandit(n, k, r).
When the learner is randomized, the optimal mistake bound is denoted by optoblbandit(n, k, r) or
optadapbandit(n, k, r), depending on whether the adversary is oblivious or adaptive, respectively. For the
realizable case r = 0, we omit r from the notation.

C.1 Warm-up: deterministic learners

In this section, we analyze optdetbandit(n, k, r) and prove the following theorem.

Theorem C.1. Let n ≥ k ≥ 2, r ≥ 0. Then:

optdetbandit(n, k, r) = Θ(k(log(n/k) + r + 1)).

We first prove the upper bound and then the lower bound.

Lemma C.2. Let n ≥ k ≥ 2, r ≥ 0. Then for every α > 1:

optdetbandit(n, k, r) ≤
α

α− 1
k ln(n · αr/k) + k − 1.

Proof. We describe a deterministic learner which makes at most the stated number of mistakes. We
use a simple generalization of Weighted Majority [Littlestone and Warmuth, 1994]. A similar idea
appears also in [Long, 2020].
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Every expert is given an initial weight of αr. Let Wt be the total weight of experts in round t. In
every round, predict the label that enjoys a weighted plurality. If we make a mistake, then the weight
of every expert which voted for the predicted label is divided by α. If an expert reaches weight less
than 1, we reduce its weight to 0, since it must mean that it made more than r mistakes. We split the
analysis into two epochs. The first epoch is as long as Wt > k, and the second is afterwards.

We begin by analyzing the first epoch. By assumption, Wt > k at all times. On the other hand,
whenever the learner makes a mistake, at least 1/k of the weight is being divided by α. Therefore, if
a mistake occurs in round t then

Wt+1 ≤ (1− 1/k)Wt +Wt/(αk) =

(
1− α− 1

αk

)
Wt.

Now, if m1 is the total number of mistakes the learner makes as long as Wt > k, then m1 must
satisfy

k < n · αr

(
1− α− 1

αk

)m1

≤ n · αre−m1
α−1
αk .

After some manipulations, we derive the bound

m1 <
αk

α− 1
ln(n · αr/k).

We now analyze m2, which is the number of mistakes in the second epoch. If Wt ≤ k then there are
at most k experts which have not yet made more than r mistakes. At least one of them will never
err again, and therefore in the worst case, the learner will make m2 ≤ k − 1 more mistakes before
eliminating all experts apart from the target expert. Summing m1 +m2 gives the stated bound.

We may now deduce the upper bound.
Corollary C.3. Let n ≥ k ≥ 2, r ≥ 0. Then:

optdetbandit(n, k, r) ≤
e

e− 1
k(ln(n/k) + r) + k − 1.

Proof. Apply Lemma C.2 with α = e.

We can also deduce an improved upper bound for the realizable (r = 0) case.
Corollary C.4. Let n ≥ k ≥ 2. Then:

optdetbandit(n, k) ≤ k ln(n/k) + k − 1.

Proof. We can easily see that optdetbandit(n, k) ≤ (1+ϵ)k ln(n/k)+k−1 for every ϵ > 0 by applying
Lemma C.2 with α → ∞. There is also an explicit optimal learner for which this holds with ϵ = 0,
obtained by slightly changing the proof of Lemma C.2.

We now turn to the lower bounds. We begin with the realizable case.
Lemma C.5. Let n ≥ k ≥ 3. Then:

optdetbandit(n, k) ≥ (k/2− 1) ln(n/k).

Proof. The adversary uses the following simple strategy. Let nt be the number of alive experts (that
is, experts which are consistent with the feedback given so far) at the beginning of round t. As
long as nt > k, in every round t the adversary splits the alive experts as evenly as possible among
the k labels, and gives negative feedback to the learner. Note that the largest set in the partition
consists of ⌈nt/k⌉ ≤ nt/k + 1 < 2nt/k experts, since nt > k. Therefore, in every round at least a
(1− 2/k)-fraction of the experts make it to the next round. The adversary can thus force at least m
many mistakes on the learner whenever m satisfies

(1− 2/k)m−1n > k,

which holds if
e−

2
k−2 (m−1)n > k,
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by using the inequality 1 − x > e−
x

x−1 that holds for all x < 1. After some manipulations, the
inequality reads

m ≤ (k/2− 1) ln(n/k) + 1,

which implies the stated bound.

To devise a lower bound for the r-realizable setting, we prove the following lemma. It was indepen-
dently proved also by Geneson and Tang [2024].
Lemma C.6. For every n ≥ k ≥ 2, r ≥ 0 we have:

optdetbandit(n, k, r) ≥ k(r + 1)− 1.

Proof. Suppose that there are n = k experts. In every round for T = k(r + 1) − 1 rounds, the
adversary lets expert i predict the label i, and always provides negative feedback to the learner. Let i⋆
be the label that the learner predicts the least number of times, and let i′ ̸= i⋆. Since T = k(r+1)−1,
it must hold that i⋆ is predicted by the learner at most r times. In every round in which the learner
predicts i⋆, set the true label to i′. In all other rounds set the true label to i⋆. By definition of the
strategy, the best expert makes at most r mistakes.

We may now prove Theorem C.1.

Proof of Theorem C.1. The stated bounds are known when k = 2 by e.g. [Vovk, 1990, Littlestone
and Warmuth, 1994]. For k ≥ 3, the upper bound follows from Corollary C.3, and the lower bound
follows from Lemmas C.5 and C.6.

C.2 Randomized (Learner) and Adaptive (Adversary)

In this section we provide a tight upper bound on optadapbandit(n, k, r) by proving the following theorem.
Theorem C.7. Let n ≥ k ≥ 2, r ≥ 0. Then:

optadapbandit(n, k, r) ≤ k logk n+ 2kr.

We will prove the theorem by analyzing the mistake bound of the equivalent dual game, as described
in Section B. The primal and dual games are described in Section B in terms of pattern classes, so
we first show that the problem of prediction with expert advice in the r-realizable setting is in fact
equivalent to learning an appropriate specific pattern class.

For every hypothesis class H and budget function B : H → R, we define the pattern class

P(H, B) =

p ∈ (X × Y)⋆ :

∃h ∈ H :
∑

(x,y)∈p

1[h(x) ̸= y] ≤ B(h)

. (15)

In words, P(H, B) consists precisely of those patterns which are consistent with some h ∈ H
everywhere except for at most B(h) many places. We call B(h) the budget of h. Therefore, if Br is
the budget function that gives budget r to all hypotheses, then learning the pattern class P(H, Br)
under the assumption of realizability is equivalent to learning the hypothesis class H under the
assumption of r-realizability.

Observe that for a fixed number of labels k, the class of n experts is simply the hardest concept class
of size n, since every expert can predict any label in every round. Denote this class by Un,k, so that
prediction with expert advice with n experts and k labels in the r-realizable setting is equivalent to
learning the pattern class P(Un,k, Br) under the assumption of realizability. Therefore, we have

optadapbandit(n, k, r) = optadapbandit(P(Un,k, Br)) = opt_dadapbandit(P(Un,k, Br))

due to Lemma B.1.

For completeness, we formally define Un,k. This is the class of projection functions over the set
of k-ary vectors of length n, X = [k]n. That is, if the n functions are {h1, . . . , hn} then for every
x ∈ X we have hi(x) = xi, where xi is the value of the i’th entry of x.
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We now define some notation used in the proof. As observed in [Abernethy, Langford, and Warmuth,
2006, Brânzei and Peres, 2019], since the experts are identical, in every round of the game we only
care about how many of the experts are still alive (which means they have not been inconsistent
with the feedback for more than r many rounds), and among those which are alive, how many have
budget i, for each 0 ≤ i ≤ r. Following [Abernethy, Langford, and Warmuth, 2006, Brânzei and
Peres, 2019], we represent this information by an (r + 1)-ary vector m⃗ = (m0, . . . ,mr), in which
the number mi indicates the number of living experts with budget i. We call this vector the state of
the game.

For any state m⃗, let V (m⃗) be the optimal loss in the dual (or primal) game for the pattern class
representing the state m⃗, as defined in (15). That is, if P(Un,k, Bm⃗) is the pattern class representing
the state m⃗, then V (m⃗) = opt_dadapbandit(P(Un,k, Bm⃗)). We call V (m⃗) the value of the state m⃗. The
goal is thus to upper bound the value of the initial state V (0, 0, . . . , n).

Towards this end, we use the following potential-based technique. An expert with budget i will have
a potential of k2i. This will allow us to bound V (m⃗) in terms of the total potential of the experts,
given by W (m⃗) =

∑r
i=0 mi · k2i.

Let b(k) = kk

(k−1)k−1 . We will prove the the following.

Lemma C.8. Let k ≥ 2 be the number of labels. For any state m⃗ it holds that

V (m⃗) ≤ k · logb(k) W (m⃗).

In order to prove Lemma C.8, we will need the following technical claim, proved at the end of this
section.
Lemma C.9. Let k ≥ 2, and let

fk(β) := logb(k)(((1− β)/k2 + β)(β/k2 + (1− β))k−1)− 1/k.

Then fk(β) ≤ −1 for all β ∈ [0, 1].

We can now prove Lemma C.8.

Proof of Lemma C.8. The proof is by induction on the state, ordered in the obvious way: the state
(1, 0, . . . , 0) is the lowest, and the state (0, . . . , 0, n) is the highest.

In order to be able to always apply the induction hypothesis, we must assume that the state always
decreases between rounds. Indeed, the only case where the state does not decrease between rounds is
when all experts predict the same label y. In this case, an optimal adversary must choose y as the
correct label with probability 1, and thus an optimal learner must predict y. Nothing is changed in
such rounds, and therefore they may be removed, ensuring that the induction hypothesis can always
be applied.

In the base case, m⃗ = (1, 0, . . . , 0). Therefore

V (m⃗) = 0 = k logb(k) 1 = k logb(k) W (m⃗).

For the induction step, consider the first round of the game, in which the adversary draws the correct
label from a fixed distribution τ . Let Vy(m⃗) be the optimal number of mistakes made by the learner
if it predicts y when the state of the game is m⃗. Let m⃗→y be the state of the game in the next round,
if in the current round the correct label is y. Define m̸⃗→y in a similar way. Using (12), we may now
write

Vy(m⃗) = τyV (m⃗→y) + (1− τy)(1 + V (m̸⃗→y)).

Since the learner is allowed to predict any y ∈ Y (and specifically the y which minimizes Vy(m⃗)), it
suffices to bound Vy(m⃗) for some y of our choice. We now consider two cases.

Case 1. Suppose that there exists y ∈ Y which satisfies

V (m⃗→y) ≥ 1 + V (m̸⃗→y).

Then:
Vy(m⃗) ≤ V (m⃗→y) ≤ k logb(k) W (m⃗→y) ≤ k logb(k) W (m⃗)

by the induction hypothesis, concluding the first case.
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Case 2. Suppose that for every y ∈ Y ,
V (m⃗→y) < 1 + V (m̸⃗→y).

Let y ∈ Y be such that τy ≥ 1/k. Then by assumption,
Vy(m⃗) ≤ (1/k)V (m⃗→y) + (1− 1/k)(1 + V (m̸⃗→y)).

The induction hypothesis now implies that
Vy(m⃗) ≤ 1− 1/k + logb(k) W (m⃗→y) + (k − 1) logb(k) W (m̸⃗→y). (16)

Let β ∈ [0, 1] be the fraction of experts predicting y, weighted according to their potential. If the true
label is y then a β-fraction of the potential W (m⃗) is untouched, and a (1− β)-fraction is multiplied
by at most 1/k2 (experts with budget 1 have their potential multiplied by 0), and so

W (m⃗→y) ≤ ((1− β)/k2 + β)W (m⃗).

Similarly,
W (m̸⃗→y) ≤ (β/k2 + (1− β))W (m⃗).

Plugging this into (16), we have
Vy(m⃗) ≤ 1− 1/k + logb(k)((1− β)/k2 + β)W (m⃗) + (k − 1) logb(k)(β/k

2 + (1− β))W (m⃗),

which after a bit of manipulation reads as
Vy(m⃗) ≤ k logb(k) W (m⃗) + 1 + logb(k)(((1− β)/k2 + β)(β/k2 + (1− β))k−1)− 1/k.

To finish the proof, it remains to show that
f(β) := logb(k)(((1− β)/k2 + β)(β/k2 + (1− β))k−1)− 1/k

is bounded from above by −1 for all β ∈ [0, 1], which is the statement of Lemma C.9.

We can now prove Theorem C.7.

Proof of Theorem C.7. Clearly b(k) ≥ k. Applying Lemma C.8 on the initial state m⃗ =
(0, . . . , 0, n), we get

optadapbandit(n, k, r) = opt_dadapbandit(P(Un,k, Br)) = V (0, . . . , 0, n) ≤ k logb(k)(n·k2r) ≤ k logk n+2kr,

as desired.

C.2.1 Proof of technical lemma

In this section we prove Lemma C.9. Let us first restate it in a more convenient way. Define

gk(β) =

(
1− β

k2
+ β

)(
β

k2
+ 1− β

)k−1

.

The lemma states that for all k ≥ 2 and β ∈ [0, 1], we have

gk(β) ≤ b(k)1/k−1, where b(k) =
kk

(k − 1)k−1
.

Routine calculation shows that

g′k(β) =

(
β

k2
+ 1− β

)k−1
1

k2

(
1− 1

k2

)[
k2 − k + 1− (k3 − k)β

]
.

It follows that gk(β) is maximized at

βk =
k2 − k + 1

k3 − k
,

at which point its value is

gk(βk) =
(k2 + 1)(k − 1)k−1

k3k
.

Therefore we need to show that for all k ≥ 2,
(k2 + 1)(k − 1)k−1

k3k
≤ b(k)−(1−1/k) =

(k − 1)(k−1)(1−1/k)

kk−1
.

Rearranging, we need to show that
(k2 + 1)(k − 1)(k−1)/k ≤ k2k+1.

This holds since k2 + 1 ≤ 2k2 ≤ k3 ≤ k2k and (k − 1)(k−1)/k ≤ k.
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C.3 Lower bounds for randomized learners

In this section, we prove lower bounds for randomized learners. We prove a lower bound which is
tight when the adversary is adaptive for all triplets n, k, r. We also prove a lower bound which is
tight even when the adversary is oblivious, but only for all triplets n, k, r satisfying r = O(logk n).

We first prove a near-optimal lower bound on optoblbandit(n, k).
Lemma C.10. Let n ≥ k ≥ 2. Then

optoblbandit(n, k) ≥
k − 1

2
⌊logk n⌋.

Proof. Assume without loss of generality that n = km for some integer m (otherwise replace n with
the largest power of k below it). We label the set of experts using the elements of [k]m, that is, for
each y1, . . . , ym ∈ [k] there is an expert h(y1, . . . , ym). We choose the correct expert at random.

We label the instances by x1, . . . , xm, where the prediction of h(y1, . . . , ym) on xi is yi. The fixed
sequence of instances is

x1, . . . , x1︸ ︷︷ ︸
k times

, . . . , xm, . . . , xm︸ ︷︷ ︸
k times

.

For any randomized strategy of the learner, it will discover the correct label of xi after having made
at least k−1

2 mistakes in expectation (see for example [Daniely and Helbertal, 2013, Claim 2]).
Therefore the expected number of mistakes incurred by the learner is at least k−1

2 m. Consequently,
for each learner there is an expert h(y1, . . . , ym) on which it makes at least as many mistakes in
expectation.

Let us now prove a lower bound for the r-realizable case. In contrast with the realizable case, this
bound holds only against an adaptive adversary.
Lemma C.11. Let n ≥ k ≥ 2, r ≥ 0. Then

optadapbandit(n, k, r) ≥ (k − 1)r/2.

Proof. For better readability assume that r is even. Suppose that n = k. In every round, the adversary
let expert i predict the label i. We describe an adversary which chooses the correct labels at random
and forces the learner to make at least (k − 1)r/2 mistakes in expectation. Therefore, there exists an
adversary which chooses the correct labels deterministically and achieving that. Before the game
starts, The adversary draws a random sequence y1, . . . , ykr/2 of kr/2 labels independently and
uniformly. In round t, the adversary chooses yt as the correct label. The adversary ends the game
when one of the following conditions hold:

1. The learner has predicted correctly in r/2 rounds.

2. The game was played for kr/2 many rounds.

First, we show that the learner makes at least the stated number of mistakes in expectation. There are
two cases to consider. If the game is finished because kr/2 rounds have passed and the learner has
not yet made r/2 correct predictions, then the learner has made at least (k − 1)r/2 mistakes with
probability one, concluding this case.

In the second case, we assume that the game is finished when the learner makes exactly r/2 correct
predictions. Partition the rounds of the game into r/2 intervals: the first interval starts at the first
round. Each interval ends when the learner makes a correct prediction. The expected number of
rounds in each interval is stochatically dominated by a Geom(1/k) random variable. Since in every
interval there is exactly a single correct prediction, the total expected number of mistakes in all
intervals is (k − 1)r/2.

It remains to show that the adversary is r-consistent. Assume without loss of generality that the
best expert is not consistent with all correct predictions of the learner, which is at most r/2. Now,
recall that the number of rounds in the game is at most kr/2. Therefore, there must be a label i⋆
predicted by the learner in at most r/2 many rounds. The best expert is at least as good as the expert
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i⋆, which predicts i⋆ in all rounds. The adversary is thus r/2-consistent on rounds where the learner
is correct, and r/2-consistent on rounds where the learner is incorrect. In total, the adversary is
r-consistent.

In the proof, we only used the adversary’s adaptivity to decide on the number of rounds in the game,
and not on the correct labels. Therefore, one might conjecture that it is possible to use the same
technique for proving a lower bound also against an oblivious adversary. However, it is not possible;
as we show in Proposition E.2, it holds that optoblbandit(k, k, r) = Θ(k + r) for all k ≥ 2, r ≥ 0. The
essential reason allowing Proposition E.2 is that an oblivious adversary must be r-realizable in a
strong sense, as discussed in Remark A.1.

C.4 Tight bounds for randomized learners

We can now deduce tight bounds on optadapbandit(n, k, r), and bounds on optoblbandit(n, k, r) which are
tight in the regime r = O(logk n).

Theorem C.12. Let n ≥ k ≥ 2, r ≥ 0. Then

optadapbandit(n, k, r) = Θ(k(logk n+ r)).

Furthermore, if r ≤ C · logk n for some constant C then

optoblbandit(n, k, r) = ΘC(k logk n)

where ΘC hides a constant that depends on C.

Proof. The bound optadapbandit(n, k, r) = Θ((logk n + r)k) is implied by putting together the upper
bound of Theorem C.7, and the lower bounds of Lemmas C.10 and C.11. The lower bound in
optoblbandit(n, k, r) = ΘC(k logk n) for r ≤ C · logk n easily follows from Lemma C.10, and the
upper bound from Theorem C.7.

D The role of information

In this section, we prove the following theorem, which implies Theorem 1.1.

Theorem D.1 (Full information vs. bandit feedback). For every pattern class P ⊂ (X ×Y)⋆ it holds
that

optadapbandit(P) ≤ 6k · optrandfull (P).

Theorem D.1 will also allow us to extend Theorem 1.1 (which is formulated for concept classes) to
the r-realizable setting.

D.1 Reduction from bandit to full-information feedback

Given Theorem C.1, the main ingredient left in order to prove Theorem D.1 is the following reduction
from learning with bandit feedback to learning with full-information feedback. Let us briefly describe
the idea, inspired by [Long, 2020, Hanneke, Livni, and Moran, 2021].

The upper bound we prove on optadapbandit(n, k, r) makes no assumptions on the way the experts make
their predictions. Therefore, it holds in particular for the case where the experts’ predictions are
determined by algorithms chosen by the learner. We can exploit this property to reduce learning
with bandit feedback to learning with full-information feedback. Let A be a deterministic full-
information learning algorithm that is guaranteed to make at most r many mistakes against any
adversary. Whenever A is consistent with the feedback, we do nothing. When A is inconsistent with
the feedback, we can be sure that it has made a mistake. We thus create k different copies of A, each
guessing a different full-information feedback, exactly one of which is correct. Given that A makes
at most r many mistakes when provided with full-information feedback, an optimal randomized
algorithm for the bandit feedback model will thus make at most optadapbandit(k

r, k, r) = O(k · r)
mistakes against an adaptive adversary. The details are made precise in the proof of the proposition
below.
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Proposition D.2. Let A be a deterministic learning algorithm for a pattern class P ⊂ (X × Y)⋆ in
the full-information setting, which makes at most r many mistakes on any sequence S ∈ P . Then,

optadapbandit(P) ≤ 3k · r.

Proof. We employ an optimal algorithm for prediction with expert advice, where the experts result
from running A and translating the bandit feedback into a full-information feedback in all possibly
ways.

At each round t we will maintain a k-ary tree T of depth at most r, each of whose leaves is labelled
by a sequence of d ≤ r tagged examples (t1, xt1 , yt1), . . . , (td, xtd , ytd). Each internal node has
its outgoing edges labelled by the elements of Y . Initially, T consists of a single node labelled by
the empty sequence. Additionally, we communicate with an optimal learner B for the problem of
prediction with expert advice in the r-realizable setting, with kr experts indexed by [k]r.

At round t, the adversary sends an instance xt to the learner. The learner uses A to generate a
prediction for each leaf: if the leaf is labelled by the sequence σ, then the corresponding prediction is
A(σ, xt). These predictions are converted to expert predictions as follows. A leaf ℓ at depth d has an
“address” α ∈ [k]d formed by the labels of the edges on the path from the root. All experts whose
index extends α make the same prediction as ℓ. These expert predictions are sent to the optimal
learner B, which provides a label ŷt. The label is forwarded to the adversary, which responds with
either → or ̸→.

The learner now updates the tree as follows. For each leaf in the tree, it checks whether it predicts a
label which is inconsistent with the adversary’s feedback. This can happen in two ways: either the
leaf predicted ŷt and the adversary feedback was ̸→, or the leaf’s prediction was different from ŷt
and the adversary feedback was →. For each such leaf, if the leaf is at depth r, then we mark it as
bad (a leaf not marked as bad is a good leaf ). Otherwise, suppose that the leaf is labelled by σ. We
add to the leaf k children, and label the y’th child by σ ◦ (t, xt, y). This completes the description of
the algorithm.

Let S⋆ ∈ P be a pattern that the adversary is consistent with at the end of the game. We say that
a label (t1, xt1 , yt1), . . . , (td, xtd , ytd) is consistent with S⋆ if S⋆

ti = (xti , yti) for i ∈ [d]. The
definition of the algorithm ensures that the following properties hold at the conclusion of each round
t:

1. Each good leaf at depth d corresponds to an expert whose predictions are inconsistent with
the bandit feedback for exactly d rounds.
This is because we add children to a leaf precisely when its prediction is inconsistent with
the bandit feedback (unless it is already at maximal depth, in which case we mark it as bad).

2. For each good leaf whose label σ is consistent with S⋆, if we run A on the sequence σ, then
it makes a mistake at every round.
Indeed, when we add a new leaf labelled σ ◦ (t, xt, yt), where S⋆

t = (xt, yt), the prediction
of A on xt must have been incompatible with the bandit feedback, and in particular, with yt,
which is compatible with the bandit feedback.

3. There is always a good leaf whose label is consistent with S⋆.
Indeed, consider any leaf ℓ satisfying this at time t−1, let its label be σ, and let S⋆

t = (xt, yt).
If ℓ is at depth r then A must output yt on input (σ, xt) due to the preceding item (it cannot
make more than r mistakes on any sub-sequence of S⋆). Consequently, ℓ doesn’t become
bad.
If ℓ is at lower depth and its prediction is inconsistent with the bandit feedback, then its
child labelled σ ◦ (t, xt, yt) satisfies the required properties.

In particular, due to items (1) and (3) there is an expert whose predictions are inconsistent with the
bandit feedback for at most r rounds. Using the algorithm given by Theorem C.7 results in a learner
whose loss is at most

optadapbandit(k
r, k, r) ≤ k logk(k

r) + 2kr = 3kr,

as desired.
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D.2 Proof of Theorem D.1

Proof of Theorem D.1. We use Proposition D.2 with Littlestone’s [Littlestone, 1988] SOA algorithm
for the class P as the full-information algorithm A. Originally, SOA was formulated in terms of
concept classes rather than pattern classes, but adapting it to pattern classes is straightforward (see
e.g. [Moran, Sharon, Tsubari, and Yosebashvili, 2023]). Since the adversary is consistent with P ,
it is known that the SOA algorithm will make at most 2optrandfull (P) mistakes as long as it receives
full-information feedback. Proposition D.2 now provides the stated bound.

D.3 An extension to the agnostic setting

In Section C we considered the r-realizable setting, in which the adversary is only r-consistent with
the class of experts. The exact same setting can be considered when learning concept classes in
general. Furthermore, in Section G we explain how to remove the assumption that r is given to the
learner.

Our bounds hold for all pattern classes, allowing an immediate adaptation of our results for concept
classes to the r-realizable setting. Indeed, as mentioned also in Section C, for every concept class H
and a budget function B : H → R we can define the pattern class appearing in (15):

P(H, B) =

p ∈ (X × Y)⋆ :

∃h ∈ H :
∑

(x,y)∈p

1[h(x) ̸= y] ≤ B(h)

.

Choosing B = Br, where Br gives the budget r to every h ∈ H, simulates the class H in the
r-realizable setting. To transform bounds for pattern classes in the realizable setting to bounds for
concept classes in the r-realizable setting, we only need the following bounds on optdetfull(P(H, Br)),
which were originally proved for the binary case k = 2, but can be extended in a straightforward
manner to arbitrary k.
Theorem D.3 ([Cesa-Bianchi et al., 1996, Auer and Long, 1999, Filmus et al., 2023]). For every
concept class H and r ≥ 0 it holds that

optdetfull(P(H, Br)) = Θ(optdetfull(H) + r).

The bounds obtained using Theorem D.3 are summarized in Table 1.

E The role of adaptivity

In this section we prove the following result, which implies Theorem 1.2.
Theorem E.1 (Oblivious vs. adaptive adversaries). For every natural k ≥ 2 there exists a pattern
class P ⊂ (X × Y)⋆ with |Y| = k and so that

optadapbandit(P) = Ω(k · optoblbandit(P)).

The proof employs the concept class H which consists of all constant functions. This corresponds to
the classical bandit problem, in which there are only labels. We use the notation optoblbandit(H, r) for
optoblbandit(P(H, Br)), and similarly for other setups.

Proposition E.2. Let H ⊂ YX be the hypothesis class consisting of all constant functions, and let
r ≥ 0. If k = |Y| ≥ 2 then

optoblbandit(H, r) = Θ(k + r).

Proof. The lower bound follows easily from [Daniely and Helbertal, 2013, Claim 2]. For the upper
bound, we describe a learner which makes at most 34(k + r) mistakes in expectation:

First phase For 16(k + r) rounds, predict each label with probability 1/k. If there are at least
8(k + r)/k correct predictions, set y to be the plurality vote among all rounds in which the
learner guessed correctly, and move to the second phase. Otherwise, repeat the first phase.
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Second phase In this phase, the learner always predicts y, switching back to the first phase once it
makes r + 1 mistakes in the phase.

In order to analyze the expected number of mistakes, we assuming (without loss of generality) that
the input sequence is infinite, and let y⋆ ∈ Y be the hypothesis which is r-consistent with the input
sequence chosen by the oblivious adversary.

Let us analyze the expected number of mistakes. In the first phase, we consider 16(k + r) rounds,
and therefore the expected number of correct guesses is µ = 16(k+r)

k . Let X be a random variable
counting the number of correct predictions in the first phase. Since µ ≥ 16, and since X is a sum of
independent random variables taking values in {0, 1}, applying Chernoff’s bound implies that

Pr[X ≤ 8(1 + r/k)] ≤ Pr[X ≤ µ/2] ≤ e
−µ
8 ≤ 1/e2 < 1/4. (17)

There are at most r many examples which are not labeled by y⋆. Therefore, in expectation, there
are at most r/k many examples which are both correctly classified and whose label is not given by
h⋆. Let Y be a random variable counting all examples that are not labeled by y⋆ from the correctly
classified examples in the first phase. Using Markov’s inequality, we have:

Pr[Y ≥ X/2 | X ≥ 8(1 + r/k)] ≤ E[Y ]

X/2
≤ r/k

4r/k
= 1/4. (18)

If y = y⋆ then the learner will make at most r more mistakes in the second phase.

In order to finish the proof we calculate the expected number of times this two phase process will
occur until that y = y⋆. In the worst case, by (17),(18) this number of times is dominated by a
Geom

(
(3/4)

2
)

random variable, which means that this process will occur at most (4/3)2 < 2 times
in expectation. Overall the expected number of mistakes is at most 2(16(k+r)+r) < 34(k+r).

We can now prove Theorem E.1.

Proof of Theorem E.1. Given k ≥ 2, we choose the pattern class P = P(H, Bk), where H consists
of all constant functions.

Lemma C.11 shows that optadapbandit(P) = Ω(k2), while Proposition E.2 shows that optoblbandit(P) =
O(k), yielding the stated bound.

The proof of Lemma C.11 goes through with any hypothesis class of size k, where k = |Y|. We
conclude that the worst-case dependence on r in optoblbandit(H, r) is related to the size of H. For
example, every H with |H| = k satisfies optoblbandit(H, r) = Θ(k + r). However, there are classes
H with |H| = kr which satisfy optoblbandit(H, r) = Ω(kr) due to Lemma C.10. This is in contrast to
optadapbandit(H, r): for any class H (of size at least k) it holds that optadapbandit(H, r) = Ω(kr). It would
be interesting to find tight bounds on the worst case optoblbandit(H, r) for the intermediate cases where
|H| = kw for w ∈ (1, r).

F The role of randomness

In this section we prove the following result, which implies Theorem 1.4 by applying it with d = k.

Theorem F.1 (Restatement of Theorem 1.5). For every d ≥ 1 and k ≥ 2 there exists a concept class
H ⊂ YX with Y = {0, 1, . . . , k} such that

1. optdetfull(H) = d+ 1.

2. optdetbandit(H) = Θ(d · k).

3. optadapbandit(H) = Θ(d+ k).
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Proof. We first define the class H := H(d, k). The domain is X = {x1, . . . , xd·k}. For every
y ∈ {1, . . . , k}, define Hy to be the class of all functions that label all instances with y, except for a
set X ′ ⊂ X of at most d many instances, which they label with 0. Let

H =
⋃

y∈{1,...,k}

Hy.

We start with Item 1. For the upper bound, the learner always answers 0 until it makes the first
mistake and receives as feedback a positive label y. Then it always answers y and makes at most d
more mistakes. For the lower bound, the adversary asks on x1, . . . , xd+1, and always tells the learner
that it made a mistake. In the first round, the adversary determines the true label to be either y = 1 or
y = 2, depending on the learner’s prediction. In the other d rounds, the adversary determines the true
label to be either 0 or y, depending on the learner’s predictions.

We now prove Item 2. For the upper bound, the learner tries to answer 1 until it makes d+1 mistakes,
then does the same with 2, and so on until it gets to k. For the lower bound, the input sequence of
instances the adversary asks on is x1, . . . , xd·k, and the adversary always provides negative feedback
to the learner. The number of mistakes made by the learner is thus d · k, and it remains to find an
appropriate target function that realizes it. Since there are d · k rounds, there must be a label y⋆ ∈ [k]
predicted by the learner for a set X ′ of instances of size at most d. We choose the target hypothesis
h⋆ to be the hypothesis that gives the label 0 to the instances of X ′, and y⋆ to all other instances. The
hypothesis h⋆ belongs to H by definition.

Finally, we prove Item 3. The lower bound is straightforward by using [Daniely and Helbertal, 2013,
Claim 2]. We prove the upper bound by describing a randomized learner for H that makes at most
2(d+ k) mistakes in expectation. The learner operates in two phases. In the first phase, for every
instance for which it has not yet received positive feedback, it picks 0 with probability half, and all
other labels with probability 1/(2k) each. Once the learner receives positive feedback which is given
on a prediction different from 0, it enters the second phase, in which it will always predict this label,
and will make at most d more mistakes on instances labeled with 0.

It remains to upper bound the expected number of mistakes in the first phase. There are two types of
mistakes:

1. Rounds where the adversary chooses the label 0. We divide these rounds into d (or fewer)
phases: the first one ends when the learner correctly guesses the first instance labeled 0; the
second one ends when the learner correctly guesses the second instance labeled 0; and so
on. Once the learner has found d instances labeled 0, the remaining instances must have a
positive label.
Let Xi (where 1 ≤ i ≤ d) be the number of mistakes made in the i’th phase.

2. Rounds where the adversary chooses a positive label. Let Y be the number of mistakes in
such rounds.

Each of X1, . . . , Xd is stochastically dominated by a Geom(1/2) − 1 random variable (that is, a
geometric random variable from which we subtract 1), and Y is stochastically dominated by a
Geom(1/2k)− 1 random variable. It follows that the expected number of mistakes is at most

d(2− 1) + (2k − 1) < d+ 2k.

Together with the at most d additional mistakes in the second phase, we conclude that the learner
makes at most 2(d+ k) mistakes in expectation.

Theorem F.1 provides a negative answer to an open question posed by Daniely and Helbertal [2013],
who ask whether optoblbandit(H) = Ω(optdetbandit(H)) for every class H. For H defined in the proof of

Theorem F.1 with d = k, we see that optoblbandit(H) = O

(√
optdetbandit(H)

)
. This separation is tight

up to a logarithmic factor: the bounds optoblbandit(H) = Ω
(

optdetbandit(H)
k log k

)
(following from the upper

bound in [Auer and Long, 1999]) and optoblbandit(H) ≥ k−1
2 (e.g. by [Daniely and Helbertal, 2013])

imply that optoblbandit(H) = Ω

(√
optdetbandit(H)/ log optdetbandit(H)

)
for every class H.
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ALGORITHM DT

Input: A concept class H; a learner A for H that when given r ≥ r⋆ enjoys a mistake bound
of d1(r + d2), where d1, d2 ≥ 1 does not depend on r.
Initialize: rM = d2.

For t = 1, 2, . . .

1. If the best hypothesis was inconsistent with the feedback for at most rM many
rounds:
(a) Predict as A predicts under the assumption that the best hypothesis is inconsis-

tent with the feedback for at most rM many rounds, and given all information
gathered by A in previous rounds.

2. Otherwise:
(a) Update rM := 2 · rM .
(b) Restart A.

Figure 2: The “doubling trick" algorithm DT.

Another interesting corollary of Theorem F.1 is that a significant separation between full-information
and bandit feedback holds, in some cases, for deterministic learners but not for randomized learners.
Indeed, as long as d = Ω(k), we have that both optdetfull(H) and optadapbandit(H) are of the order O(d),
while optdetbandit(H) is of order Ω(d · k).

G Prediction without prior knowledge

When studying agnostic mistake bounds in previous sections, we assumed the r-realizability assump-
tion, in which the number of inconsistencies the best hypothesis (or expert) has with the feedback, r⋆,
is given to the learner (or some decent upper bound on it). In this section, we show how to remove
this assumption, while suffering only a constant factor degradation in the mistake bound. To achieve
this goal, we use a “doubling trick" in the same spirit of the doubling trick used in [Cesa-Bianchi
et al., 1997, Section 4.6]. The algorithm DT, described in Figure 2, receives as input an algorithm A
for the r-realizable setting. That is, A requires knowledge of a decent upper bound r ≥ r⋆ to work
well. Algorithm DT converts it to an algorithm which works well without this prior knowledge, in
the following way. It operates in phases, where in the beginning of each phase it resets the memory
of A, and guesses a bound rM on r⋆ which is larger than the value guessed in the previous phase.
When the best expert in this phase reaches rM + 1 inconsistencies, we deduce that our guess of rM
was incorrect, and move on to the next phase. Thus, once rM ≥ r⋆, it is guaranteed that DT enters
its last phase. The values we choose for rM guarantee that the obtained mistake bound of DT is not
much worse than of A, when given the knowledge of r⋆.

Let DT(A) denote DT when executed with the r-realizable algorithm A.

Proposition G.1. Let H ⊂ YX be a concept class. Suppose that A is a bandit feedback learning
algorithm for H, that when given a bound r ≥ r⋆, enjoys a mistake bound of d1(r + d2), where
d1, d2 ≥ 1 does not depend on r (but may depend on H). Then, algorithm DT(A), without any prior
knowledge, enjoys a mistake bound of 10d1(r⋆ + d2). Furthermore, if A is deterministic then so is
DT(A).

Proof. We split the execution of DT to phases according to the value of rM . That is, in phase i, we
have rM = 2id2, where i ≥ 0.

We now consider two cases. In the first case, suppose that r⋆ ≤ d2. Then the initial value rM = d2
is a correct guess, and thus DT simply runs A with this assumption, and enjoys a mistake bound of
2d1d2 ≤ 2d1(r

⋆ + d2).
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In the second case, let a⋆ > 0 be such that r⋆ = 2a
⋆

d2. In the worst case, the values of rM chosen
by DT during its execution are 20 · d2, 21 · d2, . . . , 2a−1 · d2, 2a · d2, where a = ⌈a⋆⌉. Indeed, if h⋆

is the best hypothesis, then it is inconsistent with the feedback for at most r⋆ many times throughout
the entire run, and in particular, throughout the last phase where rM ≥ r⋆. Since DT resets A at
the end of every phase, in each phase i, DT is guaranteed to make at most d1(2id2 + d2) mistakes
in expectation. Between phases, when the best hypothesis is inconsistent with the feedback for the
(rM + 1)’th time, another mistake might be made by DT. By linearity of expectation, we see that the
mistake bound of DT is at most

a+ d1

a∑
i=0

(2id2 + d2) ≤ a+ d1

a∑
i=0

2i+1d2 ≤ 5d12
ad2.

Now, since a− 1 ≤ a⋆, we have r⋆ ≥ 2a−1d2. Therefore:

5d12
ad2 = 10d12

a−1d2 ≤ 10d1r
⋆.

The “furthermore" part of the proposition is obvious from the definition of DT.

The mistake bounds proved in this work under the assumption that a bound r ≥ r⋆ is given are
typically of the form f(|Y|)(r + g(optdetfull(H), |Y|)), where f, g are functions to R. Therefore, we
can apply Proposition G.1 with d1 = f(|Y|), d2 = g(optdetfull(H), |Y|) to our bounds, and remove the
assumption that a bound r ≥ r⋆ is given.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Each result applies to the specified setting for which it is proved.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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Answer: [NA]
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• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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should describe how they avoided releasing unsafe images.
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create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Theory paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Theory paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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