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ABSTRACT

We introduce a novel concept for spiking neural networks (SNNs) derived from the
idea of linear pieces used to analyse the expressivity and trainability of artificial
neural networks (ANNs). We show that the input and parameter space of an SNN
decomposes into distinct regions – which we call causal pieces – where the output
spikes are caused by the same subnetwork. For integrate-and-fire neurons with
exponential synapses, we prove that, within each causal piece, output spike times
are locally Lipschitz continuous with respect to the input spike times and network
parameters. Furthermore, we prove that the number of causal pieces is a measure of
the approximation capabilities of SNNs. In particular, we demonstrate in simulation
that parameter initialisations which yield a high number of causal pieces on the
training set strongly correlate with SNN training success. Moreover, we find that
SNNs with purely positive weights exhibit a surprisingly high number of causal
pieces, allowing them to achieve competitive performance on benchmark tasks. We
believe that causal pieces are a powerful and principled tool for improving SNNs,
and may also provide new ways of comparing SNNs and ANNs in the future.

1 INTRODUCTION

Spiking neural networks (SNNs) have recently received increased attention due to their ability to
facilitate low-power hardware solutions for deep learning methods, particularly for edge applications,
e.g., in outer space onboard spacecraft (Izzo et al., 2022; Schumann, 2022; Lunghi et al., 2024). In
large parts, this is caused by the development of methods and software tools that allow the usage of
error backpropagation to train SNNs (Neftci et al., 2019; Mostafa, 2017; Göltz et al., 2021; Comsa
et al., 2020; Klos & Memmesheimer, 2025), as well as emerging spike-based hardware systems
(Frenkel et al., 2023) such as Intel’s digital Loihi (Davies et al., 2018; Orchard et al., 2021) and the
analog BrainScaleS-2 (Cramer et al., 2022; Spilger et al., 2023) chip, which promise not only low
energy footprints, but accelerated computation. However, even though SNNs have been introduced
already decades ago (Maass, 1994; 1997), it is still an ongoing debate whether spike-based neurons,
ultimately, have any relevant benefit compared to their non-spiking counterparts commonly used in
deep learning (Davidson & Furber, 2021; Yin et al., 2021; Kucik & Meoni, 2021; Lunghi et al., 2024;
Singh et al., 2023; Neuman et al., 2024).

Inspired by linear pieces used to analyse ReLU-based neural networks (Frenzen et al., 2010; Montufar
et al., 2014; Hanin & Rolnick, 2019), we introduce the concept of causal pieces – with the ultimate
goal of providing a tool for analysing and improving SNNs. A causal piece is a subset of the
inputs and network parameters where the output spikes of an SNN are always caused by the same
subnetwork, meaning that the same subset of neurons and synapses in the SNN determine its output.
For a single output neuron in a perceptron, these are all input neurons with spike times preceding
the output spike (Fig. 1A, top). For a neuron in a deep network, the causal piece corresponds to the
subnetwork connecting the inputs to that neuron, i.e., only neurons within this subnetwork contribute
to its spike time (Fig. 1A, bottom left). Similarly, for an entire layer, it corresponds to the subnetwork
connecting the inputs to the neurons in that layer (Fig. 1A, bottom right).

In Fig. 1B, we show the causal pieces (coloured regions) of an SNN for a hyperplane in the input
space, with network parameters kept fixed for simplicity. The output spike times of an SNN are
piecewise continuous, non-linear functions of the input, with each piecewise region corresponding
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Figure 1: Causal sets and causal pieces. (A) Top: A single output neuron (orange) receiving input
from three neurons. Only those input neurons (blue) that spike before the output neuron (i.e., before
the dotted line) are part of the causal set. Bottom: In deep networks, this corresponds to subnetworks
(blue), here shown for a single output neuron (left), or the whole output layer (right). (B) Top:
Illustration of causal pieces of a single neuron. Bottom: The output spike time of the neuron when
moving along the x-axis. Although the subnetwork remains fixed across a causal piece, the output
spike time changes. (C) Causal pieces of the output neuron for two networks with different depth.

to a distinct causal piece (Fig. 1B, bottom). An illustration of causal pieces and how their number
grows for deeper networks is shown in Fig. 1C.

The contribution of our work is as follows: (i) We introduce the concept of causal pieces for SNNs
and provide methods to count them. (ii) Based on the proof for linear pieces (Frenzen et al., 2010),
we prove – for Integrate-and-Fire (IF) neurons with exponential synapses – that the number of
causal pieces is a measure of expressivity. (iii) In simulations, we show that the number of causal
pieces the training data fall into at network initialisation strongly correlates with training success
(Fig. 3), providing a principled approach to guide SNN initialisation currently missing in the literature
(Rossbroich et al., 2022). (iv) Furthermore, we see that hidden layers tend to increase the number of
causal pieces, with the greatest benefit coming from initial layers (Fig. 4). (v) Lastly, we find that
SNNs with only positive weights have a remarkably high number of causal pieces (Fig. 6), allowing
them to reach competitive performance levels in standard benchmarks such as Yin Yang (Kriener
et al., 2022), MNIST (LeCun et al., 2010), and EuroSAT (Helber et al., 2019).

In the following, we briefly introduce the preliminaries required to follow this study before providing
theoretical and experimental results. Mathematical proofs, simulation details, and algorithms can be
found in Section A. Code will be made publicly available on GitHub for publication.

2 METHODS

2.1 PRELIMINARIES: SPIKING NEURON MODEL AND CAUSAL SUBNETWORKS

In this work, we focus on a special case of the widely used Leaky Integrate-and-Fire (LIF) neuron
model: the IF model with exponential synapses (see Section A.1.1), also called the non-Leaky IF
model (nLIF) (Mostafa, 2017; Göltz et al., 2021). A network of nLIF neurons is defined as follows:

Definition 1 (nLIF) Let L ∈ N, ℓ ∈ [1, L], Nℓ ∈ N be the number of neurons per layer ℓ, τs ∈ R+

be the synaptic time constant, ϑ ∈ R be the threshold, and t(0) ∈ RN0 , N0 ∈ N, be the inputs to the
neural network. For i ∈ [1, Nℓ], j ∈ [1, Nℓ−1], let W (ℓ)

ij ∈ R be the synaptic weights from layer ℓ− 1

to ℓ. Then the membrane potential u(ℓ)i ∈ R of a neuron i in layer ℓ at time t ∈ R is given by:

u
(ℓ)
i (t) =

∑
t
(ℓ−1)
j ≤t

W
(ℓ)
ij

[
1− exp

(
−
t− t(ℓ−1)

j

τs

)]
. (1)

The spike time t(ℓ)i of a neuron i in layer ℓ is defined as t(ℓ)i = inf{t : u(ℓ)i (t) = ϑ}.
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Furthermore, we assume a widely used purely time-dependent encoding scheme in which each neuron
spikes at most once (Comsa et al., 2020; Göltz et al., 2021; Stanojevic et al., 2023; Göltz et al., 2025;
Che et al., 2024; Klos & Memmesheimer, 2025). This setup is motivated by two key considerations:
(i) The nLIF neuron model is analytically tractable, enabling exact theoretical results. (ii) It is closely
related to the LIF neuron model, providing a clear conceptual basis for generalising the reported
results in future work.

The spike time of an nLIF neuron can be calculated analytically by finding, given a set of input
spike times and weights, the corresponding causal set. The causal set contains the indices of all
pre-synaptic neurons that cause the output spike time, i.e., its the set of neurons whose input spikes
occur before the output spike. All input neurons with spike times larger than the output spike time do
not affect it, and are hence not in the causal set. Formally, we define:

Definition 2 (Causal set) Let t(ℓ)i ∈ R ∪ {∞} be the spike time of a neuron receiving Nℓ−1 ∈ N
input spikes at times t(ℓ−1)

j for j ∈ [1, Nℓ−1]. Then the corresponding causal set is given by

C(ℓ)i (t
(ℓ−1)
1 , ..., t

(ℓ−1)
Nℓ−1

) = {j : t(ℓ−1)
j ≤ t(ℓ)i } if t(ℓ)i <∞ & C(ℓ)i (t

(ℓ−1)
1 , ..., t

(ℓ−1)
Nℓ−1

) = ∅ otherwise.

Although the causal set is typically represented as an unordered set in the literature, we define it here
as an ordered set based on the indices j. Moreover, it implicitly depends on W (ℓ)

i through t(ℓ)i . If we
know the causal set C(ℓ)i , the corresponding output spike time t(ℓ)i is given by (Mostafa, 2017)

t
(ℓ)
i =

τs ln
(∑

j∈C(ℓ)
i
W

(ℓ)
ij e

t
(ℓ−1)
j / τs

)
− τs ln

(∑
j∈C(ℓ)

i
W

(ℓ)
ij − ϑ

)
if C(ℓ)i ̸= ∅ ,

∞, else ,
(2)

where the spike time is set to infinity if the input does not cause the neuron to spike. To find the
causal set, we use the iterative approach described in Section A.1.2.

For deep feedforward SNNs, the concept of causal sets is generalised as follows:

Definition 3 (Causal subnetwork) Let L ∈ N, ℓ ∈ [1, L], Nℓ ∈ N, N0 ∈ N. Further, let C(m)
i be

the causal set of neuron i ∈ [1, Nm] in layer m ∈ [1, L]. Then for a subset I ⊆ [1, Nℓ] of neurons in
layer ℓ, the causal subnetwork P(ℓ)

I (t(0)) given inputs t(0) ∈ RN0 is defined recursively:

P(ℓ)
I,n−1 =

(
C(n−1)
j : j ∈ C for C ∈ P(ℓ)

i,n

)
with P(ℓ)

I,ℓ = (C(ℓ)i : i ∈ I) and n ∈ [1, ℓ] . (3)

As depicted in Fig. 1A, a causal subnetwork refers to the subset of neurons and connections that
influenced the output spike times of neurons i ∈ I of layer ℓ, given inputs t(0). In this work, we
represent it as a list of lists: for each layer, we include a list containing the causal sets of neurons in
this layer that contributed to the spike times of neurons in I . It can be calculated from the observed
spike times and connectome alone (algorithm in Section A.4.8), but depends implicitly on the weights.

2.2 CAUSAL PIECES: DEFINITION AND PROPERTIES

We introduce the concept of causal pieces, which we later demonstrate to be a useful tool for analysing
the computational properties of SNNs. For a subset I of neurons in layer ℓ of a feedforward SNN,
the causal piece is a region in the joint input and parameter space for which the causal subnetwork
remains fixed, meaning that the spike times of neurons i ∈ I depend on the same subnetwork (Fig. 1A,
bottom) within this region. Formally, using Definitions 1 to 3 we define a causal piece as follows:

Definition 4 (Causal piece) Let L ∈ N, ℓ ∈ [1, L], Nℓ ∈ N, t0 ∈ RN0 be the input spike times to
the network with N0 ∈ N, and W ∈W = RN0·N1 × ...× RNL−1·NL the weights. Then for a subset
I ⊆ [1, Nℓ] of neurons from layer ℓ ∈ [1, L], we call P[P(ℓ)

I ] the causal piece associated to P(ℓ)
I :

P[P(ℓ)
I ] = {(t0,W ) ∈ RN0 ×W : given t0 & W , the neurons i ∈ I have causal subnetwork P(ℓ)

I }

Throughout this paper, we often consider causal pieces for networks with fixed weights. In such
cases, the causal piece is only defined by the inputs and reduces to P[P(ℓ)

I ] ⊆ RN0 .
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Under the perspective of Definition 4, the output spike times of an SNN are piecewise continuous,
non-linear functions (Fig. 1B) of the inputs, with each region corresponding to a distinct causal piece.
For nLIF networks, within each piece, the output spike times are Lipschitz continuous with respect
to both the input spike times and weights – a useful property for gradient-based training. When
transitioning between causal pieces – for example, by varying the input to an nLIF neuron – the
output spike time may change continuously, discontinuously, or become undefined (i.e., the neuron
ceases to spike), depending on how the causal sets of neurons change (see Section A.2.1 for details).

3 RESULTS

In the following, we first prove that the number of causal pieces provides a lower bound for the
approximation error of an nLIF SNN. We then continue by demonstrating how to count them. The
theoretical results are complemented by simulations, showing, in particular, that a high number of
causal pieces on the training samples at initialisation correlates with training success (Fig. 3). Hence,
the number of causal pieces can be used as an objective for optimising SNN initialisation in practice.

3.1 THE NUMBER OF CAUSAL PIECES IS A MEASURE OF EXPRESSIVITY

The approximation error of an nLIF network, i.e., how well a given function can be approximated, is
lower bounded by an expression depending inversely on the number of causal pieces – meaning that
more causal pieces result in potentially more expressive SNNs (for a proof, see Section A.3.3):

Theorem 1 (Approximation bound) Let −∞ < a < b <∞, g ∈ C3([a, b]) so that g is not affine.

Then there exists a constant c > 0 that only depends on τs
∫ b

a

√
| d2

dx2 eg(x)/ τs)|dx and a constant

ζ > 0 only depending on the maximum of maxx
(
eΦ(x)/ τs

)
and maxx

(
eg(x)/ τs

)
so that

∥Φ− g∥L∞([a,b]) >
c

ζ
p−2 (4)

for all nLIF neural networks Φ with p number of causal pieces and time constant τs.

The theorem provides a local measure of expressivity for SNNs, valid for high-dimensional inputs
along any line. Moreover, it is valid even if the output of the nLIF network Φ has any discontinuous
behaviour. Although the proof is for single-spike neurons, it can be extended to nLIF neurons that
spike multiple times and have a simple reset mechanism (see Section A.3.4). Still, for clarity and
tractability, we focus on the single-spike case in this work. It also has to be noted that having many
pieces does not translate into the SNN generalising well, for which fewer pieces might be favourable.

3.2 ESTIMATING THE NUMBER OF CAUSAL PIECES

Since the number of causal pieces is a measure of the expressivity of nLIF neural networks, it is of
substantial interest to estimate this number. As every causal piece is characterised by a unique causal
subnetwork, one way is to calculate the total number of causal subnetworks that can be formed. For
a single nLIF neuron with N total inputs, a naive upper bound for the number of causal pieces is
therefore 2N − 1, which is the number of subsets that can be formed from a set of N elements (minus
the empty set).

However, not all of these subsets will be valid causal sets, e.g., the sum of the respective weights
might not exceed the threshold. We obtain an improved upper bound by calculating the probability
that, given weights sampled from a static random distribution q, the sum of k weights exceeds
the threshold, denoted by pqk. This is equivalent to the probability of a discrete random walk with
continuous random step sizes (i.e. the weights) being above the threshold at step k (Fig. 2A). This
criterion is sufficient, as we can freely choose the inputs: all inputs of neurons in the causal set spike
at the same time, while neurons not part of the set spike after the output neuron (Section A.3.5). The
number of causal pieces ηq is then upper bounded by:

ηq =

N∑
k=1

(
N

k

)
pqk . (5)
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Figure 2: Estimating the number of causal pieces. (A) The probabilities pqk are obtained by counting
how many trajectories (cumulative sum of weights) are above the threshold at step k. The top panel
shows the corresponding values of pqk, where k is the number of weights. (B) Estimated number
of pieces for weights sampled from normal distribution with different mean (y-axis) and standard
deviation (x-axis). Colours are shown in log-scale. (C) pqk for two points in (B), denoted by markers.

We show the improved upper bound of the number of sets as a fraction of 2N − 1 in Fig. 2B for
weights randomly initialised from Gaussian distributions with different mean and variance (using
a Monte Carlo approach, see Algorithm 1 in the appendix). For illustration purposes, pqk is shown
for two different q in Fig. 2C. The obtained results highlight two points: (i) the highest number of
causal pieces is reached only for distributions with non-zero mean – which is quite remarkable given
that initialisation schemes in the literature, often borrowed from traditional deep learning, sample
the weights from distributions with zero mean (Rossbroich et al., 2022; Bellec et al., 2018; Zenke &
Vogels, 2021; Lee et al., 2016; Ding et al., 2022; Che et al., 2024). However, for extreme distributions,
e.g., with very high mean, the estimated number of pieces is only achieved for data distributions that
are very different from those found in practice, which will be discussed more thoroughly in the next
section. (ii) With increasing variance, results tend to improve even if the mean is set non-optimally.
In fact, one can show that in the limit of large variance, the number of pieces is lower bounded by an
expression proportional to N−3/2 (Theorem 2):

Theorem 2 (Number of pieces in limit) Let q be a symmetric probability distribution with mean
µ <∞ and variance σ2, and Wj ∼ q for 0 ≤ j < N . In the limit µ

σ → 0 and ϑ
σ → 0, the number of

causal pieces is lower bounded by

ηq ≥ 2N − 1

2N
√
π · (N − 2

3 )
, (6)

which is, quite remarkably, valid for all probability distributions. This is a direct consequence of the
Sparre Andersen theorem for random walks (Andersen, 1954; Majumdar, 2010), see Section A.3.6.

In case of deep SNNs, the number of causal pieces is equivalent to the number of routes on which
spikes can flow unhindered from the inputs to the outputs through the network (Definition 3). For nLIF
networks with {N1, ..., Nℓ, 1} neurons per layer, we find in Section A.3.7 that a naive upper bound for
the number of pieces of the output neuron is ηq ≤ 2

∏ℓ
i=1 Ni ≤ 2N

ℓ

, where N = max{N1, ..., Nℓ, 1}.
This is quite different from ReLU neural networks, which have an upper bound that scales only
exponentially with the number of layers (Montufar et al., 2014) (or the total number of neurons
(Hanin & Rolnick, 2019)). However, it remains to be seen whether networks with such a large number
of pieces can be constructed, although Fig. 1C suggests quite dramatic increases in the number of
causal pieces by adding even a single hidden layer.

3.3 THE PRACTICALLY RELEVANT NUMBER OF CAUSAL PIECES

In practice, even for single neurons we expect the number pieces to be below the improved bound
we found, as most of these pieces will not be traversed when given realistic input data (i.e., not
all inputs being identical). Moreover, the total number of pieces may be irrelevant for the learning
problem at hand if a large fraction of the pieces occupy parts of the domain that are not populated by
data. For example, Fig. 1C shows that the density of pieces can change dramatically throughout the
domain. Thus, we propose an alternative approach to counting causal pieces which is more aligned to
practical scenarios and less resource demanding: given a dataset, we count only the number of pieces
that contain at least one data point. In the following, we demonstrate this for the Yin Yang dataset

5
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(Kriener et al., 2022) using the standard scenario of 5000 random training samples, as well as by
using a grid of inputs covering the whole input domain of the dataset (with 124980 samples in total).
Yin Yang is an ideal dataset for probing smaller neural networks, as it combines simplicity with a
learning task that clearly separates linear and non-linear models. It also allows us to visualise causal
pieces over the whole data domain, which is unfeasible for high-dimensional data. In the following,
we only use this approach to count the number of causal pieces. An algorithm for counting causal
pieces is provided in Section A.4.8.

3.4 THE NUMBER OF PIECES AT INITIALISATION CORRELATES WITH TRAINING SUCCESS

The initialisation scheme of parameters is crucial for training both ANNs and SNNs. Although for
SNNs, schemes derived experimentally or adopted from ANNs have been successfully applied, a
recent study highlighted the lack of a principled approach for identifying initialisation schemes that
facilitate the training of SNNs (Rossbroich et al., 2022). As a first application, we demonstrate that the
number of causal pieces at initialisation, evaluated only using training samples, is a strong predictor
of training success. Hence, we argue that the number of causal pieces can be used as a measure for
identifying good initialisation schemes for SNNs. Intuitively, a high number of pieces at initialisation
means that the network is highly expressive and can more easily fit the training data. Moreover, it
means that there are many ways spikes can pass through the network, while a low number restricts the
amount of routes – also making the collapse of pieces (i.e. no spiking) during training more severe.

We trained 136 shallow nLIF networks with [4, 30, 3] neurons using exact error backpropagation on
analytically calculated spike times, as introduced in Mostafa (2017) (although we do not use any
weight regularisation). To guarantee networks with a large variety of causal pieces after initialisation,
we sampled weights from a normal distribution with randomly sampled mean and variance (see
Section A.4). As shown in Fig. 3A,B, both the number of causal pieces of the last layer before
and after training (evaluated using only training samples) strongly correlate with the final accuracy
achieved on the test split. For networks with a high number of pieces, the causal pieces feature causal
sets with a median size around 10− 20 elements (with 30 being the maximum), while networks with
a low number of pieces have median set sizes that are either close to 0 or their maximum size. This is
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Figure 3: Network initialisation strongly affects training success. (A) The logarithm of the number
of pieces (here: of the output layer) at network initialisation strongly correlates with performance
after training (r = 0.94). The correlation between pieces and accuracy is r = 0.77. (B) Same
as (A), but with the number of pieces after training. For pieces vs. accuracy, we find r = 0.81.
(C) Median causal set size depending on the number of causal pieces before (blue) and after (red)
training. (D) Number of pieces before and after training. The diagonal indicates no change in pieces.
(E) Illustration of the Yin Yang dataset with three classes: the two halves and the dots. (F) Causal
pieces (each piece is indicated by a different colour) of a single output neuron for a bad initialisation,
evaluated using only training samples. (G) Same as (F), but for one of the best initialisations.
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in agreement with Eq. (5), as the binomial coefficient has its maximum at N/2, while decreasing to 1
for k = 0 and k = N .

Interestingly, we find that it seems almost impossible to recover from a bad initialisation with
low number of pieces through training (Fig. 3D). Networks with high number of causal pieces at
initialisation will have a slightly reduced amount of pieces after training, while networks that start
with a significantly lower number of pieces are not capable of reaching the number of pieces required
for a high accuracy on the test set. Examples of the causal piece structure on the training data of
the Yin Yang dataset is shown for a single output neuron of a network achieving bad (Fig. 3F) and
state-of-the-art performance (Fig. 3G) – clearly highlighting the difference in the number of causal
pieces both before and after training.

3.5 INCREASING THE NUMBER OF PIECES

As seen in the previous subsection, a large number of pieces is crucial to successfully train SNNs.
Therefore, it is a natural question to ask through which means this number can be increased. From
the previous results, an obvious option is to optimise the weight initialisation to yield networks with
many pieces. We investigate this for networks ([4, 100, 3] neurons) with weights initialised randomly
from either a Gaussian or a uniform distribution, using a Yin Yang dataset obtained from a 400× 400
grid on the data domain. We chose a larger dataset here to properly probe the number of causal
pieces. In case of a Gaussian distribution, the weights projecting into layer ℓ ∈ N, W (ℓ) ∈ Rnℓ×nℓ−1 ,
are initialised by sampling from N (α0 · n−α1

ℓ−1 ,
[
α2 · n−α3

ℓ−1

]2
) where nℓ is the number of neurons in

layer ℓ. Similarly, in case of a uniform distribution, weights are sampled from U(−v0 + v1, v0 + v1)

with v0 = β0 · n−β1

ℓ−1 and v1 = β2 · n−β3

ℓ−1 . The parameters αi and βi (i ∈ [0, 4]) are found using a
simple evolutionary algorithm that maximises the number of causal pieces (Section A.4.1). For this
specific setup, we found α0 = 1.69, α1 = 0.79, α2 = 1.13, α3 = 0.49 and β0 = 1.85, β1 = 0.39,
β2 = 1.02, β3 = 0.54. The corresponding probabilities pqk of these weight initialisations are shown in
Fig. 4A. As for the single neuron case, the weight distributions feature non-zero means. We visualise
the causal pieces for a single output neuron in Fig. 5.

Another option to adjust the number of pieces is to change the width and depth of the SNN, as shown in
Fig. 4B,C. We present three scenarios: (line) a shallow network where the width is steadily increased
by increments of 20 neurons, (dashed) a deep network, where in each increment an additional hidden
layer with 20 neurons is added, and (dotted) the same as for dashed, but with 40 neurons per hidden
layer. Results are shown for the two distributions found using evolutionary optimisation. For the
shallow network, the number of pieces grows consistently with increased network width, although
slower than for deep networks and with a saturation setting in for very wide networks. In case of
deep networks, the number of pieces grows rapidly initially, but then stagnates to a constant number
of causal pieces. The effect is more pronounced if the hidden layers are wider, with a much stronger
increase and final number of causal pieces for the network with 40 neurons per layer. Different from
the expected exponential increase, we rather see a logistic growth. In fact, fitting logistic curves of
the form γ0/(γ1 + e−γ2N ) with γi ∈ R and N the number of neurons, we get a median relative error
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Figure 4: Width-and depth dependence of causal pieces. (A) pqk of the optimised (top, dot) normal,
and (bottom, square) uniform initialisation. (B) Number of pieces for shallow and deep networks.
The maximum number, which is the number of input samples used to evaluate the number of causal
pieces, is shown as a dash-dotted line. (C) Number of pieces per layer in a single network, before
and after training. (D) Increase in the total number of pieces for deep and shallow networks. Markers
denote results that belong together. We show medians (lines) and quartiles (shaded areas).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Optimized Gaussian init.
 pos. & neg. weights

Optimized uniform init.
 pos. & neg. weights

Optimized Lognormal init.
 only pos. weights

Optimized uniform init.
 only pos. weights

Figure 5: Causal pieces (coloured regions) of one of the output neurons for an nLIF neural network
with [4, 30, 3] neurons, using the initialisations obtained through evolutionary optimisation (Fig. 4
and Fig. 6). Causal pieces are evaluated using a 400 × 400 grid on the data domain.

of 4 · 10−2 (shallow), 2 · 10−2 (deep 20), and 2 · 10−2 (deep 40) for the Gaussian initialisation, and
9 · 10−2 (shallow), 2 · 10−2 (deep 20), and 5 · 10−3 (deep 40) for the uniform one. The saturation for
(deep 20) might occur due to a diminishing effect of pieces being split by consecutive layers. For all
other cases, saturation most likely occurs since we reach the maximum number of causal pieces that
can be counted using the data samples.

In Fig. 4C, we show the number of pieces per layer for a network with 5 hidden layers. Similarly to
how initially adding hidden layers increased the number of pieces drastically in Fig. 4B, the highest
increase is seen in the first few layers, with diminishing returns in deeper layers. In contrast, if we
compare the number of pieces per layer before and after training, we find a slight increase in the
number of causal pieces for deep layers. If we just focus on the total number of pieces of the whole
network, we find that shallow networks end up with less pieces than at initialisation, while deep
networks end up with more (Fig. 4D). Most likely, this is because in a deep network, the number of
pieces can be optimised by improving the misalignment of pieces between consecutive layers.

3.6 SPIKING NEURAL NETWORKS WITH EXCLUSIVELY POSITIVE WEIGHTS

Inspired by (Neuman et al., 2024), we study the case of SNNs with only excitatory neurons. In
the mammalian neocortex, around 80% (Nieuwenhuys, 1994) of neurons are excitatory, i.e., their
synapses only excite other neurons, which is equivalent to neurons having only positive outgoing
weights in our nLIF neural networks. Although having only positive weights seems limiting at first, it
comes with a significant advantage: controlling for continuity between linear pieces becomes much
easier. In fact, the network is globally Lipschitz continuous as long as for each neuron, the input
weights have a sum larger than the threshold – which can be easily enforced during training, e.g.,
through a regularisation term. The global Lipschitz constant of a neural network can be used to derive
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Figure 6: SNNs with only positive weights. (A) pqk for (top, star) lognormal, and (bottom, diamond)
uniform initialisation. (B) Number of pieces for shallow and deep networks. Labels as in Fig. 4B. (C)
Used network architecture. (D) Performance on benchmarks. Each training run was repeated 5 times
for different random seeds. Markers denote results that belong together.
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its covering number, which provides an upper bound for the network’s generalisation error (Petersen
& Zech, 2024). As seen from Theorem 3 in Section A.2.1, this bound can be improved by choosing
network parameters that produce sparsely populated causal sets (small |C|) that strongly overstep the
threshold (large δ). However, the contribution of the size of the causal sets in the Lipschitz constant
is counter-balanced by the maximum weight W̄ , which has to be increased with decreasing set sizes
to ensure that the sum of the weights exceeds the threshold.

We again optimise the parameters of two initialisation distributions, this time a lognormal and
a uniform distribution – which both lead to networks with a similar number of pieces than for
distributions with both postive and negative values. Their respective pqk probabilities are shown in
Fig. 6A. Using these initialisation schemes, we train networks composed of an SNN with positive
weights and a single linear readout layer (with positive and negative weights, see Fig. 6C) on three
different benchmarks: Yin Yang, MNIST, and EuroSAT, a scene recognition task with satellite images
– reaching in fact similar performance levels than other neural networks, and far outcompeting linear
models (Fig. 6D). An illustration of the causal pieces is shown in Fig. 5.

4 DISCUSSION

We demonstrated that causal pieces are a promising tool for analysing and improving SNNs. One of
our key findings is that the number of causal pieces at initialisation strongly correlates with SNN
training success, making it a useful measure for identifying suitable initialisations. Across all reported
experiments, we found that initialising weights from distributions with non-zero mean yields SNNs
with the highest number of causal pieces – a strategy also used in Göltz et al. (2021) for single-spike
LIF neurons. Moreover, the case of neural networks randomly initialised with only positive weights is
very similar to having weights initialised from unconstrained distributions with non-zero mean, with
both producing a comparable amount of pieces. In the introduced random walk picture, this is not
too surprising, as both cases are drift-dominated random walks with (close to) 0 chance of returning
to the threshold after passing it. Remarkably, this translates into SNNs with only positive weights
(and a linear decoder) reaching comparable performance levels on standard benchmarks, although
additional studies are required to properly analyse the benefits and limitations of such networks.

While previous work has briefly explored linear pieces in simplified spike-response models (Singh
et al., 2023), our work is the first to lay the foundation for elevating this concept to more realistic
neuron models. The decomposition of the input and parameter space into causal pieces should,
in principle, generalise to any spiking neuron model commonly used in practice. Although our
experiments focused on single-spike coding, we show that key results – such as the approximation
bound in Theorem 1 – can be extended to the multi-spike setting. For spiking neurons with leak, the
definition of causal sets, and hence causal subnetworks and pieces, remains unchanged (cf. Göltz et al.
(2021); Comsa et al. (2020)). Therefore, causal pieces can be readily evaluated for LIF neurons with
single-spike coding. However, mathematical results will require adapted proof strategies. Similarly,
while this work focused on feedforward architectures, we anticipate that results can be extended to
recurrent SNNs by unrolling them in time, treating them as deep feedforward neural networks.

An important property of causal pieces, and neural networks in general, is their Lipschitz constant.
The local Lipschitz constant of nLIF neural networks scales with the size of their causal sets, which
is related to the number of synaptic interactions – a proxy measure for energy consumption in SNNs
(Yin et al., 2021; Kucik & Meoni, 2021; Lunghi et al., 2024). Thus, the spike activity of SNNs might
be directly tied to the learning task, i.e., the SNN requires more spikes for tasks with a high Lipschitz
constant (and vice versa). Although we only briefly touched on Lipschitz constants in this work, we
believe that this link might offer a novel data and model-dependent perspective on SNN design.

To conclude, the presented results demonstrate that causal pieces are not only a powerful tool
for increasing our understanding of SNNs, but also for guiding the design of improved network
architectures and training methods. The causal piece framework naturally fits the discontinuous,
event-based nature of SNNs. Most importantly, it enables a mathematically rigorous analysis of
SNNs without requiring restrictive assumptions such as positive weights. We are confident that this
approach will generalise to a wide range of neuron models and enable principled comparisons across
spiking neuron models as well as with ReLU-based ANNs. Finally, we believe that the usefulness of
causal pieces extends beyond technical applications and domains, potentially providing novel ways
to study biological neurons by analysing their causal piece structure derived from experimental data.
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ETHICS STATEMENT

All experiments were conducted using publicly available and widely accepted benchmark datasets.
No personal or sensitive data were used, and there are no known ethical or bias concerns associated
with the datasets.

REPRODUCIBILITY STATEMENT

Reproducibility of the results is ensured through several measures. All simulation experiments are
described in detail in the appendix. A GitHub repository containing a Python package with the full
implementation will be publicly released and cited in the final version. In addition, all experimental
findings are supported by theoretical results, including formal mathematical proofs provided in the
appendix.
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Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classification
with adaptive spiking recurrent neural networks. Nature Machine Intelligence, 3(10):905–913,
2021.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural computation, 33(4):899–925, 2021.

A APPENDIX

A.1 METHODS

A.1.1 RELATIONSHIP BETWEEN NLIF AND LIF NEURON MODELS

The current-based LIF neuron model with exponential synaptic kernel is given by

d

dt
u
(ℓ)
i (t) =

1

τm
(urest − u(ℓ)i (t)) +

1

τs

∑
j

W
(ℓ)
ij Θ

(
t− t(ℓ−1)

j

)
exp

(
−
t− t(ℓ−1)

j

τs

)
, (7)

where u(ℓ)i (t) ∈ R is the membrane potential of neuron i in layer ℓ at time t ∈ R, W (ℓ)
ij ∈ R is the

synaptic weight connecting neuron j of layer ℓ − 1 to neuron i of layer ℓ, t(ℓ−1)
j is the spike time
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of neuron j in layer ℓ− 1, τm ∈ R+ and τs ∈ R+ are the membrane and synaptic integration time
constants, Θ(·) is the Heaviside function, and urest ∈ R is the rest value of the membrane potential.

In the special case τm ≫ τs, this simplifies to

d

dt
u
(ℓ)
i (t) =

1

τs

∑
j

W
(ℓ)
ij Θ

(
t− t(ℓ−1)

j

)
exp

(
−
t− t(ℓ−1)

j

τs

)
, (8)

which can be solved for u(ℓ)i (t) by integration:

u
(ℓ)
i (t) =

∫ t

−∞

d

dt′
u
(ℓ)
i (t′) dt′ =

∑
t
(ℓ−1)
j ≤t

W
(ℓ)
ij

[
1− exp

(
−
t− t(ℓ−1)

j

τs

)]
. (9)

A.1.2 CALCULATING CAUSAL SETS

To find the causal set, we use the following approach: In case of an nLIF neuron that has Nℓ−1 input
spike times t(ℓ−1)

j with weights W (ℓ)
ij , we first define K = {j1, j2, ..., jNℓ−1

} with tj1 ≤ tj2 ≤ ... ≤
tjNℓ−1

. Furthermore, we set Kk = {j1, ..., jk} for k > 0. The causal set is then given by the subset
Km with the smallest index m satisfying

1.
∑

j∈Km

W
(ℓ)
ij ≥ ϑ and 2. Km = {j : t(ℓ−1)

j ≤ t(ℓ)i } , t
(ℓ)
i = τs ln

(∑
j∈Km

W
(ℓ)
ij e

t
(ℓ−1)
j / τs∑

j∈Km
W

(ℓ)
ij − ϑ

)
.

These two conditions are summarised as follows: (1) the inputs have to be strong enough to drive
the membrane potential across the threshold, and (2) all inputs that did not cause the spike at time
t
(ℓ)
i occur after it. The criterion of selecting the set with minimal m ensures that we find the earliest

possible output spike time. If no such set is found, the causal set is defined as the empty set, reflecting
the fact that none of the inputs caused the neuron to spike. In simulations, we set the output spike time
to a sufficiently large value such that it does not affect any other neuron in the network, emulating
spiking at infinity.

A.2 ADDITIONAL THEOREMS

A.2.1 LIPSCHITZ CONTINUITY

To ease the notation, we drop the nested list notation of causal subnetworks in the following. We first
state the result for a single nLIF neuron:

Theorem 3 (Lipschitz continuous) Let N0 ∈ N, j ∈ [1, N0], and C(1)1 ⊂ [1, . . . , N0]. Moreover,
let a, b ∈ P[C(1)1 ] be the input to a single nLIF neuron with N0 input times. Then the output spike
time (Eq. (2)) is Lipschitz continuous with respect to input times and weights W 1

1j ∈ R, j ∈ [1, N0]:∥∥∥t(1)1 (a)− t(1)1 (b)
∥∥∥
L∞(P[C(1)

1 ])
≤ 2|C(1)1 |max

(
W̄

δ
,
τs
δ

)
∥a− b∥

L∞(P[C(1)
1 ])

, (10)

where |C| denotes the cardinality of C, ∥W (1)
1j ∥ ≤ W̄ , δ <

∑
j∈C(1)

1
W

(1)
1j − ϑ.

The proof is given in Sections A.3.1 and A.3.2. In addition, the output spike time may change
continuously, discontinuously, or become undefined when transitioning between causal pieces.
Which of these occurs can be determined by inspecting the causal set: if all added or removed input
neurons have identical spike times, the output spike time changes continuously; otherwise, it changes
discontinuously. If the causal set would reach maximum size, but all inputs together do not reach the
threshold, the output spike disappears. The corresponding result for entire networks follows from the
fact that the composition of Lipschitz-continuous functions is itself Lipschitz continuous.
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A.3 MATHEMATICAL PROOFS

A.3.1 PROOF OF CONTINUITY AND DIFFERENTIABILITY

To improve readability, we drop the layer and output neuron indices in the following. First note that
within a causal piece, the output spike time Eq. (2) is a composition of continuous and differentiable
functions, and hence itself continuous and differentiable with respect to input spike times and weights.

In the following, we prove under which conditions the output spike time is a continuous function
of input spike times and weights when crossing between neighbouring causal pieces. First, let C be
the causal set of an nLIF neuron with input spike times [t0, ..., tN−1], weights [W0, ...,WN−1], and
output spike time

t = τs ln
(
T
)
= τs ln

(∑
j∈C Wje

tj/ τs∑
j∈C Wj − ϑ

)
. (11)

Let C′ be the causal set of a neighbouring causal piece, with spike times [t̃0, ..., t̃N−1, t̃N ], weights
[W̃0, ..., W̃N−1, W̃N ], and output spike time t̃:

t̃ = τs ln
(
T̃
)
= τs ln

(∑
j∈C W̃je

t̃j/ τs + W̃Ne
t̃N/ τs∑

j∈C W̃j + W̃N − ϑ

)
. (12)

We assume that the output spike time of C is along the border between the two causal pieces, meaning
that t = tN . Since output spike times can be shifted by ∆ by shifting all input spike times by ∆,
without loss of generality, we assume that ∀x ∈ {t, t̃, t0, ..., tN , t̃0, ..., ˜tN}, x ≥ 0. All spike times
are finite, thus ∃tmax with 0 < tmax < ∞ such that ∀x ∈ {t, t̃, t0, ..., tN , t̃0, ..., ˜tN}, x ≤ tmax.
Similarly, ∃W̄ > 0 such that ∀ω ∈ {W0, ...,WN , W̃0, ..., W̃N}, ∥ω∥ ≤ W̄ . Furthermore, ∃ϵϑ with
0 < ϵϑ <∞ such that ϵϑ <

∑
j∈C W̃j + W̃N − ϑ. Lastly, we highlight the following identity:

T = T ·
∑

j∈C Wj +M − ϑ∑
j∈C Wj +M − ϑ

(13)

= T ·
∑

j∈C Wj − ϑ∑
j∈C Wj +M − ϑ

+
M · T∑

j∈C Wj +M − ϑ
(14)

=

∑
j∈C Wje

tj/ τs∑
j∈C Wj − ϑ

·
∑

j∈C Wj − ϑ∑
j∈C Wj +M − ϑ

+
M · T∑

j∈C Wj +M − ϑ
(15)

=

∑
j∈C Wje

tj/ τs +M · etN/ τs∑
j∈C Wj +M − ϑ

(16)

for all M ∈ R with
∑

j∈C Wj +M − ϑ > 0.

We first prove continuity for the argument of the logarithm by showing that ∀ϵ > 0, ∃δ > 0 such that
∥tj − t̃j∥ < δ with j ∈ [0, N ], ∥Wj − W̃j∥ < δ with j ∈ [0, N − 1]1, and ∥T − T̃∥ < ϵ. Using
Eq. (16), we have:

∥T − T̃∥ (17)

=

∥∥∥∥
∑

j∈C Wje
tj/ τs +

∑
j∈C W̃je

tN/ τs + W̃Ne
tN/ τs −

∑
j∈C Wje

tN/ τs∑
j∈C W̃j + W̃N − ϑ

−
∑

j∈C W̃je
t̃j/ τs − W̃Ne

t̃N/ τs∑
j∈C W̃j + W̃N − ϑ

∥∥∥∥ (18)

≤ 1

ϵϑ

(
∥W̃N∥ · ∥et̃N/ τs − etN/ τs∥+

∑
j∈C
∥Wj∥ · ∥etj/ τs − et̃j/ τs∥

+ ∥Wj − W̃j∥ · ∥et̃j/ τs − etN/ τs∥
)
. (19)

1Note that WN and W̃N cannot cause a switch between the two causal sets.
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In the first step, we used Eq. (16) with M =
∑

j∈C(W̃j −Wj) + W̃N , which leads to both T and T̃
having the same denominator. Furthermore, we added the term

∑
j∈C Wje

t̃j/ τs −
∑

j∈C Wje
t̃j/ τs

in the numerator. In the next step, we used 1
ϵϑ
≥ 1∑

j∈C W̃j+W̃N−ϑ
, and applied the triangle inequality

several times. Using ∥W̃j∥ ≤ W̄ ∀j ∈ [0, N ], ∥et̃j/ τs − etN/ τs∥ ≤ ∥1 − C∥ with C = etmax/ τs ,
and the mean value theorem for the exponential function, we then obtain:

∥T − T̃∥ ≤ C

ϵϑτs

∑
j∈C′

W̄∥t̃j − tj∥+
∑
j∈C

τs∥1− C∥
C

∥W̃j −Wj∥

 . (20)

Choosing ∥W̃j −Wj∥ < δW with δW = ϵϑ
2N∥1−C∥ · ϵ and ∥t̃j − tj∥ < δt with δt = ϵϑτs

C·W̄ ·2(N+1)
· ϵ,

we arrive at

∥T − T̃∥ < ϵ . (21)

The proof concludes by setting δ = min(δW , δt). Continuity of the spike times then follows from the
fact that the concatenation of continuous functions is again a continuous function.

Here we assumed that the neighbouring causal set C′ has the property
∑

j∈C′ W̃j − ϑ > 0. If this is
not the case, then at least one more input neuron with spike time t∗ = minx{tx | x ∈ K\C′} (with
t∗ > t) has to be added to the causal set until the condition holds again. Since the new output spike
time has to be larger than t∗, its value jumps and is therefore not continuous when passing between
causal pieces.

A.3.2 LIPSCHITZ CONSTANTS

To improve readability, we drop the layer and output neuron indices in the following. Within a causal
piece C, the causal set does not change and the output spike time t∗ (Eq. (2)) is a composition of
continuous and differentiable functions, and is therefore also continuous and differentiable. Hence,
we estimate the Lipschitz constant by bounding the first derivative of the output spike time t∗.

Let C be a causal set with corresponding input spike times t0, ..., tN−1 for N ∈ N, weights
W0, ...,WN−1, and output spike time t∗. As in the previous subsection, we assume an upper bound
for the absolute value of the weights, i.e., ∃W̄ > 0 such that ∀ω ∈ {W0, ...,WN−1}, ∥x∥ ≤ W̄ .
Moreover, we assume that all spike times are larger or equal to 0, and we choose a δ > 0 such that
δ ≤

∑
j Wj − ϑ.

We first calculate the Lipschitz constant with respect to input spike times:

∥∥∥∥∂t∗∂tk

∥∥∥∥ =

∥∥∥∥∥ ∂

∂tk
τsln

(∑
j∈C Wje

tj/ τs∑
j∈C Wj − ϑ

)∥∥∥∥∥ (22)

= e−t∗/ τs

∥∥∥∥∥ Wke
tk/ τs∑

j Wj − ϑ

∥∥∥∥∥ (23)

≤ W̄

δ
, (24)

where we used that e(tk−t∗)/ τs ≤ 1 since t∗ ≥ tk by definition.

For weights, we get:
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∥∥∥∥ ∂t∗∂Wk

∥∥∥∥ =

∥∥∥∥∥ ∂

∂Wk
τsln

(∑
j∈C Wje

tj/ τs∑
j∈C Wj − ϑ

)∥∥∥∥∥ (25)

= τse
−t∗/ τs

∥∥∥∥∥ etk/ τs∑
j Wj − ϑ

−
∑

j∈C Wje
tj/ τs

(
∑

j Wj − ϑ)2

∥∥∥∥∥ (26)

= τse
−t∗/ τs

∥∥∥∥∥etk/ τs − et∗/ τs∑
j Wj − ϑ

∥∥∥∥∥ (27)

= τs

∥∥∥∥∥e(tk−t∗)/ τs − 1∑
j Wj − ϑ

∥∥∥∥∥ (28)

≤ τs
δ
, (29)

where we used that 0 ≤ e(tk−t∗)/ τs ≤ 1 by definition, and hence ∥e(tk−t∗)/ τs − 1∥ ≤ 1.

Thus, for a causal piece PC ⊆ Rd×d, where d ∈ N is the dimension of the input, and a, b ∈ PC we
have:

∥t(a)− t(b)∥L∞(PC)
≤ 2|C|max

(
W̄

δ
,
τs
δ

)
∥a− b∥L∞(PC)

(30)

where LPC = 2|C|max
(

W̄
δ ,

τs
δ

)
is the Lipschitz constant of causal piece PC with causal set C, and

|C| is the number of elements in the causal set.

A.3.3 PROOF OF THEOREM 1

To improve readability, we drop the layer indices in the following. First, we recapitulate the following
theorem which holds, for example, for ReLU neural networks (Frenzen et al., 2010) (Theorem 2)2:

Theorem 4 Let −∞ < a < b <∞, f ∈ C3([a, b]) and f is not affine. Then there exists a constant
c > 0 that only depends on

∫ b

a

√
|f ′′(x)|dx so that

∥ψ − f∥L∞([a,b]) > c · p−2 (31)

for all piecewise linear ψ with p ∈ N number of linear pieces.

Eq. (2) can be written as a piecewise linear function by substituting Ti = eti/τs (Mostafa, 2017),
leading to:

Ti =
1∑

j∈Ci
Wij − ϑ

·
∑
k∈Ci

WikTk . (32)

An nLIF neural network Ψ(x) using this substitution is a composition of piecewise linear functions,
and hence also itself a piecewise linear function. In this case, Theorem 4 applies to Ψ. The output of
an equivalent nLIF network Φ without substitution is given by Φ = τslnΨ, i.e., we only apply the
logarithm to the final output and scale by τs. This can be used to derive Theorem 1:

∥Φ− g∥L∞([a,b]) = τs

∥∥∥lnΨ− ln
(
eg/ τs

)∥∥∥
L∞([a,b])

, (33)

≥ τs
ζ
∥Ψ− eg/ τs∥L∞([a,b]) , with ζ = max

[
maxx(Ψ(x)),maxx(e

g(x)/ τs)
]
,

(34)

>
c

ζ
p−2 , with c > 0 depending only on τs

∫ b

a

√∣∣∣∣ d2dx2
eg(x)/ τs

∣∣∣∣dx ,
(35)

2See also Petersen & Zech (2024), Theorem 6.2
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where we applied the mean value theorem to arrive at Eq. (34) (i.e., we apply the mean value theorem
to get rid of the logarithms) and Theorem 4 to arrive at Eq. (35). For the latter, we used the fact that if
g ∈ C3([a, b]) so that g is not affine, then eg/ τs ∈ C3([a, b]) is also not affine, allowing us to apply
Theorem 4 using f = eg/ τs . Furthermore, we note that Φ and Ψ have the same number of causal
pieces.

A.3.4 MULTIPLE-SPIKE CASE

We assume that after spiking, the membrane potential of the nLIF neuron is reset to its initial potential
(here: u0 = 0) and its dynamics continued. This way, the nLIF neuron can spike multiple times.

In this case, Theorem 1 can be generalised by showing that a multi-spike nLIF neuron can be
represented by several single-spike nLIF neurons, one per output spike. Consequently, a network
of multi-spike nLIF neurons can be mapped to a network of single-spike nLIF neurons, to which
Theorem 1 can be applied. Thus, the theorem also applies to the multi-spike nLIF network.

We continue by showing how to represent a multi-spike nLIF neuron by several single-spike nLIF
neurons. Assume a multi-spike nLIF neuron that spikes twice: at times t0 and t1. Moreover, let this
neuron be part of a network, denoting its real-valued input weights by Win and its output weights by
Wout. We can then replace this neuron by two single-spike nLIF neurons in the following way:

1. Add a single-spike nLIF neuron with initial potential u0 = 0, connected to the same neurons
as the multi-spike one via Win and Wout. This neuron fires at t0, remaining silent thereafter.

2. Add another single-spike nLIF neuron with initial potential u0 = −ϑ. At time t0, this
neuron’s membrane potential will be at 0, like the multi-spike neuron right after the reset.
Consequently, the single-spike neuron will spike at time t1.

If the multi-spike neuron spikes n times, we can replace it by n single-spike neurons with decreasing
initial potentials uj(t = 0) = −j · ϑ, j ∈ [0, n− 1].

A.3.5 RANDOM WALKS

We drop the layer and output neuron index notation used in the main text to clear up the notation.
Assume we have a single neuron with N0 inputs. Let K = {j1, ..., jK} ⊆ [1, N0] with 1 ≤ K ≤ N0,
let tj be the input times and Wj ∈ R the corresponding weights, with j ∈ [1, N0]. We denote by pqk
the probability that the subset K is a causal set if weights Wj ∼ q are sampled from a distribution q.

For K to be a causal set, we have to check the two conditions mentioned in Section 2. The first
condition is satisfied if ∑

i∈K
Wi ≥ ϑ . (36)

Assuming the weights are sampled from a random distribution, this can be viewed as a random walk
with discrete steps and randomly sampled, continuous step sizes. The position of the random walk at
step k is given by Sk =

∑k
i=1Wi. In this framework, the first condition becomes the question of

whether the random walk is above or equal to the threshold at step K, i.e., SK ≥ ϑ.

The second condition – only spike times belonging to the causal set appearing before the output spike
– can always be achieved by choosing inputs the following way (this does not apply to deep networks):

1. Set tj = c for c ∈ R and j ∈ {jℓ, ..., jK}.
2. Since condition 1 is satisfied, use Eq. (2) to calculate the output spike time t with K as the

causal set.
3. Set tj > t for j ∈ {jℓ, ..., jK}.

This way, any subset that suffices the first condition (sum of weights above threshold) is a valid causal
set. Since we can choose inputs arbitrarily for a single nLIF neuron, pqk is identical to the probability
of the random walker to be above threshold at step k.

The values of pqk are lower bounded by the first-passage-time distribution of the random walk. That’s
because the number of trajectories being above or equal to the threshold at step k is lower-bounded
by the number of trajectories that cross the threshold for the first time at step k.
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A.3.6 PROOF OF THEOREM 2

Let N ∈ N be the number of inputs of a single nLIF neuron. We define Sn =
∑n

i=1Wi as the
cumulative sum of weights Wi ∈ R with S0 = 0 and 0 ≤ n ≤ N . For the proof, we first note that
pqn ≥ pFPT(n), where pFPT(n) = p(Sn ≥ ϑ, Sn−1 < ϑ, Sn−2 < ϑ, ..., S1 < ϑ) is the first-passage-
time distribution (at step n) for a random walk with discrete steps and random continuous step sizes
(Wj ∼ q), see Section A.3.5.

In the assumed limit, the survival probability, i.e., not passing the threshold until step n+ 1, is given
by the Sparre Andersen theorem (Andersen, 1954; Majumdar, 2010):

Q(n) = p(Sn < ϑ, Sn−1 < ϑ, ..., S1 < ϑ) =
1

22n

(
2n

n

)
. (37)

The first-passage-time probability for step n + 1 is obtained by taking the difference of survival
probabilities:

pFPT(n+ 1) = Q(n)−Q(n+ 1) (38)

=
1

22n

(
2n

n

)
− 1

22n+2

(
2n+ 2

n+ 1

)
(39)

=
1

22n+1

(
2n

n

)[
2− (2n+ 2)(2n+ 1)

2(n+ 1)(n+ 1)

]
(40)

=
1

22n+1

(
2n

n

)[
2− (2n+ 1)

(n+ 1)

]
(41)

=
1

22n+1

(
2n

n

)
1

n+ 1
(42)

=
Cn

22n+1
, (43)

with the Catalan number Cn = 1
n+1

(
2n
n

)
. Using a lower bound for the Catalan number (Johnson), we

get:

pqn+1 ≥ pFPT(n+ 1) ≥ 1

2(n+ 1)
√
π ·
(
n+ 1

3

) . (44)

This expression is monotonically decreasing, hence it reaches its minimum value at n = N − 1:

pqn+1 ≥
1

2N
√
π ·
(
N − 2

3

) . (45)

Using this, we can estimate the number of causal pieces:

ηq =

N∑
k=1

(
N

k

)
pqk (46)

≥
N∑

k=1

(
N

k

)
pFPT(k) (47)

≥ 1

2N
√
π ·
(
N − 2

3

) · N∑
k=1

(
N

k

)
(48)

=
2N − 1

2N
√
π ·
(
N − 2

3

) . (49)

A.3.7 NUMBER OF PIECES

For a single nLIF neuron, the number of pieces is obtained combinatorically: given N inputs to the
neuron, we can create

(
N
k

)
different subsets with k entries from these neurons. We denote by pqk the
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probability that, if weights are sampled from a probability distribution q, a subset of k inputs forms a
causal set. The total number of causal pieces is then obtained by summing up the contributions of
subsets of different length:

η =

N∑
k=1

(
N

k

)
pqk . (50)

The upper bound is obtained by using pqk ≤ 1 for all k, and therefore η ≤
∑N

k=1

(
N
k

)
= 2N − 1.

For deep networks, we first look at a 2-layer network with {N1, N2, 1} neurons, where N1 is the
number of inputs to the network. Starting with the output neuron, we can construct a single causal
piece as follows: first, we sample a set of r inputs. From the analysis for single nLIF neurons, we
know that

(
N2

r

)
pq2r such sets exist. Next, we have to estimate the number of pieces of the r selected

input neurons, which are all given by η1 =
∑N1

k=1

(
N1

k

)
pq1k . However, the causal piece of the output

neuron changes if any of its r selected input neurons change their causal set. Thus, the number of
pieces is given by

(
N2

r

)
pq2r η

r
1 – assuming the best case where the pieces of the output neuron are

maximally split up by the input neurons. The total number is then given by:

η2 =

N2∑
r=1

(
N2

r

)
pq2r η

r
1 . (51)

More generally, we have:

ηn =

Nn∑
r=1

(
Nn

r

)
pqnr ηrn−1 , (52)

for 0 < n ≤ ℓ and η0 = 1, where ℓ is the number of layers. Using pqnr ≤ 1 for all n and r and the
binomial formula, we get:

ηn ≤ ηNℓ
n−1 . (53)

Applying this starting with n = ℓ until we arrive at n = 1, we get:

ηl ≤ 2
∏ℓ

i=1 Ni (54)

≤ 2N
ℓ

, (55)
with N = max{N1, N2, ..., Nℓ, 1}.

A.4 SIMULATION DETAILS

In all simulations, we use τs = 0.5 and ϑ = 1. To implement deep learning models, we used pyTorch
(Paszke, 2019). Simulations were run on VSC-5 Vienna Scientific Cluster infrastructure, using A40
GPUs and AMD Zen3 CPUs. In general, individual simulations are rather short, lasting from seconds
to minutes. Training larger networks on big datasets takes usually less than an hour.

A.4.1 OPTIMISING INITIALISATIONS

To find optimised initialisation schemes, we use a simple evolutionary method: Starting with a list
with four different sets for the initial parameters, P ∈ R4×4, we perturb each set by adding a random
value sampled from a normal distribution N (0, 0.12). We then use all eight sets of parameters to
initialise nLIF neural networks with weights sampled from our chosen distribution (e.g., normal,
lognormal, uniform). For each network, we use the Yin Yang dataset (or any other method) to estimate
the number of pieces. In this case, we sample the input space using a grid (x ∈ [0, 1],y∈ [0, 1],
100 increments per dimension, constrained to the circular area). We then take the parameters that
produced the four networks with the highest number of pieces and repeat this process, i.e., with using
this new list as P . We stop if the number of pieces does not improve after n ∈ N loops.

For positive weights, we initialise weights using a lognormal distribution with mean α0 · n−α1

ℓ−1 and
standard deviation α2 · n−α3

ℓ−1 , or a uniform distribution U(v0, v0 + v1) with v0 = β0 · n−β1

ℓ−1 and
v1 = β2 ·n−β3

ℓ−1 . nℓ−1 is the number of neuron projecting into layer l. Through the above optimisation
loop, we found α0 = 1.29, α1 = 0.57, α2 = 0.85, α3 = 0.76 and β0 = 0.70, β1 = 0.25, β2 = 0.80,
β3 = 0.47. The final parameters for normal and uniform (with positive and negative values) are
provided in the main text.
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A.4.2 DETAILS: FIG. 1

To initialise the networks, we use a normal distribution with the parameters found using evolutionary
optimisation (see main text and Section A.4.1).

In panel B, the causal pieces of the output neuron of a network with [10, 1] neurons is shown.
For the plot shown top, we sample three random vectors d0 ∼ N (−2, 22)10, d1 ∼ N (−2, 22)10,
o ∼ N (−2, 22)10. The inputs I are then obtained by spanning the plane using I(α0, α1) =
o+α0 · (d0−o)+α1 · (d10−o). We use α0 ∈ [0, 1] and α1 ∈ [0, 1] and 400 increments per variable.
To get the line plot, we set α1 = 0 and increase α0 from 0 to 1 in 2000 increments.

In panel C, we use d0 ∼ N (0, 1)40, d1 ∼ N (0, 1)40, o ∼ N (0, 1)40 and an increment of 400.

A.4.3 DETAILS: FIG. 2

To obtain the results, we used Algorithm 1 (see Section A.4.7) to estimate the number of pieces of a
single nLIF neuron with weights sampled from N

(
µ, σ2

)
. We ran the algorithm for values of µ and

σ ranging from 0 to 0.1 with increment 0.001. The maximum number of inputs was set to 100. For
each initialisation, we sampled 104 weight vectors (per k) to estimate pqk.

A.4.4 DETAILS: FIG. 3

For the normal distributions used to initialise the nLIF neural networks, the mean and standard
deviation were both sampled from a uniform distribution U(−0.2, 0.8) and U(0, 1), respectively.
Each reported data point corresponds to one sampled distribution. We calculate the number of causal
pieces using only the 5000 training samples. We used the same grid to create the causal piece plots
(panels F and G). Networks are trained using the Adam optimiser with a learning rate of 10−4 (no
weight decay), batch size of 100, and 1000 epochs. The best test performance is reported.

As a loss function, we use the time-to-first-spike loss introduced in Göltz et al. (2021). For each
sample i, its contribution to the loss is:

Li = log

(
c∑

n=1

e(ti∗−tn)/ ξ

)
, (56)

where c ∈ N is the number of classes and i∗ is the correct label of sample i. tn is the output spike time
of the output neuron encoding class n. We use ξ = 0.2 · τs. The final loss is obtained by averaging
over all N samples, L = 1

N

∑N
i=1 Li.

A.4.5 DETAILS: FIG. 4

For each data point, we show results of 10 runs with different random seeds. To calculate the number
of causal pieces, we used an enlarged dataset composed of points obtained from a grid within the
data domain, i.e., we evaluated the input space [0, 1]2 using a 400 × 400 grid, leading to 124980
points (only points within the circular area were used). We obtained qualitatively similar results
using a 600× 600 grid. In panel C, we show the results for a network with [4, 20, 20, 20, 20, 20, 3]
and [4, 40, 40, 40, 40, 40, 3] neurons (10 runs with different seeds). In panel D, the number of
pieces of the output layer are shown for lognormal initialisation and (line) shallow networks
with [40, 80, 160, 320, 400] neurons in the hidden layer, as well as (dotted) deep networks with
[1, 2, 4, 5, 8, 10] hidden layers with 40 neurons each. Again the median over 10 runs with different
random seeds is shown. For training, the same setup as described in Section A.4.4 was used.

A.4.6 DETAILS: FIG. 6

Networks are initialised by sampling the weights either from a lognormal or uniform distribution,
as described in Section A.4.1. To evaluate pqk, we again use the Monte Carlo approach described
in Section A.4.7, with a similar setup as in Fig. 2. Panel B is created similarly as panel B in
Fig. 4. To keep weights W positive, we apply a ReLU function to them in the forward function,
W 7→ max(0,W ).

For Yin Yang, we use a network of size [4, 30, 3], with the last layer being a standard linear pyTorch
layer. We train the networks using a batch size of 100, learning rate of 10−3, 5000 epochs, and Adam
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optimiser without weight decay. The reference values (0.638 and 0.976) are taken from Kriener et al.
(2022) (best value also for [4, 30, 3] neurons). They further report an accuracy of 0.855 if only the
upper layer is trained, which is also lower than the performance reached by our networks.

For MNIST, we use a network of size [28 · 28, 200, 100, 10], again with the last layer being a standard
linear pyTorch layer. Pixel values are re-scaled to be in the range [0, 1]. Images are flattened and
no image transformations are used during training. We train the networks using a batch size of 100,
learning rate of 10−3, 200 epochs, and Adam optimiser without weight decay. The best performance
(0.9833) is taken from Kim et al. (2024). For the performance of a linear layer, we show 0.9277, as,
e.g., reported in Senn et al. (2024).

For EuroSAT, we use a network of size [16 · 16, 200, 100, 10], again with the last layer being a
standard linear pyTorch layer. Images are re-scaled to 16× 16, with pixel values re-scaled to be in
the range [0, 1]. Furthermore, we apply random horizontal and vertical flips during training. Images
are flattened before they are provided as input to the neural networks. We train the networks using a
batch size of 100, learning rate of 10−2, 1000 epochs, and Adam optimiser without weight decay.
We found that the best performance of an MLP is similar to the one reached by random forests, which
is 0.70. For the performance of linear models, we use the results achieved using logistic regression
(0.40). We also reached 0.34 using nearest neighbor and 0.47 using decision trees.

A.4.7 ALGORITHMS: MONTE CARLO APPROACH

In simulations, we use Algorithm 1 to calculate pqk, from which we calculate the improved upper
bound using Eq. (5). A similar algorithm can be used to estimate pqk for a static weight vector (with
unknown distribution q) by randomly sampling subsets from the vector (e.g., in case of the weights in
a trained neural network).

Algorithm 1 Monte Carlo estimate for perceptron
Require: Distribution q, number of samples num samples, number of inputs num inputs, thresh-

old ϑ
1: prob set← list of length num inputs filled with 0. ▷ Probability that subset is a causal set.
2: for causal set length = 1 to num inputs do
3: for sample ID = 1 to num samples do
4: W ← list of length causal set length with values sampled from q

5: strong enough←
∑num inputs−1

i=0 Wi ≥ ϑ
6: if strong enough is True then
7: prob set[causal set length]← prob set[causal set length] + 1
8: end if
9: end for

10: prob set[causal set length]← prob set[causal set length] / num samples
11: end for
12: return prob set

A.4.8 ALGORITHMS: COUNTING PIECES

Algorithm 2 is used to count the number of causal pieces for (i) neurons in a deep neural network, and
(ii) per layer. To count the pieces, we start from the first layer and index the causal sets. For neurons
in the first layer, the causal sets are just composed of the inputs that caused the spike ((Algorithm 3,
line 5). Each neuron’s piece is given by the index we assign it (Algorithm 4). For neurons in deep
layers, the causal set consists of both the indices of the inputs that caused it to spike, and the causal
piece indices of these neurons (Algorithm 3, line 3). For layers (Algorithm 5), the causal set is given
by the list of causal piece indices of all neurons in the layer. If any of these indices changes, the
causal piece of the layer changes.
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Algorithm 2 Transform causal sets (per neuron) to causal piece IDs
Require: Nested list with ordered causal sets, sets. Dimensions are: samples, layers, neurons.

1: causal set to ID ← empty dictionary
2: causal set to ID[String([])]← −1
3: num samples← length(sets)
4: IDs← list containing num samples empty lists
5: for sample id = 0 to num samples− 1 do ▷ Iterate over samples
6: sets of sample← sets[sample id]
7: for layer id = 0 to length(sets of sample)− 1 do ▷ Iterate over layers
8: sets of layer ← sets of sample[layer id]
9: Append empty list to IDs[sample id]

10: for each causal set in layers do ▷ Turn causal set of every neuron to corresponding ID
11: cset name← PROCESSCAUSALSET(causal set, IDs, sample id, layer id)
12: single ID ← ASSIGNID(cset name, causal set to ID)
13: Append single ID to IDs[sample id][layer id]
14: end for
15: end for
16: end for
17: return IDs

Algorithm 3 PROCESSCAUSALSET

Require: Causal set causal set, List of causal set IDs IDs, Sample index sample id, Layer index
layer id

1: if layer id > 0 then
2: prev layer IDs← IDs[sample id][layer id− 1]
3: cset name← String([Select from prev layer IDs using causal set, causal set])
4: else
5: cset name← String(causal set)
6: end if
7: if length(causal set) = 0 then
8: cset name← String([])
9: end if

10: return cset name

Algorithm 4 ASSIGNID
Require: Causal set name cset name, Dictionary causal set to ID

1: if cset name /∈ keys(causal set to ID) then
2: causal set to ID[cset name]← length(causal set to ID)
3: end if
4: return causal set to ID[cset name]

Algorithm 5 Get Causal Piece ID for Neural Network Layers
Require: IDs, List of dictionaries layer indices dict with length num layers− 1

1: piece ID layers← empty list
2: for sample ID = 0 to length(IDs)− 1 do ▷ Iterate over samples
3: Append empty list to piece ID layers
4: for layer ID = 0 to length(IDs[sample ID])− 1 do ▷ Iterate over layers
5: lay state← String(IDs[sample ID][layer ID])
6: if lay state /∈ keys(layer indices dict[layer ID]) then
7: layer indices dict[layer ID][lay state]← length(layer indices dict[layer ID])
8: end if
9: Append layer indices dict[layer ID][lay state] to piece ID layers[sample ID]

10: end for
11: end for
12: return piece ID layers
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