

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 CAUSAL PIECES: ANALYSING AND IMPROVING SPIKING NEURAL NETWORKS PIECE BY PIECE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 We introduce *causal pieces*, a novel concept for analysing spiking neural networks
013 (SNNs), inspired by *linear pieces* used to study expressivity and trainability in
014 artificial neural networks (ANNs). Causal pieces partition the input and parameter
015 space of an SNN into distinct regions where the same subnetwork causes the output
016 spikes of the SNN. For networks of integrate-and-fire neurons with exponential
017 synapses, we show that within each causal piece, output spike times are locally
018 Lipschitz continuous with respect to the input spike times and network parameters.
019 We also prove that the number of causal pieces is a measure of the approximation
020 capabilities of SNNs. Empirically, we find that parameter initialisations yielding
021 more causal pieces on the training set strongly correlate with SNN training success.
022 Remarkably, even SNNs with only positive weights can exhibit a high number
023 of causal pieces, allowing them to achieve competitive performance on diverse
024 benchmarks such as Yin-Yang, MNIST, and EuroSAT, compared to fully-connected
025 ANNs. These results establish causal pieces as a powerful and principled tool for
026 analysing and improving the computational capabilities of SNNs.

028 1 INTRODUCTION

030 Spiking neural networks (SNNs) have recently received increased attention due to their ability to
031 facilitate low-power hardware solutions for deep learning methods, particularly for edge applications,
032 e.g., in outer space onboard spacecraft (Izzo et al., 2022; Schumann, 2022; Lunghi et al., 2024). In
033 large parts, this is caused by the development of methods and software tools that allow the usage of
034 error backpropagation to train SNNs (Neftci et al., 2019; Mostafa, 2017; Göltz et al., 2021; Comsa
035 et al., 2020; Klos & Memmesheimer, 2025), as well as emerging spike-based hardware systems
036 (Frenkel et al., 2023) such as Intel’s digital Loihi (Davies et al., 2018; Orchard et al., 2021) and the
037 analog BrainScaleS-2 (Cramer et al., 2022; Spilger et al., 2023) chip, which promise not only low
038 energy footprints, but accelerated computation. However, even though SNNs have been introduced
039 already decades ago (Maass, 1994; 1997), their computational capabilities remain poorly understood
040 Singh et al. (2023); Neuman et al. (2024), and it is still an open question whether spike-based neurons
041 have any relevant benefit compared to their non-spiking counterparts commonly used in deep learning
042 (Davidson & Furber, 2021; Yin et al., 2021; Kucik & Meoni, 2021; Lunghi et al., 2024; Dampfhofer
043 et al., 2022).

044 In this work, we introduce a framework for characterising SNNs inspired by *linear pieces*, a concept
045 used to analyse the expressivity of ReLU-based ANNs (Frenzen et al., 2010; Montufar et al., 2014;
046 Telgarsky, 2016; Hanin & Rolnick, 2019). Our main contribution is the idea of *causal pieces*: a
047 structured way to partition the input and parameter space of an SNN into regions where output spikes
048 are caused by the same subnetwork. Crucially, we show that the number of causal pieces provides
049 a lower bound on the approximation error of SNNs: networks with more pieces are capable of
050 modelling data better. In contrast to prior theoretical work, which is often limited to simplified neuron
051 models or requires that the SNN is a continuous function of its inputs and parameters (Stanojevic et al.,
052 2023; Zador & Pearlmuter, 1996; Maass & Schmitt, 1999; Neuman et al., 2024; Singh et al., 2023),
053 we provide results that are exact for networks of integrate-and-fire (IF) neurons with exponential
synapses – a special case of the widely used leaky integrate-and-fire (LIF) neuron model – even if
spike times can change discontinuously.

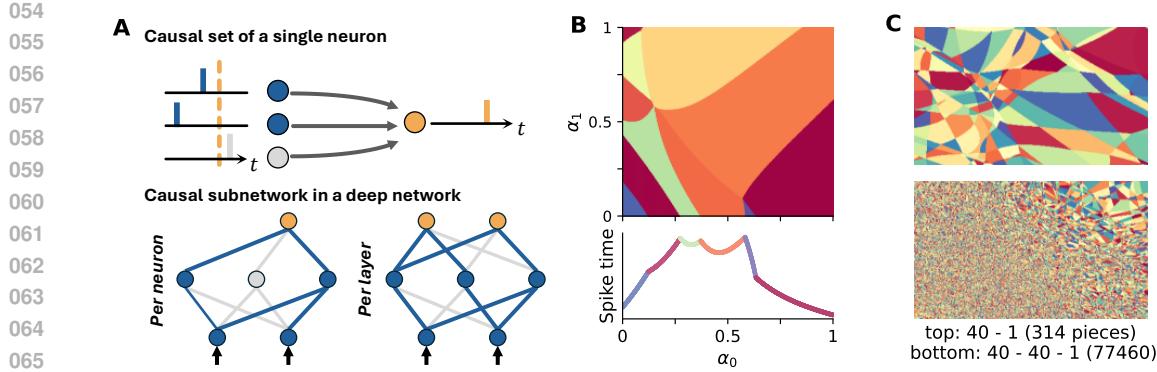


Figure 1: Causal sets and causal pieces. (A) Top: A single output neuron (orange) receiving input from three neurons. Only those input neurons (blue) that spike before the output neuron (i.e., before the dotted line) are part of the causal set. Bottom: In deep networks, this corresponds to subnetworks (blue), here shown for a single output neuron (left), or the whole output layer (right). (B) Top: Illustration of causal pieces of a single neuron. Bottom: The output spike time of the neuron when moving along the x-axis. Although the subnetwork remains fixed across a causal piece, the output spike time changes. (C) Causal pieces of the output neuron for two networks with different depth.

Formally, a causal piece is a subset of the inputs and network parameters where the output spikes of an SNN are always caused by the same subnetwork, meaning that the same subset of neurons and synapses in the SNN determine its output. For a single output neuron in a perceptron, this includes all input neurons with spike times preceding the output spike (Fig. 1A, top). In deep networks, causal pieces correspond to the subnetworks responsible for the spike times of individual output neurons or the entire output layer (Fig. 1A, bottom).

In Fig. 1B, we illustrate how the input domain of an SNN is decomposed into causal pieces (coloured regions, network parameters are kept fixed for simplicity). Within each piece, the output spike times of the SNN are not constant. Instead, the SNN can realise different non-linear functions in each piece, overall making it a piecewise continuous, non-linear function of the input (Fig. 1B, bottom). Although the number of pieces is determined by the network parameters, a simple way of increasing it is by adding more layers to the SNN (Fig. 1C).

Specifically, the contribution of our work is as follows:

1. We introduce the concept of causal pieces for SNNs and provide methods to count them.
2. Based on the proof for linear pieces (Frenzen et al., 2010), we prove – for IF neurons with exponential synapses – that the number of causal pieces is a measure of expressivity.
3. In simulations, we show that the number of causal pieces the training data fall into at network initialisation strongly correlates with training success (Fig. 3), providing a principled approach to guide SNN initialisation currently missing in the literature (Rossbroich et al., 2022). We show this for the Yin-Yang dataset (Kriener et al., 2022), Fashion-MNIST Xiao et al. (2017), and EuroSAT (Helber et al., 2019).
4. Furthermore, we see that hidden layers tend to increase the number of causal pieces, with the greatest benefit coming from initial layers (Fig. 5).
5. Lastly, we find that SNNs with only positive weights have a remarkably high number of causal pieces (Fig. 7), allowing them to reach typical performance levels of fully connected ANNs in standard benchmarks such as Yin-Yang, MNIST (LeCun et al., 2010), and EuroSAT.

In the following, we briefly introduce the preliminaries required to follow this study before providing theoretical and experimental results. Mathematical proofs, simulation details, and algorithms can be found in Section A. Code will be made publicly available on GitHub for publication.

108 **2 METHODS**
 109

110 **2.1 PRELIMINARIES: SPIKING NEURON MODEL AND CAUSAL SUBNETWORKS**
 111

112 In this work, we focus on a special case of the widely used Leaky Integrate-and-Fire (LIF) neuron
 113 model: the IF model with exponential synapses (see Section A.1.1), also called the non-Leaky IF
 114 model (nLIF) (Mostafa, 2017; Göltz et al., 2021). A network of nLIF neurons is defined as follows:

115 **Definition 1 (nLIF)** *Let $L \in \mathbb{N}$, $\ell \in [1, L]$, $N_\ell \in \mathbb{N}$ be the number of neurons per layer ℓ , $\tau_s \in \mathbb{R}^+$
 116 be the synaptic time constant, $\vartheta \in \mathbb{R}$ be the threshold, and $t^{(0)} \in \mathbb{R}^{N_0}$, $N_0 \in \mathbb{N}$, be the inputs to the
 117 neural network. For $i \in [1, N_\ell]$, $j \in [1, N_{\ell-1}]$, let $W_{ij}^{(\ell)} \in \mathbb{R}$ be the synaptic weights from layer $\ell-1$
 118 to ℓ . Then the membrane potential $u_i^{(\ell)} \in \mathbb{R}$ of a neuron i in layer ℓ at time $t \in \mathbb{R}$ is given by:*
 119

$$120 \quad u_i^{(\ell)}(t) = \sum_{t_j^{(\ell-1)} \leq t} W_{ij}^{(\ell)} \left[1 - \exp \left(-\frac{t - t_j^{(\ell-1)}}{\tau_s} \right) \right]. \quad (1)$$

121 The spike time $t_i^{(\ell)}$ of a neuron i in layer ℓ is defined as $t_i^{(\ell)} = \inf\{t : u_i^{(\ell)}(t) = \vartheta\}$.
 122

123 Furthermore, we assume a widely used purely time-dependent encoding scheme in which each neuron
 124 spikes at most once (Comsa et al., 2020; Göltz et al., 2021; Stanojevic et al., 2023; Göltz et al., 2025;
 125 Che et al., 2024; Klos & Memmesheimer, 2025). This setup is motivated by two key considerations:
 126 **(i)** The nLIF neuron model is analytically tractable, enabling exact theoretical results. **(ii)** It is closely
 127 related to the LIF neuron model, providing a clear conceptual basis for generalising the reported
 128 results in future work.

129 The spike time of an nLIF neuron can be calculated analytically by finding, given a set of input
 130 spike times and weights, the corresponding *causal set*. The causal set contains the indices of all
 131 pre-synaptic neurons that cause the output spike time, i.e., its the set of neurons whose input spikes
 132 occur before the output spike. All input neurons with spike times larger than the output spike time do
 133 not affect it, and are hence not in the causal set. Formally, we define:

134 **Definition 2 (Causal set)** *Let $t_i^{(\ell)} \in \mathbb{R} \cup \{\infty\}$ be the spike time of a neuron receiving $N_{\ell-1} \in \mathbb{N}$
 135 input spikes at times $t_j^{(\ell-1)}$ for $j \in [1, N_{\ell-1}]$. Then the corresponding causal set is given by
 136 $\mathcal{C}_i^{(\ell)}(t_1^{(\ell-1)}, \dots, t_{N_{\ell-1}}^{(\ell-1)}) = \{j : t_j^{(\ell-1)} \leq t_i^{(\ell)}\}$ if $t_i^{(\ell)} < \infty$ & $\mathcal{C}_i^{(\ell)}(t_1^{(\ell-1)}, \dots, t_{N_{\ell-1}}^{(\ell-1)}) = \emptyset$ otherwise.*

137 Although the causal set is typically represented as an unordered set in the literature, we define it here
 138 as an ordered set based on the indices j . Moreover, it implicitly depends on $W_i^{(\ell)}$ through $t_i^{(\ell)}$. If we
 139 know the causal set $\mathcal{C}_i^{(\ell)}$, the corresponding output spike time $t_i^{(\ell)}$ is given by (Mostafa, 2017)

$$140 \quad t_i^{(\ell)} = \begin{cases} \tau_s \ln \left(\sum_{j \in \mathcal{C}_i^{(\ell)}} W_{ij}^{(\ell)} e^{t_j^{(\ell-1)} / \tau_s} \right) - \tau_s \ln \left(\sum_{j \in \mathcal{C}_i^{(\ell)}} W_{ij}^{(\ell)} \right) - \vartheta & \text{if } \mathcal{C}_i^{(\ell)} \neq \emptyset, \\ \infty & \text{else,} \end{cases} \quad (2)$$

141 where the spike time is set to infinity if the input does not cause the neuron to spike. To find the
 142 causal set, we use the iterative approach described in Section A.1.2.

143 For deep feedforward SNNs, the concept of causal sets is generalised as follows:

144 **Definition 3 (Causal subnetwork)** *Let $L \in \mathbb{N}$, $\ell \in [1, L]$, $N_\ell \in \mathbb{N}$, $N_0 \in \mathbb{N}$. Further, let $\mathcal{C}_i^{(m)}$ be
 145 the causal set of neuron $i \in [1, N_m]$ in layer $m \in [1, L]$. Then for a subset $I \subseteq [1, N_\ell]$ of neurons in
 146 layer ℓ , the causal subnetwork $\mathcal{P}_I^{(\ell)}(t^{(0)})$ given inputs $t^{(0)} \in \mathbb{R}^{N_0}$ is defined recursively:*

$$147 \quad \mathcal{P}_{I,n-1}^{(\ell)} = \left(\mathcal{C}_j^{(n-1)} : j \in \mathcal{C} \text{ for } \mathcal{C} \in \mathcal{P}_{i,n}^{(\ell)} \right) \quad \text{with} \quad \mathcal{P}_{I,\ell}^{(\ell)} = (\mathcal{C}_i^{(\ell)} : i \in I) \quad \text{and} \quad n \in [1, \ell]. \quad (3)$$

148 As depicted in Fig. 1A, a causal subnetwork refers to the subset of neurons and connections that
 149 influenced the output spike times of neurons $i \in I$ of layer ℓ , given inputs $t^{(0)}$. In this work, we
 150 represent it as a list of lists: for each layer, we include a list containing the causal sets of neurons in
 151 this layer that contributed to the spike times of neurons in I . It can be calculated from the observed
 152 spike times and connectome alone (algorithm in Section A.4.9), but depends implicitly on the weights.

162
163

2.2 CAUSAL PIECES: DEFINITION AND PROPERTIES

164
165
166
167
168

We introduce the concept of causal pieces, which we later demonstrate to be a useful tool for analysing the computational properties of SNNs. For a subset I of neurons in layer ℓ of a feedforward SNN, the causal piece is a region in the joint input and parameter space for which the causal subnetwork remains fixed, meaning that the spike times of neurons $i \in I$ depend on the same subnetwork (Fig. 1A, bottom) within this region. Formally, using Definitions 1 to 3 we define a causal piece as follows:

169
170
171
172

Definition 4 (Causal piece) *Let $L \in \mathbb{N}$, $\ell \in [1, L]$, $N_\ell \in \mathbb{N}$, $t_0 \in \mathbb{R}^{N_0}$ be the input spike times to the network with $N_0 \in \mathbb{N}$, and $W \in \mathbb{W} = \mathbb{R}^{N_0 \cdot N_1} \times \dots \times \mathbb{R}^{N_{L-1} \cdot N_L}$ the weights. Then for a subset $I \subseteq [1, N_\ell]$ of neurons from layer $\ell \in [1, L]$, we call $\mathbb{P}[\mathcal{P}_I^{(\ell)}]$ the causal piece associated to $\mathcal{P}_I^{(\ell)}$:*

173
174

$$\mathbb{P}[\mathcal{P}_I^{(\ell)}] = \{(t_0, W) \in \mathbb{R}^{N_0} \times \mathbb{W}: \text{given } t_0 \text{ \& } W, \text{ the neurons } i \in I \text{ have causal subnetwork } \mathcal{P}_I^{(\ell)}\}$$

175
176
177

Throughout this paper, we often consider causal pieces for networks with fixed weights. In such cases, the causal piece is only defined by the inputs and reduces to $\mathbb{P}[\mathcal{P}_I^{(\ell)}] \subseteq \mathbb{R}^{N_0}$.

178
179
180
181
182
183
184

Under the perspective of Definition 4, the output spike times of an SNN are piecewise continuous, non-linear functions (Fig. 1B) of the inputs, with each region corresponding to a distinct causal piece. For nLIF networks, within each piece, the output spike times are Lipschitz continuous with respect to both the input spike times and weights – a useful property for gradient-based training. When transitioning between causal pieces – for example, by varying the input to an nLIF neuron – the output spike time may change continuously, discontinuously, or become undefined (i.e., the neuron ceases to spike), depending on how the causal sets of neurons change (see Section A.2.1 for details).

185
186

3 RESULTS

187
188
189
190
191
192

In the following, we first prove that the number of causal pieces provides a lower bound for the approximation error of an nLIF SNN. We then continue by demonstrating how to count them. The theoretical results are complemented by simulations, showing, in particular, that a high number of causal pieces on the training samples at initialisation correlates with training success (Fig. 3). Hence, the number of causal pieces can be used as an objective for optimising SNN initialisation in practice.

193
194

3.1 THE NUMBER OF CAUSAL PIECES IS A MEASURE OF EXPRESSIVITY

195
196
197

The approximation error of an nLIF network, i.e., how well a given function can be approximated, is lower bounded by an expression depending inversely on the number of causal pieces – meaning that more causal pieces result in potentially more expressive SNNs (for a proof, see Section A.3.3):

198
199
200
201
202
203
204

Theorem 1 (Approximation bound) *Let $-\infty < a < b < \infty$, $g \in C^3([a, b])$ so that g is not affine. Then there exists a constant $c > 0$ that only depends on $\tau_s \int_a^b \sqrt{|\frac{d^2}{dx^2} e^{g(x)/\tau_s}|} dx$ and a constant $\zeta > 0$ only depending on the maximum of $\max_x (e^{\Phi(x)/\tau_s})$ and $\max_x (e^{g(x)/\tau_s})$ so that*

$$\|\Phi - g\|_{L^\infty([a, b])} > \frac{c}{\zeta} p^{-2} \quad (4)$$

205

for all nLIF neural networks Φ with p number of causal pieces and time constant τ_s .

206
207
208
209
210
211
212

The theorem provides a local measure of expressivity for SNNs, valid for high-dimensional inputs along any line. Moreover, it is valid even if the output of the nLIF network Φ has any discontinuous behaviour. Although the proof is for single-spike neurons, it can be extended to nLIF neurons that spike multiple times and have a simple reset mechanism (see Section A.3.4). Still, for clarity and tractability, we focus on the single-spike case in this work. It also has to be noted that having many pieces does not translate into the SNN generalising well, for which fewer pieces might be favourable.

213
214

3.2 ESTIMATING THE NUMBER OF CAUSAL PIECES

215

Since the number of causal pieces is a measure of the expressivity of nLIF neural networks, it is of substantial interest to estimate this number. As every causal piece is characterised by a unique causal

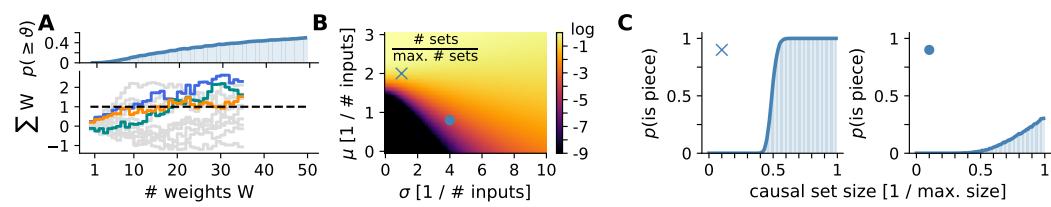


Figure 2: Estimating the number of causal pieces. (A) The probabilities p_k^q are obtained by counting how many trajectories (cumulative sum of weights) are above the threshold at step k . The top panel shows the corresponding values of p_k^q , where k is the number of weights. (B) Estimated number of pieces for weights sampled from normal distribution with different mean (y-axis) and standard deviation (x-axis). Colours are shown in log-scale. (C) p_k^q for two points in (B), denoted by markers.

subnetwork, one way is to calculate the total number of causal subnetworks that can be formed. For a single nLIF neuron with N total inputs, a naive upper bound for the number of causal pieces is therefore $2^N - 1$, which is the number of subsets that can be formed from a set of N elements (minus the empty set).

However, not all of these subsets will be valid causal sets, e.g., the sum of the respective weights might not exceed the threshold. We obtain an improved upper bound by calculating the probability that, given weights sampled from a static random distribution q , the sum of k weights exceeds the threshold, denoted by p_k^q . This is equivalent to the probability of a discrete random walk with continuous random step sizes (i.e. the weights) being above the threshold at step k (Fig. 2A). This criterion is sufficient, as we can freely choose the inputs: all inputs of neurons in the causal set spike at the same time, while neurons not part of the set spike after the output neuron (Section A.3.5). The number of causal pieces η^q is then upper bounded by:

$$\eta^q = \sum_{k=1}^N \binom{N}{k} p_k^q. \quad (5)$$

We show the improved upper bound of the number of sets as a fraction of $2^N - 1$ in Fig. 2B for weights randomly initialised from Gaussian distributions with different mean and variance (using a Monte Carlo approach, see Algorithm 1 in the appendix). For illustration purposes, p_k^q is shown for two different q in Fig. 2C. The obtained results highlight two points: (i) the highest number of causal pieces is reached only for distributions with non-zero mean – which is quite remarkable given that initialisation schemes in the literature, often borrowed from traditional deep learning, sample the weights from distributions with zero mean (Rossbroich et al., 2022; Bellec et al., 2018; Zenke & Vogels, 2021; Lee et al., 2016; Ding et al., 2022; Che et al., 2024). However, for extreme distributions, e.g., with very high mean, the estimated number of pieces is only achieved for data distributions that are very different from those found in practice, which will be discussed more thoroughly in the next section. (ii) With increasing variance, results tend to improve even if the mean is set non-optimally. In fact, one can show that in the limit of large variance, the number of pieces is lower bounded by an expression proportional to $N^{-3/2}$ (Theorem 2):

Theorem 2 (Number of pieces in limit) *Let q be a symmetric probability distribution with mean $\mu < \infty$ and variance σ^2 , and $W_j \sim q$ for $0 \leq j < N$. In the limit $\frac{\mu}{\sigma} \rightarrow 0$ and $\frac{\sigma^2}{\sigma} \rightarrow 0$, the number of causal pieces is lower bounded by*

$$\eta^q \geq \frac{2^N - 1}{2N \sqrt{\pi \cdot (N - \frac{2}{3})}}, \quad (6)$$

which is, quite remarkably, valid for all probability distributions. This is a direct consequence of the Sparre Andersen theorem for random walks (Andersen, 1954; Majumdar, 2010), see Section A.3.6.

In case of deep SNNs, the number of causal pieces is equivalent to the number of routes on which spikes can flow unhindered from the inputs to the outputs through the network (Definition 3). For nLIF networks with $\{N_1, \dots, N_\ell, 1\}$ neurons per layer, we find in Section A.3.7 that a naive upper bound for

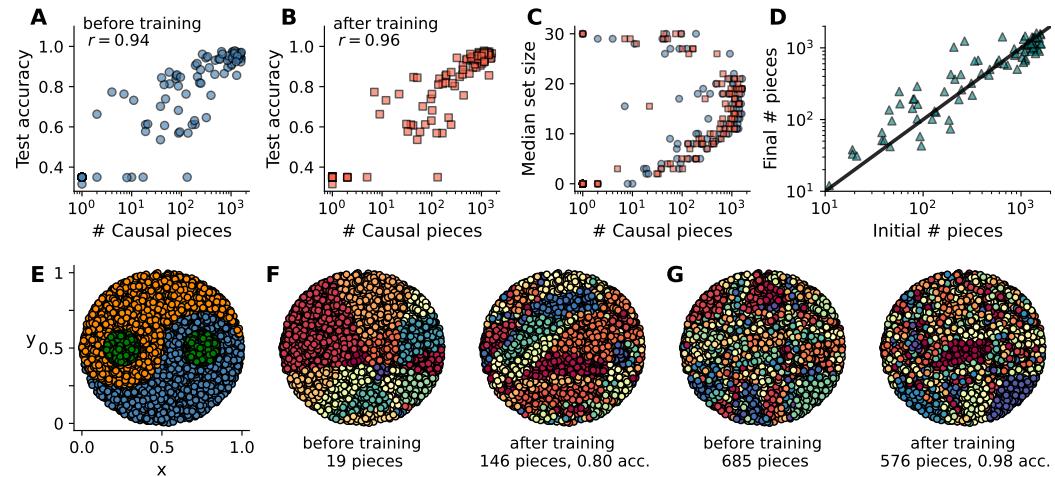
270 the number of pieces of the output neuron is $\eta^q \leq 2^{\prod_{i=1}^{\ell} N_i} \leq 2^{N^\ell}$, where $N = \max\{N_1, \dots, N_\ell, 1\}$.
 271 This is quite different from ReLU neural networks, which have an upper bound that scales only
 272 exponentially with the number of layers (Montufar et al., 2014) (or the total number of neurons
 273 (Hanin & Rolnick, 2019)). However, it remains to be seen whether networks with such a large number
 274 of pieces can be constructed, although Fig. 1C suggests quite dramatic increases in the number of
 275 causal pieces by adding even a single hidden layer.

277 3.3 THE PRACTICALLY RELEVANT NUMBER OF CAUSAL PIECES

279 In practice, even for single neurons we expect the number pieces to be below the improved bound
 280 we found, as most of these pieces will not be traversed when given realistic input data (i.e., not
 281 all inputs being identical). Moreover, the total number of pieces may be irrelevant for the learning
 282 problem at hand if a large fraction of the pieces occupy parts of the domain that are not populated by
 283 data. For example, Fig. 1C shows that the density of pieces can change dramatically throughout the
 284 domain. Thus, we propose an alternative approach to counting causal pieces which is more aligned to
 285 practical scenarios and less resource demanding: given a dataset, we count only the number of pieces
 286 that contain at least one data point. In the following, we demonstrate this for the Yin-Yang dataset
 287 (Kriener et al., 2022) using the standard scenario of 5000 random training samples, as well as by
 288 using a grid of inputs covering the whole input domain of the dataset (with 124980 samples in total).
 289 Yin-Yang is an ideal dataset for probing smaller neural networks, as it combines simplicity with a
 290 learning task that clearly separates linear and non-linear models. It also allows us to visualise causal
 291 pieces over the whole data domain, which is unfeasible for high-dimensional data. In the following,
 292 we only use this approach to count the number of causal pieces. An algorithm for counting causal
 293 pieces is provided in Section A.4.9.

294 3.4 THE NUMBER OF PIECES AT INITIALISATION CORRELATES WITH TRAINING SUCCESS

295 The initialisation scheme of parameters is crucial for training both ANNs and SNNs. Although for
 296 SNNs, schemes derived experimentally or adopted from ANNs have been successfully applied, a
 297 recent study highlighted the lack of a principled approach for identifying initialisation schemes that



316 Figure 3: Network initialisation strongly affects training success. **(A)** The logarithm of the number
 317 of pieces (here: of the output layer) at network initialisation strongly correlates with performance
 318 after training ($r = 0.94$). The correlation between pieces and accuracy is $r = 0.77$. **(B)** Same as (A), but with the number of pieces after training. For pieces vs. accuracy, we find $r = 0.81$.
 319 **(C)** Median causal set size depending on the number of causal pieces before (blue) and after (red)
 320 training. **(D)** Number of pieces before and after training. The diagonal indicates no change in pieces.
 321 **(E)** Illustration of the Yin-Yang dataset with three classes: the two halves and the dots. **(F)** Causal
 322 pieces (each piece is indicated by a different colour) of a single output neuron for a bad initialisation,
 323 evaluated using only training samples. **(G)** Same as (F), but for one of the best initialisations.

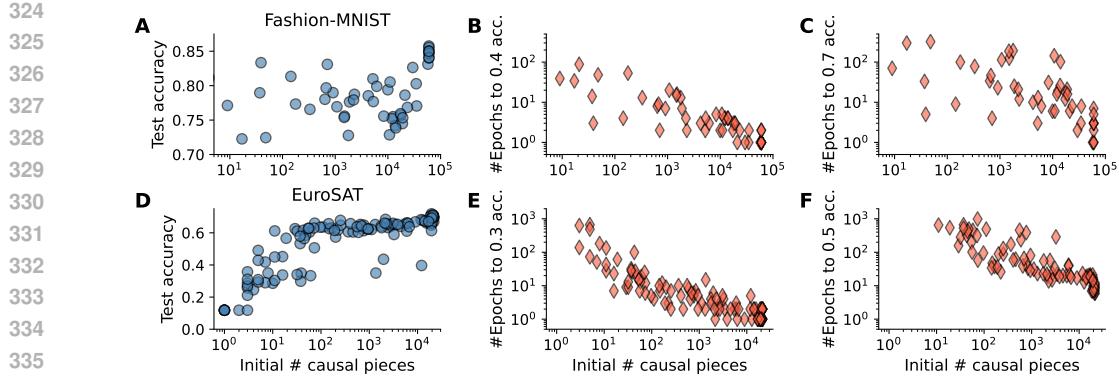


Figure 4: Experimental validation using Fashion-MNIST. **(A)** As in Fig. 3, the number of causal pieces the training data fall into at initialisation is correlated with the final test accuracy reached after training. For lower numbers of pieces, the final accuracy drops significantly. **(B)** Number of epochs required during training to reach a test accuracy of 40%, depending on the number of causal pieces the training data falls into at initialisation. **(C)** Same as B, but for a test accuracy of 70%. **(D-F)** Same as A-C, but for SNNs trained on the EuroSAT RGB dataset, and for 30% and 50% test accuracy. If a model did not reach the targeted accuracy level during training, no data points are shown in B-C and E-F.

facilitate the training of SNNs (Rossbroich et al., 2022). As a first application, we demonstrate that the number of causal pieces at initialisation, evaluated only using training samples, is a strong predictor of training success.

We trained 136 shallow nLIF networks with [4, 30, 3] neurons using exact error backpropagation on analytically calculated spike times, as introduced in Mostafa (2017) (although we do not use any weight regularisation). To guarantee networks with a large variety of causal pieces after initialisation, we sampled weights from a normal distribution with randomly sampled mean and variance (see Section A.4). As shown in Fig. 3A,B, both the number of causal pieces of the last layer before and after training (evaluated using only training samples) strongly correlate with the final accuracy achieved on the test split. For networks with a high number of pieces, the causal pieces feature causal sets with a median size around 10 – 20 elements (with 30 being the maximum), while networks with a low number of pieces have median set sizes that are either close to 0 or their maximum size. This is in agreement with Eq. (5), as the binomial coefficient has its maximum at $N/2$, while decreasing to 1 for $k = 0$ and $k = N$.

Interestingly, we find that it seems almost impossible to recover from a bad initialisation with low number of pieces through training (Fig. 3D). Networks with high number of causal pieces at initialisation will have a slightly reduced amount of pieces after training, while networks that start with a significantly lower number of pieces are not capable of reaching the number of pieces required for a high accuracy on the test set. Examples of the causal piece structure on the training data of the Yin-Yang dataset is shown for a single output neuron of a network achieving bad (Fig. 3F) and state-of-the-art performance (Fig. 3G) – clearly highlighting the difference in the number of causal pieces both before and after training.

A similar trend is observed for more complex datasets and larger networks as well, as shown in Fig. 4A for Fashion-MNIST. Here, we also see that the number of epochs required to reach a certain test accuracy is correlated with the number of causal pieces at initialisation, with SNNs that have many pieces learning much faster (Fig. 4B,C). In Fig. 4D-F, we show similar results for the EuroSAT RGB benchmark, a land cover classification task using Sentinel-2 satellite images.

Intuitively, a high number of pieces at initialisation means that the network is highly expressive and can more easily fit the training data. Moreover, it means that there are many different ways spikes can pass through the network, while a low number restricts the amount of routes – also making the collapse of pieces (i.e. no spiking) during training more severe. If an SNN starts with only a few pieces, the causal piece structure first has to be heavily restructured before proper learning can even happen, thus slowing down the training process. Hence, we argue that the number of causal pieces can be used as a measure for identifying good initialisation schemes for SNNs.

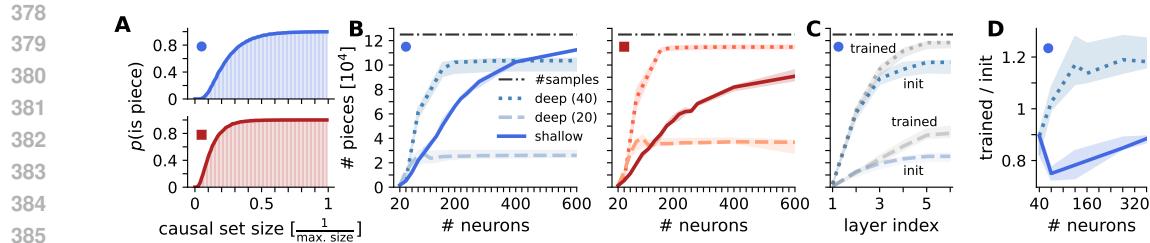


Figure 5: Width-and depth dependence of causal pieces. **(A)** p_k^q of the optimised (top, dot) normal, and (bottom, square) uniform initialisation. **(B)** Number of pieces for shallow and deep networks. The maximum number, which is the number of input samples used to evaluate the number of causal pieces, is shown as a dash-dotted line. **(C)** Number of pieces per layer in a single network, before and after training. **(D)** Increase in the total number of pieces for deep and shallow networks. Markers denote results that belong together. We show medians (lines) and quartiles (shaded areas).

3.5 INCREASING THE NUMBER OF PIECES

As seen in the previous subsection, a large number of pieces is crucial to successfully train SNNs. Therefore, it is a natural question to ask through which means this number can be increased. From the previous results, an obvious option is to optimise the weight initialisation to yield networks with many pieces. We investigate this for networks ([4, 100, 3] neurons) with weights initialised randomly from either a Gaussian or a uniform distribution, using a Yin-Yang dataset obtained from a 400×400 grid on the data domain. We chose a larger dataset here to properly probe the number of causal pieces. In case of a Gaussian distribution, the weights projecting into layer $\ell \in \mathbb{N}$, $W^{(\ell)} \in \mathbb{R}^{n_\ell \times n_{\ell-1}}$, are initialised by sampling from $\mathcal{N}(\alpha_0 \cdot n_{\ell-1}^{-\alpha_1}, [\alpha_2 \cdot n_{\ell-1}^{-\alpha_3}]^2)$ where n_ℓ is the number of neurons in layer ℓ . Similarly, in case of a uniform distribution, weights are sampled from $\mathcal{U}(-v_0 + v_1, v_0 + v_1)$ with $v_0 = \beta_0 \cdot n_{\ell-1}^{-\beta_1}$ and $v_1 = \beta_2 \cdot n_{\ell-1}^{-\beta_3}$. The parameters α_i and β_i ($i \in [0, 4]$) are found using a simple evolutionary algorithm that maximises the number of causal pieces (Section A.4.1). For this specific setup, we found $\alpha_0 = 1.69$, $\alpha_1 = 0.79$, $\alpha_2 = 1.13$, $\alpha_3 = 0.49$ and $\beta_0 = 1.85$, $\beta_1 = 0.39$, $\beta_2 = 1.02$, $\beta_3 = 0.54$. The corresponding probabilities p_k^q of these weight initialisations are shown in Fig. 5A. As for the single neuron case, the weight distributions feature non-zero means. We visualise the causal pieces for a single output neuron in Fig. 6.

Another option to adjust the number of pieces is to change the width and depth of the SNN, as shown in Fig. 5B,C. We present three scenarios: (line) a shallow network where the width is steadily increased by increments of 20 neurons, (dashed) a deep network, where in each increment an additional hidden layer with 20 neurons is added, and (dotted) the same as for dashed, but with 40 neurons per hidden layer. Results are shown for the two distributions found using evolutionary optimisation. For the shallow network, the number of pieces grows consistently with increased network width, although slower than for deep networks and with a saturation setting in for very wide networks. In case of deep networks, the number of pieces grows rapidly initially, but then stagnates to a constant number of causal pieces. The effect is more pronounced if the hidden layers are wider, with a much stronger increase and final number of causal pieces for the network with 40 neurons per layer. Different from the expected exponential increase, we rather see a logistic growth. In fact, fitting logistic curves of the form $\gamma_0 / (\gamma_1 + e^{-\gamma_2 N})$ with $\gamma_i \in \mathbb{R}$ and N the number of neurons, we get a median relative error of $4 \cdot 10^{-2}$ (shallow), $2 \cdot 10^{-2}$ (deep 20), and $2 \cdot 10^{-2}$ (deep 40) for the Gaussian initialisation, and $9 \cdot 10^{-2}$ (shallow), $2 \cdot 10^{-2}$ (deep 20), and $5 \cdot 10^{-3}$ (deep 40) for the uniform one. The saturation for (deep 20) might occur due to a diminishing effect of pieces being split by consecutive layers. For all other cases, saturation most likely occurs since we reach the maximum number of causal pieces that can be counted using the data samples.

In Fig. 5C, we show the number of pieces per layer for a network with 5 hidden layers. Similarly to how initially adding hidden layers increased the number of pieces drastically in Fig. 5B, the highest increase is seen in the first few layers, with diminishing returns in deeper layers. In contrast, if we compare the number of pieces per layer before and after training, we find a slight increase in the number of causal pieces for deep layers. If we just focus on the total number of pieces of the whole network, we find that shallow networks end up with less pieces than at initialisation, while deep

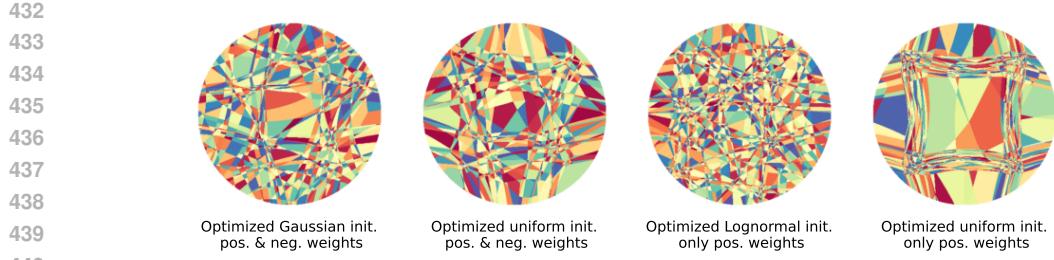


Figure 6: Causal pieces (coloured regions) of one of the output neurons for an nLIF neural network with $[4, 30, 3]$ neurons, using the initialisations obtained through evolutionary optimisation (Fig. 5 and Fig. 7). Causal pieces are evaluated using a 400×400 grid on the data domain.

networks end up with more (Fig. 5D). Most likely, this is because in a deep network, the number of pieces can be optimised by improving the misalignment of pieces between consecutive layers.

3.6 SPIKING NEURAL NETWORKS WITH EXCLUSIVELY POSITIVE WEIGHTS

Inspired by (Neuman et al., 2024), we study the case of SNNs with only excitatory neurons. In the mammalian neocortex, around 80% (Nieuwenhuys, 1994) of neurons are excitatory, i.e., their synapses only excite other neurons, which is equivalent to neurons having only positive outgoing weights in our nLIF neural networks. Although having only positive weights seems limiting at first, it comes with a significant advantage: controlling for continuity between linear pieces becomes much easier. In fact, the network is globally Lipschitz continuous as long as for each neuron, the input weights have a sum larger than the threshold – which can be easily enforced during training, e.g., through a regularisation term. The global Lipschitz constant of a neural network can be used to derive its covering number, which provides an upper bound for the network’s generalisation error (Petersen & Zech, 2024). As seen from Theorem 3 in Section A.2.1, this bound can be improved by choosing network parameters that produce sparsely populated causal sets (small $|\mathcal{C}|$) that strongly overstep the threshold (large δ). However, the contribution of the size of the causal sets in the Lipschitz constant is counter-balanced by the maximum weight \bar{W} , which has to be increased with decreasing set sizes to ensure that the sum of the weights exceeds the threshold.

We again optimise the parameters of two initialisation distributions, this time a lognormal and a uniform distribution – which both lead to networks with a similar number of pieces than for distributions with both positive and negative values. Their respective p_k^q probabilities are shown in Fig. 7A. Using these initialisation schemes, we train networks composed of an SNN with positive weights and a single linear readout layer (with positive and negative weights, see Fig. 7C) on three different benchmarks: Yin-Yang, MNIST, and EuroSAT RGB – reaching in fact similar performance levels than other fully-connected ANNs, and far outcompeting linear models (Fig. 7D). An illustration of the causal pieces is shown in Fig. 6.

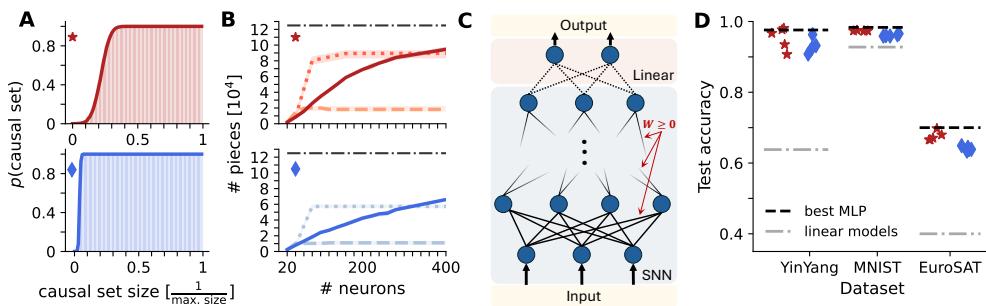


Figure 7: SNNs with only positive weights. (A) p_k^q for (top, star) lognormal, and (bottom, diamond) uniform initialisation. (B) Number of pieces for shallow and deep networks. Labels as in Fig. 5B. (C) Used network architecture. (D) Performance on benchmarks. Each training run was repeated 5 times for different random seeds. Markers denote results that belong together.

486 **4 DISCUSSION**

487

488

489 We demonstrated that causal pieces are a promising tool for analysing and improving SNNs. One of
 490 our key findings is that the number of causal pieces at initialisation strongly correlates with SNN
 491 training success, making it a useful measure for identifying suitable initialisations. Across all reported
 492 experiments, we found that initialising weights from distributions with non-zero mean yields SNNs
 493 with the highest number of causal pieces – a strategy also used in Göltz et al. (2021) for single-spike
 494 LIF neurons. Moreover, the case of neural networks randomly initialised with only positive weights is
 495 very similar to having weights initialised from unconstrained distributions with non-zero mean, with
 496 both producing a comparable amount of pieces. In the introduced random walk picture, this is not
 497 too surprising, as both cases are drift-dominated random walks with (close to) 0 chance of returning
 498 to the threshold after passing it. Remarkably, this translates into SNNs with only positive weights
 499 (and a linear decoder) reaching comparable performance levels on standard benchmarks, although
 500 additional studies are required to properly analyse the benefits and limitations of such networks.

501 While previous work has briefly explored linear pieces in simplified spike-response models (Singh
 502 et al., 2023), our work is the first to lay the foundation for elevating this concept to more realistic
 503 neuron models. The decomposition of the input and parameter space into causal pieces should,
 504 in principle, generalise to any spiking neuron model commonly used in practice, especially since
 505 only the connectome and spikes of an SNN are required to obtain its causal pieces. Although our
 506 experiments focused on single-spike coding, we show that key results – such as the approximation
 507 bound in Theorem 1 – extend to the multi-spike setting. For spiking neurons with leak, the definition
 508 of causal sets, and hence causal subnetworks and pieces, remains unchanged (cf. Göltz et al. (2021);
 509 Comsa et al. (2020)). Therefore, causal pieces can be readily evaluated for LIF neurons with single-
 510 spike coding. However, mathematical results will require adapted proof strategies. For special choices
 511 of time constants, the output spike time of current-based LIF neurons can be calculated analytically
 512 using the Lambert W function Göltz et al. (2021), through which our proofs are likely to generalise.
 513 Similarly, while this work focused on feedforward architectures, we anticipate that results can be
 514 extended to recurrent SNNs by unrolling them in time, treating them as deep feedforward neural
 515 networks. Most importantly, the presented results directly apply to other simple neuron models as
 516 well, such as the simplified spike-response model used in Stanojevic et al. (2024). Generally, as long
 517 as the output spike time of a spiking neuron can be rewritten as a linear function of its inputs (e.g.,
 518 through substitution of variables), the same proof strategy as presented in this work can be applied.

519 An important property of causal pieces, and neural networks in general, is their Lipschitz constant.
 520 The local Lipschitz constant of nLIF neural networks scales with the size of their causal sets, which
 521 is related to the number of synaptic interactions – a proxy measure for energy consumption in SNNs
 522 (Yin et al., 2021; Kucik & Meoni, 2021; Lunghi et al., 2024). Thus, the spike activity of SNNs might
 523 be directly tied to the learning task, i.e., the SNN requires more spikes for tasks with a high Lipschitz
 524 constant (and vice versa). Although we only briefly touched on Lipschitz constants in this work, we
 525 believe that this link might offer a novel data and model-dependent perspective on SNN design.

526 An even more important property of neural networks is their ability to generalise to previously unseen
 527 data. Causal pieces, like their counterparts *linear pieces* used for ANNs, are primarily a tool for
 528 assessing the approximation ability of neural networks though. Typical approaches for bounding
 529 the generalisation error of neural networks use covering numbers Neuman et al. (2024), which can
 530 only be calculated for neural networks that are globally Lipschitz continuous – a property that does
 531 not hold for SNNs in general. However, novel measures based on causal pieces, e.g., comparing
 532 the number of pieces the training and validation data fall into, might provide novel insights into the
 533 generalisation capabilities of SNNs.

534 To conclude, the presented results demonstrate that causal pieces are not only a powerful tool
 535 for increasing our understanding of SNNs, but also for guiding the design of improved network
 536 architectures and training methods. The causal piece framework naturally fits the discontinuous,
 537 event-based nature of SNNs. Most importantly, it enables a mathematically rigorous analysis of
 538 SNNs without requiring restrictive assumptions such as positive weights. We are confident that this
 539 approach will generalise to a wide range of neuron models and enable principled comparisons across
 540 spiking neuron models as well as with ReLU-based ANNs. Finally, we believe that the usefulness of
 541 causal pieces extends beyond technical applications and domains, potentially providing novel ways
 542 to study biological neurons by analysing their causal piece structure derived from experimental data.

540 ETHICS STATEMENT

541

542 All experiments were conducted using publicly available and widely accepted benchmark datasets.
 543 No personal or sensitive data were used, and there are no known ethical or bias concerns associated
 544 with the datasets.

545

546 REPRODUCIBILITY STATEMENT

547

548 Reproducibility of the results is ensured through several measures. All simulation experiments are
 549 described in detail in the appendix. A GitHub repository containing a Python package with the full
 550 implementation will be publicly released and cited in the final version. In addition, all experimental
 551 findings are supported by theoretical results, including formal mathematical proofs provided in the
 552 appendix.

553

554 REFERENCES

555 Erik Sparre Andersen. On the fluctuations of sums of random variables ii. *Mathematica Scandinavica*,
 556 pp. 195–223, 1954.

557

558 Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
 559 short-term memory and learning-to-learn in networks of spiking neurons. *Advances in neural*
 560 *information processing systems*, 31, 2018.

561

562 Kaiwei Che, Wei Fang, Zhengyu Ma, Li Yuan, Timothée Masquelier, and Yonghong Tian. Ettfs:
 563 An efficient training framework for time-to-first-spike neuron. *arXiv preprint arXiv:2410.23619*,
 564 2024.

565

566 Iulia M Comsa, Krzysztof Potempa, Luca Versari, Thomas Fischbacher, Andrea Gesmundo, and
 567 Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha synaptic function. In
 568 *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing*
 (ICASSP), pp. 8529–8533. IEEE, 2020.

569

570 Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vitali
 571 Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, et al. Sur-
 572 rogate gradients for analog neuromorphic computing. *Proceedings of the National Academy of*
 573 *Sciences*, 119(4):e2109194119, 2022.

574

575 Manon Dampfhofer, Thomas Mesquida, Alexandre Valentian, and Lorena Anghel. Are snns really
 576 more energy-efficient than anns? an in-depth hardware-aware study. *IEEE Transactions on*
 577 *Emerging Topics in Computational Intelligence*, 7(3):731–741, 2022. doi: 10.1109/TETCI.2022.
 3214509.

578

579 Simon Davidson and Steve B Furber. Comparison of artificial and spiking neural networks on digital
 580 hardware. *Frontiers in Neuroscience*, 15:651141, 2021.

581

582 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
 583 Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin,
 584 Andrew Lines, Ruokun Liu, Deepak Mathaikutty, Steven McCoy, Arnab Paul, Jonathan Tse,
 585 Guruguharanathan Venkataramanan, Yi-Hsin Weng, Andreas Wild, Yoonseok Yang, and Hong
 586 Wang. Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. *IEEE Micro*, 38(1):
 587 82–99, January 2018. ISSN 0272-1732, 1937-4143. doi: 10.1109/MM.2018.112130359. URL
 588 <https://ieeexplore.ieee.org/document/8259423/>.

589

590 Jianhao Ding, Jiyuan Zhang, Zhaofei Yu, and Tiejun Huang. Accelerating training of deep spiking
 591 neural networks with parameter initialization. 2022. URL [https://openreview.net/](https://openreview.net/forum?id=T8BnDXDTcFZ)
 592 forum?id=T8BnDXDTcFZ.

593

594 Charlotte Frenkel, David Bol, and Giacomo Indiveri. Bottom-up and top-down approaches for the
 595 design of neuromorphic processing systems: Tradeoffs and synergies between natural and artificial
 596 intelligence. *Proceedings of the IEEE*, 111(6):623–652, 2023.

594 Christopher L Frenzen, Tsutomu Sasao, and Jon T Butler. On the number of segments needed in
 595 a piecewise linear approximation. *Journal of Computational and Applied mathematics*, 234(2):
 596 437–446, 2010.

597 Julian Göltz, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser, Benjamin
 598 Cramer, Dominik Dold, Akos Ferenc Kungl, Walter Senn, Johannes Schemmel, et al. Fast and
 599 energy-efficient neuromorphic deep learning with first-spike times. *Nature machine intelligence*, 3
 600 (9):823–835, 2021.

601 Julian Göltz, Jimmy Weber, Laura Kriener, Sebastian Billaudelle, Peter Lake, Johannes Schemmel,
 602 Melika Payvand, and Mihai A Petrovici. Delgrad: exact event-based gradients for training delays
 603 and weights on spiking neuromorphic hardware. *Nat Commun.*, 16(1):8245, 2025.

604 Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In *International
 605 Conference on Machine Learning*, pp. 2596–2604. PMLR, 2019.

606 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 607 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
 608 Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

609 Dario Izzo, Alexander Hadjiivanov, Dominik Dold, Gabriele Meoni, and Emmanuel Blazquez.
 610 Neuromorphic computing and sensing in space. In *Artificial Intelligence for Space: AI4SPACE*, pp.
 611 107–159. CRC Press, 2022.

612 R. Johnson. Elementary central binomial coefficient estimates. Mathematics Stack Exchange (version:
 613 2023-10-23). URL <https://math.stackexchange.com/q/932509>.

614 Bum Jun Kim, Hyeyeon Choi, Hyeonah Jang, and Sang Woo Kim. On the ideal number of groups
 615 for isometric gradient propagation. *Neurocomputing*, 573:127217, 2024.

616 Christian Klos and Raoul-Martin Memmesheimer. Smooth exact gradient descent learning in spiking
 617 neural networks. *Physical Review Letters*, 134(2):027301, 2025.

618 Laura Kriener, Julian Göltz, and Mihai A Petrovici. The yin-yang dataset. In *Proceedings of the
 619 2022 Annual Neuro-Inspired Computational Elements Conference*, pp. 107–111, 2022.

620 Andrzej S Kucik and Gabriele Meoni. Investigating spiking neural networks for energy-efficient
 621 on-board ai applications. a case study in land cover and land use classification. In *Proceedings of
 622 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2020–2030, 2021.

623 Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database, 2010.

624 Jun Haeng Lee, Tobi Delbrück, and Michael Pfeiffer. Training deep spiking neural networks using
 625 backpropagation. *Frontiers in neuroscience*, 10:508, 2016.

626 P Lunghi, S Silvestrini, G Meoni, D Dold, A Hadjiivanov, D Izzo, et al. Investigation of low-energy
 627 spiking neural networks based on temporal coding for scene classification. In *75th International
 628 Astronautical Congress (IAC 2024)*, pp. 1–13, 2024.

629 Wolfgang Maass. On the computational complexity of networks of spiking neurons. *Advances in
 630 neural information processing systems*, 7, 1994.

631 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.
 632 *Neural networks*, 10(9):1659–1671, 1997.

633 Wolfgang Maass and Michael Schmitt. On the complexity of learning for spiking neurons with
 634 temporal coding. *Information and Computation*, 153(1):26–46, 1999. doi: 10.1006/inco.1999.2806.

635 Satya N Majumdar. Universal first-passage properties of discrete-time random walks and lévy flights
 636 on a line: Statistics of the global maximum and records. *Physica A: Statistical Mechanics and its
 637 Applications*, 389(20):4299–4316, 2010.

638 Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear
 639 regions of deep neural networks. *Advances in neural information processing systems*, 27, 2014.

648 Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks. *IEEE*
 649 *transactions on neural networks and learning systems*, 29(7):3227–3235, 2017.
 650

651 Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
 652 neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
 653 *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.

654 A Martina Neuman, Dominik Dold, and Philipp Christian Petersen. Stable learning using spiking
 655 neural networks equipped with affine encoders and decoders. *arXiv preprint arXiv:2404.04549*,
 656 2024.
 657

658 Rudolf Nieuwenhuys. The neocortex: an overview of its evolutionary development, structural
 659 organization and synaptology. *Anatomy and embryology*, 190(4):307–337, 1994.

660 Garrick Orchard, E Paxton Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit Bam Shrestha,
 661 Friedrich T Sommer, and Mike Davies. Efficient neuromorphic signal processing with loih 2. In
 662 *2021 IEEE Workshop on Signal Processing Systems (SiPS)*, pp. 254–259. IEEE, 2021.
 663

664 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint*
 665 *arXiv:1912.01703*, 2019.

666 Philipp Petersen and Jakob Zech. Mathematical theory of deep learning. *arXiv preprint*
 667 *arXiv:2407.18384*, 2024.

668 Julian Rossbroich, Julia Gygax, and Friedemann Zenke. Fluctuation-driven initialization for spiking
 669 neural network training. *Neuromorphic Computing and Engineering*, 2(4):044016, 2022.
 670

671 Johann Schumann. Radiation Tolerance and Mitigation for Neuromorphic Processors. Technical re-
 672 port, January 2022. URL <https://ntrs.nasa.gov/citations/20220013182>. NTRS
 673 Author Affiliations: KBR (United States) NTRS Document ID: 20220013182 NTRS Research
 674 Center: Ames Research Center (ARC).
 675

676 Walter Senn, Dominik Dold, Akos F Kungl, Benjamin Ellenberger, Jakob Jordan, Yoshua Bengio,
 677 João Sacramento, and Mihai A Petrovici. A neuronal least-action principle for real-time learning
 678 in cortical circuits. *ELife*, 12:RP89674, 2024.

679 Manjot Singh, Adalbert Fono, and Gitta Kutyniok. Expressivity of spiking neural networks through
 680 the spike response model. In *UniReps: the First Workshop on Unifying Representations in Neural*
 681 *Models*, 2023.

682 Philipp Spilger, Elias Arnold, Luca Blessing, Christian Mauch, Christian Pehle, Eric Müller, and
 683 Johannes Schemmel. hxtorch. snn: Machine-learning-inspired spiking neural network modeling
 684 on brainscales-2. In *Proceedings of the 2023 Annual Neuro-Inspired Computational Elements*
 685 *Conference*, pp. 57–62, 2023.

686

687 Ana Stanojevic, Stanisław Woźniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
 688 Wulfram Gerstner. An exact mapping from relu networks to spiking neural networks. *Neural*
 689 *Networks*, 168:74–88, 2023.

690

691 Ana Stanojevic, Stanisław Woźniak, Guillaume Bellec, Giovanni Cherubini, Angeliki Pantazi, and
 692 Wulfram Gerstner. High-performance deep spiking neural networks with 0.3 spikes per neuron.
 693 *Nature Communications*, 15(1):6793, 2024.

694

695 Matus Telgarsky. Benefits of depth in neural networks. In *Conference on learning theory*, pp.
 696 1517–1539. PMLR, 2016. doi: 10.48550/arXiv.1602.04485.

697 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
 698 machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.

699

700 Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classification
 701 with adaptive spiking recurrent neural networks. *Nature Machine Intelligence*, 3(10):905–913,
 2021.

702 Anthony M Zador and Barak A Pearlmutter. Vc dimension of an integrate-and-fire neuron model. In
 703 *Proceedings of the ninth annual conference on Computational learning theory*, pp. 10–18, 1996.
 704 doi: 10.1145/238061.238064.

705 Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning for
 706 instilling complex function in spiking neural networks. *Neural computation*, 33(4):899–925, 2021.

709 A APPENDIX

710 A.1 METHODS

713 A.1.1 RELATIONSHIP BETWEEN NLIF AND LIF NEURON MODELS

715 The current-based LIF neuron model with exponential synaptic kernel is given by

$$716 \frac{d}{dt}u_i^{(\ell)}(t) = \frac{1}{\tau_m}(u_{\text{rest}} - u_i^{(\ell)}(t)) + \frac{1}{\tau_s} \sum_j W_{ij}^{(\ell)} \Theta(t - t_j^{(\ell-1)}) \exp\left(-\frac{t - t_j^{(\ell-1)}}{\tau_s}\right), \quad (7)$$

719 where $u_i^{(\ell)}(t) \in \mathbb{R}$ is the membrane potential of neuron i in layer ℓ at time $t \in \mathbb{R}$, $W_{ij}^{(\ell)} \in \mathbb{R}$ is the
 720 synaptic weight connecting neuron j of layer $\ell - 1$ to neuron i of layer ℓ , $t_j^{(\ell-1)}$ is the spike time
 721 of neuron j in layer $\ell - 1$, $\tau_m \in \mathbb{R}^+$ and $\tau_s \in \mathbb{R}^+$ are the membrane and synaptic integration time
 722 constants, $\Theta(\cdot)$ is the Heaviside function, and $u_{\text{rest}} \in \mathbb{R}$ is the rest value of the membrane potential.

724 In the special case $\tau_m \gg \tau_s$, this simplifies to

$$726 \frac{d}{dt}u_i^{(\ell)}(t) = \frac{1}{\tau_s} \sum_j W_{ij}^{(\ell)} \Theta(t - t_j^{(\ell-1)}) \exp\left(-\frac{t - t_j^{(\ell-1)}}{\tau_s}\right), \quad (8)$$

729 which can be solved for $u_i^{(\ell)}(t)$ by integration:

$$731 u_i^{(\ell)}(t) = \int_{-\infty}^t \frac{d}{dt'}u_i^{(\ell)}(t') dt' = \sum_{t_j^{(\ell-1)} \leq t} W_{ij}^{(\ell)} \left[1 - \exp\left(-\frac{t - t_j^{(\ell-1)}}{\tau_s}\right) \right]. \quad (9)$$

734 A.1.2 CALCULATING CAUSAL SETS

736 To find the causal set, we use the following approach: In case of an nLIF neuron that has $N_{\ell-1}$ input
 737 spike times $t_j^{(\ell-1)}$ with weights $W_{ij}^{(\ell)}$, we first define $\mathcal{K} = \{j_1, j_2, \dots, j_{N_{\ell-1}}\}$ with $t_{j_1} \leq t_{j_2} \leq \dots \leq$
 738 $t_{j_{N_{\ell-1}}}$. Furthermore, we set $\mathcal{K}_k = \{j_1, \dots, j_k\}$ for $k > 0$. The causal set is then given by the subset
 739 \mathcal{K}_m with the smallest index m satisfying

$$741 \mathbf{1.} \sum_{j \in \mathcal{K}_m} W_{ij}^{(\ell)} \geq \vartheta \quad \mathbf{and 2.} \quad \mathcal{K}_m = \{j : t_j^{(\ell-1)} \leq t_i^{(\ell)}\}, t_i^{(\ell)} = \tau_s \ln \left(\frac{\sum_{j \in \mathcal{K}_m} W_{ij}^{(\ell)} e^{t_j^{(\ell-1)} / \tau_s}}{\sum_{j \in \mathcal{K}_m} W_{ij}^{(\ell)} - \vartheta} \right).$$

744 These two conditions are summarised as follows: (1) the inputs have to be strong enough to drive
 745 the membrane potential across the threshold, and (2) all inputs that did not cause the spike at time
 746 $t_i^{(\ell)}$ occur after it. The criterion of selecting the set with minimal m ensures that we find the earliest
 747 possible output spike time. If no such set is found, the causal set is defined as the empty set, reflecting
 748 the fact that none of the inputs caused the neuron to spike. In simulations, we set the output spike time
 749 to a sufficiently large value such that it does not affect any other neuron in the network, emulating
 750 spiking at infinity.

751 A.2 ADDITIONAL THEOREMS

753 A.2.1 LIPSCHITZ CONTINUITY

755 To ease the notation, we drop the nested list notation of causal subnetworks in the following. We first
 state the result for a single nLIF neuron:

756 **Theorem 3 (Lipschitz continuous)** *Let $N_0 \in \mathbb{N}$, $j \in [1, N_0]$, and $\mathcal{C}_1^{(1)} \subset [1, \dots, N_0]$. Moreover,*
 757 *let $a, b \in \mathbb{P}[\mathcal{C}_1^{(1)}]$ be the input to a single nLIF neuron with N_0 input times. Then the output spike*
 758 *time (Eq. (2)) is Lipschitz continuous with respect to input times and weights $W_{1j}^1 \in \mathbb{R}$, $j \in [1, N_0]$:*
 759

$$760 \quad 761 \quad \left\| t_1^{(1)}(a) - t_1^{(1)}(b) \right\|_{L^\infty(\mathbb{P}[\mathcal{C}_1^{(1)}])} \leq 2|\mathcal{C}_1^{(1)}| \max \left(\frac{\bar{W}}{\delta}, \frac{\tau_s}{\delta} \right) \|a - b\|_{L^\infty(\mathbb{P}[\mathcal{C}_1^{(1)}])}, \quad (10)$$

763 where $|\mathcal{C}|$ denotes the cardinality of \mathcal{C} , $\|W_{1j}^{(1)}\| \leq \bar{W}$, $\delta < \sum_{j \in \mathcal{C}_1^{(1)}} W_{1j}^{(1)} - \vartheta$.
 764

765 The proof is given in Sections A.3.1 and A.3.2. In addition, the output spike time may change
 766 continuously, discontinuously, or become undefined when transitioning between causal pieces.
 767 Which of these occurs can be determined by inspecting the causal set: if all added or removed input
 768 neurons have identical spike times, the output spike time changes continuously; otherwise, it changes
 769 discontinuously. If the causal set would reach maximum size, but all inputs together do not reach the
 770 threshold, the output spike disappears. The corresponding result for entire networks follows from the
 771 fact that the composition of Lipschitz-continuous functions is itself Lipschitz continuous.
 772

773 A.3 MATHEMATICAL PROOFS

774 A.3.1 PROOF OF CONTINUITY AND DIFFERENTIABILITY

776 To improve readability, we drop the layer and output neuron indices in the following. First note that
 777 within a causal piece, the output spike time Eq. (2) is a composition of continuous and differentiable
 778 functions, and hence itself continuous and differentiable with respect to input spike times and weights.
 779

780 In the following, we prove under which conditions the output spike time is a continuous function
 781 of input spike times and weights when crossing between neighbouring causal pieces. First, let \mathcal{C} be
 782 the causal set of an nLIF neuron with input spike times $[t_0, \dots, t_{N-1}]$, weights $[W_0, \dots, W_{N-1}]$, and
 783 output spike time

$$784 \quad t = \tau_s \ln(T) = \tau_s \ln \left(\frac{\sum_{j \in \mathcal{C}} W_j e^{t_j / \tau_s}}{\sum_{j \in \mathcal{C}} W_j - \vartheta} \right). \quad (11)$$

785 Let \mathcal{C}' be the causal set of a neighbouring causal piece, with spike times $[\tilde{t}_0, \dots, \tilde{t}_{N-1}, \tilde{t}_N]$, weights
 786 $[\tilde{W}_0, \dots, \tilde{W}_{N-1}, \tilde{W}_N]$, and output spike time \tilde{t} :

$$787 \quad \tilde{t} = \tau_s \ln(\tilde{T}) = \tau_s \ln \left(\frac{\sum_{j \in \mathcal{C}'} \tilde{W}_j e^{\tilde{t}_j / \tau_s} + \tilde{W}_N e^{\tilde{t}_N / \tau_s}}{\sum_{j \in \mathcal{C}'} \tilde{W}_j + \tilde{W}_N - \vartheta} \right). \quad (12)$$

788 We assume that the output spike time of \mathcal{C} is along the border between the two causal pieces, meaning
 789 that $t = t_N$. Since output spike times can be shifted by Δ by shifting all input spike times by Δ ,
 790 without loss of generality, we assume that $\forall x \in \{t, \tilde{t}, t_0, \dots, t_N, \tilde{t}_0, \dots, \tilde{t}_N\}$, $x \geq 0$. All spike times
 791 are finite, thus $\exists t_{\max}$ with $0 < t_{\max} < \infty$ such that $\forall x \in \{t, \tilde{t}, t_0, \dots, t_N, \tilde{t}_0, \dots, \tilde{t}_N\}$, $x \leq t_{\max}$.
 792 Similarly, $\exists \bar{W} > 0$ such that $\forall \omega \in \{W_0, \dots, W_N, \tilde{W}_0, \dots, \tilde{W}_N\}$, $\|\omega\| \leq \bar{W}$. Furthermore, $\exists \epsilon_\vartheta$ with
 793 $0 < \epsilon_\vartheta < \infty$ such that $\epsilon_\vartheta < \sum_{j \in \mathcal{C}} \tilde{W}_j + \tilde{W}_N - \vartheta$. Lastly, we highlight the following identity:

$$794 \quad T = T \cdot \frac{\sum_{j \in \mathcal{C}} W_j + M - \vartheta}{\sum_{j \in \mathcal{C}} W_j + M - \vartheta} \quad (13)$$

$$801 \quad = T \cdot \frac{\sum_{j \in \mathcal{C}} W_j - \vartheta}{\sum_{j \in \mathcal{C}} W_j + M - \vartheta} + \frac{M \cdot T}{\sum_{j \in \mathcal{C}} W_j + M - \vartheta} \quad (14)$$

$$804 \quad = \frac{\sum_{j \in \mathcal{C}} W_j e^{t_j / \tau_s}}{\sum_{j \in \mathcal{C}} W_j - \vartheta} \cdot \frac{\sum_{j \in \mathcal{C}} W_j - \vartheta}{\sum_{j \in \mathcal{C}} W_j + M - \vartheta} + \frac{M \cdot T}{\sum_{j \in \mathcal{C}} W_j + M - \vartheta} \quad (15)$$

$$807 \quad = \frac{\sum_{j \in \mathcal{C}} W_j e^{t_j / \tau_s} + M \cdot e^{t_N / \tau_s}}{\sum_{j \in \mathcal{C}} W_j + M - \vartheta} \quad (16)$$

809 for all $M \in \mathbb{R}$ with $\sum_{j \in \mathcal{C}} W_j + M - \vartheta > 0$.

We first prove continuity for the argument of the logarithm by showing that $\forall \epsilon > 0, \exists \delta > 0$ such that $\|t_j - \tilde{t}_j\| < \delta$ with $j \in [0, N]$, $\|W_j - \tilde{W}_j\| < \delta$ with $j \in [0, N - 1]$ ¹, and $\|T - \tilde{T}\| < \epsilon$. Using Eq. (16), we have:

$$\|T - \tilde{T}\| \quad (17)$$

$$= \left\| \frac{\sum_{j \in \mathcal{C}} W_j e^{t_j / \tau_s} + \sum_{j \in \mathcal{C}} \tilde{W}_j e^{t_N / \tau_s} + \tilde{W}_N e^{t_N / \tau_s} - \sum_{j \in \mathcal{C}} W_j e^{t_N / \tau_s}}{\sum_{j \in \mathcal{C}} \tilde{W}_j + \tilde{W}_N - \vartheta} \right. \\ \left. - \frac{\sum_{j \in \mathcal{C}} \tilde{W}_j e^{\tilde{t}_j / \tau_s} - \tilde{W}_N e^{\tilde{t}_N / \tau_s}}{\sum_{j \in \mathcal{C}} \tilde{W}_j + \tilde{W}_N - \vartheta} \right\| \quad (18)$$

$$\leq \frac{1}{\epsilon_\vartheta} \left(\|\tilde{W}_N\| \cdot \|e^{\tilde{t}_N / \tau_s} - e^{t_N / \tau_s}\| + \sum_{j \in \mathcal{C}} \|W_j\| \cdot \|e^{t_j / \tau_s} - e^{\tilde{t}_j / \tau_s}\| \right. \\ \left. + \|W_j - \tilde{W}_j\| \cdot \|e^{\tilde{t}_j / \tau_s} - e^{t_N / \tau_s}\| \right). \quad (19)$$

In the first step, we used Eq. (16) with $M = \sum_{j \in \mathcal{C}} (\tilde{W}_j - W_j) + \tilde{W}_N$, which leads to both T and \tilde{T} having the same denominator. Furthermore, we added the term $\sum_{j \in \mathcal{C}} W_j e^{\tilde{t}_j / \tau_s} - \sum_{j \in \mathcal{C}} W_j e^{\tilde{t}_j / \tau_s}$ in the numerator. In the next step, we used $\frac{1}{\epsilon_\vartheta} \geq \frac{1}{\sum_{j \in \mathcal{C}} \tilde{W}_j + \tilde{W}_N - \vartheta}$, and applied the triangle inequality several times. Using $\|\tilde{W}_j\| \leq \bar{W} \forall j \in [0, N]$, $\|e^{\tilde{t}_j / \tau_s} - e^{t_N / \tau_s}\| \leq \|1 - C\|$ with $C = e^{t_{\max} / \tau_s}$, and the mean value theorem for the exponential function, we then obtain:

$$\|T - \tilde{T}\| \leq \frac{C}{\epsilon_\vartheta \tau_s} \left(\sum_{j \in \mathcal{C}'} \bar{W} \|\tilde{t}_j - t_j\| + \sum_{j \in \mathcal{C}} \frac{\tau_s \|1 - C\|}{C} \|\tilde{W}_j - W_j\| \right). \quad (20)$$

Choosing $\|\tilde{W}_j - W_j\| < \delta_W$ with $\delta_W = \frac{\epsilon_\vartheta}{2N\|1-C\|} \cdot \epsilon$ and $\|\tilde{t}_j - t_j\| < \delta_t$ with $\delta_t = \frac{\epsilon_\vartheta \tau_s}{C \cdot \bar{W} \cdot 2(N+1)} \cdot \epsilon$, we arrive at

$$\|T - \tilde{T}\| < \epsilon. \quad (21)$$

The proof concludes by setting $\delta = \min(\delta_W, \delta_t)$. Continuity of the spike times then follows from the fact that the concatenation of continuous functions is again a continuous function.

Here we assumed that the neighbouring causal set \mathcal{C}' has the property $\sum_{j \in \mathcal{C}'} \tilde{W}_j - \vartheta > 0$. If this is not the case, then at least one more input neuron with spike time $t^* = \min_x \{t_x \mid x \in \mathcal{K} \setminus \mathcal{C}'\}$ (with $t^* > t$) has to be added to the causal set until the condition holds again. Since the new output spike time has to be larger than t^* , its value jumps and is therefore not continuous when passing between causal pieces.

A.3.2 LIPSCHITZ CONSTANTS

To improve readability, we drop the layer and output neuron indices in the following. Within a causal piece \mathcal{C} , the causal set does not change and the output spike time t^* (Eq. (2)) is a composition of continuous and differentiable functions, and is therefore also continuous and differentiable. Hence, we estimate the Lipschitz constant by bounding the first derivative of the output spike time t^* .

Let \mathcal{C} be a causal set with corresponding input spike times t_0, \dots, t_{N-1} for $N \in \mathbb{N}$, weights W_0, \dots, W_{N-1} , and output spike time t^* . As in the previous subsection, we assume an upper bound for the absolute value of the weights, i.e., $\exists \bar{W} > 0$ such that $\forall \omega \in \{W_0, \dots, W_{N-1}\}$, $\|x\| \leq \bar{W}$. Moreover, we assume that all spike times are larger or equal to 0, and we choose a $\delta > 0$ such that $\delta \leq \sum_j W_j - \vartheta$.

¹Note that W_N and \tilde{W}_N cannot cause a switch between the two causal sets.

864 We first calculate the Lipschitz constant with respect to input spike times:
 865

$$866 \quad \left\| \frac{\partial t^*}{\partial t_k} \right\| = \left\| \frac{\partial}{\partial t_k} \tau_s \ln \left(\frac{\sum_{j \in \mathcal{C}} W_j e^{t_j / \tau_s}}{\sum_{j \in \mathcal{C}} W_j - \vartheta} \right) \right\| \quad (22)$$

$$869 \quad = e^{-t^* / \tau_s} \left\| \frac{W_k e^{t_k / \tau_s}}{\sum_j W_j - \vartheta} \right\| \quad (23)$$

$$872 \quad \leq \frac{\bar{W}}{\delta}, \quad (24)$$

874 where we used that $e^{(t_k - t^*) / \tau_s} \leq 1$ since $t^* \geq t_k$ by definition.
 875

876 For weights, we get:
 877

$$878 \quad \left\| \frac{\partial t^*}{\partial W_k} \right\| = \left\| \frac{\partial}{\partial W_k} \tau_s \ln \left(\frac{\sum_{j \in \mathcal{C}} W_j e^{t_j / \tau_s}}{\sum_{j \in \mathcal{C}} W_j - \vartheta} \right) \right\| \quad (25)$$

$$881 \quad = \tau_s e^{-t^* / \tau_s} \left\| \frac{e^{t_k / \tau_s}}{\sum_j W_j - \vartheta} - \frac{\sum_{j \in \mathcal{C}} W_j e^{t_j / \tau_s}}{(\sum_j W_j - \vartheta)^2} \right\| \quad (26)$$

$$884 \quad = \tau_s e^{-t^* / \tau_s} \left\| \frac{e^{t_k / \tau_s} - e^{t^* / \tau_s}}{\sum_j W_j - \vartheta} \right\| \quad (27)$$

$$887 \quad = \tau_s \left\| \frac{e^{(t_k - t^*) / \tau_s} - 1}{\sum_j W_j - \vartheta} \right\| \quad (28)$$

$$890 \quad \leq \frac{\tau_s}{\delta}, \quad (29)$$

892 where we used that $0 \leq e^{(t_k - t^*) / \tau_s} \leq 1$ by definition, and hence $\|e^{(t_k - t^*) / \tau_s} - 1\| \leq 1$.
 893

894 Thus, for a causal piece $\mathbb{P}_{\mathcal{C}} \subseteq \mathbb{R}^{d \times d}$, where $d \in \mathbb{N}$ is the dimension of the input, and $a, b \in \mathbb{P}_{\mathcal{C}}$ we
 895 have:
 896

$$895 \quad \|t(a) - t(b)\|_{L^\infty(\mathbb{P}_{\mathcal{C}})} \leq 2|\mathcal{C}| \max \left(\frac{\bar{W}}{\delta}, \frac{\tau_s}{\delta} \right) \|a - b\|_{L^\infty(\mathbb{P}_{\mathcal{C}})} \quad (30)$$

897 where $L_{\mathbb{P}_{\mathcal{C}}} = 2|\mathcal{C}| \max \left(\frac{\bar{W}}{\delta}, \frac{\tau_s}{\delta} \right)$ is the Lipschitz constant of causal piece $\mathbb{P}_{\mathcal{C}}$ with causal set \mathcal{C} , and
 898 $|\mathcal{C}|$ is the number of elements in the causal set.
 899

900 A.3.3 PROOF OF THEOREM 1

903 To improve readability, we drop the layer indices in the following. First, we recapitulate the following
 904 theorem which holds, for example, for ReLU neural networks (Frenzen et al., 2010) (Theorem 2)²:

905 **Theorem 4** *Let $-\infty < a < b < \infty$, $f \in C^3([a, b])$ and f is not affine. Then there exists a constant
 906 $c > 0$ that only depends on $\int_a^b \sqrt{|f''(x)|} dx$ so that*

$$908 \quad \|\psi - f\|_{L^\infty([a, b])} > c \cdot p^{-2} \quad (31)$$

910 for all piecewise linear ψ with $p \in \mathbb{N}$ number of linear pieces.
 911

912 Eq. (2) can be written as a piecewise linear function by substituting $T_i = e^{t_i / \tau_s}$ (Mostafa, 2017),
 913 leading to:
 914

$$915 \quad T_i = \frac{1}{\sum_{j \in \mathcal{C}_i} W_{ij} - \vartheta} \cdot \sum_{k \in \mathcal{C}_i} W_{ik} T_k. \quad (32)$$

917 ²See also Petersen & Zech (2024), Theorem 6.2

918 An nLIF neural network $\Psi(x)$ using this substitution is a composition of piecewise linear functions,
 919 and hence also itself a piecewise linear function. In this case, Theorem 4 applies to Ψ . The output of
 920 an equivalent nLIF network Φ without substitution is given by $\Phi = \tau_s \ln \Psi$, i.e., we only apply the
 921 logarithm to the final output and scale by τ_s . This can be used to derive Theorem 1:
 922

$$923 \|\Phi - g\|_{L^\infty([a,b])} = \tau_s \left\| \ln \Psi - \ln \left(e^{g/\tau_s} \right) \right\|_{L^\infty([a,b])}, \quad (33)$$

$$925 \geq \frac{\tau_s}{\zeta} \|\Psi - e^{g/\tau_s}\|_{L^\infty([a,b])}, \quad \text{with } \zeta = \max \left[\max_x(\Psi(x)), \max_x(e^{g(x)/\tau_s}) \right], \quad (34)$$

$$928 > \frac{c}{\zeta} p^{-2}, \quad \text{with } c > 0 \text{ depending only on } \tau_s \int_a^b \sqrt{\left| \frac{d^2}{dx^2} e^{g(x)/\tau_s} \right|} dx, \quad (35)$$

932 where we applied the mean value theorem to arrive at Eq. (34) (i.e., we apply the mean value theorem
 933 to get rid of the logarithms) and Theorem 4 to arrive at Eq. (35). For the latter, we used the fact that if
 934 $g \in C^3([a, b])$ so that g is not affine, then $e^{g/\tau_s} \in C^3([a, b])$ is also not affine, allowing us to apply
 935 Theorem 4 using $f = e^{g/\tau_s}$. Furthermore, we note that Φ and Ψ have the same number of causal
 936 pieces.

937 A.3.4 MULTIPLE-SPIKE CASE

939 We assume that after spiking, the membrane potential of the nLIF neuron is reset to its initial potential
 940 (here: $u_0 = 0$) and its dynamics continued. This way, the nLIF neuron can spike multiple times.
 941

942 In this case, Theorem 1 can be generalised by showing that a multi-spike nLIF neuron can be
 943 represented by several single-spike nLIF neurons, one per output spike. Consequently, a network
 944 of multi-spike nLIF neurons can be mapped to a network of single-spike nLIF neurons, to which
 945 Theorem 1 can be applied. Thus, the theorem also applies to the multi-spike nLIF network.
 946

947 We continue by showing how to represent a multi-spike nLIF neuron by several single-spike nLIF
 948 neurons. Assume a multi-spike nLIF neuron that spikes twice: at times t_0 and t_1 . Moreover, let this
 949 neuron be part of a network, denoting its real-valued input weights by W_{in} and its output weights by
 W_{out} . We can then replace this neuron by two single-spike nLIF neurons in the following way:

- 950 1. Add a single-spike nLIF neuron with initial potential $u_0 = 0$, connected to the same neurons
 951 as the multi-spike one via W_{in} and W_{out} . This neuron fires at t_0 , remaining silent thereafter.
 952
- 953 2. Add another single-spike nLIF neuron with initial potential $u_0 = -\vartheta$. At time t_0 , this
 954 neuron's membrane potential will be at 0, like the multi-spike neuron right after the reset.
 955 Consequently, the single-spike neuron will spike at time t_1 .
 956

957 If the multi-spike neuron spikes n times, we can replace it by n single-spike neurons with decreasing
 958 initial potentials $u_j(t=0) = -j \cdot \vartheta$, $j \in [0, n-1]$.
 959

959 A.3.5 RANDOM WALKS

960 We drop the layer and output neuron index notation used in the main text to clear up the notation.
 961 Assume we have a single neuron with N_0 inputs. Let $\mathcal{K} = \{j_1, \dots, j_K\} \subseteq [1, N_0]$ with $1 \leq K \leq N_0$,
 962 let t_j be the input times and $W_j \in \mathbb{R}$ the corresponding weights, with $j \in [1, N_0]$. We denote by p_k^q
 963 the probability that the subset \mathcal{K} is a causal set if weights $W_j \sim q$ are sampled from a distribution q .
 964

965 For \mathcal{K} to be a causal set, we have to check the two conditions mentioned in Section 2. The first
 966 condition is satisfied if

$$967 \sum_{i \in \mathcal{K}} W_i \geq \vartheta. \quad (36)$$

968 Assuming the weights are sampled from a random distribution, this can be viewed as a random walk
 969 with discrete steps and randomly sampled, continuous step sizes. The position of the random walk at
 970 step k is given by $S_k = \sum_{i=1}^k W_i$. In this framework, the first condition becomes the question of
 971 whether the random walk is above or equal to the threshold at step K , i.e., $S_K \geq \vartheta$.

972 The second condition – only spike times belonging to the causal set appearing before the output spike
 973 – can always be achieved by choosing inputs the following way (this does not apply to deep networks):
 974

- 975 1. Set $t_j = c$ for $c \in \mathbb{R}$ and $j \in \{j_\ell, \dots, j_K\}$.
- 976 2. Since condition 1 is satisfied, use Eq. (2) to calculate the output spike time t with \mathcal{K} as the
 977 causal set.
- 978 3. Set $t_j > t$ for $j \in \{j_\ell, \dots, j_K\}$.

981 This way, any subset that suffices the first condition (sum of weights above threshold) is a valid causal
 982 set. Since we can choose inputs arbitrarily for a single nLIF neuron, p_k^q is identical to the probability
 983 of the random walker to be above threshold at step k .

984 The values of p_k^q are lower bounded by the first-passage-time distribution of the random walk. That's
 985 because the number of trajectories being above or equal to the threshold at step k is lower-bounded
 986 by the number of trajectories that cross the threshold for the first time at step k .
 987

988 A.3.6 PROOF OF THEOREM 2

990 Let $N \in \mathbb{N}$ be the number of inputs of a single nLIF neuron. We define $S_n = \sum_{i=1}^n W_i$ as the
 991 cumulative sum of weights $W_i \in \mathbb{R}$ with $S_0 = 0$ and $0 \leq n \leq N$. For the proof, we first note that
 992 $p_n^q \geq p_{\text{FPT}}(n)$, where $p_{\text{FPT}}(n) = p(S_n \geq \vartheta, S_{n-1} < \vartheta, S_{n-2} < \vartheta, \dots, S_1 < \vartheta)$ is the first-passage-
 993 time distribution (at step n) for a random walk with discrete steps and random continuous step sizes
 994 ($W_j \sim q$), see Section A.3.5.

995 In the assumed limit, the survival probability, i.e., not passing the threshold until step $n + 1$, is given
 996 by the Sparre Andersen theorem (Andersen, 1954; Majumdar, 2010):
 997

$$998 Q(n) = p(S_n < \vartheta, S_{n-1} < \vartheta, \dots, S_1 < \vartheta) = \frac{1}{2^{2n}} \binom{2n}{n}. \quad (37)$$

1000 The first-passage-time probability for step $n + 1$ is obtained by taking the difference of survival
 1001 probabilities:
 1002

$$1003 p_{\text{FPT}}(n+1) = Q(n) - Q(n+1) \quad (38)$$

$$1005 = \frac{1}{2^{2n}} \binom{2n}{n} - \frac{1}{2^{2n+2}} \binom{2n+2}{n+1} \quad (39)$$

$$1007 = \frac{1}{2^{2n+1}} \binom{2n}{n} \left[2 - \frac{(2n+2)(2n+1)}{2(n+1)(n+1)} \right] \quad (40)$$

$$1010 = \frac{1}{2^{2n+1}} \binom{2n}{n} \left[2 - \frac{(2n+1)}{(n+1)} \right] \quad (41)$$

$$1012 = \frac{1}{2^{2n+1}} \binom{2n}{n} \frac{1}{n+1} \quad (42)$$

$$1014 = \frac{C_n}{2^{2n+1}}, \quad (43)$$

1016 with the Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$. Using a lower bound for the Catalan number (Johnson), we
 1017 get:
 1018

$$1019 p_{n+1}^q \geq p_{\text{FPT}}(n+1) \geq \frac{1}{2(n+1)\sqrt{\pi \cdot (n + \frac{1}{3})}}. \quad (44)$$

1022 This expression is monotonically decreasing, hence it reaches its minimum value at $n = N - 1$:
 1023

$$1024 p_{n+1}^q \geq \frac{1}{2N\sqrt{\pi \cdot (N - \frac{2}{3})}}. \quad (45)$$

1026 Using this, we can estimate the number of causal pieces:
 1027

$$1028 \quad \eta^q = \sum_{k=1}^N \binom{N}{k} p_k^q \quad (46)$$

$$1029 \quad \geq \sum_{k=1}^N \binom{N}{k} p_{\text{FPT}}(k) \quad (47)$$

$$1030 \quad \geq \frac{1}{2N\sqrt{\pi \cdot (N - \frac{2}{3})}} \cdot \sum_{k=1}^N \binom{N}{k} \quad (48)$$

$$1031 \quad = \frac{2^N - 1}{2N\sqrt{\pi \cdot (N - \frac{2}{3})}}. \quad (49)$$

1040 A.3.7 NUMBER OF PIECES

1041 For a single nLIF neuron, the number of pieces is obtained combinatorically: given N inputs to the
 1042 neuron, we can create $\binom{N}{k}$ different subsets with k entries from these neurons. We denote by p_k^q the
 1043 probability that, if weights are sampled from a probability distribution q , a subset of k inputs forms a
 1044 causal set. The total number of causal pieces is then obtained by summing up the contributions of
 1045 subsets of different length:

$$1046 \quad \eta = \sum_{k=1}^N \binom{N}{k} p_k^q. \quad (50)$$

1047 The upper bound is obtained by using $p_k^q \leq 1$ for all k , and therefore $\eta \leq \sum_{k=1}^N \binom{N}{k} = 2^N - 1$.

1048 For deep networks, we first look at a 2-layer network with $\{N_1, N_2, 1\}$ neurons, where N_1 is the
 1049 number of inputs to the network. Starting with the output neuron, we can construct a single causal
 1050 piece as follows: first, we sample a set of r inputs. From the analysis for single nLIF neurons, we
 1051 know that $\binom{N_2}{r} p_r^{q_2}$ such sets exist. Next, we have to estimate the number of pieces of the r selected
 1052 input neurons, which are all given by $\eta_1 = \sum_{k=1}^{N_1} \binom{N_1}{k} p_k^{q_1}$. However, the causal piece of the output
 1053 neuron changes if any of its r selected input neurons change their causal set. Thus, the number of
 1054 pieces is given by $\binom{N_2}{r} p_r^{q_2} \eta_1^r$ – assuming the best case where the pieces of the output neuron are
 1055 maximally split up by the input neurons. The total number is then given by:

$$1056 \quad \eta_2 = \sum_{r=1}^{N_2} \binom{N_2}{r} p_r^{q_2} \eta_1^r. \quad (51)$$

1057 More generally, we have:

$$1058 \quad \eta_n = \sum_{r=1}^{N_n} \binom{N_n}{r} p_r^{q_n} \eta_{n-1}^r, \quad (52)$$

1059 for $0 < n \leq \ell$ and $\eta_0 = 1$, where ℓ is the number of layers. Using $p_r^{q_n} \leq 1$ for all n and r and the
 1060 binomial formula, we get:

$$1061 \quad \eta_n \leq \eta_{n-1}^{N_\ell}. \quad (53)$$

1062 Applying this starting with $n = \ell$ until we arrive at $n = 1$, we get:

$$1063 \quad \eta_\ell \leq 2^{\prod_{i=1}^\ell N_i} \quad (54)$$

$$1064 \quad \leq 2^{N^\ell}, \quad (55)$$

1065 with $N = \max\{N_1, N_2, \dots, N_\ell, 1\}$.

1066 A.4 SIMULATION DETAILS

1067 In all simulations, we use $\tau_s = 0.5$ and $\vartheta = 1$. To implement deep learning models, we used pyTorch
 1068 (Paszke, 2019). Simulations were run on VSC-5 Vienna Scientific Cluster infrastructure, using A40
 1069 GPUs and AMD Zen3 CPUs. In general, individual simulations are rather short, lasting from seconds
 1070 to minutes. Training larger networks on big datasets takes usually less than an hour.

1080 A.4.1 OPTIMISING INITIALISATIONS
1081

1082 To find optimised initialisation schemes, we use a simple evolutionary method: Starting with a list
1083 with four different sets for the initial parameters, $P \in \mathbb{R}^{4 \times 4}$, we perturb each set by adding a random
1084 value sampled from a normal distribution $\mathcal{N}(0, 0.1^2)$. We then use all eight sets of parameters to
1085 initialise nLIF neural networks with weights sampled from our chosen distribution (e.g., normal,
1086 lognormal, uniform). For each network, we use the Yin Yang dataset (or any other method) to estimate
1087 the number of pieces. In this case, we sample the input space using a grid ($x \in [0, 1], y \in [0, 1]$,
1088 100 increments per dimension, constrained to the circular area). We then take the parameters that
1089 produced the four networks with the highest number of pieces and repeat this process, i.e., with using
1090 this new list as P . We stop if the number of pieces does not improve after $n \in \mathbb{N}$ loops.

1091 For positive weights, we initialise weights using a lognormal distribution with mean $\alpha_0 \cdot n_{\ell-1}^{-\alpha_1}$ and
1092 standard deviation $\alpha_2 \cdot n_{\ell-1}^{-\alpha_3}$, or a uniform distribution $\mathcal{U}(v_0, v_0 + v_1)$ with $v_0 = \beta_0 \cdot n_{\ell-1}^{-\beta_1}$ and
1093 $v_1 = \beta_2 \cdot n_{\ell-1}^{-\beta_3}$. $n_{\ell-1}$ is the number of neuron projecting into layer ℓ . Through the above optimisation
1094 loop, we found $\alpha_0 = 1.29$, $\alpha_1 = 0.57$, $\alpha_2 = 0.85$, $\alpha_3 = 0.76$ and $\beta_0 = 0.70$, $\beta_1 = 0.25$, $\beta_2 = 0.80$,
1095 $\beta_3 = 0.47$. The final parameters for normal and uniform (with positive and negative values) are
1096 provided in the main text.

1097 A.4.2 DETAILS: FIG. 1
1098

1099 To initialise the networks, we use a normal distribution with the parameters found using evolutionary
1100 optimisation (see main text and Section A.4.1).
1101

1102 In panel B, the causal pieces of the output neuron of a network with $[10, 1]$ neurons is shown.
1103 For the plot shown top, we sample three random vectors $d_0 \sim \mathcal{N}(-2, 2^2)^{10}$, $d_1 \sim \mathcal{N}(-2, 2^2)^{10}$,
1104 $o \sim \mathcal{N}(-2, 2^2)^{10}$. The inputs I are then obtained by spanning the plane using $I(\alpha_0, \alpha_1) =$
1105 $o + \alpha_0 \cdot (d_0 - o) + \alpha_1 \cdot (d_1 - o)$. We use $\alpha_0 \in [0, 1]$ and $\alpha_1 \in [0, 1]$ and 400 increments per variable.
1106 To get the line plot, we set $\alpha_1 = 0$ and increase α_0 from 0 to 1 in 2000 increments.

1107 In panel C, we use $d_0 \sim \mathcal{N}(0, 1)^{40}$, $d_1 \sim \mathcal{N}(0, 1)^{40}$, $o \sim \mathcal{N}(0, 1)^{40}$ and an increment of 400.

1108 A.4.3 DETAILS: FIG. 2
1109

1110 To obtain the results, we used Algorithm 1 (see Section A.4.8) to estimate the number of pieces of a
1111 single nLIF neuron with weights sampled from $\mathcal{N}(\mu, \sigma^2)$. We ran the algorithm for values of μ and
1112 σ ranging from 0 to 0.1 with increment 0.001. The maximum number of inputs was set to 100. For
1113 each initialisation, we sampled 10^4 weight vectors (per k) to estimate p_k^q .
1114

1115 A.4.4 DETAILS: FIG. 3
1116

1117 For the normal distributions used to initialise the nLIF neural networks, the mean and standard
1118 deviation were both sampled from a uniform distribution $\mathcal{U}(-0.2, 0.8)$ and $\mathcal{U}(0, 1)$, respectively.
1119 Each reported data point corresponds to one sampled distribution. We calculate the number of causal
1120 pieces using only the 5000 training samples. We used the same grid to create the causal piece plots
1121 (panels F and G). Networks are trained using the Adam optimiser with a learning rate of 10^{-4} (no
1122 weight decay), batch size of 100, and 1000 epochs. The best test performance is reported.

1123 As a loss function, we use the time-to-first-spike loss introduced in Göltz et al. (2021). For each
1124 sample i , its contribution to the loss is:

$$1125 \quad L_i = \log \left(\sum_{n=1}^c e^{(t_{i^*} - t_n) / \xi} \right), \quad (56)$$

1126 where $c \in \mathbb{N}$ is the number of classes and i^* is the correct label of sample i . t_n is the output spike time
1127 of the output neuron encoding class n . We use $\xi = 0.2 \cdot \tau_s$. The final loss is obtained by averaging
1128 over all N samples, $L = \frac{1}{N} \sum_{i=1}^N L_i$.
1129

1130 A.4.5 DETAILS: FIG. 4
1131

1132 For Fashion-MNIST, the trained networks have $[28 \times 28, 200, 100, 10]$ neurons, with the last layer
1133 being a standard linear readout layer. For the normal distributions used to initialise the nLIF

1134 neural networks, the mean was sampled from a uniform distribution $\mathcal{U}(-\alpha, 1 - \alpha)$ with $\alpha \in$
 1135 $[0.4, 0.5, 0.6, 0.7, 0.8]$ randomly selected. The standard derivation was sampled from $\mathcal{U}(0, 1)$. Each
 1136 reported data point corresponds to one sampled distribution. We calculate the number of causal
 1137 pieces using only the 60000 training samples. Networks are trained using the Adam optimiser with a
 1138 learning rate of 10^{-3} (no weight decay), batch size of 100, and 400 epochs. As a loss function, we
 1139 use the cross-entropy loss. The best test performance is reported.

1140 The setup for EuroSAT RGB is the same, but we use a networks with $[16 \times 16 \times 3, 200, 100, 10]$
 1141 neurons. Moreover, the learning rate is set to 10^{-2} and the maximum number of epochs to 1000. The
 1142 resolution of the EuroSAT images is decreased from $32 \times 32 \times 3$ to $16 \times 16 \times 3$.
 1143

1144 A.4.6 DETAILS: FIG. 5

1145 For each data point, we show results of 10 runs with different random seeds. To calculate the number
 1146 of causal pieces, we used an enlarged dataset composed of points obtained from a grid within the
 1147 data domain, i.e., we evaluated the input space $[0, 1]^2$ using a 400×400 grid, leading to 124980
 1148 points (only points within the circular area were used). We obtained qualitatively similar results
 1149 using a 600×600 grid. In panel C, we show the results for a network with $[4, 20, 20, 20, 20, 20, 3]$
 1150 and $[4, 40, 40, 40, 40, 40, 3]$ neurons (10 runs with different seeds). In panel D, the number of
 1151 pieces of the output layer are shown for lognormal initialisation and (line) shallow networks
 1152 with $[40, 80, 160, 320, 400]$ neurons in the hidden layer, as well as (dotted) deep networks with
 1153 $[1, 2, 4, 5, 8, 10]$ hidden layers with 40 neurons each. Again the median over 10 runs with different
 1154 random seeds is shown. For training, the same setup as described in Section A.4.4 was used.
 1155

1156 A.4.7 DETAILS: FIG. 7

1157 Networks are initialised by sampling the weights either from a lognormal or uniform distribution,
 1158 as described in Section A.4.1. To evaluate p_k^q , we again use the Monte Carlo approach described
 1159 in Section A.4.8, with a similar setup as in Fig. 2. Panel B is created similarly as panel B in
 1160 Fig. 5. To keep weights W positive, we apply a ReLU function to them in the forward function,
 1161 $W \mapsto \max(0, W)$.
 1162

1163 For Yin Yang, we use a network of size $[4, 30, 3]$, with the last layer being a standard linear pyTorch
 1164 layer. We train the networks using a batch size of 100, learning rate of 10^{-3} , 5000 epochs, and Adam
 1165 optimiser without weight decay. The reference values (0.638 and 0.976) are taken from Kriener et al.
 1166 (2022) (best value also for $[4, 30, 3]$ neurons). They further report an accuracy of 0.855 if only the
 1167 upper layer is trained, which is also lower than the performance reached by our networks.
 1168

1169 For MNIST, we use a network of size $[28 \cdot 28, 200, 100, 10]$, again with the last layer being a standard
 1170 linear pyTorch layer. Pixel values are re-scaled to be in the range $[0, 1]$. Images are flattened and
 1171 no image transformations are used during training. We train the networks using a batch size of 100,
 1172 learning rate of 10^{-3} , 200 epochs, and Adam optimiser without weight decay. The best performance
 1173 (0.9833) is taken from Kim et al. (2024). For the performance of a linear layer, we show 0.9277, as,
 1174 e.g., reported in Senn et al. (2024).

1175 For EuroSAT, we use a network of size $[16 \cdot 16, 200, 100, 10]$, again with the last layer being a
 1176 standard linear pyTorch layer. Images are re-scaled to 16×16 , with pixel values re-scaled to be in
 1177 the range $[0, 1]$. Furthermore, we apply random horizontal and vertical flips during training. Images
 1178 are flattened before they are provided as input to the neural networks. We train the networks using a
 1179 batch size of 100, learning rate of 10^{-2} , 1000 epochs, and Adam optimiser without weight decay.
 1180 We found that the best performance of an MLP is similar to the one reached by random forests, which
 1181 is 0.70. For the performance of linear models, we use the results achieved using logistic regression
 1182 (0.40). We also reached 0.34 using nearest neighbor and 0.47 using decision trees.
 1183

1184 A.4.8 ALGORITHMS: MONTE CARLO APPROACH

1185 In simulations, we use Algorithm 1 to calculate p_k^q , from which we calculate the improved upper
 1186 bound using Eq. (5). A similar algorithm can be used to estimate p_k^q for a static weight vector (with
 1187 unknown distribution q) by randomly sampling subsets from the vector (e.g., in case of the weights in
 a trained neural network).

1188 **Algorithm 1** Monte Carlo estimate for perceptron

1189 **Require:** Distribution q , number of samples $num_samples$, number of inputs num_inputs , thresh-

1190 old ϑ

1191 1: $prob_set \leftarrow$ list of length num_inputs filled with 0. \triangleright Probability that subset is a causal set.

1192 2: **for** $causal_set_length = 1$ to num_inputs **do**

1193 3: **for** $sample_ID = 1$ to $num_samples$ **do**

1194 4: $W \leftarrow$ list of length $causal_set_length$ with values sampled from q

1195 5: $strong_enough \leftarrow \sum_{i=0}^{num_inputs-1} W_i \geq \vartheta$

1196 6: **if** $strong_enough$ is *True* **then**

1197 7: $prob_set[causal_set_length] \leftarrow prob_set[causal_set_length] + 1$

1198 8: **end if**

1199 9: **end for**

1200 10: $prob_set[causal_set_length] \leftarrow prob_set[causal_set_length] / num_samples$

1201 11: **end for**

1202 12: **return** $prob_set$

1203

1204 **A.4.9 ALGORITHMS: COUNTING PIECES**

1205

1206 Algorithm 2 is used to count the number of causal pieces for (i) neurons in a deep neural network, and

1207 (ii) per layer. To count the pieces, we start from the first layer and index the causal sets. For neurons

1208 in the first layer, the causal sets are just composed of the inputs that caused the spike ((Algorithm 3,

1209 line 5)). Each neuron’s piece is given by the index we assign it (Algorithm 4). For neurons in deep

1210 layers, the causal set consists of both the indices of the inputs that caused it to spike, and the causal

1211 piece indices of these neurons (Algorithm 3, line 3). For layers (Algorithm 5), the causal set is given

1212 by the list of causal piece indices of all neurons in the layer. If any of these indices changes, the

1213 causal piece of the layer changes.

1214

1215 **Algorithm 2** Transform causal sets (per neuron) to causal piece IDs

1216 **Require:** Nested list with ordered causal sets, $sets$. Dimensions are: samples, layers, neurons.

1217 1: $causal_set_to_ID \leftarrow$ empty dictionary

1218 2: $causal_set_to_ID[String(\[])] \leftarrow -1$

1219 3: $num_samples \leftarrow \text{length}(sets)$

1220 4: $IDs \leftarrow$ list containing $num_samples$ empty lists

1221 5: **for** $sample_id = 0$ to $num_samples - 1$ **do** \triangleright Iterate over samples

1222 6: $sets_of_sample \leftarrow sets[sample_id]$

1223 7: **for** $layer_id = 0$ to $\text{length}(sets_of_sample) - 1$ **do** \triangleright Iterate over layers

1224 8: $sets_of_layer \leftarrow sets_of_sample[layer_id]$

1225 9: Append empty list to $IDs[sample_id]$

1226 10: **for each** $causal_set$ in $layers$ **do** \triangleright Turn causal set of every neuron to corresponding ID

1227 11: $cset_name \leftarrow \text{PROCESSCAUSALSET}(causal_set, IDs, sample_id, layer_id)$

1228 12: $single_ID \leftarrow \text{ASSIGNID}(cset_name, causal_set_to_ID)$

1229 13: Append $single_ID$ to $IDs[sample_id][layer_id]$

1230 14: **end for**

1231 15: **end for**

1232 16: **end for**

1233 17: **return** IDs

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

Algorithm 3 PROCESSCAUSALSET

1246 **Require:** Causal set $causal_set$, List of causal set IDs IDs , Sample index $sample_id$, Layer index
 1247 $layer_id$

1248 1: **if** $layer_id > 0$ **then**

1249 2: $prev_layer_IDs \leftarrow IDs[sample_id][layer_id - 1]$

1250 3: $cset_name \leftarrow \text{String}([\text{Select from } prev_layer_IDs \text{ using } causal_set, causal_set])$

1251 4: **else**

1252 5: $cset_name \leftarrow \text{String}(causal_set)$

1253 6: **end if**

1254 7: **if** $\text{length}(causal_set) = 0$ **then**

1255 8: $cset_name \leftarrow \text{String}([])$

1256 9: **end if**

1257 10: **return** $cset_name$

1258

1259

1260

1261

1262

1263

1264

1265

Algorithm 4 ASSIGNID

1266 **Require:** Causal set name $cset_name$, Dictionary $causal_set_to_ID$

1267 1: **if** $cset_name \notin \text{keys}(causal_set_to_ID)$ **then**

1268 2: $causal_set_to_ID[cset_name] \leftarrow \text{length}(causal_set_to_ID)$

1269 3: **end if**

1270 4: **return** $causal_set_to_ID[cset_name]$

1271

1272

1273

1274

1275

1276

1277

1278

1279

Algorithm 5 Get Causal Piece ID for Neural Network Layers

1280 **Require:** IDs , List of dictionaries $layer_indices_dict$ with length $num_layers - 1$

1281 1: $piece_ID_layers \leftarrow \text{empty list}$

1282 2: **for** $sample_ID = 0$ to $\text{length}(IDs) - 1$ **do** ▷ Iterate over samples

1283 3: Append empty list to $piece_ID_layers$

1284 4: **for** $layer_ID = 0$ to $\text{length}(IDs[sample_ID]) - 1$ **do** ▷ Iterate over layers

1285 5: $lay_state \leftarrow \text{String}(IDs[sample_ID][layer_ID])$

1286 6: **if** $lay_state \notin \text{keys}(layer_indices_dict[layer_ID])$ **then**

1287 7: $layer_indices_dict[layer_ID][lay_state] \leftarrow \text{length}(layer_indices_dict[layer_ID])$

1288 8: **end if**

1289 9: Append $layer_indices_dict[layer_ID][lay_state]$ to $piece_ID_layers[sample_ID]$

1290 10: **end for**

1291 11: **end for**

1292 12: **return** $piece_ID_layers$

1293

1294

1295