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ABSTRACT

Aligning diffusion models with user preferences has been a key challenge. Existing
methods for aligning diffusion models either require retraining or are limited
to differentiable reward functions. To address these limitations, we propose a
stochastic optimization approach, dubbed Demon, to guide the denoising process
at inference time without backpropagation through reward functions or model
retraining. Our approach works by controlling noise distribution in denoising
steps to concentrate density on regions corresponding to high rewards through
stochastic optimization. We provide comprehensive theoretical and empirical
evidence to support and validate our approach, including experiments that use
non-differentiable sources of rewards such as Visual-Language Model (VLM) APIs
and human judgements. To the best of our knowledge, the proposed approach is
the first inference-time, backpropagation-free preference alignment method for
diffusion models. Our method can be easily integrated with existing diffusion
models without further training. Our experiments show that the proposed approach
significantly improves the average aesthetics scores for text-to-image generation.

1 INTRODUCTION

Diffusion models have been the state-of-the-art for image generation (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021; Karras et al., 2022; Saharia et al., 2022; Rombach et al., 2022),
but, commonly, the end users’ preferences and intention diverge from the data distribution on which
the model was trained. Aligning diffusion models with diverse user preferences is an ongoing and
critical area of research.

One approach to aligning diffusion models with user preferences is to fine-tune using reinforcement
learning (RL) to optimize the models based on rewards signals that reflect the user preferences (Black
et al., 2023; Fan et al., 2023). However, retraining the model every time when the preference changes
is computationally expensive and time-consuming.

An alternative approach is to guide the denoising process using a differentiable reward function. This
can be done through classifier guidance at inference time (Dhariwal & Nichol, 2021; Wallace et al.,
2023b; Bansal et al., 2024) or backpropagation at training time (Prabhudesai et al., 2024; Clark et al.,
2024; Xu et al., 2023). These methods are generally less resource-demanding and more efficient.
While these methods are generally more efficient, they require the reward function to be differentiable.
This limits the types of reward sources that can be used, as it excludes the non-differentiable sources
like third-party Visual-Language Model (VLM) APIs and human judgements.

To address these limitations, we propose Demon, a novel stochastic optimization approach for
preference optimization of diffusion models at inference time. Demon is a metaphor from Maxwell’s
Demon, an imaginary manipulator of natural thermodynamic processes. The core ideas are: (1)
Quality of noises that seed different possible backward steps in a discretized reverse-time Stochastic
Differential Equation (SDE) can be evaluated given a reward source; (2) Such evaluation enables
us to synthesize “optimal” noises that theoretically and empirically improve the final reward of the
generated image through stochastic optimization. Specifically, we leverage Probability Flow Ordinary
Differential Equation (PF-ODE) (Song et al., 2021) or Consistency Model (CM) (Song et al., 2023;
Luo et al., 2023) to help us efficiently evaluate the possible backward steps, seeded with different
Gaussian noises.
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Figure 1: Illustration of Demon. Given a reverse-time SDE for denoising and an interval [tmax, tmin],
we first discretize it into T steps, tmax > · · · > t > t − ∆ > · · · > tmin. At every reverse-time
denoising step, from t to t −∆, we synthesize an “optimal” noise z∗ from K i.i.d. noises w.r.t a
given reward source and use z∗ to seed the step. This enables guiding the denoising process towards
generating images that are more aligned with the reward source and the preference that the reward
source represents. More details are presented in Section 4.

Our key contributions are summarized as follows:

• Our approach enables the use of reward signals in the denoising process regardless of
whether the reward function is differentiable. This allows for the incorporation of previously
inaccessible reward sources, such as VLM APIs. To the best of our knowledge, this is the
first inference-time, backpropagation-free preference alignment method.

• Our method can be easily integrated with existing diffusion models in a plug-and-play
fashion without retraining or fine-tuning.

• We provide a theoretical explanation for why our approach can improve the given reward
function for image generation, which can be exploited for tuning hyperparameters.

• We demonstrate that our approach significantly improves the average aesthetics
score (LAION, 2023) of Stable Diffusion models, achieving averages well above 8.0 com-
pared to the Best-of-N random sampling upper bounds of 6.5 for SD v1.4 and 7 for SDXL.
This improvement is achieved across various text-to-image generation tasks using prompts
from prior work (Black et al., 2023), without relying on backpropagation-based preference
alignment or model retraining.

2 RELATED WORK

Diffusion Model. Diffusion models for data generation were first proposed by Sohl-Dickstein et al.
(2015), further developed for high-fidelity image generation by Ho et al. (2020), and generalized by
Song et al. (2021) through the lens of SDEs. Karras et al. (2022) comprehensively studied the design
space of Diffusion SDEs. In this work, we base many of the derivations on theirs. Furthermore, we
focus on evaluating our method in the text-to-image generation setting (Rombach et al., 2022; Ho &
Salimans, 2021; Podell et al., 2024)

Human Preference Alignment. Aligning models with human preferences has been studied with
several approaches:reinforcement learning-based policy optimization (Fan et al., 2023; Yang et al.,
2024; Black et al., 2023); training with reward backpropagation (Clark et al., 2024; Xu et al., 2023);
backpropagation through the reward model and the diffusion chain (Prabhudesai et al., 2024; Wallace
et al., 2023b; Bansal et al., 2024). Many metrics and benchmarks for evaluating alignment has also
been proposed, including those by Xu et al. (2023); Kirstain et al. (2023); LAION (2023); Wu et al.
(2023), and we use these either as optimization objectives or evaluation of the generated image. In
Table 1, we further provide detailed comparisons of the proposed Demon approach with relevant
existing methods in the literature from different aspects.
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Table 1: A detailed comparison of different methods along various dimensions, including the ability
to generalize to an open vocabulary, the necessity of a backpropagation signal for optimization, the
method’s capacity to avoid mode collapse and ensure distributional guarantees (Divergence Control).
Our proposed method stands out for its zero-shot learning capabilities.

Open Non-Backprop Divergence
Type Methods Vocab Objective Control
Training DPOK (Fan et al., 2023) × ✓ ✓
Training DDPO (Black et al., 2023) × ✓ ×
Inference DOODL (Wallace et al., 2023b) ✓ × ×
Training DPO (Wallace et al., 2023a) ✓ ✓ ✓
Training DRaFT (Clark et al., 2024) ✓ × ×
Inference Demon ✓ ✓ ✓

3 PRELIMINARY

Score-Based Diffusion Model. We base our derivation on EDM (Karras et al., 2022). With a
sampling schedule σt = t, we can write the reverse-time SDE sampling towards the diffusion
marginal distribution as follows.

dxt =
[
−t∇xt

log p (xt, t)− βt2∇xt
log p (xt, t)

]︸ ︷︷ ︸
fβ(xt,t)

dt+
√
2βt︸ ︷︷ ︸

gβ(t)

dωt, (1)

where p(xt, t) = p(x0, 0) ⊗ N
(
0, t2In

)
and ⊗ denotes the convolution operation. x0 is a clean

sample, x0 ∼ pdata, and xt is a noisy sample at time t. β expresses the relative rate at which existing
noise is injected with new noise. In EDM, β is a function of t, but in our study, we set β to a
constant for all t for simplicity. Essentially, fβ(x, t) corresponds to drift and gβ(t) corresponds to
diffusion. As common in diffusion models, since p(xt, t) ≈ N (0, t2IN ) for a large enough t, we
sample xtmax

∼ N (0, t2maxIN ) as the initial sample.

A comprehensive list of the notations and conventions used in this paper is provided at Appendix A.

4 REWARD-GUIDED DENOISING WITH DEMONS

In this section, we describe how Demon works in two steps: Section 4.1 explains the process of
scoring Gaussian noises in reverse-time SDE with a reward function; Section 4.2 further explains
how the noise scoring allows us to guide the denoising process to align with the reward function,
which is what we refer to as Demon.

4.1 SCORING NOISES IN REVERSE-TIME SDE

Let x0 be the clean image corresponds to a xt at time step t, say:

x0 = xt +

∫ 0

t

fβ(xu, u) du+ gβ(u) dωu , (2)

where Equation (2) is denoted as x0 |β xt, shorthanded as x0 | xt. For an arbitrary reward function r
e.g. aesthetics score, we define the reward estimate of xt at time step t as

rβ(xt, t) := Ex0|xt
[r(x0)] . (3)

This can be estimated with a Monte Carlo estimator by averaging over the reward of several SDE
samples, but it requires many sample evaluations for high accuracy. To address this weakness, we
introduce an alternative estimator for rβ(xt, t) based on PF-ODE Song et al. (2021).

As shown in Song et al. (2021); Karras et al. (2022), the reversed-time SDE reduces to PF-ODE when
β ≡ 0. For each t, a diffeomorphic relationship exists between a noisy sample xt and a clean sample
x0 generated by PF-ODE.

3
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Figure 2: The illustration of the proximity between the rβ and r ◦ c. In this figure, the β is nonzero
and near harmonic (i.e., ∇2r ≈ 0.). The red points indicate i.i.d. SDE samples and the purple ODE
approximation of xt. The green line indicates the expectation of the rewards of the SDE samples
(e.g., an approximate estimation, 1

4

∑4
i=1 r(x

(i)
0 )).

Similar to consistency models, with x′
(t) denoting an ODE trajectory instead of x(t), we can denote

this deterministic mapping from the domain of xt to the domain of x0 as c(xt, t) as

c(x′
t, t) := x′

0 = x′
t +

∫ 0

t

dx′
u, where dx′

u = −u∇x′
u
log p (x′

u, u) du. (4)

Then, we can write (r ◦ c)(xt, t) = r(c(xt, t)) as the reward of the generated clean sample. This
approximates rβ(xt, t) using only one evaluated sample. In fact, we can characterize the difference
between the approximate reward using ODE (r ◦ c)(xt, t) and the exact reward estimate using SDE
rβ(xt, t) as in Lemma 1. The right hand side of Equation (5) shows that, as β → 0, the approximation
becomes exact: limβ→0+ rβ(xt, t) = (r ◦ c)(xt, t). Intuitively, this result aligns with SDEs reducing
to ODEs when β approaches zero in image domains (Song et al., 2021).

Lemma 1 (Itô Integral Representation of Reward Proximity Error. Proof is in Appendix D.1). Let
the reward estimate function, h(xt, t) = (r ◦ c)(xt, t), be shorthanded as h. We have:

rβ(xt, t)− (r ◦ c)(xt, t) = Ex0|xt

[∫ 0

t

∇xu
h · dJβ(xu, u)− βu2∇2hdu

]
. (5)

where x0 is sampled from Equation (2) and

dJβ(xu, u) = −βu2∇xu log p (xu, u) du+
√
2βudωu, (6)

is the Langevin diffusion SDE term, and∇2h is the Laplacian of h.

As demonstrated in Appendix D.1, Lemma 1 implies that when the Laplacian of the reward function
is approximately zero (∇2r ≈ 0), rβ ≈ r ◦ c. We also illustrated the idea in Figure 2. For better
presentation, we conveniently abbreviate rβ(xt, t) as rβ(xt), c(xt, t) as c(xt) and (r ◦ c)(xt, t) as
(r ◦ c)(xt) in this paper.

4.2 DEMONS FOR REWARD-GUIDED DENOISING

Let’s first revisit reverse-time SDE. Following Karras et al. (2022), an SDE numerical evaluation of
x̂t−∆ sampled from xt can be seeded by noise z via a step of Heun’s 2nd order method (Ascher &
Petzold, 1998) as follows:
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Algorithm 1 A Numerical Step with Demon

1: Input: xt, t, ∆, K
2: Output: x̂t−∆

3: for k = 1 to K do
4: Draw z(k) ∼ N (0, In)

5: x̂
(k)
t−∆ ← heun(x̂t, z

(k), t,∆)

6: Rk ← (r ◦ c)(x̂(k)
t−∆) {implementing rβ(x̂

(k)
t−∆)}

7: end for
8: [bk]← Demon([Rk])
9: z∗ ←

√
N normalized

(∑K
k=1 bkz

(k)
)

10: x̂t−∆ ← heun(x̂t, z
∗, t,∆)

11: Return x̂t−∆

z ∼ N (0, In) (7)
x̂t−∆ = heun(xt, z, t,∆) (8)

:= xt −
1

2
[fβ(xt, t) + fβ(x̃t−∆, t−∆)]∆ +

1

2
[gβ(t) + gβ(t−∆)] z

√
∆ , (9)

where z is a Gaussian noise, and heun is the stochastic backward step from xt to x̂t−∆. The
intermediate approximation x̃t−∆ is given by x̃t−∆ := xt − fβ(xt, t)∆ + gβ(t)z

√
∆ . Note that,

while we use Heun’s method here, other solvers can work too.

For image generation, Gaussian noise z is usually high-dimensional. For a high-dimensional z, we can
assume that it’s likely on a

√
N sphere (Lemma 5, Appendix). This allows us to weighted-combine

various noises into a new noise z∗:

z∗ =
√
N normalized

(
K∑

k=1

bkz
(k)

)
, (10)

where z(k) are i.i.d. unit Gaussian noises, and bk are the search space. The pseudocode of a numerical
step with our proposed method is outlined in Algorithm 1.

In the following, we introduce two stochastic optimization approaches, the Tanh Demon and the
Boltzmann Demon, to determine the weights bk and synthesize an optimal z∗, with a goal of optimizing
the final reward value. And we show that solving the reverse-time SDE with such optimal z∗
theoretically and empirically improve rβ , essentially achieving alignment.

4.2.1 TANH DEMON

Intuitively, we may consider up-weighting the good noises that improve the reward and down-
weighting the bad noises that harm the reward, compared to the average reward µ̂. Tanh Demon
assigns positive weights to the good noises and negative weights to the bad noises with the tanh
function, based on the reward estimates of the noises (Section 4.1):

z∗ =
√
N normalized

(
K∑

k=1

btanhk z(k)

)
, where btanhk ← tanh

(
(r ◦ c)(x̂(k)

t−∆)− µ̂

τ

)
(11)

Here we can estimate µ̂ with µ̂ = 1
K

∑K
k=1(r ◦ c)(x̂

(k)
t−∆). τ is the temperature parameter to tanh,

which can be adaptively tuned (as shown in Table 8).

In the following, we demonstrate that synthesizing z∗ with Equation (11) in every backward step,
which nudges the sample towards the data distribution, leads to reward improvement of the final clean
sample x0 with theoretical guarantee.

5
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(a) Before (b) After (c) Final

Figure 3: An illustration of the Tanh Demon sampling method where K = 4. (a) A SDE step
generates several samples, each determined by sampled noise zk. We use Tanh Demon to classify
each noise sample as “low-reward” or “high-reward” w.r.t rβ(xt) based on their respective reward
estimates. (b) We flip the sign of the low-reward noise with tanh, thereby transforming it into
high-reward noise. (c) It shows how the post-processed noises are averaged and projected onto the
high-dimensional sphere, resulting in a feasible noise representation z∗ with high-reward estimate.

Lemma 2. Assume the truncation error terms in Equation (39) is ignorable. Let z∗ be derived from

btanhk = tanh

(
rβ(x̂

(k)
t−∆)−rβ(xt)

τ

)
using Equation (10) for every numerical step from t to t−∆ and

τ < ∞. Then, almost surely, r(x̂tanh
0 ) > rβ(xt), where x̂tanh

0 is derived by applying z∗ on every
step.

The formal proof of Lemma 2 is in Appendix D.3. Lemma 2 states that the improvement of rβ in
reversed-time order almost surely, assuming that rβ ≡ r ◦ c and that, based on Fact 1 (Appendix),
1
K

∑K
k=1 rβ(x̂

(k)
t−∆) is an unbiased estimator of rβ(xt). Figure 3 provides an illustration of the Tanh

Demon.

Since (r ◦ c) is not a perfect estimate of rβ , selecting an appropriate τ is crucial to manage errors.
A small τ makes tanh(·/τ) nearly binary and can weight good noise negatively and vice versa.
Conversely, a large τ diminishes contribution of noises.

4.2.2 BOLTZMANN DEMON

Another intuitive approach is to estimate the candidate with maximum reward. We propose the
Boltzmann demon, which assign noise weights as follows.

bboltzk ←
exp

(
r ◦ c(x̂(k)

t−∆)/τ
)

∑K
k=1 exp

(
r ◦ c(x̂(k)

t−∆)/τ
) . (12)

The theoretical guarantee of improvement in rβ in expectation is provided in Lemma 3 of Appendix,
assuming rβ ≡ r ◦ c. This method is equivalent to the single-step cross entropy approach (De Boer
et al., 2005). Although, empirically we find that Tanh Demon outperforms Boltzmann demon,
adjusting τ in Boltzmann demon provides control over deviation from the original SDE distribution,
as demonstrated in Lemma 4 (Appendix).

4.2.3 COMPUTATIONAL CONSIDERATIONS

Let’s first consider a Demon sampling trajectory xt1 > xt2 > · · · > xtT ≈ 0 for a fixed number
T . Each Demon’s trajectory requires O(K · T ) evaluations of c, and each evaluation comes with
one reward estimation. The compute time is mainly influenced by the implementation of r ◦ c. We
discuss two aspects of r ◦ c—the temporal cost and the fidelity—which are vital to the algorithm’s
time complexity and reward performance, respectively.
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(a) Performance w.r.t Reward Query Number (b) Performance w.r.t Execution Time

Figure 4: Performance comparison of the proposed algorithm and other baseline methods in terms of
the number of reward queries and execution time. It is worth noting that although DOODL can get
similar results as ours, it relies on reward backpropagation, while ours does not. The shaded areas
and solid circles represent the standard deviation of the evaluation results. Additionally, the proposed
method is the first inference-time preference optimization without backpropagation.

Note that Tanh or Boltzmann Demon itself does not strictly specify the implementation of r ◦ c;
our default option uses Heun’s ODE solver, but using a Consistency Model (CM) distilled from the
original diffusion model significantly accelerates computation. An alternative, which we refer as
Tanh-C, is to combine our Tanh Demon algorithm with an off-the-shelf CM to implement r ◦c. While
using Tanh-C may slightly degrade the results due to the fidelity loss from using a CM (see Table 2),
this approach is particularly effective when faster results are required since the computation of c is
much quicker. For a larger T , however, the default Tanh Demon using Heun’s method outperforms
Tanh-C in terms of reward performance.

As shown in Table 10, using the text-to-image generation task settings from Black et al. (2023), the
Demon algorithm achieves an aesthetics score of 6.72± 0.26 on SD v1.4, requiring 5 minutes (i.e.,
K = 16, T = 16) on an NVIDIA RTX 3090 GPU. Within the same 5-minute computation window,
the Tanh-C variant achieves an improved score of 7.27 ± 0.33 (i.e., K = 16, T = 64). Notably,
the upper bound for randomly sampled SD v1.4 is approximately 6.5, obtained after more than 10
minutes and 800 reward function queries. See Appendix B for parameter guidelines and settings.

5 EXPERIMENTS

In this section, we present both quantitative and qualitative evaluations of our methods. Due to the
page limit, we include the details of the implementation and experimental settings in Appendix H
and the subjective results in Appendix F.2.

Baseline Comparison. For the performance comparisons between our method and other baselines,
we use the LAION (2023) aesthetics scores (Aes) as the evaluation metric, and the scores are evaluated
on a set of various prompts for generating animal images, which were selected from a subset of 22
common animals in ImageNet-1K (Deng et al., 2009), created by Black et al. (2023)1. We use 20-step
Heun’s ODE for reward estimate for our methods and Best-of-N (SD v1.4). In Figure 4, we can
observe that the proposed Tanh Demon sampling method, in most cases, outperforms other baseline
methods, including our Boltzmann Demon sampling method, Best-of-N, and DOODL (Wallace et al.,
2023b), the state-of-the-art inference-time method. It is worth noting that, although given more
number of reward queries, the performance of DOODL eventually surpasses Tanh, if we consider the
same amount of execution time, Tanh is still consistently better. This is because of the computational
cost associated with DOODL’s backpropagation through the diffusion model chain. In addition, we
empirically observe more reward hacking with DOODL (based on backpropagation) compared to
our method (see Table 3), though the underlying reason isn’t as clear. For further comparison on
PickScore (Kirstain et al., 2023), please refer to Appendix E.1.

1Obtained from the official repository github.com/jannerm/ddpo/blob/main/assets/very_simple_animals.txt
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Table 2: Comparison of accuracy and time cost across different r ◦ c implementations.

Implementation Time (s) RMSE
t = 1.0 t = 7.0 t = 14.0

20-step ODE 1.94 0.044 0.258 0.333
6-step ODE 0.62 0.056 0.341 0.368
1-step CM 0.18 0.306 0.527 0.632

Comparison of Reward Estimation Approaches. Figure 4 also shows a comparison of the
proposed method with different r ◦ c implementations, including 20-step Heun’s ODE (Tanh) and 1-
step CM (Tanh-C). Tanh-C, which uses 1-step CM for fast reward evaluation, consistently outperforms
the Best-of-N baseline. Tanh’s performance has been overall better given the equivalent number
of reward queries. With these observations, we posit that the quality of r ◦ c indeed matters to our
method.

To further validate the importance of r ◦ c, we conduct a comparative analysis based on Lemma 1
(r ◦ c ≈ rβ). In this analysis, we evaluate accuracy and computational cost across three methods:
20-step Heun’s ODE, 6-step Heun’s ODE, and 1-step CM; both diffusion and consistency models
are based on the SD v1.5 distilled by Luo et al. (2023). Experiments were performed with t =
1, 7, 14 ranging from 0.002 to 14.648 and β = 0.1. Accuracy was quantified using the RMSE,√

Ext
[((r ◦ c)(xt)− rβ(xt))2], where rβ is estimated by averaging over 100 Monte Carlo i.i.d.

SDE samples. Here, xt is sampled from N (0, t2maxIn) and integrated from tmax to t using a 40-step
diffusion model ODE.

The results, presented in Table 2, support that the quality of r ◦ c influences both the algorithm’s
speed and reward performance. For the ODE methods, the trend follows our expectation: As t
approaches 0, RMSE decreases, which can be attributed to the diminishing noise as the posterior
p(xt | x0) becomes more sharply peaked; the number of ODE steps is crucial to the quality of
the generated outputs; more steps generally lead to higher fidelity results, although this comes at
the cost of increased computational time; using 1-step CM leads to inferior results compared to
using ODE, supposedly as the distillation gap and the limited model capacity results in lower-fidelity
reconstructions.

Table 3: Results using various reward functions and different generation methods. Each column
represents a specific reward objective, with the best performance highlighted in bold.

Generation method Aes ↑ IR ↑ Pick ↑ HPSv2 ↑
SD v1.4 5.34 ± 0.56 -0.00 ± 0.95 0.202 ± 0.008 0.216 ± 0.036

Tanh + Aes 7.35 ± 0.40 -0.03 ± 1.24 0.211 ± 0.010 0.257 ± 0.041
Tanh + IR 5.96 ± 0.28 1.95 ± 0.07 0.216 ± 0.012 0.286 ± 0.033
Tanh + Pick 6.14 ± 0.48 1.39 ± 0.57 0.245 ± 0.010 0.312 ± 0.033
Tanh + HPSv2 5.98 ± 0.45 1.51 ± 0.63 0.228 ± 0.011 0.367 ± 0.027

Tanh + Ensemble 6.53 ± 0.50 1.81 ± 0.15 0.236 ± 0.014 0.356 ± 0.030

DOODL + Aes 5.59 ± 0.29 -0.68 ± 1.06 0.197 ± 0.008 0.221 ± 0.028
DOODL + Pick 5.21 ± 0.46 -0.12 ± 0.84 0.204 ± 0.010 0.220 ± 0.035

Image Generation with Various Reward Functions. While our method optimizes a given reward
function, as shown in Figure 4, it doesn’t conclusively demonstrate user perceptual preferences. To
address this, we present qualitative in Table 4. Moreover, in Table 3, we also show more quantitative
results using our Tanh Demon with various reward functions followed by performance evaluation in
metrics like Aes (LAION, 2023), ImageReward (IR) (Xu et al., 2023), PickScore (Pick) (Kirstain
et al., 2023), and HPSv2 (Wu et al., 2023). As shown in Table 3, our Tanh Demon with various reward
functions consistently outperforms the inference-time state-of-the-art backpropagation-based method,
DOODL (Wallace et al., 2023b), which employs Aes and Pick as the objective to modify the results
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Table 4: Using Tanh Demons with various reward functions. The baseline, Stable Diffusion v1.4,
refers to the standard model without our proposed enhancements.

Baseline DOODL Aes IR Pick HPSv2 Ensemble

A demon exiting through a portal

A painting of a girl encountering a giant sunflower blocking her path in a hallway

generated by PF-ODE using their recommended setting. Though slightly over-optimized (hacking)
on the objective, our method shows improvement across various metrics. In comparison, DOODL, a
backpropagation-based method, demonstrates a decreased score on other objectives. Additionally,
our method achieves the runner-up generation results on each objective using an Ensemble reward
function, a scaled sum of Aes, IR, Pick, and HPSv2 scores, demonstrating the ability to integrate a
mixture of rewards.

Alignment with preferences of VLMs (Non-differentiable). In Table 5, we present qualitative
results of aligning diffusion models to preferences of VLMs from API, as a demonstration of using
non-differentiable reward sources. In this experiment, we use Google Gemini Pro v1.0 (Gemini Team
Google, 2024) and GPT4 Turbo (OpenAI, 2024). In each step, the VLM receives a fixed prompt, e.g.
“You are a journalist who wants to add a visual teaser for your article to grab attention on social media
or your news website”, and is asked to select the best-matching intermediate sample from generated
images. VLMs are presented with c(xt) and c(x̂

(k)
t−∆) produced by PF-ODE. The reward bVLM

k is

0.5 if the VLM selects c(x̂(k)
t−∆) and −0.5 otherwise. We also use PickScore (Kirstain et al., 2023)

to evaluate the results, and find that 14 out of 16 images generated with VLMs show improvements
compared to directly generating with PF-ODE. For full prompts, scenarios, and quantitative results,
please refer to Appendix G.

Manual Selection. We also explore using online interactive human judgements to guide diffusion.
That means, the users themselves would be (non-differentiable) reward functions. We let users directly
interact with our method to generate desired images. Figure 5a shows an example interface created
by us for an image resembling a given reference cat image. At each iterative step from t to t−∆, we
sample 16 i.i.d. copies of xt−∆ and compute c(xt−∆) with PF-ODE. The user then manually select
their preferred image, assigning a reward of +1 to it and −1 to the others. We continue this process
until there is no obvious preferred ones among the generated images. As shown in Figure 5b, the
image generated by our method more closely matches the target than the one produced by PF-ODE.
We also measure the improvement with DINOv2 (Oquab et al., 2023) embedding cosine similarity
between the reference image and the generated image, and observe that the similarity improves from
0.594 to 0.708 through online user interactions.

6 CONCLUSION

This work addresses the challenge of better aligning pre-trained diffusion models without training
or backpropagation. We first demonstrate how to estimate noisy samples’ rewards based on clean
samples using PF-ODE. Additionally, we introduce a novel inference-time sampling method, based
on stochastic optimization, to guide the denoising process with any reward sources, including non-
differentiable reward sources that includes VLMs and interactive human judgements. Theoretical

9
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Table 5: Using VLMs to generate images. PF-ODE (baseline) refers to a baseline without using our
method for alignment. Columns 3-6 indicate the role that the agent plays in the given prompt.

Model Baseline Teacher Artist Researcher Journalist

Gem
ini

-S
D

v1
.4

Gem
ini

-S
DXL

GPT-S
D

v1
.4

GPT-S
DXL

(a) Our user interface for interacting with our
algorithm (0.594 cosine similarity).

(b) (Top Left) Image generated by PF-ODE (0.622 cosine
similarity). (Bottom Left) Image generated by our method
(0.708 cosine similarity). (Right) Reference image.

Figure 5: We design an application for manual interaction with our algorithm. Our author selects
the images, and the criteria are based on the author’s preference (non-preferred images are kept
unselected), where the author tries to align the reference image. We evaluate performance by
measuring the cosine similarity of DINOv2 features between the targeted and reference images.

analysis and extensive experimental results validate the effectiveness of our proposed method for
improved image generation without requiring additional training. Through comprehensive empirical
and theoretical analysis, we observe that the quality and efficiency of reward estimation r ◦ c are
essential for our algorithm, especially in balancing computational speed and reward performance.
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A NOTATIONS AND CONVENTIONS

Although we keep the main paper self-consistent, we provide this section to establish a consistent
notation and convention for this paper as an aid.

A.1 NOTATIONS

Table 6: Notations

Notation Description
N State dimension
K Noise sample number
tmin, tmax Upper bound and Lower bound of the noise level in numerical integration
T Number of time steps to solve SDE/ODE
β Noise parameter
x State variable
z Noise from Gaussian
∆ Time step
bk Unnormalized weight of noise
fβ SDE policy drift
gβ SDE policy diffusion coefficient
f0 PF-ODE policy drift
Jβ Langevin diffusion SDE
ωt reversed time Brownian motion
r Reward
rβ Reward estimates of SDE policy
c Function to get expected ODE result
heun Heuns’s method, SDE solver for Karras SDE

A.2 CONVENTIONS

Table 7: Conventions

Convention Details
r ◦ c ODE reward estimate approximation, r(c(xt, t)) = (r ◦ c)(xt, t)
f ≡ g For all x of our interest, f(x) = g(x)
x̂ Numerical approximation with SDE solver
x̃ Intermediate value of Heun’s method
x′ An ODE trajectory
z̃ Uniformly sampled from the sphere of radius

√
N

z∗ Optimal noise generated by our algorithm
µ̂ Mean of next state ODE reward estimates, 1

K

∑K
k=1(r ◦ c)(x̂

(k)
t−∆)

r(xt) Shorthand for r(xt, t) when the context is clear
c(xt) Shorthand for c(xt, t) when the context is clear
(r ◦ c)(xt) Shorthand for (r ◦ c)(xt, t) when the context is clear
x0 | xt Shorthand for x0 |β xt, where x0 = xt +

∫ 0

t
fβ(xu, u) du+ gβ(u) dωu

ω̃t standard Brownian motion

Instead of just ODE, we use PF-ODE to highlight Song et al. (2021)’s contribution or when the
context is unclear. They are equivalent here.
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B GUIDELINE ON PARAMETER SETTING

We explore the optimal setting for parameter τ with respect to the Boltzmann Demon and the Tanh
Demon. For the Tanh Demon, the most effective τ is neither∞ nor 0. We recommend setting τ to
the standard deviation of the estimations {(r ◦ c)(x(k)

t−∆)}Kk=1, rendering it an adaptive parameter
that is robust to scaling. For the Boltzmann Demon, optimal performance is achieved by setting τ to
0, as demonstrated in Table 8.

Table 8: Comparison of performance for different settings of τ in the setting of Figure 4.

τ = 1 τ = 0.01 Adaptive τ

Tanh 7.40± 0.30 7.24± 0.31 7.45± 0.33
Boltzmann 6.30± 0.35 7.28± 0.30 6.85± 0.37

We also conduct an ablation study on the remaining parameters K and β. The base configuration
is K = 16, β = 0.1, with an adaptive temperature τ for the Tanh Demon. We set T = 32 for the
ablation study of β and T = 64 for K.

Figure 6: Comparison of our algorithm with respect to K and β

We found a large β makes the sampling unstable, given the number of steps T is fixed. Predictably,
sampling with a β close to 0 is reduced to ODE. From our theoretical result Lemma 1, the design
methodology, and empirical results, the guidelines Table 9 can assist users in setting parameters. We

Parameter Description

K
Controls the noise distribution bias, positively affecting final quality and
linearly increasing computational time.

β
Adjusts the distribution’s proximity to the original PF-ODE. Set em-
pirically based on r’s characteristics. Lemma 1 suggests smaller β for
reward functions with Laplacian deviations.

T
Inherit the properties of time steps T from diffusion models, scaling
computational time linearly. Karras’s EDM recommends T > 17.

τ
Recommended values vary for Boltzmann and Tanh Demons, as detailed
in Table 8.

r ◦ c Accurate reward estimates are critical for ensuring high final quality.

Table 9: Guidelines for Setting Hyperparameters

provide a sparse parameter search in Table 10.
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Table 10: This table presents the experimental configurations used to measure aesthetics score under
various animal prompts, presenting a sparse search of parameters. The time column represents the
duration required to generate each image. We alias adaptive temperature as Adaptive.

Demon Checkpoint β K T τ Aes Time (min)

Boltzmann

SD v1.4 0.1 16 64 Adaptive 6.408 ± 0.36 17.6

1e-10 7.111 ± 0.32 16.6

SDXL
0.05 16 32

Adaptive 6.853 ± 0.37 45.8

1e-02 7.276 ± 0.30 45.4

1 6.300 ± 0.35 46.1

0.1 16 64 Adaptive 6.990 ± 0.38 94.2

1e-10 7.501 ± 0.31 93.1

Tanh

SD v1.4
0.05 16

16 Adaptive 6.723 ± 0.26 5.0

32 Adaptive 7.073 ± 0.22 9.7

64 Adaptive 7.394 ± 0.29 18.7

0.1 16 64 Adaptive 7.549 ± 0.43 18.7

64 64 Adaptive 8.566 ± 0.33 79.1

Diffusion-DPO 0.1 16 64 Adaptive 7.564 ± 0.34 94.5

SDXL

0.01 16 16 Adaptive 6.876 ± 0.40 22.0

0.05 16

16 Adaptive 6.866 ± 0.35 21.9

32
Adaptive 7.459 ± 0.33 46.0

1e-02 7.244 ± 0.31 46.0

1 7.398 ± 0.30 46.2

0.1
8 64 Adaptive 7.446 ± 0.37 47.0

16 64 Adaptive 7.841 ± 0.32 94.4

32 64 Adaptive 8.179 ± 0.35 188.8

0.5 16 32 Adaptive 6.370 ± 0.35 46.0

Tanh-C SD v1.4
0.5 16 64 Adaptive 7.269 ± 0.33 5.0

0.1 16 64 Adaptive 6.710 ± 0.34 5.0

SDXL 0.5 16 64 Adaptive 7.301 ± 0.24 17.9
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C PSEUDOCODES

As an aid, we provide pseudocodes for the design of Demons Algorithm 2, Algorithm 3:

Algorithm 2 Tanh Demon with Adaptive Temperature

1: Input: A list of ODE reward estimate [Rk]
2: Output: Noise Weights [bk]
3: K ← length([Rk])
4: µ̂← 1

K

∑K
k=1 Rk

5: τ ←
√

1
K

∑K
k=1(Rk − µ̂)2

6: for k = 1 to K do
7: bk ← tanh

(
Rk−µ̂

τ

)
8: end for
9: Return [bk]

Algorithm 3 Boltzmann Demon with Fixed Temperature τ

1: Input: A list of ODE reward estimate [Rk]
2: Output: Noise Weights [bk]
3: K ← length([Rk])
4: Z ← 1

K

∑K
k=1 exp

(
Rk

τ

)
5: for k = 1 to K do
6: bk ← 1

Z exp
(
Rk

τ

)
7: end for
8: Return [bk]

D MATHEMATICS

D.1 ERROR COMPREHENSION FOR REWARD ESTIMATE APPROXIMATION

In this section, we present the theoretical analysis and proof better to understand the error in our
reward estimate approximation.

D.1.1 ERROR TERM AS AN ITÔ INTEGRAL

Lemma 1. Let the reward estimate function, h(xt, t) = (r ◦ c)(xt, t), be shorthanded as h. We have:

rβ(xt, t)− (r ◦ c)(xt, t) = Ex0|xt

[∫ 0

t

∇xu
h · dJβ(xu, u)− βu2∇2hdu

]
. (13)

where x0 is sampled from Equation (2) and

dJβ(xu, u) = −βu2∇xu
log p (xu, u) du+

√
2βudωu, (14)

is the Langevin diffusion SDE term, and∇2h is the Laplacian of h.

Proof. We aim to prove:

r(x0)− (r ◦ c)(xt, t) =

∫ 0

t

∇xu
h · dJβ(xu, u)− βu2∇2hdu, (15)
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Recall that

x0 = xt +

∫ 0

t

fβ(xu, u) du+ gβ(u) dωu, (16)

c (x′
t, t) = x′

t +

∫ 0

t

f0(x
′
u, u) du. (17)

For an ODE trajectory x′(t), notice that:

0 =
d

dt
h(x′(t), t) =

∂h

∂t
+∇xh ·

dx′

dt
=

∂h

∂t
+∇xh · f0. (18)

We can write:

r(x0)− (r ◦ c)(xt, t) = h(x0, 0)− h(xt, t) =

∫ 0

t

dh, (19)

where xt, which is not an ODE trajectory (noted by x′
t), follows the SDE trajectory. Using Itô’s

lemma Ito et al. (1951), we find:

dh =

(
∂h

∂t
+∇xh · fβ −

1

2
· 2g2β∇2h

)
dt+ gβ∇xh · dωt (20)

=

(
∂h

∂t
+∇xh · fβ −

(
∂h

∂t
+∇xh · f0

)
− g2β∇2h

)
dt+ gβ∇xh · dωt (21)

=
(
∇xh · (fβ − f0)− g2β∇2h

)
dt+ gβ∇xh · dωt (22)

= ∇xh ·
(
−βt2∇xt

log p(xt, t) dt+
√
2βtdωt

)
− βt2∇2hdt. (23)

The sign of the Itô correction term is flipped due to reverse time Brownian Motion-—and the other is
followed by expansion. We thus derived Equation (15); by taking the expectation Ex0|xt

[·] on both
sides, we can derive Equation (5).

D.1.2 DISCUSSION

We interpret the error terms of the reward estimates approximation as follows:

• The estimate becomes more accurate as β decreases, satisfying the intuition that SDE
trajectories will reduce to the ODE trajectory as β → 0.

• If ∇xuh ⊥ ∇xu log p (xu, u), the term∇xuh · dJβ(xu, u) cancels out in expectation.

• If ∇2h ≡ 0 and the previous condition holds, then r ◦ c ≡ rβ .

For estimation purposes, we make the following assumptions to facilitate understanding and derivation
of Equation (5):

∇xt log p(xt, t) ≈ −
xt

t2
(24)

c(xt, t) ≈ Ctxt (25)
∇xr ⊥ x (26)

where Ct is a time-dependent constant and r is scale-invariant.

• Equation (24) is derived from the assumption that p(xt) ≈ N (0, t2I).
• Equation (25) stems from image preprocessing algorithms, such as those used in Stable

Diffusion, which normalize the image distribution. This normalization implies that images
in the dataset are often scaled to lie on a sphere. Therefore, we can reasonably assume that a
randomly generated xt is close to an image in the dataset in direction.

• Equation (26) is based on the intuition that minor changes in brightness do not significantly
affect the semantic interpretation of an image. Besides, many training algorithms incorporate
scaling as part of data augmentation, which aligns with the assumption that the gradient of
∇xr is orthogonal to x.
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Under these assumptions, we obtain:

dh = ∇xh ·
(
−βt2∇xt

log p (xt, t) dt+
√

2βtdωt

)
− βt2∇2hdt (27)

≈ Ct∇xr ·
(
−βxt dt+

√
2βtdωt

)
− βt2∇2hdt (28)

≈
√
2βtCt∇xr · dωt − βt2C2

t∇2r dt (29)

If r is harmonic, i.e.,∇2r ≡ 0, then dh becomes a martingale (Billingsley, 2017) and:

rβ(xt, t)− (r ◦ c)(xt, t) ≈ Ex0|xt

[∫ 0

t

√
2βtCt∇xr · dωt

]
= 0. (30)

The mean value property, an equivalent statement of a harmonic function, states that the value of
a harmonic function at any point is the average of its values on any sphere centered at that point.
This property provides an intuitive explanation of our method: if r is harmonic, the reward of the
ODE-generated image is the mean value of the reward of SDE-generated ones, while empirically, we
observe that the ODE generation resembles the SDE variants.

D.1.3 ILLUSTRATION OF MISMATCH

For better understanding, we provide an example that rβ and r ◦ c don’t meet. We adopt assumptions
in Appendix D.1.2 to illustrate the intuition, and suppose xt is a noisy sample at time t such
that c(xt) is a sharp local maxima of r, where ∇2r ≪ 0 near c(xt). Suppose further that β is
small enough such that the generated x0 is near c(xt). In this case, rβ(xt) − (r ◦ c)(xt) < 0 as
rβ(xt) = Ex0|xt

[r(x0)] < (r ◦ c)(xt) by intuition.

We can also verify rβ(xt) − (r ◦ c)(xt) < 0 using Equation (15). Under the assumptions in
Appendix D.1.2, we can write:

rβ(xt)− (r ◦ c)(xt) ≈ Ex0|xt

[∫ 0

t

√
2βtCt∇xr · dωt − βu2∇2hdu

]
(31)

= Ex0|xt

[∫ 0

t

−βu2C2
t∇2r du

]
(32)

< 0. (33)

Note that the value of∇2r is taken at c(xt), fluctuating with SDE.

D.2 MARTINGALE PROPERTY OF REWARD ESTIMATES.

A martingale is a sequence of random variables that maintains a certain property over time Billingsley
(2017): the expected future value, given all past values, is equal to the current value; for a fixed SDE,
the current reward estimate is the expected value of the reward estimates at the next time step:
Fact 1. For any time step ∆ < 0 such that t > t−∆ > 0:

rβ(xt) = Ext−∆|xt
[rβ(xt−∆)] . (34)

Intuitively speaking, this idea stems from the principles of conditional probability, which tell us
that our current prediction of the final score should be the same as the average of all possible future
predictions.

Proof. This result follows directly from the foundational theorem of expectation. Let G be the
σ-algebra generated by xt−∆ and F be the σ-algebra generated by xt. Note that G is a refinement of
F .

For an integrable random variable r(x0), we have:

E [r(x0) | F ] = E [E [r(x0) | G] | F ]

18
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Applying this to our context:

Ext−∆|xt
[rβ(xt−∆)] = E [E [r(x0) | G] | F ] (35)

= E [r(x0) | F ] (36)
= Ex0|xt

[r(x0)] (37)

= rβ(xt) (38)

Therefore, we conclude that:
rβ(xt) = Ext−∆|xt

[rβ(xt−∆)]

D.3 TANH DEMON

We provide the theoretical idea behind the development of the algorithm. To start with, there
exists a linear relationship between the reward estimate increment from xt to x̂

(k)
t−∆ and the injected

noise z(k), which can be derived from Itô’s lemma Ito et al. (1951) and Kolmogorov backward
equations Kolmogoroff (1931), as follows:

rβ(x̂
(k)
t−∆)−rβ(xt) = g(t)∇xt

rβ ·z(k)
√
∆+o(∆), where x̂

(k)
t−∆ = heun(xt, z

(k), t,∆), (39)

which can be interpreted from an SDE with the following Lemma.
Claim 1. Let rβ(xt, t) = Ex0|xt

[r(x0) | xt] be the expected future value of a function r at time 0,
given the current state xt at time t. Then, under the SDE:

dxt = fβ dt+ gβ dωt, (40)

the differential of rβ is:
drβ = gβ ∇xtrβ · dωt. (41)

Proof. We begin by introducing a change of variables. Let s = tmax − t, so that as t decreases from
tmax to 0, s increases from 0 to tmax. This allows us to consider a forward-time process with standard
Brownian motion ω̃s.

Given the original SDE, we can write:

dxs = −fβ ds+ gβ dω̃s, (42)

where ω̃s is the standard Brownian motion.

Now, applying Itô’s lemma to rβ(xs, s):

drβ =

(
∂rβ
∂s
− fβ · ∇xs

rβ +
1

2
g2β∇2rβ

)
ds+ gβ∇xs

rβ · dω̃s. (43)

We aim to prove the Kolmogorov backward equation:

∂rβ
∂s
− fβ · ∇xsrβ +

1

2
g2β∇2rβ = 0. (44)

To do so, we integrate Itô’s lemma from s to tmax:

rβ(xtmax)− rβ(xs) =

∫ tmax

s

drβ (45)

=

∫ tmax

s

(
∂rβ
∂s′
− fβ · ∇xs′ rβ +

1

2
g2β∇2rβ

)
ds′

+

∫ tmax

s

gβ∇xs′ rβ · dω̃s′ . (46)
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Since rβ(xtmax) is a martingale, by taking the expectation (conditioned on xs) on both sides, we
obtain:

0 = Extmax |xs
[rβ(xtmax)− rβ(xs)] (47)

= Extmax |xs

[∫ tmax

s

(
∂rβ
∂s′
− fβ · ∇xs′ rβ +

1

2
g2β∇2rβ

)
ds′
]

+ Extmax |xs

[∫ tmax

s

gβ∇xs′ rβ · dω̃s′

]
. (48)

The expectation of the stochastic integral is zero, as Itô integrals have a mean of zero:

Extmax |xs

[∫ tmax

s

gβ∇xs′ rβ · dω̃s′

]
= 0. (49)

Thus, we are left with:

Extmax |xs

[∫ tmax

s

(
∂rβ
∂s′
− fβ · ∇xs′ rβ +

1

2
g2β∇2rβ

)
ds′
]
= 0. (50)

Since the expectation is zero for any interval [s, tmax], the integrand itself must be zero:

∂rβ
∂s
− fβ · ∇xs

rβ +
1

2
g2β∇2rβ = 0. (51)

Thus, the differential of rβ is given by:

drβ = gβ∇xs
rβ · dω̃s, (52)

Returning to the original time variable t, we substitute s = tmax − t yielding:

drβ = gβ∇xtrβ · dωt, (53)

completing the proof.

Although g(t)∇xtrβ is inaccessible without distillation and thus an intractable static vector, we can
still leverage the linear relationship to derive applications. Using our standard approach of interpreting
r ◦ c as rβ and recognizing that rβ(xt−∆) is an unbiased estimator of rβ(xt) (from Appendix D.2),
we practically interpret Equation (39) as:

(r ◦ c)(x̂(k)
t−∆)− µ̂ ≈ g(t)∇xt

rβ · z(k)
√
∆, where µ̂ =

1

K

K∑
k=1

(r ◦ c)(x̂(k)
t−∆). (54)

From Equation (39), flipping the sign of z(k) reverses its contribution to rβ . Therefore, based on the
observation (r ◦ c)(x̂(k)

t−∆)− µ̂, we flip z(k) accordingly. We show the theoretical analysis and proof
for the error of the reward estimate of our Tanh Demon in the following.

Lemma 2. Assume the truncation error terms in Equation (39) is ignorable. Let z∗ be derived from

btanhk = tanh

(
rβ(x̂

(k)
t−∆)−rβ(xt)

τ

)
using Equation (10) for every numerical step from t to t−∆ and

τ < ∞. Then, almost surely, r(x̂tanh
0 ) > rβ(xt), where x̂tanh

0 is derived by applying z∗ on every
step.
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Let ℓ = g(t)∇xt
rβ . Recall that we assume

rβ(x̂
(k)
t−∆)− rβ(xt) = ℓ · z(k)

√
∆ (55)

rβ(x̂
tanh
t−∆)− rβ(xt) = ℓ · z∗

√
∆ (56)

x̂
(k)
t−∆ = heun(xt, z

(k), t,∆) (57)

x̂tanh
t−∆ = heun(xt, z

∗, t,∆) (58)

z∗ =
√
N normalized

(
K∑

k=1

btanhk z(k)

)
(59)

btanhk = tanh

(
rβ(x̂

(k)
t−∆)− rβ(xt)

τ

)
. (60)

We aim to prove the sufficient condition: rβ(x̂
tanh
t−∆) > rβ(xt) for each numerical step. Under a

rotation of basis, without loss of generality, we assume ℓ only has value in the first component, i.e.,
ℓ = (ℓ, 0, . . . , 0) and ℓ > 0. We have:

rβ(x̂
tanh
t−∆) > rβ(xt) ⇐⇒ ℓz∗1

√
∆ > 0 (61)

Claim 2. Almost surely, the first component z∗1 of z∗ is positive.

Proof. Since

btanhk = tanh

(
rβ(x̂

(k)
t−∆)− rβ(xt)

τ

)
(62)

= tanh

(
ℓ · z(k)

√
∆

τ

)
(63)

= tanh

(
ℓz

(k)
1

√
∆

τ

)
, (64)

where z
(k)
1 is the first component of z(k).

Almost surely, z(k)1 ̸= 0, so btanhk will have the same sign as z(k)1 . This implies btanhk z
(k)
1 > 0.

Since the first component of z∗ will have the same sign as the first component of
∑K

k=1 b
tanh
k z(k) i.e.∑K

k=1 b
tanh
k z

(k)
1 > 0. We conclude that z∗1 > 0.

In addition, we provide proof of the linear relationship presented in Equation (39).

D.4 BOLTZMANN DEMON

Recall that

xt−∆ := xt +

∫ t−∆

t

fβ(xu, u) du+ gβ(u) dωu (65)

x̃t−∆ := xt − fβ(xt, t)∆ + gβ(t)z
√
∆ (66)

x̂t−∆ := xt −
1

2
[fβ(xt, t) + fβ(x̃t−∆, t−∆)]∆ +

1

2
[gβ(t) + gβ(t−∆)] z

√
∆ (67)

We first present the theoretical analysis and proof for the reward estimate error of the proposed
Boltzmann Demon as follows.
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Lemma 3. Assume t is bounded by tmax, |rβ | is bounded by L. Given xt, if the truncation error per
Heun’s SDE step in Equation (67) is xt−∆ = x̂t−∆ + o(∆) as ∆→ 0+, then we have:

E
[
r(x̂boltz

0 )
]
≥ rβ(xt)− o(L · tmax), (68)

where the expectation denotes that each step of the numerical approximation from every t to t+∆ is
taken with the maximum value of rβ(·) among i.i.d. SDE samples x̂(k)

t+∆, representing the Boltzmann
Demon with τ = 0.

Lemma 3 establishes a lower bound based on the sample maximum and reward estimate accuracy,
providing an improvement guarantee of expected reward in expectation.

We first claim the following statement.

Claim 3.
E
[
rβ(x̂

boltz
t−∆ )

]
≥ rβ(xt)− o(L ·∆). (69)

The rest is the induction of SDE time steps t0 = t > · · · > tT−2 > tT−1 > tT = 0, i.e.,

E
[
r(x̂boltz

0 )
]
= E

[
rβ(x̂

boltz
0 )

]
(70)

≥ E
[
rβ(x̂

boltz
tT−1

)
]
− o(L · tT−1) (71)

≥ E
[
rβ(x̂

boltz
tT−2

)
]
− o(L · (tT−1 + (tT−2 − tT−1))) (72)

... (73)

≥ E
[
rβ(x̂

boltz
t )

]
− o(L · t) (74)

≥ rβ(x̂
boltz
t )− o(L · tmax) (75)

Proof. We list the premise as the following:

z(k) = ω
(k)
t−∆ − ω

(k)
t (76)

x̂
(k)
t−∆ = heun(xt, z

(k), t,∆) (77)

x̂
(k)
t−∆ = x

(k)
t−∆ − o(∆) (78)

rβ(z
boltz) = max{rβ(x̂(1)

t−∆), · · · , rβ(x̂
(K)
t−∆)}. (79)

We can deduce that:

E
[
rβ(x̂

boltz
t−∆ )

]
= E

[
max{rβ(x̂(1)

t−∆), · · · , rβ(x̂
(K)
t−∆)}

]
(80)

≥ E
[
rβ(x̂

(1)
t−∆)

]
(81)

= E
[
rβ(x

(1)
t−∆)− L · o(∆)

]
(82)

= rβ(xt)− o(L ·∆) (83)

The last equation is followed by Equation (34). Here, rβ(x̂t−∆) is the numerical estimation of the
underlying SDE value rβ(xt−∆).

Lemma 4. When τ = ∞ and the time step is small enough, the Boltzmann Demon sampling is
identically distributed as the SDE sampling.

By adjusting τ , we can smoothly transition from prioritizing high-reward noise samples to the
standard SDE sampling method, balancing Demon and SDE strategies; note that when τ =∞, the
weights are bk = exp(0) = 1. Thus,

∑K
k=1 bkzk results in a Gaussian distributionN (0,KIN ). This

distribution is identical distributed to drawing a Gaussian after both are projected onto a sphere of
radius

√
N .
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We justify replacing Gaussian sampling with uniform sampling from a sphere of radius
√
N could

result in the same effect of SDE during the Euler-Maruyama discretization of SDEs. Assuming
constant drift f and diffusion g for Euler-Maruyama step, the SDE is dx = f dt+ g dW. We aim to
demonstrate that this replacement yields an identical distribution under small step sizes. Define:

Yn = −f∆+

n∑
k=1

g

√
∆

n
z̃k = −f∆+ g

√
∆

1√
n

n∑
k=1

z̃k (84)

where z̃k are i.i.d. vectors uniformly sampled from the surface of a sphere with radius
√
N . Also,

define:
Y = −f∆+ g

√
∆z (85)

Claim 4. Yn converges to Y in distribution as n→∞.

Proof. It’s sufficient to determine whether the normalized sum 1√
n

∑n
k=1 z̃k converges to z in

distribution. Consider each z̃k as an i.i.d. vector uniformly distributed on the surface of a sphere with
radius

√
N . The expectation of each vector is E[z̃k] = 0 by symmetry of the uniform distribution on

the sphere.

We need to establish the covariance matrix of z̃k. Let z̃ represent any of these i.i.d vectors without
the subscript to generalize the analysis. We investigate the covariance between any two components
z̃(i) and z̃(j) of the vector z̃:

If i ̸= j, by the symmetric condition of the sphere, we have:

E
[
z̃(i)z̃(j)

]
= E

[
z̃(i)E

[
z̃(j) | z̃(i)

]]
= E

[
z̃(i) · 0

]
= 0, (86)

reflecting the orthogonality of different components.

For the diagonal entries, where i = j, we know that the sum of the squares of the components of z̃
equals the square of the radius of the sphere:

N∑
i=1

E
[
(z̃(i))2

]
= E

[
N∑
i=1

(z̃(i))2

]
= N, (87)

since ∥z̃∥2 = N . This implies that each component z̃(i) has an expected squared value of 1, because
all components contribute equally due to the symmetry of the sphere. Therefore, Var[z̃(i)] =
E
[
(z̃(i))2

]
= 1 for all i.

Combining these results, the covariance matrix Var(z̃) = IN . The Central Limit Theorem for vector-
valued random variables (as described in Rencher (2005)) then asserts that 1√

n

∑n
k=1 z̃k converges

in distribution to a Gaussian vector z with mean 0 and covariance matrix IN as n→∞. Hence, the
normalized sum approximates the Gaussian vector z used in the diffusion term of the original SDE,
which justifies the replacement of Gaussian sampling with uniform sampling from the sphere.

D.5 HIGH DIMENSIONAL GAUSSIAN ON SPHERE

The original statement is more general in the textbook, but we provide specific proof for Gaussian.
Lemma 5. (Vershynin, 2020, Chap. 3) Let z be independent and identically distributed (i.i.d.)
instances of a standard isotropic Gaussian N (0, IN ) in a high-dimensional space N . With a high
probability (e.g., 0.9999), it holds that

∥z∥ =
√
N +O(1) (88)

Proof. Consider the norm ∥z∥2, where z is an instance of a standard isotropic Gaussian N (0, IN )
in N dimensions. The distribution of ∥z∥2 follows a Chi-squared distribution with N degrees of
freedom. The mean and variance of this distribution are N and 2N , respectively.

Applying a central limit theorem argument, we approximate the distribution of ∥z∥2 by a normal
distribution when N is large, giving:

∥z∥2 = N + C
√
N (89)
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for some constant C, where C ∈ O(1) represents fluctuations around the mean which are typically
on the order of the standard deviation of ∥z∥2, which is

√
2N .

To connect this with the norm of z, we consider:

lim
N→∞

√
N + C

√
N −

√
N = lim

N→∞

√
N

(√
1 +

C√
N
− 1

)
(90)

= lim
N→∞

√
N

(
C

2
√
N

)
(91)

=
C

2
(92)

Here, we use the Taylor series expansion for
√
1 + x, approximated as 1 + x

2 for small x, to find the
limit. This expansion leads to the conclusion that ∥z∥ =

√
N +O(1).

E COMPARE ON PICKSCORE

E.1 PICKSCORE COMPARISONS.

Since PickScore Kirstain et al. (2023) is trained specifically on generated images, we believe it is
a more reliable measure and objective than the aesthetics score. To emphasize the strength of our
method, we show how the median PickScore reward function improves across 20 different prompts
using our Tanh Demon, as shown in Figure 7a.

Our approach utilizes 1440 reward queries per sample and achieves a PickScore of 0.253, outperform-
ing other methods alongside reduced computation time (180 minutes for our method vs. 240 minutes
for resampling methods due to shortened ODE trajectories). Specifically, we compare our method to:

• SDXL/SDXL-DPO Wallace et al. (2023a): A state-of-the-art method for direct preference
optimization in diffusion models, which achieves a PickScore of 0.226, while the baseline
SDXL reaches 0.222.

• Diffusion-DPO(1440x): A variant that selects the highest quality median PickScore from
1440 samples among 20 prompts, achieving a PickScore of 0.246.

• SDXL(1440x): Similar to the above, but without preference optimization, achieving a
PickScore of 0.243.

Additionally, resampling an ODE from xtmax
is crucial in applications where the distribution xtmax

|
x0 plays a key role, such as in SDEdit Meng et al. (2022). Resampling methods fail to address such
applications, highlighting the advantage of our approach.

(a) A Trajectory of Tanh Demon. We plot (r ◦
c)(xt) for different t. (b) The performance of each method on PickScore.

Figure 7: Quantitative results for Tanh Demon.

E.2 QUALITATIVE RESULTS

In this section, we demonstrate the quantitative and qualitative results of PickScore in SDXL with
our Tanh Demon.
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Figure 8: Each row in the figure presents two pairs of images where the image of each pair on the
left illustrates results generated using the original PF-ODE method. The image on the right in each
pair showcases enhancements achieved by applying our Tanh Demon based on the PickScore metric
and SDXL. This figure demonstrates the improvements in visual fidelity and adherence to targeted
characteristics achieved through our proposed method.

F MORE RESULTS WITH VARIOUS REWARD FUNCTIONS.
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F.1 MORE IMAGE GENERATION RESULTS WITH DIFFERENT REWARD FUNCTIONS

Here, we show more image generaion results in SDXL with our Tanh Demon and other reward
functions.

F.1.1 GENERATION ON STABLE DIFFUSION XL

Table 11: Generative Results using SDXL

SDXL Aes IR Pick HPSv2 Ensemble

An Octopus Playing Chess with a Robot Underwater

A Samurai Gardening on a Floating Island in the Sky

Insanely detailed portrait, wise man

A painting of a girl encountering a giant sunflower blocking her path in a hallway

A demon exiting through a portal

A butterfly flying above an ocean
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Table 12: Generative Results using SDXL (Cont)

SDXL Aes IR Pick HPSv2 Ensemble

Two-faced biomechanical cyborg

Highway to hell

A Jazz Band of Different Alien Species Performing on an Exoplanet

A Victorian Inventor Testing Her Flying Bicycle Above a Steampunk City

A Time Traveler’s Picnic at the Edge of a Volcano During the Mesozoic Era

jedi duck holding a lightsaber

F.1.2 GENERATION ON STABLE DIFFUSION V1.4

Here, we provide more qualitative results as a continuation of Table 4.
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Table 13: More Qualitative Results of SD1.4 (Baseline)

Baseline DOODL Aes IR Pick HPSv2 Ensemble

An Octopus Playing Chess with a Robot Underwater

Two-faced biomechanical cyborg

Highway to hell

jedi duck holding a lightsaber

A Samurai Gardening on a Floating Island in the Sky
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Table 14: More Qualitative Results of SD1.4 (cont)

Baseline Aes IR Pick HPSv2 Ensemble DOODL

A Victorian Inventor Testing Her Flying Bicycle Above a Steampunk City

A Time Traveler’s Picnic at the Edge of a Volcano During the Mesozoic Era

Insanely detailed portrait, wise man

A butterfly flying above an ocean

A Jazz Band of Different Alien Species Performing on an Exoplanet
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F.2 SUBJECTIVE TEST OVERVIEW

We surveyed with 101 participants via Google Forms, as shown in Figure 9. Participants evaluated
different image generation methods based on:

• Subjective Preference: Visual aesthetics and image quality.
• Semantic Alignment: Correspondence between generated images and text prompts.

Each participant ranked images across four sections, with rankings aggregated using the following
formula:

1

ML

M∑
i=1

L∑
j=1

exp(−(rankij − 1)) (93)

where:

• M = 4 (number of sections),
• L = 101 (participants),
• rankij is the ranking by participant j for method i.

(a) Comparison across methods.

(b) Comparison across objectives.

Figure 9: Subjective test results: Preferences and prompt alignment across methods and objectives.

F.2.1 SURVEY STRUCTURE

The subjective test comprised four sections: two comparing methods (DOODL, Baseline (SD
or SDXL), Ensemble) based on subjective preference and prompt alignment, each with 3 sets
containing one image per method; and two comparing methods applied to different objectives
(Baseline, Ensemble, IR, Pick, HPSv2, Aes) also based on preference and prompt alignment, each
with 3 sets containing six images per set.

F.2.2 RESULTS OVERVIEW

Methods Comparison Figure 9a shows that DOODL slightly outperforms the Baseline in aesthetic
preference and prompt alignment. The Ensemble method significantly surpasses both, indicating
superior visual quality and semantic accuracy.
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Objectives Comparison As seen in Figure 9b, all objectives outperform the Baseline in prompt
alignment, with the HPSv2 method leading. In subjective preference, methods applied to different
objectives show varied improvements, with some achieving substantial gains over the Baseline.

F.2.3 ANALYSIS

We compared DOODL, Baseline, and Ensemble based on aesthetics and prompt alignment. DOODL
marginally improves over the Baseline in both criteria, while the Ensemble method consistently
outperforms both DOODL and Baseline, excelling in image quality and semantic accuracy. The
Ensemble method demonstrates significant enhancements, particularly in tasks requiring visual
refinement.

Evaluating different objectives (IR, Pick, HPSv2, Aes) against Baseline and Ensemble revealed that
almost all objectives surpass the Baseline in both preference and prompt alignment. However, Aes,
an objective without explicit text guidance, shows weaker prompt alignment. Among the objectives,
HPSv2 achieves the best performance on both criteria.

The Ensemble method provides the most substantial improvements in visual aesthetics and seman-
tic alignment among method comparisons. Among the factors of the Ensemble method, HPSv2
outperforms other objectives, even the Ensemble method, highlighting its effectiveness in aligning
preference for a real human.

G MORE DETAILS OF VLM AS DEMON

In this section, we provide more details of experiments and quantitative results of utilizing VLM
during generation.

G.1 EXPERIMENTS SETTINGS

We provide the prompt template we used in Table 5 to VLMs. The prompt is fixed as “A mysterious,
glowing object discovered in an unexpected place, sparking curiosity and wonder. The setting
changes based on the viewer’s background, transforming the object’s significance and the surrounding
environment to match the realms of education, history, literature, design, science, and imagination.”
for all experiments in the VLM generation. At each step, the VLM is given a fixed prompt with
different scenarios and asked to choose one of the images from c(xt) and c(x̂

(k)
t+∆) that best matches

the given scenario.

The following are the full prompts for the scenarios:

1. Teacher: You are a teacher looking to create custom illustrations for your educational
materials to make learning more engaging for your students.

2. Artist: You are a game or movie concept artist tasked with creating concept art for characters,
settings, and scenes to speed up the pre-production process.

3. Researcher: You are a researcher needing to visualize complex data, such as molecular
structures in chemistry or weather patterns in meteorology, for better understanding or
presentation.

4. Journalist: You are a journalist who wants to add a visual teaser for your article to grab
attention on social media or your news website.

Listing 1: Prompt template used in the Gemini image selection task. This template guides the
decision-making process for choosing between two images generated from a fixed prompt. For the
prompt used in GPT selection, we replace the output format by asking it to return JSON.

1 Scenario: {scenario}
2

3 You are presented with two images generated from the prompt "{
prompt}." Examine both images carefully to decide which one
best matches the given scenario. Consider how each image
relates to the scenario, including its relevance and how well
it captures the intended theme and concept.
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4

5 Choose the image that you believe is the most appropriate for the
scenario. Each image has an id: 0 or 1.

6

7 Please share your thought process or any observations you made
while making your decision. This reflection helps in
understanding your choice.

8

9 Respond with the id of the image you’ve chosen in a JSON format.
For example, if you choose the first image, your response
should look like this:

10

11 ‘‘‘json
12 [0]
13 ‘‘‘
14

15 Or, if you choose the second image:
16

17 ‘‘‘json
18 [1]
19 ‘‘‘
20

21

22

23 Please response in the following format:
24

25 < Here write down your argument >
26

27 < Here write down your decision, either [0] or [1], the [] is
necessary >

28

29 Take a deep breath and work on this problem step-by-step. Ensure
your choice truly aligns with the intended scenario.

Listing 2: An example of GPT generated output

1 {
2 "justification": "Considering the scenario described, the

first image is a better choice. This image effectively
showcases a mysterious, illuminated object that instantly
attracts the viewer’s curiosity. The background hints at
an academic or historical setting, with architectural
elements and various artifacts that seem like elements
from different times and places. This diverse and
enigmatic setup aligns well with the theme of
transformation and curiosity across different realms like
education, history, literature, and science. The glowing
object in a seemingly ancient, cluttered environment truly
sparks wonder, making it ideal for grabbing attention on

social media or a news website.",
3 "chosen_image": [
4 0
5 ]
6 }
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G.2 QUANTITATIVE MEASUREMENT OF EFFECTIVENESS

For VLMs as reward functions, we use Pickscore Kirstain et al. (2023), which is trained from
CLIP Radford et al. (2021), to evaluate the effectiveness of VLM in aligning designed scenarios during
image generation. For each scenario, we create a corresponding prompt that partially describes the
scenario: “For education” for Teacher, “For entertainment” for Artist, “For research” for Researcher,
and “For Journalism” for Journalist. Then, we assess the PickScore between the prompt and the
scenario. The results are presented in Table 15, Table 16, Table 17 and Table 18, where the highest
score for each prompt is highlighted in bold. Our observations indicate that 14 out of our VLM-
generated 16 images demonstrate better PickScore alignment with the corresponding prompt than
PF-ODE. Given that all images are generated using the same prompt and initial noisy sample in the
same table, these results demonstrate the effectiveness of our approach employing VLM in aligning
the scenarios.

Table 15: GPT-SDXL generation, validated by PickScore on related prompts

Prompt Teacher Artist Researcher Journalist PF-ODE

For education 0.2050 0.2069 0.2080 0.2071 0.2073
For entertainment 0.2042 0.2073 0.2061 0.2058 0.2032
For research 0.1980 0.1989 0.1996 0.1985 0.1971
For journalism 0.1994 0.1957 0.1978 0.1946 0.1970

Table 16: Gemini-SDXL generation, validated by PickScore on related prompts

Prompt Teacher Artist Researcher Journalist PF-ODE

For education 0.2111 0.2042 0.2102 0.2072 0.2073
For entertainment 0.2057 0.2058 0.2062 0.2013 0.2032
For research 0.2018 0.1979 0.2035 0.1986 0.1971
For journalism 0.2011 0.1991 0.1978 0.2049 0.1970

Table 17: GPT-SD v1.4 generation, validated by PickScore on related prompts

Prompt Teacher Artist Researcher Journalist PF-ODE

For education 0.1978 0.2008 0.1996 0.1988 0.1941
For entertainment 0.2026 0.2018 0.1991 0.2004 0.1966
For research 0.1896 0.1936 0.1912 0.1935 0.1878
For journalism 0.1930 0.1951 0.1918 0.1942 0.1901

Table 18: Gemini-SD v1.4 generation, validated by PickScore on related prompts

Prompt Teacher Artist Researcher Journalist PF-ODE

For education 0.1997 0.1945 0.1961 0.1961 0.1941
For entertainment 0.1954 0.1973 0.1982 0.1989 0.1966
For research 0.1910 0.1910 0.1897 0.1895 0.1878
For journalism 0.1935 0.1936 0.1927 0.1914 0.1901

H GENERAL IMPLEMENTATION DETAILS

In this section, we show the details of the implementation and experimental settings of the proposed
approach as follows.
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H.1 ADAPTING STABLE DIFFUSION TO EDM FRAMEWORK

In this paper, we tailor the existing text-to-image Stable Diffusion v1.4/v1.5/XL v1.0 (SDXL)
(i.e., we use fp16 SD v1.4/SDXL v1.0 for generation.) to the SDE formulation proposed in
EDM Karras et al. (2022) by Karras et al. for image generation since its reparameterized time
domain, t ∈ [tmin, tmax], improves numerical stability and sample quality during image generation.
We realize the modification through the equation, ∇x log p(x, t) = (D(x, t)− x) /t2, where the
function D(x, t) = x − tF(s(t)x, u(t)) derived from the original model F. In addition, s(t) and
u(t) represent the scaling schedule and the original temporal domain of the reparameterized temporal
domain t, respectively.

H.2 NUMERICAL METHODS FOR IMAGE GENERATION

Moreover, for image sampling with ODE/SDE, our approach follows Karras et al. (2022), adopting

Heun’s method and time intervals determined by ti =
(
t
1/ρ
max +

i−1
T−1 (t

1/ρ
min − t

1/ρ
max)

)ρ
, setting

ρ = 7, T ≥ 20 and ln tmax ≈ 2.7, ln tmin ≈ −6.2. The classifier-free guidance parameter is set to 2
throughout this paper. Across all temporal steps t of image generation, we keep K and β constant.
We have found that when t is less than 0.11, i.i.d. samples from SDE all appear similar to human
perception. For the remaining evaluations, we will directly use ODE. As a result, the actual number
of samples will be slightly smaller than K · T .

H.3 SIMPLIFICATIONS IN DIFFUSION PROCESS MODIFICATION

It is worth noting that in our work, since our main focus is on the modification of the diffusion process,
without loss of generality, we omit the VAEs (Kingma & Welling (2014)) of Stable Diffusion models,
the prompt c, and η of classifier-free guidance (CFG) Ho & Salimans (2021) in our formulation for
simplicity (i.e., using p(x) to denote the unnormalized p(x)p(c | x)η for conciseness).

H.4 BATCH SIZE AND MEMORY CONSTRAINTS

When we generate many SDE samples, the batch size for solving ODE/SDE is 8 for both Stable
Diffusion v1.4, v1.5, and SDXL models. However, due to memory limitations on the RTX 3090,
the batch size for evaluating the VAE in SDXL is restricted to 1. This memory bottleneck prevents
any further acceleration from using larger batch sizes, as it limits the parallelization during VAE
evaluation.

H.5 EXPERIMENTAL SETUP AND HYPERPARAMETERS

We present the detailed hyperparameter settings of different experiments as follows:

Baseline Comparison. The hyperparameters for generation are set to β = 0.1, K = 16, η = 2 and
τ adaptive for Tanh, 10−5 for Boltzmann.

The parameter of DOODL optimized on aesthetics score is set as their demo provided.

Reward Estimate Approximation Comparison. We use SD v1.5 and its distilled CM. The CFG
parameter is ignored in CM(set to 1).

Generation with Various Reward Functions. We use Tanh Demon for sampling with adaptive
temperature. The hyperparameters for generation are set to β = 0.05, K = 16, T = 64 as shown in
Table 4, Table 13, Table 11, and Table 12.

For reward scaling in the ensemble setting, the PickScore was multiplied by 98.86, and HPSv2 was
multiplied by 40.

The interaction step of DOODL is used as suggested by their implementation, 50 iteration for Aes
and 100 iteration for Pick.
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Non-differentiable Reward. In Table 5, the hyperparameters are set to β = 0.05, τ = 0.0001,
K = 16, and T = 32 using Tanh Demon.

Manual Selection. In Figure 5, the parameters are β = 0.1,K = 16, T = 128 but terminate
manually, using Tanh Demon with adaptive temperature. We terminate the iteration after ten rounds
of operating the UI.

I LIMITATIONS

We present the theoretical result in Equation (5), which demonstrates that r ◦ c ≈ rβ . This result
relies on the assumption that the reward function r is near harmonic near the ODE sample ourput, as
detailed in Appendix D.1.2.

In practice, implementing r ◦ c faces challenges related to time complexity and accuracy bottlenecks,
thoroughly discussed in Section 4.

J FUTURE WORK

The only difference between Tanh-C and Tanh Demon lies in how r ◦ c is implemented. Analysis
of the data in Table 2 and Figure 4 indicates that Tanh-C’s reward performance can be enhanced
by mitigating the RMSE in r ◦ c without compromising Tanh-C’s speed performance. Potential
strategies for improvement include increasing the fidelity of CM distillation or training a dedicated
distilled model for r ◦ c. We propose these enhancements as future work.

K CODE OF ETHICS

The experiments involving human judgment are fully compliant with established ethical standards.
Approval is obtained from the Institutional Review Board (IRB) to ensure that the research meets all
necessary guidelines for the ethical treatment of human subjects. For anonymity purposes, the IRB
approval number will be concealed under double-blind review.

L SOCIETAL IMPACT

Our method has the potential to both discourage and encourage harmful content. Users can generate
images through manual selections with malicious intentions (Figure 5). This increases accessibility
but also raises concerns about misuse. We implement safeguards provided by Stable Diffusion;
end-users are responsible for employing them, as recommended in prior works OpenAI (2024);
Gemini Team Google (2024); Rombach et al. (2022); Podell et al. (2024), to mitigate potential risks.
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