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Abstract

Efficient differential equation solvers have significantly reduced the sampling time
of diffusion models (DMs) while retaining high sampling quality. Among these
solvers, exponential integrators (EI) have gained prominence by demonstrating
state-of-the-art performance. Surprisingly, we find existing high-order EI-based
sampling algorithms rely on degenerate EI solvers, resulting in inferior error bounds
and reduced accuracy in contrast to the theoretically anticipated results under
optimal settings. This situation makes the sampling quality extremely vulnerable
to seemingly innocuous design choices such as timestep schedules. For example,
an inefficient timestep scheduler might necessitate twice the number of steps to
achieve a quality comparable to that obtained through carefully optimized timesteps.
To address this issue, we reevaluate the design of high-order differential solvers
for DMs. Built upon well-established numerical framework from Hochbruck &
Ostermann (2005a) and extensive experiments, we reveal that the degeneration of
existing high-order EI solvers can be attributed to the absence of essential order
conditions. By reformulating the differential equations in DMs and capitalizing on
the theory of exponential integrators Weiner (1992), we introduce EI solvers that
fulfill all order conditions for diffusion sampling, which we designate as Refined
Exponential Solver (RES). Utilizing these improved solvers, RES exhibits more
favorable error bounds theoretically and achieves superior sampling efficiency
and stability in practical applications. For instance, a simple switch from the
single-step DPM-Solver++ to our order-satisfied RES when Number of Function
Evaluations (NFE) = 9, results in a reduction of numerical defects by 25.2% and
FID improvement of 25.4% (16.77 vs 12.51) on a pre-trained ImageNet model.

1 Introduction
Diffusion models (DMs) (Ho et al., 2020; Song et al., 2021b) have recently garnered significant interest
as powerful and expressive generative models. They have demonstrated unprecedented success in
text-to-image synthesis (Rombach et al., 2022; Saharia et al., 2022; Balaji et al., 2022) and extended
their impact to other data modalities, such as 3D objects (Poole et al., 2022; Lin et al., 2022; Shue
et al., 2022; Bautista et al., 2022), audio (Kong et al., 2020), time series (Tashiro et al., 2021; Biloš
et al., 2022), and molecules (Wu et al., 2022; Qiao et al., 2022; Xu et al., 2022). However, DMs
have slow generation due to their iterative noise removal, requiring potentially thousands of network
function evaluations (NFEs) to transform Gaussian noise into clean data, compared to Generative
adversarial networks (GANs) single evaluation for a batch of images.

Recently, a surge of research interest has been directed toward accelerating the sampling process
in diffusion models. One strategy involves the distillation of deterministic generation. Despite
requiring additional computational resources, this approach can reduce the number of NFEs to
fewer than five (Salimans & Ho, 2022; Song et al., 2023; Meng et al., 2022; Liu et al., 2023).
Nevertheless, distillation methods often depend on training-free sampling methods during the learning
process and are only applicable to the specific model being distilled, thereby limiting their flexibility
compared to training-free sampling methods (Luhman & Luhman, 2021). Another line of investigation
is aimed at designing generic sampling techniques that can be readily applied to any pre-trained
DMs. Specifically, these techniques leverage the connection between diffusion models and stochastic
differential equations (SDEs), as well as the feasibility of deterministically drawing samples by
solving the equivalent Ordinary Differential Equations (ODEs) for marginal probabilities, known
as probability flow ODEs (Song et al., 2021b;a). Research in this domain focuses on the design
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of efficient numerical solvers to expedite the process (Liu et al., 2022; Zhang & Chen, 2022; Lu
et al., 2022a; Zhang et al., 2022; Karras et al., 2022; Lu et al., 2022b; Zhao et al., 2023). Despite
the significant empirical acceleration, numerous methods that claim the same order of numerical
error convergence rate demonstrate significant disparities in practical application. Furthermore, these
approaches often incorporate a range of techniques and designs that may obscure the actual factors
contributing to the acceleration, such as various thresholding (Dhariwal & Nichol, 2021; Saharia
et al., 2022), and sampling time optimization (DeepFloyd, 2023; Karras et al., 2022). (See App A for
more related works and discussions.)

In this study, we initiate by revisiting different diffusion probability flow ODE parameterizations,
underlining the vital role of approximation accuracy for integrals in the ODE solution in various
sampling algorithms. This directly impacts both the quality and speed of sampling (Sec 3.1). Through
a change-of-variable process, we further unify the ODEs for the noise prediction model and data
prediction into a singular, canonical semilinear ODE. Building on the framework, and drawing from
the wisdom of well-established numerical analysis literature (Hochbruck & Ostermann, 2005a; 2010),
we conduct a detailed order analysis of diffusion ODE with semilinear structure. This analysis
uncovers critical limitations in widely used sampling algorithms, notably their non-compliance with
the order conditions of exponential integrators (EI). This leads to inferior error bounds, compromised
accuracy, and a lack of robustness compared to the theoretically projected outcomes under optimal
settings (Sec 3.2).

In response, we introduce the Refined Exponential Solver (RES), which is built upon an order-satisfied
scheme originating from Weiner (1992). RES offers more favorable error recursion both theoretically
and empirically, thus ensuring superior sampling efficiency and robustness (Sec 3.3). Moreover, our
single-step scheme can be seamlessly integrated to enhance multistep deterministic (Sec 3.4) and
stochastic sampling algorithms (Sec 3.5), surpassing the performance of contemporary alternatives.
Lastly, we undertake comprehensive experiments with various diffusion models to demonstrate the
generalizability, superior efficiency, and enhanced stability of our approach, in comparison with
existing works (Sec 4). In summary, our contributions are as follows:

• We revisit and reevaluate diffusion probability flow ODE parameterizations and reveal the
source of approximation error.

• To minimize error, we propose a unified canonical semilinear ODE, identify the overlooked
order condition in existing studies, and rectify this oversight for diffusion ODE by leveraging
theoretically sound exponential integrator analysis (Hochbruck & Ostermann, 2005a).

• We introduceRES, a new diffusion sampling algorithm that provides improved error recursion,
both theoretically and empirically. Extensive experiments are conducted to show its superior
efficiency, enhanced stability, and its orthogonality to other sampling improvements. For
example, it shows up to 40% acceleration by switching single-step DPM-Solver++ to single-
step RES under a suboptimal time scheduling.

2 Background
Given a data distribution of interest, denoted as pdata(x) where x ∈ X , a diffusion model consists of a
forward noising process that diffuses data point x into random noise and a backward denoising process
that synthesize data via removing noise iteratively starting from random noise. We start our discussion
with simple variance-exploding diffusion models (Song & Ermon, 2020), which can be generalized to
other diffusion models under the unifying framework introduced by Karras et al. (2022). Concretely,
the forward noising process defines a family of distributions p(x;σ(t)) dependent on time t, which is
obtained by adding i.i.d. Gaussian noise of standard deviation σ(t) to noise-free data samples. We
choose σ(t) to be monotonically increasing with respect to time t, such as σ(t) = t.

To draw samples from diffusion models, a backward synthesis process is required to solve the following
stochastic differential equation (SDE) (Zhang & Chen, 2021; Huang et al., 2021; Karras et al., 2022),
starting from x(T ) ∼ N (0, σ(T )2I) for a large enough T :

dx =− σ̇(t)σ(t)∇x log p(x;σ(t))dt︸ ︷︷ ︸
Probabilistic ODE

−βtσ(t)
2∇x log p(x;σ(t))dt+

√
2βtσ(t)dωt︸ ︷︷ ︸

Langevin process

, (1)

where ∇x log p(x;σ(t)) is the score function (i.e., gradient of log-probability), ωt is the standard
Wiener process, and βt is a hyperparameter that controls the stochasticity of the process. Eq (1)
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Table 1: Different parametrizations of the probabilistic ODE.

Parametrization Location Velocity Time Semi-linear
EDM / DEIS x (x−Dθ(x, t))/t t := σ No

logSNR x −x+Dθ(x, e
−λD ) λD := − log σ Yes

Negative logSNR y := x/eλϵ −y + ϵθ(e
λϵy, eλϵ) λϵ := log σ Yes

reduces to deterministic probabilistic flow ODE (Song et al., 2021b) when β = 0. Some popular
methods, such as variance-preserving diffusion models, introduce an additional scale schedule s(t)
and consider x = s(t)x̂ to be a scaled version of the original, non-scaled data x̂. Though the
introduction of scale schedule s(t) will result in a different backward process, we can undo the scaling
and reduce their sampling SDEs to Eq (1). Note that we focus on non-scaling diffusion models
in this paper for simplicity and leave the extension to other diffusion models in App B. The score
function ∇x log p(x;σ(t)) of noised data distribution at a particular noise level σ can be learned via
a denoising score matching objective (Vincent, 2011):

Lσ(θ) = Ex∼pdata,ϵ∼N (0,I)[∥Dθ(x+ σϵ, σ)− x∥22], (2)

where Dθ : X ×R → X is a time-conditioned neural network that tries to denoise the noisy sample.
In the ideal case, having the perfect denoiser Dθ is equivalent to having the score function thanks to
Tweedie’s formula (Efron, 2011):

Dθ(x, σ) = x+ σ2∇x log p(x;σ). (3)

For convenience, we also introduce the noise prediction model, which tries to predict ϵ in Eq (2):

ϵθ(x, σ) :=
x−Dθ(x, σ)

σ
. (4)

3 Refined exponential solver RES
Even with the same trained diffusion model, different solvers of Eq (1) will lead to samplers of
drastically different efficiency and quality. In this section, we present a unified formulation to the
various probability flow ODE being considered (Sec 3.1), analyze the numerical approximation errors
for general single-step methods (Sec 3.2), and find the optimal set of coefficients that satisfies the
desired order conditions and minimizes numerical error (Sec 3.3). We then extend the improvement
to the stochastic setting (Sec 3.4) and multistep sampling methods (Sec 3.5).

3.1 Better parameterizations for probability flow ODE
The probability flow ODE in diffusion models in Eq (1) is first order, and thus we can draw some
analogies between x and “location”, t and “time”, and −σ̇(t)σ(t)∇x log p(x, σ(t)) as “velocity”. In
general, an ODE is easier to solve if the “velocity” term has smaller first-order derivatives (Press et al.,
2007; Lipman et al., 2022). Here, we list several different parametrizations for these quantities. While
the exact solutions to these ODEs are the same, the numerical solutions can differ dramatically.

EDM In EDM (Karras et al., 2022), the location term is on the data space x, the probability flow
ODE in Eq (1) with βt = 0 simplifies to the following equation:

dx =
x−Dθ(x, σ(t))

σ(t)
σ̇(t)dt. (5)

To solve Eq (5), Karras et al. (2022) interpret the term x−Dθ(x,σ(t))
σt

σ̇(t) as a black box function and
choose σ(t) = t, and then apply a standard second-order Heun ODE solver.

DEIS Similarly, one varaint of DEIS (Zhang & Chen, 2022) uses the noise prediction model ϵθ to
parametrize the ODE:

dx = ϵθ(x, σ)dσ. (6)
It is not hard to see that this is equivalent to the EDM one if we set σ to t.
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(b) Diagram of error recursion.

Figure 1: Fig 1a. Along the trajectory of an exact solution to the probability flow ODE, semi-linear
ODE with logarithm transformation parametrization on noise level σ has smaller “acceleration”, i.e.,
the time-derivative of “velocity”. The curves are averaged over 512 solutions on the pre-trained Ima-
geNet model (Karras et al., 2022). This implies that semi-linear ODEs may incur lower discretization
errors by approximating underlying networks with a constant or linear profile during the solving of
ODEs. Fig 1b. The auxiliary trajectory x̂ starts from exact solution x and is built upon numerical
integration proposed in Eq (11). The diagram depicts that numerical defects ∆n+1 between x(λn+1)
and numerical solution xn+1 is a result of accumulated intermediate defects {δn, δn,i} in each step,
which is the discrepancy between the auxiliary trajectory and the exact solution trajectory.

logSNR We explore an alternative probability flow ODE parameterization based on the denoising
model Dθ. We consider λD(t) := − log σ(t), which can be treated as the log signal-to-noise
ratio (logSNR, (Kingma et al., 2021)) between coefficients of the signal x(0) and noise ϵ. With
dλD(t) = −σ̇(t)

σ(t) dt, Eq (5) can be reformulated as follows:
dx

dλD
= −x+ gD(x, λD), gD(x, λD) := Dθ(x, e

−λD ). (7)

Negative logSNR Alternatively, we can restructure Eq (6) by employing a change-of-variables
approach with y(t) := x(t)

σ(t) , λϵ(t) := log σ(t) for the noise prediction model ϵθ:
dy

dλϵ
= −y + gϵ(y, λϵ), gϵ(y, λϵ) := ϵθ(e

λϵy, eλϵ ), (8)

where λϵ is the negative logSNR. We observe that Eq (7) and (8) possess highly similar ODE structures.
In fact, they are both semilinear parabolic problems in the numerical analysis literature (Hochbruck &
Ostermann, 2005b), i.e., the velocity term is a linear function of location plus a non-linear function of
location (gD or gϵ). This suggests that ODEs with either epsilon prediction or data prediction models
can be addressed within a unified framework. We summarize these parametrizations in Tab 1.

A notable advantage of the logSNR and negative logSNR parametrizations is that their velocity terms
along exact solution trajectory, such as −x(λD) + gD(x(λD), λD) , are smoother than the velocity
term in the ODE for EDM/DEIS. We illustrate this in Fig 1a, which shows that the norm of the
derivative of the EDM velocity term grows rapidly as σ → 0. To mitigate the challenges associated
with solving ODEs that exhibit sharper “acceleration”, the timestep scheduling employed in prevalent
samplers (like DDIM and EDM) typically allocates more steps at lower noise levels.

For the rest of the section, we focus on logSNR (Eq (7)); theoretical conclusions and practical
algorithms can be easily transferred to negative logSNR (Eq (8)). For notational simplicity, we
substitute λ for λD and g for gD, so our ODE in Eq (7) becomes:

dx

dλ
= −x+ g(x, λ), (9)

Suppose that our ODE solver advances for a step size of h from x(λ), then the exact solution x(λ+h)
to this ODE, as given by the variation-of-constants formula, is represented as follows:

x(λ+ h) = e−hx(λ) +

∫ h

0

e(τ−h)g(x(λ+ τ), λ+ τ)dτ. (10)
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However, the computation of this exact solution confronts two significant challenges: the intractability
of the integral and the inaccessible integrand, which involves the evaluation of the denoiser on the
exact solution x(λ+ τ). To approximate the intractable integration in Eq (10), we leverage numerical
analysis and methods from Hochbruck & Ostermann (2005a) to derive order conditions and update
scheme for single-step methods.

3.2 Single-step numerical schemes and defect analysis
To approximate the exact solution in Eq (10), the numerical scheme of explicit single-step methods,
characterized by s-stages, can be described as follows:

xn+1 = e−hnxn + hn

s∑
i=1

bi(−hn)dn,i, (11a)

xn,i = e−cihnxn + hn

i−1∑
j=1

aij(−hn)dn,j , dn,i := g(xn,i, λn + cihn), (11b)

where hn := λn+1 − λn denotes the step size from state xn to xn+1, xn,i denotes the numerical
solution at the i-th stage with timestep λn + cihn, and dn,i is the function evaluation at the i-th
stage. Notably, xn denotes the numerical solution at time λn, which deviates from the exact solution
x(λn); similarly, the numerical solution xn,i at stage i deviates from the exact x(λn + cihn). The
coefficients aij , bi, cj in Eq (11) can be compactly represented using Butcher tableaus Tab 2 (Press
et al., 2007).

Table 2: Left: Tableau form of {aij , bi, cj} for numerical scheme in Eq (11). For all 1 ≤ j ≤ i ≤ s,
aij = 0. Middle: For Euler method, c1 = 0, b1 = 1. Right: For Heun’s method, c1 = 0, c2 =
1, a21 = 1, b1 = b2 = 0.5. Unlike our RES exponential integrator, the explicit Euler and Heun solvers
do not have the additional exponential coefficients (e.g., e−hn) in front of xn (see Eq (11)). These
coefficients are not reflected in the Butcher tableau.

c1
c2 a21
...

...
. . .

cs as1 · · · as,s−1

b1 · · · bs−1 bs

0
1

0
1 1

0.5 0.5

To bound the numerical defect xn − x(λn), we first decompose it into the summation of, xn − x̂n

and x̂n − x(λn). Here, the auxiliary trajectory x̂n is obtained by substituding dn,i in Eq (11) with
f(λ) := g(x(λ), λ). Specifically, we define intermediate numerical defects δn, δn,i as

δn,i := x(λn + cihn)− x̂n,i, x̂n,i = e−cihnx(λn)− hn
∑i−1

j=1 aij(−hn)f(λn + cjhn), (12a)
δn+1 := x(λn+1)− x̂n+1, x̂n+1 = e−hnx(λn)− hn

∑s
i=1 bi(−hn)f(λn + cihn). (12b)

Intuitively, defects δn,i, δn+1 are caused by approximating the intractable integration in Eq (10) by
finite summation in Eq (11). Let ∆n := xn − x(λn), ∆n,i := xn,i − x(λn + cihn), we can derive
error recursion with the help of δn,i, δn+1, such that

∆n+1 = e−hn∆n + h
∑s

i=1 bi(−hn)(g(xn,i, λn + cihn)− f(λn + cihn))− δn+1, (13a)
∆n,i = e−cihn∆n + h

∑i−1
j=1 aij(−hn)(g(xnj , λn + cjhn)− f(λn + cjhn))− δn,i. (13b)

Eq (13) reveals that numerical defects ∆n+1,∆n,i are influenced by the emergent intermediate
defects δn+1, δn,i and defects ∆n, which are themselves modulated by previous intermediate defects.
Moreover, the discrepancy g(xn,i, λn + cihn) − f(λn + cihn) is contingent upon ∆n,i. As error
recursion illustrated in Fig 1b, the origin of final numerical defects lies in the defects δn+1, δn,i in each
step. Consequently, to curtail the ultimate defect, it becomes paramount to constrain δn+1, δn,i. To
establish bounds for ∆n using the above error recursion, the following lemma provides an expansion of
intermediate defects, uncovering the association between δn+1, δn,i and the derivative of f(λ).
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Lemma 1 ((Hochbruck & Ostermann, 2005b)). Let ϕj(−hn) = 1

hj
n

∫ hn

0
eτ−hn τj−1

(j−1)!dτ , the order-q
Taylor expansion of the intermediate defects δn,i, δn+1 can be formulated as follows:

δn,i =

q∑
j=1

hjnψj,i(−hn)f (j−1)(λn)+O(hqn) δn+1 =

q∑
j=1

hjnψj(−hn)f (j−1)(λn)+O(hqn), (14)

where function ψj,i, ψj for the coefficients of the (j − 1)-th order derivative of f(λn) are defined as

ψj,i(−hn) = ϕj(−cihn)cji−
i−1∑
k=1

aik(−hn)
cj−1
k

(j − 1)!
, ψj(−hn) = ϕj(−hn)−

s∑
k=1

bk(−hn)
cj−1
k

(j − 1)!
.

Lemma 1 furnishes an expansion expression for δn,i, δn+1, with each term contingent upon the
derivative of f and coefficients {ψj , ψj,i}. This implies that to minimize numerical defects (∆n+1), an
ODE parameterization that ensures the smoothest possible nonlinear function along the exact solution
trajectory should be selected, thus substantiating our choice of the logarithmic transformation on the
noise level. To this end, we can constrain numerical defects δn+1, δn,i by minimizing the magnitude
of {ψj , ψj,i}, forming the foundation of the order conditions for the single-step scheme.

3.3 Order conditions
With Eq (13) and Lemma 1, we can deduce the conditions necessary to achieve a numerical scheme
of order q. We start with the case of a single-stage solver of order one.

Theorem 1 (Error bound for solvers that satisfy the 1st-order condition). When ψ1(−hi) = 0 is
satisfied for 1 ≤ i ≤ n, the error bound of first-order solver based on Eq (11)

∥xn − x(λn)∥ ≤ Ch sup
λmin≤λ≤λmax

∥f ′(λ)∥ (15)

holds for h = max1≤i≤n hi. The constant C is independent of n, h.

With Thm 1, b1(−h) = ϕ1(−h) and the numerical scheme reads

xn+1 = e−hnxn + hnϕ1(−h)g(xn, λn), (16)

which is known as exponential Euler (Hochbruck & Ostermann, 2010) or DDIM for diffusion
model (Song et al., 2021a). Although our order analysis aligns with existing work (Lu et al., 2022a;
Zhang & Chen, 2022), the distinction emerges in high-order methods.

Theorem 2 (Error bound for solvers that satisfy the 1st- and 2nd-order conditions (Hochbruck
& Ostermann, 2005a, Thm 4.7)). When ψ1(−hi) = ψ2(−hi) = ψ1,2(−hi) = 0 is satisfied for
1 ≤ i ≤ n, the error bound of second order solver based on Eq (11)

∥xn − x(λn)∥ ≤ Ch2( sup
λmin≤λ≤λmax

∥f ′(λ)∥+ sup
λmin≤λ≤λmax

∥f ′′(λ)∥) (17)

holds for h = max1≤i≤n hi. The constant C is independent of n, h.

To satisfy order conditions in Thm 2, the optimal Butcher tableau can be parameterized by c2 as
shown in Tab 3. It turns out the single-step scheme proposed in DPM-Solver++ (Lu et al., 2022b)
can also be reformulated with a different Butcher tableau as shown in Tab 3 (See App B). Those two
Butcher tableau was actually first proposed by Weiner (1992) for adaptive RK methods. Nevertheless,
compared with Thm 2, DPM-Solver++ breaks the order condition ψ2(−h) = 0 and introduces
additional errors in solving ODEs (See App B) compared with Thm 2 theoretically. Practically,
Hochbruck & Ostermann (2005a) demonstrated that numerical schemes satisfying order conditions
yield enhanced performance in their low-dimensional synthetic problems. As evidenced in Sec 4, we
verify our numerical scheme, which adheres to these order conditions, exhibits reduced numerical
defects and consequently produces samples of higher quality from diffusion models.

Proposition 1 (Informal). Employing the Butcher tableau outlined in Tab 3, the single-step
method Eq (11), characterized by three stages, functions as a third-order solver.

6



Under review as a conference paper at ICLR 2024

Algorithm 1 RES Second order Single Update Step with c2
1: procedure SingleUpdateStep(xi, σi, σi+1)
2: λi+1, λi ← − log(σi+1),− log(σi)
3: h← λi+1 − λi ▷ Step length
4: a21, b1, b2 ← Tab 3 with c2 ▷ Runge Kutta coeffcients
5: (xi,2, λi,2)← (e−c2hxi + a21hDθ(xi, λi), λi + c2h) ▷ Additional evaluation point
6: xi+1 ← e−hxi + h(b1Dθ(xi, λi) + b2Dθ(xi,2, λi,2))
7: return xi+1

Table 3: Butcher tableau comparison between RES and DPM-Solver++ (Lu et al., 2022b) for step size
h, where ϕi := ϕi(−h) is defined in Lemma 1, and we further define ϕi,j := ϕi,j(−h) = ϕi(−cjh).
†: γ in third order RES needs to satisfy 2(γc2 + c3) = 3(γc22 + c33). The second order tableau is
completely characterized by c2, whereas the third order is parameterized by both c2 and c3.

Second Order Third Order† Order conditions

RES
0
c2 c2ϕ1,2
0 ϕ1 − 1

c2
ϕ2

1
c2
ϕ2

0
c2 c2ϕ1,2

c3 c3ϕ1,3 − a32 γc2ϕ2,2 +
c23
c2
ϕ2,3

ϕ1 − b2 − b3
γ

γc2+c3
ϕ2

1
γc2+c3

ϕ2

Yes

DPM
Solver++

0
c2 c2ϕ1,2
0 (1− 1

2c2
)ϕ1

1
2c2
ϕ1

0
c2 c2ϕ1,2

c3 c3ϕ1,3 − a32
c23
c2
ϕ2,3

ϕ1 − b2 − b3 0 1
c3
ϕ2

Degenerate

3.4 Single-step update for deterministic and stochastic sampler
With the single-step update scheme developed in Sec 3.3, we are prepared to develop a deterministic
sampling algorithm by iteratively applying Eq (11) with the corresponding Butcher tableau. Inspired
by the stochastic samplers proposed in Karras et al. (2022), which alternately execute a denoising
backward step and a diffusion forward step, we can replace the original Heun-based single-step update
with our improved single-step method. Concretely, one update step of our stochastic sampler consists
of two substeps. The first substep simulates a forward noising scheme with a relatively small step
size, while the subsequent substep executes a single-step ODE update with a larger step. We unify
both samplers in Alg 2 where the hyperparameter η determines the degree of stochasticity.

3.5 Multi-step scheme
Instead of constructing a single-step multi-stage numerical scheme to approximate the intractable
integration in Eq (10), we can employ a multi-step scheme that capitalizes on the function evaluations
from previous steps. Analogous to the analysis in Sec 3.2 and conclusions in Thm 2, we can extend
these results to a multi-step scheme, the details of which are provided in App E. Intuitively, multi-step
approaches implement an update similar to Eq (11a). Instead of selecting intermediate states and
incurring additional function evaluations, a multi-step method reuses function evaluation output from
previous steps. In this work, our primary focus is on the multi-step predictor case. However, our
framework and analysis can also be applied to derive multi-step corrector, which has been empirically
proven to further improve sampling quality (Zhao et al., 2023; Li et al., 2023).

4 Experiments
We further extend our experiments to address the following queries: (1) Do the deterministic numerical
schemes of RES outperform existing methods in terms of reduced numerical defects and enhanced
robustness? (2) Does a reduction in numerical defects translate to improved sampling quality? (3)
Can our single-step numerical scheme enhance the performance of existing samplers?

Numerical defects for deterministic sampler First, we investigate the evolution of numerical
defects ∥xN − x(0)∥ in L1 norm as the number of function evaluations (NFE) increases in pre-
trained ImageNet diffusion models with default hyperparameters. Since the exact solution x(0) is
unavailable, we approximate it using a 500-step RK4 solution, which exhibits negligible changes
with additional steps. For a fair comparison, we evaluate the second-order RES against single-step
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Algorithm 2 RES Single-Step Sampler
1: procedure SingleSampler(Dθ, σi∈{0,...,N}, ηi∈{0,...,N})
2: sample x0 ∼ N

(
0, σ2

0I
)

▷ Generate initial sample at σ0

3: for i ∈ {0, . . . , N − 1} do
4: sample ϵi ∼ N

(
0, I

)
5: σ̄i ← σi + ηiσi

6: x̄i ← xi +
√

σ̄2
i − σ2

i ϵi ▷ Move from σi to σ̄i via adding noise
7: xi+1 ← SingleUpdateStep (x̄i, σ̄i, σi+1) ▷ Run single update step from σ̄i to σi+1

8: return xN ▷ Return noise-free sample at tN
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Figure 2: Importance of Order-Satisfied RK Tableau. RES showcases faster convergence with the
same recommended time scheduling on (DeepFloyd, 2023) and better robustness against suboptimal
scheduling compared with existing works. Prompt: ultra close-up color photo portrait of rainbow
owl with deer horns in the woods.

Figure 3: Comparison among various deterministic samplers on pretrained ImageNet diffusion
model (Karras et al., 2022). (S) indicates single-step methods while (M) for multistep methods. (Left)
Numerical defects and FID of various sampling algorithms vs the number of function evaluation (NFE)
with recommended time scheduling (Karras et al., 2022). (Right) Numerical defects and FID vs NFEs
with suboptimal time schedule. RES (S) shows better robustness against suboptimal-scheduling.
Remarkably, with only 59 NFE, the single-step RES attains a numerical accuracy on par with the 99
NFE DPM-Solver++ (S).

DPM-Solver++(S)(Lu et al., 2022b) and Heun (Karras et al., 2022), both claimed to be second-
order solvers. We also include first order DDIM (Song et al., 2021a) as a baseline. Our findings
indicate that single-step RES exhibits significantly smaller numerical defects, consistent with our
theoretical analysis. RES based on the noise prediction model (negative logSNR) surpasses the data
prediction model (logSNR) in performance for guidance-free diffusion models; we provide a detailed
presentation of the former here (More details in App F). Additionally, we compare single-step solvers
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NFE 6 8 10 15 20 25 30 35 50 75 100
DPM-Solver++ (M) 14.87 8.02 5.46 3.52 2.98 2.73 2.60 2.52 2.42 2.40 2.38
Our (M) 14.32 7.44 5.11 3.23 2.54 2.41 2.38 2.35 2.34 2.33 2.33

Table 4: FID for DPM-Solver++ and RES musltistep across various NFEs on ImageNet Karras et al. (2022).

(a) Stochastic sampling. (b) Comparison on DeepFloyd IF (DeepFloyd, 2023)

Figure 4: Fig 4a RES can also boost stochastic sampling by simply switching single-step update
scheme from Heun (Karras et al., 2022) to ours under various NFEs and stochasticity. Fig 4b Our
approach achieves superior performance in large-scale text-to-image diffusion models, excelling
in both purely text-conditioned scenarios and super-resolution tasks conditioned on low-resolution
images.

with multistep solvers, specifically including second-order multistep RES and DPM-Solver++ (M).
We observe RES-AB consistently outperforms DPM-Solver++ (M) and both lead to smaller defects
compared with single-step methods.

Numerical defects and FID We further investigate the relationship between numerical defects and
image sampling quality, using the Frechet Inception Distance (FID) (Heusel et al., 2017). As shown
in Fig 3, smaller numerical defects generally lead to better FID scores as the number of function
evaluations (NFE) increases for all algorithms. However, we also observe that the correlation may not
be strictly positive and similar defects may lead to different FIDs. We observed a Pearson correlation
coefficient of 0.956 between these two metrics, which suggests that better FID scores are strongly
correlated with smaller numerical defects. Notably, when NFE = 9, compared with single-step
DPM-Solver++, the single step RES with noise prediction model (negative logSNR) reduce 52.75%
numerical defects, and 48.3% improvement in FID (16.77 vs 8.66). For RES with data prediction
model (logSNR), RES achieves 25.2% numerical defects and 25.4% FID improvement (16.77 vs
12.51).

Time-scheduling robustness We also evaluate the performance of these solvers concerning varying
timestep schedules. We observe that existing methods lack systematic strategies for optimal timestep
selection, often relying on heuristic choices or extensive hyperparameter tuning. An ideal algorithm
should demonstrate insensitivity to various scheduling approaches. Instead of using the recommended
setting in EDM (Karras et al., 2022), we test these algorithms under a suboptimal choice with uniform
step in σ. While all algorithms exhibit decreased performance under this setting, the single-step RES
method outperforms the rest. Notably, single-step methods surpass multi-step methods in this scenario,
which signifies the robustness of single-step RES and underscores the benefits of our principled single-
step numerical scheme. Besides, to achieve a numerical accuracy comparable to that of the 99 NFE
DPM-Solver++ (S), our single-step method requires only 59 NFE.

Stochastic sampling with improved single-step algorithm Encouraged by the improvement of
single-step sampling, we conduct experiments to show that this enhancement can boost stochastic
samplers and achieve a favorable trade-off between sampling quality and speed. First, we investigate
how FID is affected by NFE for a given η. Next, we sweep different values of η under the same NFE.
As illustrated in Fig 4a, we can accelerate the stochastic sampler compared with Heun-based EDM
sampler (Karras et al., 2022).

Cascaded text-to-image model Finally, we test algorithms on cascaded text-to-image models with
DeepFloyd IF (DeepFloyd, 2023). We initially evaluate various sampling algorithms for 64× 64 tasks
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in Fig 4b. Furthermore, we compare the FID-CLIP score trade-off curves for various classifier-free
guidance schemes under the same computational budget. Next, we incorporate a super-resolution
diffusion model conditioned on generated images from the low-resolution model. In both scenarios,
we find that our model consistently outperforms DPM-Solver++ in terms of quality.

5 Conclusion
In this work, we present the Refined Exponential Solver (RES), derived from a meticulous analysis of
numerical defects in diffusion model probability flow ODEs and fulfilling all order conditions. RES
enjoys superior error bounds theoretically and enhanced sampling efficiency in practice. Originally
designed to boost single-step updates, we have also extended the improvements to multistep schemes
and stochastic samplers, effectively enhancing their performance. We include more discussions and
limitations in App D.
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A Related works and discussion

To unlock and democratize the extraordinary generative potential of diffusion models, considerable
research efforts have been dedicated to enhancing their efficiency and speeding up sampling. In
addition to the works discussed in Sec 1, other methods have been explored to enhance the speed of
diffusion models.

The authors of (Bao et al., 2022) optimize the backward Markovian process to approximate the
non-Markovian forward process, yielding an analytic expression of optimal variance in the denoising
process. Another strategy involves making the forward diffusion nonlinear and trainable (Zhang &
Chen, 2021; Vargas et al., 2021; De Bortoli et al., 2021; Wang et al., 2021; Chen et al., 2021a), in the
spirit of the Schrödinger bridge (Chen et al., 2021b). However, this approach incurs a considerable
training overhead. Researchers have also explored modifying the backward stochastic process by
incorporating more function evaluations and optimizing time scheduling (Kong & Ping, 2021; Watson
et al., 2021). Nevertheless, such acceleration strategies struggle to generate high-quality samples
with a limited number of discretization steps. An alternate approach for improving diffusion models
involves designing non-isotropic diffusion models, such as Blurring diffusion models (Hoogeboom &
Salimans, 2022; Rissanen et al., 2022) and the critically-damped Langevin diffusion models (Dockhorn
et al., 2021). There are other fast sampling methods by construction diffusion models in latent
space (Rombach et al., 2022; Vahdat et al., 2021). In addition, several works show GANs can be
leveraged to accelerate diffusion models (Xiao et al., 2022; Wang et al., 2022).

More related are the diffusion model sampling algorithms inspired by semilinear ODEs solvers (Zhang
& Chen, 2022; Lu et al., 2022a). Zhang & Chen (2022) introduced Diffusion Exponential Integrator
Sampler (DEIS), whose fastest variant is based on an approximate exact solution, achieved by replacing
the nonlinear function with polynomial exploration. However, DEIS was originally designed for fitting
polynomials in the original t space and is affected by noising scheduling σ(t). On the other hand, Lu
et al. (2022a) proposed DPM-Solver, which leverages a similar analysis of the exponential integrator
to solve a semilinear ODE with time-varying coefficients. They further advanced DPM-Solver++ for
the data prediction model and a sampling algorithm based on a multistep scheme, claiming improved
sampling speed (Lu et al., 2022b). However, as we highlight in Sec 3.3, their numerical scheme
does not meet all the necessary order conditions. The omission of these conditions could potentially
worsen performance, especially with non-isotropic ODEs (Hochbruck & Ostermann, 2010).

B Proof
In this section, we provide detailed derivations and proofs for the key theoretical results presented in
the paper. Given that we have two semi-linear ODEs Eq (7) and (8) sharing similar structures, we
primarily concentrate on the data prediction model, with the understanding that the results can be
easily extended to the ODE based on the noise prediction model. Recall that we denote the denoiser
network as g, and its evaluation along the exact solution x(λ) as f(λ) := g(x(λ), λ). Our analytical
framework is heavily influenced by the foundational works of Hochbruck & Ostermann (2005a; 2010).
We present self-contained and thorough derivations for the semi-linear ODE Eq (7), meticulously
tailored for drawing samples from diffusion models.

B.1 Proof of Lemma 1
We first expand f into a Taylor series with the remainder in integral form,

f(λn + τ) =

q∑
j=1

τ j−1

(j − 1)!
f (j−1)(λn) +

∫ τ

0

(τ − ν)q−1

(q − 1)!
f (q)(λn + ν)dν (18)

With Eq (18), we can rewrite exact ODE solution Eq (10) as

x(λn + cih) = e−cihx(λn) +

qi∑
j=1

(cih)
jϕj(−cih)f (j−1)(λn) (19)

+

∫ cih

0

e−(cih−τ)

∫ τ

0

(τ − ν)qi−1

(qi − 1)!
f (qi)(λn + ν)dνdτ,
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where function ϕj is defined as

ϕj(−h) =
1

hj

∫ h

0

eτ−h τ j−1

(j − 1)!
dτ, j ≥ 1. (20)

With integration by part, we arrive at the recursion formulation for ϕ function (Hochbruck & Oster-
mann, 2005a) as

ϕk+1(z) =


ϕk(z)−1/k!

z k ≥ 0, z ̸= 0

ez k = 0
1
k! , z = 0, k ≤ 0

. (21)

One the other hand, by integrating Eq (18) into the numerical scheme Eq (11), we can derive another
expression for the exact solution. We begin with the exact solution at the intermediate time λn + cih.
Plugging in Eq (18) into Eq (12a), we obtain

x(λn + cih) = e−cihx(λn) + h

i−1∑
k=1

aik(−h)
qi∑

j=1

(ckh)
j−1

(j − 1)!
f (j−1)(λn) (22)

+ h

i−1∑
k=1

aik(−h)
∫ ckh

0

(ckh− ν)qi−1

(qi − 1)!
f (qi)(λn + ν)dνdτ + δn,i.

By comparing Eq (19) and Eq (22), we obtain the error term ∆ni as

δn,i =

qi∑
j=1

hjψj,i(−h)f (j−1)(λn) + δ
(qi)
n,i (23)

ψj,i(−h) = ϕj(−cih)cji −
i−1∑
k=1

aik(−h)
cj−1
k

(j − 1)!
, (24)

where δ(qi)n,i denotes higher order terms that resulted from the truncation of the Taylor series.

Similarly, we can get the expression for δn+1 if we plug Eq (18) into Eq (12b) and comparing the
result against Eq (19)

δn+1 =

q∑
j=1

hjψj(−h)f (j−1)(λn) + δ
(q)
n+1 (25)

ψj(−h) = ϕj(−h)−
s∑

k=1

bk(−h)
cj−1
k

(j − 1)!
(26)

where δ(q)n+1 denotes higher order terms that resulted from the truncation of the Taylor series.

C Proof of error bound
We first state several mild assumptions that are required for our theoretical bounds.

Assumption 1. For nonlinear function g : Rd ×R → Rd considered in this work, e.g. ϵθ, Dθ, we
assume there exists a real number L(R) such that

∥g(x1, λ)− g(x2, λ)∥ ≤ L ∥x1 − x2∥ . (27)
for all λmin ≤ λ ≤ λmax and max(∥x1 − x(λ)∥, ∥x2 − x(λ)∥) ≤ R where x(λ) is one ODE
solution with nonlinear function g.

The region where x1,x2 exists and is close to the exact solution is referred to as the strip along
the exact ODE solution. For high-order methods, we introduce another assumption regarding the
nonlinear function g:

Assumption 2. For ODE with nonlinear function g : Rd ×R → Rd considered in this work, e.g.
ϵθ, Dθ, g is differentiable in a strip along the ODE exact solution x(λ). All occurring derivatives are
uniformly bounded.

16



Under review as a conference paper at ICLR 2024

By default, we assume that Thm 1 and 2 and Prop 1 satisfy above assumptions. First, we consider
a scenario with a uniform step size, denoted as h. Subsequently, the obtained results are extended
to accommodate non-uniform step sizes. This generalization involves loosening the error bounds’
reliance on the step size from the uniform case, directing it instead towards the maximum step size
evident in the non-uniform scenario. Indeed, the error boundaries delineated in Thm 1 and 2 manifest
dependence on this longest step size.

First, we bound the truncated high-order term δ
(qi)
n,i . Based on Eq (19) and (22), δ(qi)n,i can be bounded

by

∥δ(qi)n,i ∥ ≤∥
∫ cih

0

e−(cih−τ)

∫ τ

0

(τ − ν)qi−1

(qi − 1)!
f (qi)(λn + ν)dνdτ∥

+ ∥h
i−1∑
k=1

aik(−h)
∫ ckh

0

(ckh− ν)qi−1

(qi − 1)!
f (qi)(λn + ν)dν∥

≤ sup
λ∈[λn,λn+cih]

∥f (qi)∥
(
∥
∫ cih

0

e−(cih−τ)

∫ τ

0

(τ − ν)qi−1

(qi − 1)!
dνdτ∥

+∥h
i−1∑
k=1

aik(−h)
∫ ckh

0

(ckh− ν)qi−1

(qi − 1)!
dν∥

)
≤ sup

λ∈[λn,λn+cih]

∥f (qi)∥C(cih)qi+1, (28)

where C is a sufficiently large constant. This is due to

∥
∫ cih

0

e−(cih−τ)

∫ τ

0

(τ − ν)qi−1

(qi − 1)!
dνdτ∥ ≤ ∥

∫ cih

0

dτ∥∥
∫ cih

0

(cih− ν)qi−1

(qi − 1)!
∥ =

(cih)
qi+1

(qi)!

∥h
i−1∑
k=1

aik(−h)
∫ ckh

0

(ckh− ν)qi−1

(qi − 1)!
dν∥ ≤ ∥∑i−1

k=1 aik(−h)∥
ci

(cih)
qi+1

(qi)!
.

We note above conclusion only holds when ψj,i(−h) = 0 is satisfied. Otherwise, defects of
hjf (j−1)(λn) will show up ∥δ(qi)n,i ∥ once ψj,i(−h) ̸= 0.

Similarly, we can bound the accumulation of δ(qi)i with

∥
n−1∑
j=0

e−jhδ
(qi)
n−j∥ ≤ Chqi sup

λ∈[λ1,λn]

∥f (qi)∥ (29)

once ϕj = 0 is satisfied. Indeed, the defect δ(q)n can be formulated

∥δ(qi)n ∥ = ∥
∫ h

0

e−(h−τ)

∫ τ

0

(τ − ν)(qi−1)

(qi − 1)!
f (qi)(λn−1 + ν)dνdτ∥ (30)

≤ ∥
∫ h

0

e−(h−τ)dτ∥∥
∫ h

0

(h− ν)(qi−1)

(qi − 1)!
dν∥ sup

λ∈[λn−1,λn]

∥f (qi)∥ (31)

= (1− e−h)
hqi

qi!
sup

λ∈[λn−1,λn]

∥f (qi)∥ (32)
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Therefore, we can bound

∥
n−1∑
j=0

e−jhδ
(qi)
n−j∥ ≤

n−1∑
j=0

∥e−jhδ
(qi)
n−j∥

≤ ∥
n−1∑
j=0

e−jh∥(1− e−h)
hqi

qi!
sup

λ∈[λ1,λn]

∥f (qi)∥

≤ 1

1− e−h
(1− e−h)

hqi

qi!
sup

λ∈[λ1,λn]

∥f (qi)∥

=
hqi

qi!
sup

λ∈[λ1,λn]

∥f (qi)∥ ≤ Chqi sup
λ∈[λ1,λn]

∥f (qi)∥,

with a sufficiently large C.

Second, we introduce Discrete Gronwall Inequality in Lemma 2, which we will use later.

Lemma 2 (Discrete Gronwall Inequality). Let ⟨αn⟩ and ⟨βn⟩ be nonnegative sequences and c a
nonnegative constant. If

αn ≤ c+
∑

0≤k<n

βkαk,

then
αn ≤ c

∏
0≤j<n

(1 + βj) ≤ c exp (
∑

0≤j<n

βj) for n ≥ 0. (33)

C.1 Order 1 error bound for Thm 1
With Lemma 1, we can formulate the error recursion for the s = 1 case

∆n+1 = e−h∆n + hϕ1(−h)(g(xn, tn)− f(tn))− δn+1 (34)

with defects δn+1 = δ
(1)
n+1, the recursion gives

∆n = h

n−1∑
j=0

e(−n−j−1)hϕ1(−h)(g(xj , tj)− f(tj))−
n−1∑
j=0

e−jhδn−j . (35)

Thanks to Assumption 1 and Eq (29), we can bound above ∆n by

∥∆n∥ ≤
n−1∑
j=1

hϕ1(−h)e−(n−j−1)hL∥∆j∥+ Ch sup
λ∈[λn,λn+cih]

∥f (1)∥ (36)

With Discrete Gronwall Inequality Lemma 2 and ∆0 = 0, we can show that

∥∆n∥ = ∥xn − x(λn)∥ ≤ Ch sup
λmin≤λ≤λmax

∥f ′(λ)∥ exp (
n−1∏
j=1

hLϕ1(−h)e−(n−j−1)h) (37)

≤ Ch sup
λmin≤λ≤λmax

∥f ′(λ)∥ exp(Ln) (38)

≤ C ′h sup
λmin≤λ≤λmax

∥f ′(λ)∥ (39)

with a large enough C ′. This finishes the proof for Thm 1 if we upper bound Eq (39) by the largest
step size in the non-uniform stepsize case. Thanks to order condition ψ1 = 0 and c1 = 0, the Butcher
tableau follows

0
ϕ1(−h). (40)
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C.2 High order error bounds
We first start with the second order method. Since it is a second-stage algorithm, we have only one
intermediate point xn,1. Based on Eq (13) and (28) and Assumption 1, we can bound

∥∆n,2∥ ≤ C1 ∥∆n∥+ ∥δ(1)n,2∥ (41)

≤ C1 ∥∆n∥+ C2h
2 sup
λ∈[λn,λn+c2h]]

∥f (1)∥, (42)

where C1, C2 are two constants. And we know ∆n,1 = ∆n for our explicit method due to c1 =
0.

Similar to Eq (36), we can bound

∥∆n∥ ≤ h

n−1∑
j=0

e(−n−j−1)hϕ1(−h)C3 max (∥∆j∥ , ∥∆j,1∥) +
n−1∑
j=0

e−jhδn−j∥

≤ h

n−1∑
j=0

e(−n−j−1)hϕ1(−h)C4 ∥∆j∥+ h

n−1∑
j=0

e(−n−j−1)hϕ1(−h)C2h
2 sup
λ∈[λmin,λmax]

∥f (1)∥

+ C5h
2 sup
λ∈[λmin,λmax]

∥f (2)∥,

where C4 = max (1, C1), and the last inequality is due to Eq (29). We note that
h
∑n−1

j=0 e
(−n−j−1)hϕ1(−h) ≤ 1. We can further simplify the upper bound of ∆n by

∥∆n∥ ≤h
n−1∑
j=0

e(−n−j−1)hϕ1(−h)C4 ∥∆j∥

+max (C2, C5)h
2( sup

λ∈[λmin,λmax]

∥f (2)∥+ sup
λ∈[λmin,λmax]

∥f (1)∥).

Due to Lemma 2, we can upper bound it by
∥∆n∥ ≤max (C2, C5)h

2( sup
λ∈[λmin,λmax]

∥f (2)∥+ sup
λ∈[λmin,λmax]

∥f (1)∥) (43)

exp (

n−1∑
j=1

C4hϕ1(−h)e−(n−j−1)h)

≤ C ′h2( sup
λ∈[λmin,λmax]

∥f (2)∥+ sup
λ∈[λmin,λmax]

∥f (1)∥) (44)

for a large enough C ′. This finishes the proof of Thm 2 if we upper bound Eq (39) by the largest step
size in the non-uniform stepsize case.

Thanks to condition ψ1(−h) = ψ2(−h) = ψ1,2(−h) = 0, the Butcher tableaus has to satisfy
b1 + b2 = ϕ1(−h)
b2c2 = ϕ2(−h)
a21 = c2ϕ1(−c2h).

Therefore, the only solution for Butcher tableau is
0
c2 c2ϕ1(−c2h)
0 ϕ1(−h)− 1

c2
ϕ2(−h) 1

c2
ϕ2(−h)

. (45)

For third-order methods, numerical methods with three-stage methods have to satisfy (Hochbruck &
Ostermann, 2005a, Sec 5.2)

ψ1(−h) = 0

ψ2(−h) = 0

ψ1,2(−h) = 0

ψ1,3(−h) = 0

ψ3(−h) = 0

b2ψ2,2(−h) + b3ψ2,3(−h) = 0
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Algorithm 3 RES General s-stage Single-step Update with {cs}
1: procedure SingleUpdateStep(xn, σn, σn+1)
2: λn+1, λn ← − log(σn+1),− log(σn)
3: h← λn+1 − λn ▷ Step length
4: {aij}, {bj} ← Butcher tableau with {ci} ▷ Single-step update coeffcients
5: (xn,1, λn,1)← (xn, λn) ▷ c1 = 0 for explicit methods
6: for i in 2, · · · , s do
7: (xn,i, λn,i)← (e−cihxn + h

∑i
j=1 ai,jDθ(xn,j , λn + cjh), λn + cih)

8: xn+1 ← e−hxn + h(
∑s

i=1 biDθ(xn,i, λn + cih))
9: return xn+1

One two-parameter solution family for Butcher tableau satisfies other conditions and achieves third-
order error bounds follows

0
c2 c2ϕ1,2

c3 c3ϕ1,3 − a32
c23
c2
ϕ2,3

ϕ1 − b2 − b3 0 1
c3
ϕ2

, (46)

where γ can be obtained by solving 2(γc2 + c3) = 3(γc22 + c33) once c2, c3 are given.

D Discussions and Limitations
Our work is also constrained by the following limitations. Our analysis reveals that the performance of
different samplers is contingent on the trajectory of network evaluations along the exact solution, where
a time-smooth trajectory facilitates the reduction of numerical error. However, existing works are still
uncertain about which time transformation or time scheduling leads to the most favorable trajectory.
The logarithmic transformation we’ve used was selected based on our empirical observations. In
practical terms, training-free methods still require more than 10 network evaluations, making them
significantly slower than GANs or distillation-based methods. We leave it for future work to explore
how distillation training can benefit from these improved training-free methods.

E Algorithms

For deterministic single-step and stochastic samplers, we have listed the unified algorithm in Alg 2.
We have also listed the algorithm for single-step second order update in Alg 1. Furthermore, we list
general high order algorithm in Alg 3.

E.1 Multistep algorithm
The insights and analysis gained from a multi-stage single-step numerical scheme can be leveraged to
develop multistep numerical methods. The crux of a multistep update step lies in its utilization of not
only the function evaluation at the current state but also previous function evaluations.

To underscore the parallels between single-step and multistep methods, consider a single update step
from timestamp λn to λn+1 := λn + h with function evaluations {g(xn,i, λn + cih)}ri=1, where
c1 = 0, ci < 0 for 1 < i ≤ r and xn,i are numerical results on timestamp λn + cih. The general
multistep scheme can be expressed as follows:

xn+1 = e−hxn + h[

r∑
i=1

big(xn,i, λn + cih)] (47)

The present multistep method configuration bears many resemblances to the single-step method
outlined in Sec 3.2. The distinction resides in the selection of {ci}ri=2, which are chosen such
that λn + cih = λn+1−i. Consequently, with xn,i coinciding with xn+1−i, we can bypass the
function evaluation cost, as g(xn,i, λn + cih) is readily available due to the existing value of
g(xn+1−i, λn+1−i).

From this viewpoint, the construction of auxiliary x̂ and intermediate numerical defects δn in Sec 3.2
remain applicable for multistep cases. Most notably, the error recursion in Eq (13a) and the expansion
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Algorithm 4 RES Second order Multistep Update Scheme
1: procedure MultiStepUpdate(xn, σn, σn+1,Dθ(xn−1, λn−1) )
2: λn+1, λn, λn−1 ← − log(σn+1),− log(σn),− log(σn−1)
3: h← λn+1 − λn ▷ Step length
4: c2 ← λn−1−λn

h

5: b1, b2 ← ϕ1(−h)− ϕ2(−h)/c2, ϕ2(−h)/c2 ▷ Coeffcients
6: xn+1 ← e−hxn + h(b1Dθ(xn, λn) + b2Dθ(xn−1, λn−1))
7: return xn+1

of δn+1 in Lemma 1 persist in the multistep scenario. To minimize numerical defects, we also aim
to reduce δn. Therefore, the choice of bi from the Butcher tableaus developed for the single-step
scheme can be employed for multistep methods with particular ci values. The second-order multistep
algorithm is detailed in Alg 4.

F Experiment details
In this section, we provide necessary experiment details and extra experiments.

F.1 Reproduction of Fig 1
Fig 1a We use the pre-trained ImageNet 64× 64 class-conditioned diffusion model (Karras et al.,
2022) to conduct the experiment. Due to the lack of ground truth solution trajectories, we use
high-accuracy ODE solvers to approximate the solutions. Concretely, we employ RK4 with 500
steps (2000 NFE) to generate trajectories, with negligible alterations with more steps. To generate
those trajectories, we randomly select initial random noise and labels. Curves in Fig 1a are averaged
over 512 trajectories.

Extra experiments Besides the “acceleration” outlined in Fig 1a, we examine the evolution of
f(λ) := g(x(λ), λ) along the solution trajectory for various nonlinear functions g. We note that
smoother f typically results in smaller numerical defects, as indicated in Lemma 1 and Thm 1 and 2.
As depicted in Fig 5, the benefit of applying a logarithmic transformation to the noise level σ is
evident.

Figure 5: (Left) The evolution of nonlinear function evaluation for Eq (6) characterized by fϵ(σ) :=
ϵθ(x(σ), σ). (Right) The evolution of nonlinear function evaluation for Eq (8), defined by fϵ(λ) :=
ϵθ(x(λ), λ) and fD(λ) := Dθ(x(λ), λ). Implementing a logarithmic transformation on the noise
level σ results in smoother trajectories of nonlinear function evaluations along ODE solutions.

F.2 Reproduction of Fig 3
We utilize the pre-trained ImageNet 64×64 class-conditioned diffusion model (Karras et al., 2022) for
our experiment. For the numerical defect experiments, we approximate the ground truth solution x(0)
using 500 steps RK4 (2000 NFE). We generate 50, 000 images with randomized labels to calculate
numerical defects and FIDs. The EDM, as suggested by Karras et al. (2022), follows a time schedule
as given in Eq (48),

ti = (σ
1
ρ
max +

i

N − 1
(σ

1
ρ

min − σ
1
ρ
max))

ρ, (48)

where ρ is a hyperparameter that controls the timestamp spacing. Our findings reveal that the ϵθ-based
RES outperforms the Dθ-based RES. By default, we adhere to the recommended ρ = 7 for our
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NFE DDIM (S) Heun (S) DPM-Solver++ (S) Our (S) DPM-Solver++ (M) Our (M)
6 2515 1.446×104∗ 2681∗ 1774∗ 1507 2602
8 2063 3943∗ 2060∗ 1072∗ 1062 1895
10 1747 2501∗ 1544∗ 729.1∗ 740.2 1195
15 1280 992.7 845.7 382.6 369.9 463.3
20 1020 623.9∗ 617.8∗ 283.6∗ 227.6 258.7
25 852.7 360.4 420.7 187.6 153.2 167.8
30 731.4 270.4∗ 339.4∗ 151.1∗ 114 117.1
35 640.1 190.2 256.5 113.8 87.17 85.13
50 468.4 106.3∗ 146∗ 64.43∗ 46.06 40.59
75 328.1 43.23 68.56 31.35 22.82 18.28
100 254.6 24.56∗ 41.63∗ 19.08∗ 14.58 10.65

Table 5: Numerical defects |x(0) − xN | with different NFEs and recommended time scheduling
for Fig 3 (Left). ∗ indicates the number is produced by one less NFE.

NFE DDIM (S) Heun (S) DPM-Solver++ (S) Our (S) DPM-Solver++ (M) Our (M)
6 41.09 248.3∗ 68.97∗ 56.46∗ 14.87 14.32
8 25.12 86.88∗ 28.33∗ 19.4∗ 8.024 7.44
10 17.26 35.32∗ 16.77∗ 8.665∗ 5.456 5.115
15 9.284 5.544 6.402 3.944 3.525 3.23
20 6.446 3.682∗ 4.593∗ 3.298∗ 2.975 2.542
25 5.101 2.899 3.493 2.885 2.726 2.412
30 4.348 2.705∗ 3.151∗ 2.742∗ 2.602 2.377
35 3.712 2.571 2.86 2.607 2.523 2.346
50 3.18 2.431∗ 2.575∗ 2.471∗ 2.425 2.336
75 2.968 2.406 2.514 2.436 2.401 2.335
100 2.755 2.381 2.453 2.401 2.377 2.333

Table 6: FID with different NFEs and recommended time scheduling for Fig 3 (Mid). ∗ indicates the
number is produced by one less NFE.

experiments. To test the robustness through the suboptimal time rescheduling experiment, we use
ρ = 1, where the timestamps are uniformly distributed in σ. For all experiments, we test the sampling
algorithm with NFE set to 6, 8, 10, 15, 20, 25, 30, 35, 50, 75, 100. Similar to EDM, an additional
denoising step is included in the final stage. We note that for second-order single-step methods, the
total NFE may not align perfectly with the NFE. In such instances, we always take one less step, for
example, second-order methods only use 5 NFEs when we expect them to utilize 6 NFEs. We use the
official code from Karras et al. (2022) to calculate FID score. We include quantitative results in Tab 5
to 7.

NFE DDIM (S) Heun (S) DPM-Solver++ (S) Our (S) DPM-Solver++ (M) Our (M)
6 2339 4.116×104∗ 2850∗ 1957∗ 5034 4615
8 1948 1.249×104∗ 2004∗ 1177∗ 5281 5430
10 1664 5901∗ 1578∗ 827.9∗ 5296 5800
15 1241 1362 907.2 435.6 4975 5469
20 996.9 780.2∗ 681∗ 314.8∗ 4445 4779
25 834.9 428 483.1 222.6 3923 4116
30 718.5 312.7∗ 392.9∗ 184.8∗ 3513 3675
35 632.6 218.3 300.5 139.6 3191 3409
50 467.5 126.1∗ 185.6∗ 90.87∗ 2597 2607
75 329.4 79.22 101.2 55.01 2019 1876
100 256.8 63.15∗ 70.82∗ 43.44∗ 1658 1537

Table 7: Numerical defects |x(0) − xN | with different NFEs and suboptimal time scheduling
for Fig 3 (Right). ∗ indicates the number is produced by one less NFE.
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Figure 6: Comparison on DDPM-like classifier-guided diffusion models (Dhariwal & Nichol, 2021)
with different guidance.

F.3 More experiments on Classifier-guided DMs
We further investigate RES diffusion models trained using different schemes, including DDPM-like
diffusion models with classifier-based guidance (Dhariwal & Nichol, 2021). It is important to note
that we employ dynamic thresholding (Saharia et al., 2022) for all experiments to help alleviate pixel
over-saturation issues. To ensure a fair comparison, all algorithms differ solely in their numerical
update schemes. As depicted in Fig 6, our previous observations remain valid for guided diffusion
models trained with different techniques, and RES converges faster than baselines.

Concretely, we utilize pre-trained diffusion models equipped with a noise data classifier from Dhariwal
& Nichol (2021). These diffusion models are trained on discrete time analogous to DDPM. By employ-
ing an additional noise data classifier p(c|x), we can derive a new diffusion model by incorporating
the gradient of the classifier into the diffusion model, resulting in the following denoiser:

D̂(x, σ|c) = x+ σ2∇x log p(x|c;σ) (49)
= x+ σ2∇x log p(x;σ) + σ2∇x log p(c|x;σ), (50)

where p(c|x;σ) denotes a classifier for the label c on noise data. In practice, researchers have observed
that increasing the weight on the classifier can enhance performance, as expressed by:

D̂(x, σ|c) ≈ D̂θ(x, σ|c) + ωσ2∇x log p(y|x;σ), (51)
where ω can be adjusted to values greater than 1. In our experiment, we utilize the pre-trained classifier
detailed in Dhariwal & Nichol (2021). We approximate the ground truth x(0) using 500 steps of
the RK4 method. In addition, we apply dynamic thresholding (Saharia et al., 2022) to all methods
evaluated in this experiment to ensure a fair comparison. We conduct the sampling tests with NFE
values of 6, 7, 8, 9, 10, 12, 15, 18, 20, 30, 50. It should be noted that for guided diffusion models, our
approach based on Dθ proves superior. We use the official code from Dhariwal & Nichol (2021) to
calculate FID score.

F.4 Reproduction of Fig 4a
This experiment is designed to demonstrate how an enhanced single-step sampler can augment stochas-
tic samplers’ performance. We utilize the pre-trained ImageNet 64× 64 class-conditioned diffusion
model (Karras et al., 2022) for this purpose. The time schedule adheres to the recommended setting
with ρ = 7. With a fixed level of stochasticity, parameterized by η, we contrast the second order Heun
method with our method at NFE values of 6, 8, 10, 15, 20, 25, 30, 35, 50, 75, 100, 150, 200, 350, 500.
We also examine the influence of η on the FID with a fixed NFE of 75, iterating η =
0, 0.01, 0.025, 0.05, 0.15, 0.20, 0.30, 0.35, 0.40, 0.45, 0.50. We observe that adding random noise
can enhance perceptual quality in terms of FID when compared to deterministic sampling, although
an excess of stochasticity can impair sampling quality. We use the official code from Karras et al.
(2022) to calculate FID score.
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F.5 Reproduction of Fig 4b
This experiment is designed to corroborate the effectiveness of our enhanced order analysis and RES
in large-scale text-to-image diffusion models (DeepFloyd, 2023), primarily against the benchmark set
by DPM-Solver++ (Lu et al., 2022b). The initial experiments examine FID-CLIP scores under varying
classifier-free guidance weights (Ho & Salimans, 2022). With classifier-free guidance, we can build a
new diffusion model based on a conditional diffusion model and an unconditional model. Specifically,
for either the data prediction model or the noise prediction model, denoted by their network as g, the
newly proposed diffusion model adheres to the following protocol:

ĝ(x, σ, c) := g(x, σ, ∅) + ω(g(x, σ, c)− g(x, σ, ∅)), (52)

whereω serves as the guidance weight, ∅ represents the unconditional signal, and c stands for the
conditional signal1. We vary the guidance between 1, 1.5, 3, 5, 10. We employ ViT-g-14 (Ilharco et al.,
2021) for the calculation of the CLIP score and pytorch-fid for FID. This experiment is carried out on
the MS-COCO validation dataset. Owing to computational resource constraints, the experiment is
performed at a resolution of 64× 64 with a fixed 25 NFE. It should be noted that for this experiment,
we merely substitute the degenerated Butcher tableau of DPM-Solver++ with our Butcher tableau,
keeping all other configurations consistent. The experiment is based on IF-I-XL.

In a further experiment, we compare RES and DPM-Solver++ using the upsampling diffusion model
IF-II-L, which upsamples a low-resolution image of 64 × 64 pixels to a high-resolution image of
256× 256 pixels. For this test, we feed generated 64× 64 images, using the single-step RES with
49 NFE, along with corresponding captions into the upsampling model. We then vary the NFE to
assess the quality of the generated images. Intriguingly, our findings reveal that the single-step RES
outperforms multi-step methods in terms of the quality of samples produced.

In our experiments involving DeepFloyd IF models, we adopt the time schedule outlined in Eq (48)
with ρ = 7. Owing to constraints on our computational resources, we are unable to sweep through
hyperparameters to locate a more optimized time schedule. However, we posit that with the same
NFE, the quality of the sampling could be further enhanced by fine-tuning the time schedule.

F.6 Licenses
Dataset

• ImageNet (Russakovsky et al., 2015) The license status is unclear

• MS-COCO (Lin et al., 2014) Creative Commons Attribution
4.0 License.

Pre-trained models and code
• EDM ImageNet (Karras et al., 2022) Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License

• DeepFloyd IF (DeepFloyd, 2023) DeepFloyd IF License Agreement

• OpenAI Guided ImageNet (Dhariwal & Nichol, 2021) MIT License

• Pytorch FID (Seitzer, 2020) Apache License 2.0

• OpenCLIP (Ilharco et al., 2021) MIT License

G Image samples
In this section, we include samples from our experiments for quantitative comparison.

1We slightly modify the classifier-free equation to align it with the implementa-
tion (DeepFloyd, 2023) available at https://github.com/deep-floyd/IF/blob/
2ad4dff7cde3cce91f237270a3cc81cae4578015/deepfloyd_if/modules/base.py#
L114
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Figure 7: Uncurated samples of 64× 64 ImageNet model (Karras et al., 2022) with single-step Heun
9 NFE. (FID=35.31)

Figure 8: Uncurated samples of 64× 64 ImageNet model (Karras et al., 2022) with single-step Heun
15 NFE. (FID=5.54)

25



Under review as a conference paper at ICLR 2024

Figure 9: Uncurated samples of 64 × 64 ImageNet model (Karras et al., 2022) with single-step
DPM-Solver++ 9 NFE. (FID=16.77)

Figure 10: Uncurated samples of 64 × 64 ImageNet model (Karras et al., 2022) with single-step
DPM-Solver++ 15 NFE. (FID=6.40)
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Figure 11: Uncurated samples of 64× 64 ImageNet model (Karras et al., 2022) with single-step RES
data prediction model 9 NFE. (FID=8.66)

Figure 12: Uncurated samples of 64× 64 ImageNet model (Karras et al., 2022) with single-step RES
data prediction model 15 NFE. (FID=3.92)
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Figure 13: Uncurated samples of 64× 64 ImageNet model (Karras et al., 2022) with single-step RES
noise prediction model 9 NFE. (FID=5.08)

Figure 14: Uncurated samples of 64× 64 ImageNet model (Karras et al., 2022) with single-step RES
noise prediction model 15 NFE. (FID=3.88)
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Uncurated samples of 256× 256 DeepFloyd IF model with single-step DPM++ 19 NFE (MS-COCO validation FID=24.57)

Uncurated samples of 256× 256 DeepFloyd IF model with single-step RES19 NFE (MS-COCO validation FID=24.21)

Figure 15: Single-step DPM-Solver++ vs Single-step RES on cascaded DM
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