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ABSTRACT

Premature convergence to suboptimal policies remains a significant challenge in
reinforcement learning (RL), particularly in tasks with sparse rewards or non-
convex reward landscapes. Existing work usually utilizes reward shaping, such as
curiosity-based internal rewards, to encourage exploring promising spaces. How-
ever, this may inadvertently introduce new local optima and impair the optimiza-
tion for the actual target reward. To address this issue, we propose Goal Achieve-
ment Guided Exploration (GAGE), a novel approach that incorporates an agent’s
goal achievement as a dynamic criterion for balancing exploration and exploita-
tion. GAGE adaptively adjusts the exploitation level based on the agent’s current
performance relative to an estimated optimal performance, thereby mitigating pre-
mature convergence. Extensive evaluations demonstrate that GAGE substantially
improves learning outcomes across various challenging tasks by adapting conver-
gence based on task success. Applicable to both continuous and discrete tasks,
GAGE seamlessly integrates into existing RL frameworks, highlighting its poten-
tial as a versatile tool for enhancing exploration strategies in RL.

1 INTRODUCTION

Properly dealing with the exploration-exploitation trade-off in reinforcement learning (RL) still is a
critical challenge (Kaelbling et al., 1996; Ladosz et al., 2022). Constrained by learning time and re-
sources, the agent must balance well between exploring for better policies and exploiting the learned
behaviors. There are two prominent challenges in exploration: sparse reward function and local op-
tima. A task with sparse rewards, such as in Montezuma’s Revenge, provides insufficient feedback,
forcing the agent to search vast areas of the state-action space without clear guidance (Devidze et al.,
2022). On the other hand, an environment riddled with local optima may provide the agent with re-
dundant or misleading information and distract it from exploring the actual optimization target. For
example, in robot locomotion tasks, where robots are rewarded for saving energy in addition to the
main speed reward, agents may focus on optimizing energy consumption but only move slowly. As
a result, they may lead to different policy behaviors. Agents trained with sparse rewards might fail
to learn any meaningful policy due to exploration difficulty and credit assignment. Whereas agents
trained in environments with local optima are more prone to over-exploitation, leading to premature
convergence to a suboptimal solution.

Due to RL’s trial-and-error nature, local optima can make the learning process unstable. This in-
stability has been reported as a significant obstacle when reproducing and comparing different RL
algorithms (Henderson et al., 2018). It is important to distinguish this issue from reward hack-
ing (Amodei et al., 2016), where the agent discovers policies that maximize returns in ways the
system designer did not anticipate or desire. We focus on premature convergence, where local op-
tima prevent the agents from optimizing the targeted returns. To effectively solve tasks with local
optima, preventing premature convergence during exploration is essential. Several factors contribute
to this issue, including the inherent non-convexity of tasks, reward shaping, multi-objectives, and
function approximation errors introduced by neural networks in deep RL algorithms.

Many methods have been developed to address the exploration-exploitation trade-off (Ladosz et al.,
2022), but not explicitly for premature convergence. One popular approach, ϵ-greedy, employs
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Figure 1: Factors for premature convergence in deep reinforcement learning.

a predefined time-decaying parameter ϵ to decrease exploration gradually. However, finding the
optimal schedule is far from trivial, as it can vary depending on the task and is further complicated
by the unstable nature of reinforcement learning processes. Other methods, such as Proximal Policy
Optimization (PPO)(Schulman et al., 2017) and Soft Actor-Critic (SAC)(Haarnoja et al., 2018),
incorporate an entropy-loss component to promote exploration, but this acts only as a soft learning
regularizer. Similarly, curiosity-driven intrinsic rewards (Barto, 2013; Pathak et al., 2017) encourage
exploration, yet the exploitation process still follows the behavior of the underlying algorithms, like
Deep Q-learning (DQN) (Mnih et al., 2013) and PPO, which are prone to premature convergence.

To address the issue of converging to a suboptimal solution prematurely, we propose a novel ap-
proach that incorporates an agent’s goal achievement into its exploration-exploitation strategy. Goal
achievement is defined as the ratio of an agent’s current policy return to the optimal policy return,
excluding the auxiliary rewards for guiding the learning process. Unlike existing approaches, which
often overlook this critical aspect of guiding exploration, our approach ensures that exploration con-
tinues when the agent’s goal achievement is low, thereby preventing early convergence to suboptimal
policies. Our method can be applied to both continuous and discrete action spaces. It also has the
appealing property of preserving the ranking of different actions while encouraging exploration in
discrete tasks, ensuring that the agent does not disrupt valuable policy structures while exploring
new possibilities. We demonstrate that this approach can significantly enhance training outcomes
across various tasks, potentially improving exploration and overall performance.

To summarize, in this work, we first investigate the various factors that contribute to premature con-
vergence in RL. We analyze existing exploration-exploitation methods and explain why they fail
to prevent premature convergence. To solve the problem, we propose Goal Achievement Guided
Exploration (GAGE), a method that leverages an agent’s goal achievement to define an adaptive
exploration schedule during training. We evaluate GAGE across multiple challenging tasks, includ-
ing continuous and discrete action spaces, and compare its performance against popular baseline
methods. The results demonstrate that GAGE consistently mitigates premature convergence, espe-
cially in complex exploration problems with many local optima. Moreover, GAGE’s simplicity and
compatibility with a wide range of existing RL algorithms distinguish it as a promising solution for
enhancing exploration-exploitation strategies.

2 PREMATURE CONVERGENCE AND EXPLORATION TECHNIQUES

Premature convergence is a common issue in optimization and machine learning algorithms like
genetic algorithms (Pandey et al., 2014) and reinforcement learning. Despite extensive efforts to en-
hance exploration efficiency in reinforcement learning (RL) (Thrun, 1992; Auer et al., 2002; Agar-
wal et al., 2023), agents may still unintentionally converge to local optima due to various factors.
In this section, we identify these factors and examine why existing exploration techniques remain
prone to this problem.

2.1 FACTORS FOR PREMATURE CONVERGENCE

Non-convexity of tasks Non-convexity exists in most real-world tasks and arises from different
components, such as the reward function and transition dynamics. It also inherently stems from
neural networks, the core part of deep reinforcement learning (DRL). Due to the non-convexity of
DRL, sub-optimal solutions can exist even in simple problems. For example, as shown in Fig. 1a, an
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agent (orange dot) needs to avoid the grey-colored area and is rewarded more when getting closer
to the circle’s center. However, due to the non-convexity of the reward landscape, agents without
sufficient exploration can get stuck in a local optimal solution (Eckel et al., 2024). In more complex
contexts like robotics or traffic management (Xu et al., 2020; Yan et al., 2024a), systems often have
many degrees of freedom and complex environmental interactions, making dynamics models non-
convex and further complicating optimization.

Reward shaping Tasks with sparse rewards and local optima present significant challenges for
exploration and credit assignment. To provide agents with dense and informative feedback, previous
work has employed reward shaping based on prior knowledge or specific heuristics (Vinyals et al.,
2019; Yan et al., 2020). While reward shaping can guide agents toward more valuable regions and
accelerate convergence to the optimal policy, designing such rewards is tedious and may introduce
local optima (Ng et al., 1999; Gupta et al., 2022; Ma et al., 2024). Agents might focus on auxiliary
rewards while neglecting the actual task objectives (Lehman et al., 2020). Curiosity-based intrinsic
rewards have become popular for enhancing exploration by rewarding agents for discovering new
observations or acquiring new knowledge about the environment (Savinov et al., 2019; Wang et al.,
2023). This approach encourages agents to visit diverse states within environments. However,
as illustrated in Fig. 1b, agents can become trapped by uncontrolled stochasticity in the system
dynamics, a phenomenon known as the Noisy TV problem (Burda et al., 2019).

Multiple objectives Many real-world problems involve multiple, sometimes conflicting, objec-
tives that cannot be adequately evaluated using a single metric. For example, as shown in Fig.1c, a
robot learning to dribble a football has to optimize factors such as the ball’s velocity, energy con-
sumption, distance to the ball, and facing direction. Simultaneously optimizing all these metrics can
lead to premature convergence to suboptimal solutions—for instance, the robot might stay close to
the ball, face it, and remain stationary to save energy (Yan et al., 2024b). The presence of multiple
objectives introduces local optima in the reward landscape, hindering the agent from reaching the
global or Pareto optima, depending on the definition of the utility function (Xu et al., 2020; Hayes
et al., 2022; Alegre et al., 2023). In this paper, we focus on tasks with linear utility functions that
can be addressed using single-objective algorithms rather than exploring Pareto fronts.

Function approximation error Neural networks as function approximators enable reinforce-
ment learning (RL) to tackle extremely high-dimensional problems like Go (Schrittwieser et al.,
2020). However, they are prone to overfitting (Srivastava et al., 2014), and RL intensifies this issue
due to its non-stationarity and biased datasets. As a result, even in simple tasks like Mountain-
Car (Moore, 1990), modern algorithms such as Soft Actor-Critic (SAC) can suffer from insufficient
exploration (Eberhard et al., 2023), collecting data only around the initial states (see Fig. 1d, where
an SAC agent is trained for 1M steps). Due to premature convergence, the learned policy exhibits
low entropy even in unvisited states and is thus unable to explore better solutions.

2.2 RELATED WORK

Exploration methods for reinforcement learning can be categorized into two groups: undirected and
directed (Thrun, 1992). Undirected exploration involves randomly selecting actions based merely on
utility estimation. Whereas directed exploration utilizes knowledge of the learning process (Pathak
et al., 2017; Burda et al., 2019; Ecoffet et al., 2021) to guide the exploration. In this section, we
discuss popular exploration techniques from the two groups.

Undirected exploration 1) The ϵ-greedy strategy, commonly used in value-based algo-
rithms (Mnih et al., 2013; van Hasselt et al., 2016), employs a time-decaying ϵ to define the prob-
ability of selecting either the best action or a random one during training. However, tuning the
schedule requires much effort, because many terms can influence the agent’s training progress, and
the exploration can hardly be defined by the number of iterations. 2) Some reinforcement learning
algorithms are equipped with an entropy loss term (Schulman et al., 2017; Haarnoja et al., 2018)
to enhance exploration. However, as a soft regularization for the learning process, it can be insuf-
ficient to guide the agent out of local optima. More severely, for discrete actions, the entropy loss
can not maintain the distribution shape, i.e., the order of actions’ probabilities of the learned policy.
3) Noise-based techniques inject noise into the observation, action, or parameter space to enhance
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policy exploration (Lillicrap et al., 2016; Plappert et al., 2018b). As the magnitude of the noise is
controlled by either a time-decaying schedule or learned values, this method has limits similar to
those of the previous two.

Directed exploration 1) Curiosity-based methods (Schmidhuber, 1991) are widely employed
in hard-exploration environments with sparse rewards. They reward the agent for exploring less
visited states. Various approaches have been developed to estimate the novelty of a given state
transition, such as the state’s visitation number (Tang et al., 2017), the prediction error of a dy-
namics model (Jarrett et al., 2023), or the information gained through transitions (Nikolov et al.,
2019). The Noisy TV problem, as a drawback of curiosity-based methods, has been extensively
researched (Savinov et al., 2019; Mavor-Parker et al., 2022; Wan et al., 2023). Yet, a follow-up issue
for curiosity-based methods has been neglected: the ”Game Console” problem, in which an agent
is attracted by a game console with interesting and controllable games instead of a TV showing
only noisy images. However, ”playing” the game console does not provide the agent with actual
rewards. For example, in a maze navigation task, agents may spend much time on a dead-ended
long path, gaining curiosity rewards while receiving no actual rewards. When novelty gained from
playing games overturns the main objective, curiosity-based methods may prematurely converge to
game exploration rather than exploring the optimal solution in the actual world. 2) Memory-based
techniques navigate the agent to promising states as soon as possible through memorizing the vis-
ited states (Savinov et al., 2019; Guo et al., 2020; Ecoffet et al., 2021). They reduce the number
of frequently visited states near the initial ones, collecting more diverse data and thus mitigating
premature convergence by reducing repeated data. However, these methods require high memory,
as well as complex state compression and searching processes.

3 GOAL ACHIEVEMENT GUIDED EXPLORATION

The learning process should not converge before the agent approaches the maximum possible per-
formance. Therefore, it is natural that the convergence level, reflected by the concentration of the
action distribution, is correlated to the goal achievement of the current policy. This section defines
goal achievement g(π) and explains how it can guide learning convergence.

3.1 GOAL ACHIEVEMENT

A reward function is typically composed of several terms, each designed for different purposes.
They can be categorized into two groups: goal reward and auxiliary reward. Goal rewards reflect
the designer’s actual goals, such as winning a game or achieving a target speed, while auxiliary
rewards, like curiosity-driven intrinsic rewards, are intended to guide the learning process. Goal
achievement of the learning progress should be based on goal rewards, as they directly represent the
agent’s performance. In contrast, auxiliary rewards do not always align with the actual goals and can
lead to suboptimal solutions, as stated in the noisy TV problem. Hence, we exclude these auxiliary
rewards when measuring goal achievement.

A task can have more than one goal reward term. For ng distinct goal rewards, similar to multi-
objective algorithms (Xu et al., 2020), we define the goal achievement for each goal as:

gi(π) =
E[V gi

π (s0)]

E[V gi
∗ (s0)]

, i ∈ {1, . . . , ng} and 0 ≤ gi(π) ≤ 1 (1)

where s0 represents the initial state, gi represents the goal achievement of the i-th objective among
ng performance metrics, and V gi

π and V gi
∗ are the i-th components of the vectorized value function

for the current policy π and the optimal policy π∗, respectively. We primarily address non-negative
goal rewards. For tasks with negative rewards, applying a sigmoid or an offset to the estimated
performance can still guarantee that the goal achievement is between 0 and 1. In this work, we
define the overall goal achievement of the agent as the minimum goal achievement across all goal
reward terms: g(π) = min(gi(π)) , i ∈ {1, . . . , ng}. This allows the converged police to optimize
jointly all the task-relevant objectives.

In practice, the value function Vπ often involves significant estimation errors, and computing V∗
directly might also be infeasible. Therefore, we approximate Vπ by using the average rewards from
recent rollout trajectories. Determining the optimal performance V∗ can often be achieved through
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heuristics. For example, in many games, the optimal value of the goal reward rmax,t at each step t,
up to the max episode length T , is predefined, such as a fixed value awarded for winning. We can
then approximate the goal achievement for a goal reward given the current policy π by:

g(π) ≈
Eπ

[∑T
t=0 rt

]
∑T

t=0 rmax,t

. (2)

Sometimes the explicit knowledge of the reward function or its individual components may not be
available. In such cases, the goal achievement can be approximated using the total reward provided
by the environment instead of individual goal rewards. When the maximum cumulative reward
values are unavailable, the optimal performance can be estimated empirically based on observed
performance, as further discussed in Sec. 4.1.

3.2 MITIGATING PREMATURE CONVERGENCE VIA ACTION SMOOTHING

To prevent the agent from prematurely converging to local optima and overcommitting to a limited
set of actions when goal achievement is low, we apply an action smoothing technique inspired
by label-smoothing regularization (Szegedy et al., 2016) for image classification, which reduces
overconfidence by smoothing the predicted class distribution. This technique ensures that the agent’s
action distribution does not collapse into a single action in discrete spaces or into a narrow Gaussian
peak in continuous spaces. Below, we discuss how to implement action smoothing in continuous
and discrete action spaces.

Continuous action space In continuous action spaces, exploration is typically facilitated by mod-
eling the policy’s action distribution as a Gaussian distribution. This approach is used in both
stochastic policies like Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO) (Schul-
man et al., 2017; Haarnoja et al., 2018), and deterministic policies like Deep Deterministic Pol-
icy Gradient (DDPG) (Lillicrap et al., 2016), where the Gaussian distribution serves as additive
noise for exploration. The policy learns the mean µ(s) of the action distribution, modeled as:
p(a | s) ∼ N (µ(s), σ2), where the standard deviation σ can be controlled via a schedule or learned
as a parameter. The standard deviation directly represents the concentration of the action distribu-
tion. To prevent premature convergence, we define an adaptive lower bound σL(π) on σ, which is
negatively correlated with the current policy’s goal achievement g(π):

σL(π) = f(g(π)). (3)

For simplicity, we employ a linear relationship between σL and the goal achievement g, leaving the
investigation of other possible functions f for future work:

σL(π) = −σ0g(π) + σ0, (4)

where σ0 > 0 is a hyperparameter controlling the minimum allowed σ value when the goal achieve-
ment is zero. Agents with a higher σ0 require more achievement to concentrate their policies. When
σ0 = 0, this is equivalent to the original algorithms without GAGE.

Discrete action space In the context of a discrete action space, the probability of each action ak,
where k ∈ {1, . . . ,K}, is usually computed using the softmax function:

p(ak | s) = softmax(zk) = exp(zk)/
∑K

i=1 exp(zi), (5)

where zi is the logit output of the policy network or value network. Existing methods to flatten
the action distribution include entropy maximization regularizor (O’Donoghue et al., 2017), label
smoothing, and softmax with temperature (Asadi & Littman, 2017). However, the first two of these
approaches have significant drawbacks, as illustrated in Fig. 2. For entropy maximization, it controls
only the entropy of the whole distribution and does not guarantee that the relative order of the
action probabilities remains unchanged, as illustrated in Fig. 2b. Changing this probability order
can lead to information loss, potentially impairing the learning process. For label smoothing, it
typically mixes the original distribution with a uniform distribution: p′(ak | s) = (1 − ϵ)p(ak |
s) + ϵ

K , where the smoothing parameter 0 ≤ ϵ ≤ 1. Although label smoothing preserves the
order of the original probabilities, it can adjust the values inappropriately. For example, actions
with the lowest probabilities often lead to penalties or termination states, which the agent should
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Figure 2: One categorical distribution and its flattened results using different techniques. The
resulting distributions have the same entropy. (a) Original distribution. (b) One possible result
through regularization of entropy maximization objective. (c) Label smoothing result calculated
with smoothing parameter ϵ = 0.58. (d) Action smoothing result using temperature τ = 5.56.

avoid. However, these actions receive the largest increase (see Fig. 2c), potentially leading to a
failure trial. To address these issues, we propose a novel action smoothing method for discrete
action spaces using a goal-achievement-guided temperature based on a softmax with temperature.
The softmax with temperature function defined as softmax(x/τ) modifies the softmax function by
introducing a temperature parameter τ . It scales the logits before applying the exponential function,
thereby controlling the flatness of the output probability distribution. This method preserves the
original probability order of the action distribution, and the largest probability increases occur for
actions with middle-valued probabilities rather than the least promising ones (see Fig. 2d). Similar
to continuous space, we define an adaptive lower-bound probability for discrete actions. Just as the
standard deviation specifies a range of promising continuous actions, we define a range of promising
discrete actions, with the number determined by the agent’s goal achievement.. More actions are
lower-bounded when goal achievement is low. Less are picked when the policy is approaching the
goal. Specifically, we adaptively adjust the temperature based on the agent’s goal achievement and
the original logits, scaling the logit values of all actions to lower-bound the probabilities of the
promising actions. The adaptive temperature is calculated as follows:

1. Arrange the policy network output {z1, . . . , zK} in descending order to obtain {z[1], . . . , z[K]}
and calculate the differences to the largest value: z′k = z[k] − z[1], where z′1 = 0 and z′k ≤ 0.

2. Determine the number of lower-bounded action probabilities:

iL(g) = −i0(g(π)− 1) + 1 , 1 ≤ iL(g) ≤ K (6)

where the hyperparameter 0 < i0 ≤ K − 1 controls the number of lower-bounded action proba-
bilities when the goal achievement is zero.

3. Compute the temperature via linear interpolation of the unscaled logits:

τ(g,z′) = ηmax
(
1,
∣∣∣z′⌊iL⌋ + (iL − ⌊iL⌋)

(
z′⌈iL⌉ − z′⌊iL⌋

)∣∣∣) , (7)

where the hyperparameter η controls the lower bound of the top iL probabilities, and max(1, ·)
ensures that the action distribution is only flattened and not sharpened. Note that i0, iL ∈ R due
to interpolation. ⌊⌋ is the floor operator and ⌈⌉ is the ceiling operator.

4. Use softmax with temperature to calculate the probabilities p(ak | s) = softmax(z
′
k/τ(g,z′)).

Our approach can also generalize to ϵ-greedy exploration, where the ϵ can be lower-bounded by an
adaptive value based on the goal achievement.

4 EXPERIMENTS

This section validates the proposed method by addressing a range of problems characterized by local
optima, which often lead to premature convergence in existing reinforcement learning algorithms.
First, we apply our approach to solve complex continuous control tasks involving robots with high
degrees of freedom. Next, we conduct ablation studies on the hyperparameters to assess the method’s
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Figure 3: Continuous control experiments. We plot the median over 10 seeds, and the faint area
represents the 25% and 75% quantiles, same for Fig. 4. Top: tasks from left to right, Ant Acrobatics,
Humanoid Dribbling, Humanoid Pole, Humanoid Tightrope, and Dog (Unitree Go2) Balance Beam.
Middle: Training curves of each method. Bottom: Standard deviation of each method σ̄.

effectiveness in scenarios with unknown optimal goal achievement and evaluate the robustness of
the learning process. Finally, we demonstrate the application of GAGE on the “Game Console”
problem using the MiniGrid (Chevalier-Boisvert et al., 2023) environments.

4.1 CHALLENGING CONTINUOUS CONTROL

To evaluate the effectiveness of our method in preventing premature convergence, we designed five
highly challenging continuous control tasks in IsaacLab (Mittal et al., 2023; Yan et al., 2024b)
(see Fig. 3). These control tasks jointly include all four factors discussed in Sec. 2.1, featuring
non-convex dynamics, complex reward functions, and a hard-exploration nature. The specific envi-
ronment details are provided in Appendix D. We implemented our approach using Proximal Policy
Optimization (PPO), building upon the IsaacLab framework. Since the original action standard devi-
ations are independently learned parameters, we use goal achievement to set a dynamic lower bound
for σ. This is accomplished by applying σ = σL(π) whenever it falls below the threshold. The full
algorithm is outlined in Appendix A.

Explore Until Solved We evaluate our method against two baselines: standard PPO and Random
Network Distillation (RND) (Burda et al., 2019). We follow the hyperparameter settings of the
original and subsequent work of RND (Yang et al., 2024). The training curves for episode returns
and the average σ values across all robot joints are shown in Fig. 3. We denote GAGE with σ0 value
of 0.5 as ”GAGE-0.5” in Fig. 3. The proposed method successfully solved all the challenging tasks,
whereas the baseline algorithms failed. Notably, PPO without our method is equivalent to GAGE
with σ0 = 0, and varying σ0 can affect the learning process. However, our algorithm remains robust
to this hyperparameter over a relatively wide range. The impact of our approach is evident in the
plots of σ. Standard PPO quickly reduces the policy’s standard deviation at the start of training,
achieving higher rewards by over-exploiting certain reward components, such as energy cost. It
continues to decrease the policy’s standard deviation even after the target reward plateaus. For
instance, the dog robot learns to stand stably on the balance beam and ceases exploration despite
having a forward movement target. In contrast, our method keeps exploring and only concentrates
the action distribution with increased target rewards. The novelty-based intrinsic rewards of the
RND agents slow down the reduction of the policy’s standard deviation compared to PPO. However,
the additional exploration does not contribute to solving the tasks and, in some cases, even results in
worse performance. To better understand the effects of novelty-based exploration in these tasks, we
provide additional experimental results with varying intrinsic reward settings in Fig. 7.
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Figure 4: Ablation Study of GAGE in Humanoid Locomotion Task

Unknown Optimal Goal For some tasks, the optimal performance is well-defined, such as achiev-
ing a score of 1 to win in board games. However, for other tasks, like a robot locomotion task, the
optimal speed may not be straightforward and is often still under discovery. In the well-known hu-
manoid locomotion task, to achieve higher speed without knowing the optimum, researchers often
increase the weighting factors to locomotion speed. However, it can result in unnatural behaviors
due to imbalanced speed and action rewards. To address this issue, we conducted experiments to
demonstrate how GAGE can explore higher speeds without knowing the maximum or altering the
reward weights. We define the goal achievement in the Humanoid task as gπ = vπ/v∗, where vπ and
v∗ represent the robot’s current and target speeds, respectively. As shown in Fig. 4a, our method sig-
nificantly outperforms standard PPO across a wide range of target speeds, from 0.1 to 100 m/s while
maintaining natural behavior through balanced reward weights. When the target speed is set below
the learned optimal speed (∼ 7 m/s), the GAGE agent is also able to learn the optimal speed. This
phenomenon highlights the critical importance of exploration during the initial stages of training. At
the very beginning, none of the agents had learned to move forward, i.e. g(π) ≈ 0. As a result, even
with small target speeds of 0.1 or 1, the GAGE agent maintained higher standard deviation values
compared to standard PPO. Since the optimal locomotion gait for the humanoid robot remains con-
sistent across different speeds, it is crucial for the agent to avoid becoming trapped in a suboptimal
policy (gait) early in training. Once the agent learns an effective low-speed gait, gradually increas-
ing locomotion speed with a similar gait requires less exploration. Even when the target speed
is set unreasonably higher than the optimal speed, the GAGE agent is able to discover improved
performance, which can subsequently be used to refine the estimation of the optimal performance.

Unknown Individual Rewards Sometimes, the agent only receives a total reward from the en-
vironment and lacks access to individual reward components. As the optimal cumulative return is
usually unknown, we propose to approximate this value based on the final performance of the stan-
dard PPO agent. We conducted additional experiments on the humanoid locomotion task, where
we performed an ablation study using 1×, 2×, and 3× of the standard PPO’s episode return as the
estimated optimal return. The results, depicted in Fig. 4b, show the episodic returns averaged over
the last 10 episodes across 5 different seeds. These results demonstrate that GAGE consistently
improves performance in this scenario.

Improved Robustness to Reward Shaping Reward shaping is crucial yet challenging in rein-
forcement learning, as even minor adjustments to the weighting of specific rewards can result in
unsuccessful learning. Using the humanoid locomotion task, we demonstrate this issue and the effec-
tiveness of our method in mitigating it. As in the previous experiment, we define goal achievement
based on locomotion speed. The reward terms include a penalty for large action values, ωa∥a∥2.
In the experiments, we kept the weights for other rewards constant while varying ωa. The baseline
agents without our method exhibited performance that was highly sensitive to changes in ωa, with
significant impacts on both final speed and locomotion gait. In contrast, our method enabled the
agent to maintain high running speeds and achieve consistently high returns across all the ωa values
(see Fig. 4c).

4.2 “GAME CONSOLE” PROBLEM

We further validate our method in discrete action spaces using the MiniGrid environments (see Ap-
pendix D). This benchmark has gained significant attention from reinforcement learning researchers.
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Figure 5: Experiments in MiniGrid. Left: The environment consists of two tasks. Their observations
are concatenated as the environment observation. The main task, ”MultiRoomLava-N4-S5,” has six
actions. The gaming task has three. Right up: We evaluate each agent 10 times and average the
number of actions it takes in the main and the gaming tasks. The vertical grey line in each plot
represents action number 40. Right bottom: Learning curves of different agents.

Numerous methods, particularly curiosity-based approaches, have been developed to successfully
solve most tasks, even with the inclusion of Noisy TV as a distraction. Through this experiment, we
aim to address two key questions: 1) Will curiosity-based agents be drawn to controllable distrac-
tions? 2) If so, can GAGE mitigate such premature convergence? To explore these questions, we
introduce the following major modifications to some of the original environments (see Fig. 5):

• Attach a “Game Console” to each environment. Unlike the uncontrollable stochasticity in the
Noisy TV problem, we investigate controllable distractions within the environment. In addition
to the original MiniGrid task, where the agent learns to navigate and reach specific targets, the
agent can simultaneously interact with a parallel gaming task. This gaming task features a larger
map with more randomly located objects, providing the agent with novel observations as it nav-
igates. The agent receives an episodic reward solely for reaching the goal in the main task. The
observations and actions from both tasks are concatenated for the entire environment.

• Introduce a penalty to the main task. To increase the learning difficulty associated with premature
convergence, all the walls in the main task were replaced with lava. If the agent in the main task
steps on lava, the environment terminates, and a penalty is applied. In contrast, the gaming task
contains no lava, making exploration in the gaming task more appealing due to its safety.

Our method builds on the Discriminative-model-based Episodic Intrinsic Reward (DEIR) (Wan
et al., 2023), an intrinsic reward algorithm designed to address the Noisy TV problem in Mini-
Grid. We adjust the policy network by incorporating an adaptive softmax temperature, guided by
the agent’s goal achievement, as described in Sec. 3.2. To evaluate our approach, we compare it
against three baseline algorithms: Intrinsic Curiosity Module (ICM) (Pathak et al., 2017), Random
Network Distillation (RND) (Burda et al., 2019), and DEIR. Additionally, we conduct an ablation
study to investigate the effectiveness of using label smoothing (LS) to guide exploration.

All baseline algorithms fail to solve the tasks. They were distracted by the gaming environment and
struggled to learn meaningful policies for the main task. However, their behavior patterns differed
during the learning process. The training results for a single seed on the MultiRoomLava-N4S5
environment are shown in Fig. 5, with additional results in Appendix B. Above the training curves,
we present the action distributions of different agents during training. Each agent was evaluated 10
times, and the average number of actions taken in the main and gaming tasks was computed. The
ICM and RND agents were initially less attracted to the gaming task. At convergence, the ICM
agent learned to stay alive, while the RND agent learned to terminate the environment shortly after
it started. The DEIR agent initially explored the gaming task extensively. As it became familiar with
the game, it gradually shifted its attention to the main task. However, due to the action distribution
having already converged to specific actions, it struggled to complete the main task and collect
extrinsic rewards. Ultimately, it also learned to terminate the environment, similar to the RND
agent.
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The agent using label smoothing also fails to solve any of the tasks. Although it maintains high
entropy when no external rewards are achieved, its exploration is less effective compared to GAGE
agents. This is because the uniform distribution keeps the probabilities of undesired actions, such as
those leading to Lava cells (termination), relatively high during training. This behavior is evident in
the episode length plots shown in Fig. 8. These results are consistent with our hypothesis.

The agent using our method is initially distracted by the game. However, GAGE ensures a lower
bound on the probabilities of promising actions when the goal achievement is zero, allowing the
agent to maintain sufficient exploration in the main task. It also learns to avoid the lava, as a few
action probabilities are not lower-bounded and can be reduced to low values. After thoroughly
exploring the main task, the DEIR+GAGE agent successfully navigates to the goal and begins col-
lecting extrinsic rewards, which are significantly larger than the curiosity-based intrinsic rewards.
Eventually, the agent shifts its focus entirely to the main task, abandoning the exploration of the
gaming task.

5 DISCUSSION

We introduced Goal Achievement Guided Exploration (GAGE), a method aiming to address prema-
ture convergence in reinforcement learning (RL). Our approach uses goal achievement as a dynamic
factor to guide the agent’s exploration, allowing for a better balance between exploration and ex-
ploitation. Our experiments demonstrate that GAGE substantially mitigates premature convergence
in complex environments by maintaining adequate exploration. Unlike traditional methods such as
entropy maximization or curiosity-based exploration, GAGE incorporates an adaptive mechanism
that smoothes the action probability distribution based on how well the agent achieves its goal. The
strength of GAGE lies in its simplicity and compatibility with existing RL algorithms. It does not
require significant architectural changes and can be easily integrated into continuous and discrete ac-
tion space environments. The flexibility of GAGE makes it applicable to a wide variety of real-world
RL problems.

Despite these strengths, GAGE offers aspects for improvement. The current version relies on defin-
ing an appropriate goal achievement metric, which might not be straightforward in all tasks. In
environments in which the optimal policy or goal is not well understood, the approximation of goal
achievement might introduce inaccuracies. Additionally, while GAGE has proven effective in the
tested environments, its scalability to more complex, high-dimensional tasks has yet to be explored.

Future research should focus on improving the scalability of GAGE and applying it to more complex,
dynamic and multi-objective environments. Investigating non-linear relationships between the goal
achievement and the exploration metrics, such as the standard deviation of Gaussian distributions in
continuous action spaces, could further enhance the method’s adaptability to diverse RL problems.
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Sample-efficient multi-objective learning via generalized policy improvement prioritization. In
Noa Agmon, Bo An, Alessandro Ricci, and William Yeoh (eds.), Proceedings of the 2023 In-
ternational Conference on Autonomous Agents and Multiagent Systems, AAMAS 2023, London,
United Kingdom, 29 May 2023 - 2 June 2023, pp. 2003–2012. ACM, 2023. doi: 10.5555/3545946.
3598872. URL https://dl.acm.org/doi/10.5555/3545946.3598872.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
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Marcello Restelli, Peter Vamplew, and Diederik M. Roijers. A practical guide to multi-
objective reinforcement learning and planning. Auton. Agents Multi Agent Syst., 36(1):
26, 2022. doi: 10.1007/S10458-022-09552-Y. URL https://doi.org/10.1007/
s10458-022-09552-y.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.),
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, Febru-
ary 2-7, 2018, pp. 3207–3214. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11694. URL
https://doi.org/10.1609/aaai.v32i1.11694.

Daniel Jarrett, Corentin Tallec, Florent Altché, Thomas Mesnard, Rémi Munos, and Michal Valko.
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Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard,
David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, To-
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A ALGORITHM IMPLEMENTATION

We provide the pseudo code for PPO+GAGE with Gaussian policy in Alg. 1 and action smoothing
with categorical policy in Alg. 2.

Algorithm 1 Proximal Policy Optimization (PPO) Algorithm with Gaussian Policy + GAGE

1: Initialize policy mean parameters θ0, value function parameters ϕ0, standard deviation σ0, and
goal achievement g0

2: for iteration k = 0, 1, 2, . . . do
3: Collect set of trajectories {(st, at, rt, st+1)} by running policy πθk(at|st) =

N (µθk(st), σ
2
k) in the environment

4: for each time step t do
5: Compute advantage estimates Ât based on value function Vϕk

(st)
6: end for
7: Update the policy by maximizing the PPO-CLIP objective with an added entropy term:

θk+1, σk+1 = argmax
θ,σ

Et

[
min

(
N (µθ(st), σ

2)

N (µθk(st), σ
2
k)

Ât, clip
(

N (µθ(st), σ
2)

N (µθk(st), σ
2
k)

, 1− ϵ, 1 + ϵ

)
Ât

)
+βH(πθ(at|st))

]
where µθk(st) is the mean of the Gaussian action distribution, σk is the standard deviation
(separately learned), and H(πθ(at|st)) is the entropy of the policy, encouraging exploration.
The term β controls the weight of the entropy regularization.

8: Update the value function by minimizing the following loss:

ϕk+1 = argmin
ϕ

Et

[
(Vϕ(st)−Rt)

2
]

9: Calculate the running mean of gk.
10: Update the standard deviation parameter σ based on the agent’s performance:

σk+1 = max(σk+1,−σ0gk + σ0)

11: end for

Algorithm 2 Action Smoothing Algorithm

Require: Network outputs {z1, z2, . . . , zK}, goal achievement g(π), hyperparameters η, i0
Ensure: Action probabilities p(ak | s)

1: Order the network outputs in descending order to obtain {z[1], z[2], . . . , z[K]} such that z[1] ≥
z[2] ≥ · · · ≥ z[K]

2: Compute differences to the largest value:

z′k = z[k] − z[1], for k = 1, 2, . . . ,K (Note: z′1 = 0)

3: Decide the number of top actions based on goal achievement:

iL(g) = −i0(g(π)− 1) + 1

4: Calculate the temperature:

τ(g,z′) = ηmax
(
1,
∣∣∣z′⌊iL⌋ + (iL − ⌊iL⌋)

(
z′⌈iL⌉ − z′⌊iL⌋

)∣∣∣)
5: Compute action probabilities using softmax with temperature:

p(ak | s) = exp(−z′
k/τ(g,z′))∑K

i=1 exp(
−z′

i/τ(g,z′))
, for k = 1, 2, . . . ,K
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Figure 6: Additional training results of experiments with continuous action space. We plot the
median over 5 and 10 seeds. The faint area represents the 25% and 75% quantiles.

B ADDITIONAL RESULTS

B.1 CONTINUOUS ACTION

In this section, we provide more detailed experiment results with continuous action spaces.

σ Schedule To compare our method with exploration approaches using constant or linearly de-
creasing standard deviations, we conducted experiments on the Dog Balance Beam task. The agent
was trained with constant σ values of 0.25 and 0.75, as well as with linearly decreasing schedules
ranging from 0.8 to 0.01 over 2.5 × 107 and 2.5 × 108 timesteps. As shown in Fig. 6a, only the
agent with a linearly decreasing standard deviation similar to the curve discovered by our method
achieved performance comparable to GAGE. This result further validates the effectiveness of our ap-
proach. Additionally, since tuning a predefined entropy schedule—considering both entropy values
and training duration—is highly resource-intensive, our method significantly reduces the workload
by introducing an adaptive schedule.

Unknown Optimal Goal To provide more detailed insights, we present the learning curves for
episode return and policy standard deviation in the humanoid locomotion task with an unknown
optimal goal, evaluated across different target velocities, in Fig. 6b.

Intrinsic Reward Weight To evaluate the effect of intrinsic rewards in the proposed challenging
control tasks, we trained several RND agents using different weight combinations for extrinsic and
intrinsic rewards: (2.0, 1.0), (2.0, 0.5), (1.0, 1.0), (1.0, 2.0), and (1.0, 4.0). The weight values (2.0,
1.0) are consistent with those used in the original RND work (Burda et al., 2019) and subsequent re-
search (Yang et al., 2024). Therefore, we also used this ratio for the experiments presented in Fig. 3.
As shown in Fig. 7, none of the RND agents succeeded in solving the task. Agents with larger ratios
of extrinsic-to-intrinsic weights exhibited learning patterns similar to standard PPO, which does not
use intrinsic rewards. As the ratio decreased, the agents focused more on exploring novel states, as
indicated by larger standard deviations during training. However, this increased exploration did not
contribute to solving the task. Instead, the novelty-based exploration resulted in decreased extrinsic
rewards. This phenomenon highlights the distinct focus of our work compared to novelty-based ex-
ploration methods. Our work focuses on addressing premature convergence, an issue that is equally
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Figure 7: Investigating the effect of novelty-based intrinsic reward to the learning of Dog Balance
Beam task. The curves with legend 1:2 represent the agent trained using extrinsic and intrinsic
coefficients of (1.0, 2.0).

important but has been largely overlooked until now. In contrast, curiosity-based methods primarily
tackle sparse rewards. The difference in focus is also reflected in the existing benchmarks for explo-
ration algorithms. Most environments are designed with sparse rewards and moderate local optima,
which can be effectively addressed using novelty-based exploration. For example, environments
like Fetch (Plappert et al., 2018a), MiniGrid (Chevalier-Boisvert et al., 2023), AntMaze, and Adroit
manipulation tasks (Fu et al., 2020) are ”safe,” with sparse termination states or penalties distributed
across the state space. Agents can easily avoid termination and penalty states while exploring for
rewards. In such environments, exploring unseen states is a highly effective strategy. However,
novelty-based methods struggle in scenarios with more severe and deeper local optima. For in-
stance, Noisy-TV has been recognized as a major issue for novelty-based methods, even though it
only involves local optima introduced by environment stochasticity. The challenges posed by more
severe local optima have not yet been fully explored. In this work, we aim to push the bound-
aries of RL exploration research into environments with more challenging local optima issues. The
proposed IsaacLab tasks reflect real-world robot control scenarios where optimal behaviors occupy
only a small portion of the state space, while most of the state space leads to penalties such as falling
down or wasting energy. This dominant penalizing space creates challenging local optima. In such
environments, novelty-based exploration often results in sampling mostly failed trajectories and be-
coming trapped in local optima. A similar phenomenon is observed in the MiniGrid experiments,
where popular novelty-based methods fail to solve tasks with more challenging local optima.

B.2 DISCRETE ACTION

In this section, we provide more detailed experiment results with discrete action spaces. The learning
curves, including episode return, entropy loss, and episode length, are shown in Fig. 8. Our proposed
method, combined with DEIR, can successfully solve all the tasks. The baseline algorithms, how-
ever, all fail to learn meaningful policies with the introduced ”Game Console” problem. Due to the
lack of GAGE, their entropy losses quickly increase from around -2.0 to -1.0 or even higher. The
concentrated action distribution impairs the agent’s search for the main task reward, which requires
long-horizon exploration. Our method helps the agent maintain a relatively low entropy loss when
the goal achievement is zero, preserving its ability to explore. The action distribution only further
sharpens after the agent achieves an improved performance.

Interestingly, the baseline algorithms show different behavior patterns during learning (see Fig. 5).
As shown in the plots of episode length, the RND agents quickly learn to terminate the environment
by navigating onto lava elements. The ICM agents also learn to terminate at the beginning but then
change to the strategy of staying alive and continuing to explore the gaming task. The DEIR agents,
however, first focus on exploring the gaming task and then change to the termination policy.

C ACTION SMOOTHING CALCULATION OF DISCRETE ACTION SPACE

In Fig. 9, we illustrate the calculation of action smoothing with discrete action space for η = 1 and
iL = 3. By ensuring τ ≥ 1, our method only flatten and does not sharpen the original distribution.
In Fig. 10, we show the theoretical lower-bounded probabilities of different actions after action
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Figure 8: Training results of experiments with discrete action space. We plot the median over 5
seeds, and the faint area represents the 25% and 75% quantiles.

(a) No change of logits. (b) Flatten distribution with τ > 1.

Figure 9: Softmax temperature calculation with η = 1 and iL = 3.

smoothing for η = 1 and iL = 3. As τ = |z′3|, the probabilities p(a1), p(a2) and p(a3) are all lower-
bounded, whereas p(a4) can asymptotically approach zero. We can calculate the lower bounds for
different action probabilities as pL(a1) = 0.37, pL(a2) = 0.17, pL(a3) = 0.13.

D EXPERIMENTAL DETAILS

D.1 TASKS SETUP

We build up five challenging continuous control tasks in IsaacLab1. Three robots with many degrees
of freedom learn to do challenging locomotion or dynamic manipulation behaviors. The robots
include a humanoid robot with 21 joints, a dog robot (Unitree Go2) with 12 joints, and an ant robot
with 8 joints. The humanoid robot is also employed in the locomotion task to investigate maximum
speed and robustness to reward weights. In Table 1, we provide the reward composition of different
tasks.

Humanoid tightrope (HT) The humanoid robot learns side walking on a tightrope, i.e., a cylin-
drical bar with a diameter of only 0.1m. This is more challenging than walking forward because
balancing with two arms stretching to both sides would be more difficult.

Humanoid dribbling (HD) The humanoid robot learns to dribble a football at a high speed
(3.5m/s). Additionally, the robot gets random commands for turning the target direction for up
to π

4 rad.

1https://isaac-sim.github.io/IsaacLab/
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(a) Lower bound for p(a1), p(a3) (b) Lower bound for p(a2) (c) No lower bound for p(a4)

Figure 10: Lower-bounded probability calculation after action smoothing with η = 1 and iL = 3.

Table 1: Reward weights of continuous control tasks. The rewards and penalties from left to right
are for robot locomotion velocity, environment not terminating, robot orientation, robot distance
to the manipulated object, large action commands, energy consumption, joint position too close to
limitations, robot velocity perpendicular to the desired direction, object velocity perpendicular to
the desired direction, joint torque, joint acceleration, and action changing rate. The selected goal
reward for goal achievement calculation is marked in green background.

reward penalty

vx alive orient dobj ∥a∥2 E θlimit vy vy,obj T θ̈ ȧ

HT 0.5 1.0 1.0 0 0 0.05 0.25 1.0 0 0 0 0
HD 0.3 0.4 1.0 0.2 0.01 0.01 0.25 0 0.5 0 0 0
HP 2.0 1.0 1.0 0 0.01 0.005 0.125 0 1.0 0 0 0
DB 1.0 1.0 1.0 0 0.005 0 0 1.0 0 1e-6 2.5e-8 0.001
AA 1.0 1.0 1.0 0 0.005 0.05 0.1 0 1.0 0 0 0

Humanoid pole (HP) The humanoid robot learns to walk forward while balancing a pole verti-
cally on its right hand. The target walking speed is 0.5m/s and the pole is 2m long.

Dog balance beam (DB) The dog robot learns to walk on a balance beam. The beam has a square
crosssection with 0.1m side length. Moreover, the balance beam is tilted for π

9 rad so that the robot
has to climb a slope while balancing.

Ant acrobatics (AA) The ant robot with four legs learns to balance a pole vertically on its torso
while standing on a ball. The pole has a length of 2m. The ball has a diameter of the same value.
Moreover, the robot has to learn to roll the ball forward at a target speed of 1m/s.

To validate the performance of our method with discrete action space, we build up three MiniGrid2

environments with the Game Console problem. To validate the effectiveness of our proposed method
against local optima, we improve the difficulty of the original MiniGrid environments by 1) changing
all the wall elements to lava and 2) attaching a parallel gaming task to the original tasks. In the main
tasks with lava walls, the agent learns to navigate to the target to get an episodic reward. The
environment terminates once the agent navigates onto a lava element. In the gaming task, the agent
can navigate to different positions but acquires neither rewards nor penalties from the environment
(see Fig. 11).

MultiRoomLava The agent has four actions: left, right, forward, and toggle. The doors are closed
but not locked. To enter the next room, the agent has to open the closed doors with the action toggle.

DoorKeyLava The agent has six actions: left, right, forward, pickup, drop, and toggle. The door
connecting the two rooms is locked. To enter the room with the target element, the agent should
pick up the key, then go to the door, unlock it, and open it. The long action sequence makes the task
difficult for exploration-based learning.

2https://minigrid.farama.org/environments/minigrid/
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Figure 11: MiniGrid tasks used in our work. From left to right: MultiRoomLava-N6, DoorKeyLava-
8x8, MultiRoomLava-N4S5, GamingEnv. Note that the size of the GamingEnv may differ when
combined with different tasks.

GamingEnv This task is used as the game console. It contains randomly located objects, including
floor, key, ball, and boxes. They are given random colors to increase their novelty. The agent can
navigate onto the floor elements. The other elements are regarded as obstacles.

D.2 HYPER-PARAMETERS AND IMPLEMENTATION

Hyperparameter for GAGE Since we have not changed the base algorithm implementations,
we separately provide the additional hyperparameters introduced by GAGE. There is only one
hyperparameter σ0 in the continuous control experiments. The results with σ0 = 0.5, 0.75, 1.0
are given in Sec. 4. There are two hyperparameters, (η, i0), in the discrete action implementa-
tion. We use (4.5, 4.0), (5.5, 1.5), and (6.5, 3.0) for MultiRoomLava-N6, DoorKeyLava-8x8, and
MultiRoomLava-N4S5 environments. They are tuned separately for each environment.

Table 2: Hyperparameters used for training agents in continuous control tasks.

Hyperparameter Value
Algorithm
Value loss coefficient 1.0
Clip parameter (ϵ) 0.2
Use clipped value loss True
Desired KL divergence 0.01
Entropy coefficient 0.01
Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Max gradient norm 1.0
Learning rate 0.001
Number of learning epochs 5
Number of mini-batches 4
Learning rate schedule Adaptive
Policy
Activation function ELU
Actor hidden dimensions [128, 128, 128]
Critic hidden dimensions [128, 128, 128]
Initial noise standard deviation 1.0
Runner
Number of steps per environment 24
Max iterations 1500
Empirical normalization False
RND
Intrinsic Reward coefficient 1
Extrinsic Reward coefficient 2
Intrinsic Reward Normalization yes
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Hyperparameter for algorithm with continuous action We use Proximal Policy Optimization
(PPO) as the backbone algorithm for all the experiments. For the continuous control tasks, we adjust
the implementation of rsl rl v2.0.03. We have not changed any hyperparameters for the implemented
algorithms. They are kept the same for all agents for a fair comparison (see Table 2).

Table 3: Hyperparameters used for training each method in MiniGrid.

Hyperparameter MiniGrid
PPO γ 0.99
PPO λGAE 0.95
PPO rollout steps 512
PPO workers 16
PPO clip range 0.2
PPO training epochs 4
model training epochs 4
mini-batch size 512
entropy loss coef 1× 10−2

advantage normalization yes
adv norm momentum 0.9
Adam learning rate 3× 10−4

Adam epsilon 1× 10−5

Adam beta1 0.9
Adam beta2 0.999
normalization for layers Batch Norm
extrinsic reward coef 1.0

DEIR
IR (intrinsic reward) coef β 1× 10−2

IR normalization yes
IR norm momentum 0.9
observation queue size 1× 105

Label Smoothing
Weight α0 for MultiRoomLava-N6 0.15
Weight α0 for MultiRoomLava-N4 0.35
Weight α0 for DoorKeyLava 0.55
RND
IR coefficient β 3× 10−3

IR normalization yes
IR norm momentum 0.9
RND error normalization no
RND error momentum total avg
ICM
IR coefficient β 1× 10−2

IR normalization yes
IR norm momentum 0.9
forward loss coef. 0.2

Hyperparameter for algorithm with discrete action For the experiments with MiniGrid, we
implement the algorithm based on the code provided in DEIR4. We have not changed the original
code except for adding our GAGE implementation. Hyperparameters are also kept unchanged to
ensure a fair comparison with the baseline algorithms (see Table 3).

3https://github.com/leggedrobotics/rsl_rl
4https://github.com/swan-utokyo/deir
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