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Abstract

Low-rank and nonsmooth matrix optimization problems capture many fundamental
tasks in statistics and machine learning. While significant progress has been made
in recent years in developing efficient methods for smooth low-rank optimization
problems that avoid maintaining high-rank matrices and computing expensive
high-rank SVDs, advances for nonsmooth problems have been slow paced.
In this paper we consider standard convex relaxations for such problems. Mainly,
we prove that under a natural generalized strict complementarity condition and
under the relatively mild assumption that the nonsmooth objective can be written
as a maximum of smooth functions, the extragradient method, when initialized
with a “warm-start” point, converges to an optimal solution with rate O(1/t) while
requiring only two low-rank SVDs per iteration. We give a precise trade-off
between the rank of the SVDs required and the radius of the ball in which we
need to initialize the method. We support our theoretical results with empirical
experiments on several nonsmooth low-rank matrix recovery tasks, demonstrating
that using simple initializations, the extragradient method produces exactly the
same iterates when full-rank SVDs are replaced with SVDs of rank that matches
the rank of the (low-rank) ground-truth matrix to be recovered.

1 Introduction

Low-rank and nonsmooth matrix optimization problems have many important applications in statistics,
machine learning, and related fields, such as sparse PCA [21, 34], robust PCA [28, 33, 2, 9, 38],
phase synchronization [41, 6, 29], community detection and stochastic block models [1]1, low-rank
and sparse covariance matrix recovery [35], robust matrix completion [22, 10], and more. For many
of these problems, convex relaxations, in which one replaces the nonconvex low-rank constraint with
a trace-norm constraint, have been demonstrated in numerous papers to be highly effective both in
theory (under suitable assumptions) and empirically (see references above). These convex relaxations
can be formulated as the following general nonsmooth optimization problem:

min
X∈Sn

g(X), (1)

where g : Sn → R is convex but nonsmooth, and Sn = {X ∈ Sn | Tr(X) = 1, X � 0} is the
spectrahedron in Sn, Sn being the space of n× n real symmetric matrices.

Problem (1), despite being convex, is notoriously difficult to solve in large scale. The simplest and
most general approach applicable to it is the projected subgradient method [3, 7], which requires on

1in [41, 6, 29] and [1] the authors consider SDPs with linear objective function and affine constraints of the
form A(X) = b. By incorporating the linear constraints into the objective function via a `2 penalty term of the
form λ‖A(X)− b‖2, λ > 0, we obtain a nonsmooth objective function.
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each iteration to compute a Euclidean projection onto the spectrahedron Sn, which in worst case
amounts to O(n3) runtime per iteration. In many applications g(X) follows a composite model, i.e.,
g(X) = h(X) + w(X), where h(·) is convex and smooth and w(·) is convex and nonsmooth but
admits a simple structure (e.g., nonsmooth regularizer). For such composite objectives, without the
spectrahedron constraint, proximal methods such as FISTA [4] or splitting methods such as ADMM
[32] are often very effective. However, with the spectrahderon constraint, all such methods require
on each iteration to apply a subprocedure (e.g., computing the proximal mapping) which in worst
case amounts to at least O(n3) runtime. A third type of off-the-shelf methods include those which
are based on the conditional gradient method and adapted to nonsmooth problems, see for instance
[31, 19, 36, 26]. The advantage of such methods is that no expensive high-rank SVD computations
are needed. Instead, only a single leading eigenvector computation (i.e., a rank-one SVD) per iteration
is required. However, whenever the number of iterations is not small, these methods still require to
store high-rank matrices in memory, even when the optimal solution is low-rank. Thus, to conclude,
standard first-order methods for Problem (1) require in worst case Ω(n3) runtime per iteration and/or
to store high-rank matrices in memory.

In the recent works [17, 18] it was established that for smooth objective functions, the high-rank SVD
computations required for Euclidean projections onto the spectrahedron in standard gradient methods,
can be replaced with low-rank SVDs in the close proximity of a low-rank optimal solution. This is
significant since the runtime to compute a rank-r SVD of a given n×n matrix using efficient iterative
methods typically scales with rn2 (and further improves when the matrix is sparse), instead of n3 for
a full-rank SVD. These results depend on the existence of eigen-gaps in the gradient of the optimal
solution, which we refer to as a generalized strict complementarity condition. These results also
hinge on a unique property of the Euclidean projection onto the spectrahedron. The projection onto
the spectrahedron of a matrix X ∈ Sn, which admits an eigen-decomposition X =

∑n
i=1 λiviv

>
i , is

given by

ΠSn [X] =

n∑
i=1

max{0, λi − λ}viv>i , (2)

where λ ∈ R is the unique scalar satisfying
∑n
i=1 max{0, λi−λ} = 1. This operation thus truncates

all eigenvalues that are smaller than λ, while leaving the eigenvectors unchanged, thereby returning a
matrix with rank equal to the number of eigenvalues greater than λ. Importantly, when the projection
of X onto Sn is of rank r, only the first r components in the eigen-decomposition of X are required
to compute it in the first place, and thus, only a rank-r SVD of X is required. In other words and
simplifying, [17, 18] show that under strict complementary, at the proximity of an optimal solution of
rank r, the exact Euclidean projection equals the rank-r truncated projection given by:

Π̂r
Sn [X] := ΠSn

[
r∑
i=1

λiviv
>
i

]
. (3)

Extending the results of [17, 18] to the nonsmooth setting is difficult since the smoothness assumption
is critical to the analysis. Moreover, while [17, 18] rely on certain eigen-gaps in the gradients at
optimal points, for nonsmooth problems, since the subdifferential set is often not a singleton, it is not
likely that a similar eigen-gap property holds for all subgradients of an optimal solution.

In this paper we show that under the mild assumption that Problem (1) can be formulated as a smooth
convex-concave saddle-point problem, i.e., the nonsmooth term can be written as a maximum over
(possibly infinite number of) smooth convex functions, we can obtain results in the spirit of [17, 18].
Concretely, we show that if a generalized strict complementarity (GSC) assumption holds for a
low-rank optimal solution (see Assumption 1 in the sequel), the extragradient method for smooth
convex-concave saddle-point problems [23, 30] (see Algorithm 1 below), when initialized in the
proximity of the optimal solution, converges with its original convergence rate of O(1/t), while
requiring only two low-rank SVDs per iteration2. It is important to recall that while the extragradient
method requires two SVDs per iteration, it has the benefit of a fast O(1/t) convergence rate, while
simpler saddle-point methods such as mirror-descent-based only achieve a O(1/

√
t) rate [7].

Our contributions can be summarized as follows:
2note that the extradgradient method computes two projected-gradient steps on each iteration, and thus two

SVDs are needed per iteration.
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• We prove that even under (standard) strict complementarity, the projected subgradient
method, when initialized with a “warm-start", may produce iterates with rank higher than
that of the optimal solution. This phenomena further motivates our saddle-point approach.
See Lemma 5.

• We suggest a generalized strict complementarity (GSC) condition for saddle-point problems
and prove that when g(·) — the objective function in Problem (1), admits a highly popular
saddle-point structure (one which captures all applications we mentioned in this paper),
GSC w.r.t. an optimal solution to Problem (1) implies GSC (with the same parameters) w.r.t.
a corresponding optimal solution of the equivalent saddle-point problem (the other direction
always holds). See Section 3.

• Main result: we prove that for a smooth convex-concave saddle-point problem and an
optimal solution which satisfies GSC, the extragradient method, when initialized with a
“warm-start", converges with its original rate of O(1/t) while requiring only two low-rank
SVDs per iteration. Moreover, we prove GSC facilitates a precise and powerful tradeoff:
increasing the rank of SVD computations (beyond the rank of the optimal solution) can
significantly increase the radius of the ball in which the method needs to be initialized. See
Theorem 1.

• We present extensive numerical evidence that demonstrate both the plausibility of the
GSC assumption in various tasks, and more importantly, demonstrate that indeed the
extragradient method with simple initialization converges correctly (i.e., produces exactly
the same sequences of iterates) when the rank of the SVDs used to compute the (truncated)
projections matches the rank of the (low-rank) ground-truth matrix to be recovered, instead
of naively using full-rank SVDs (as suggested by (2)). See Section 5.

1.1 Additional related work

Since, as in the works [17, 18] mentioned before which deal with smooth objectives, strict com-
plementarity plays a key role in our analysis, we refer the interested reader to the recent works
[16, 39, 13, 20] which also exploit this property for efficient smooth and convex optimization over
the spectrahedron. Strict complementarity has also played an instrumental role in two recent and
very influential works which used it to prove linear convergence rates for proximal gradient methods
[42, 14].

Besides convex relaxations such as Problem (1), considerable advances have been made in the past
several yeas in developing efficient nonconvex methods with global convergence guarantees for
low-rank matrix problems. In [37] the authors consider semidefinite programs and prove that under
a smooth manifold assumption on the constraints, such methods converge to the optimal global
solution. In [24] the authors prove global convergence of factorized nonconvex gradient descent from
a ”warm-start” initialization point for non-linear smooth minimization on the positive semidefinite
cone. Very recently, [8] has established, under statistical conditions, fast convergence results from
“warm-start” initialization of nonconvex first-order methods, when applied to nonsmooth nonconvex
matrix recovery problems which are based on the explicit factorization of the low-rank matrix. A
result of similar flavor concerning nonsmooth and nonconvex formulation of robust recovery of low-
rank matrices from random linear measurements was presented in [25]. Finally, several recent works
have considered nonconvex low-rank regularizers which result in nonconvex nonsmooth optimization
problems, but guarantee convergence only to a stationary point [27, 40].

2 Strict complementarity for nonsmooth optimization and difficulty of
applying low-rank projected subgradient steps

Our analysis of the nonsmooth Problem (1) naturally depends on certain subgradients of an optimal
solution which, in many aspects, behave like the gradients of smooth functions. The existence of
such a subgradient is guaranteed from the first-order optimality condition for constrained convex
minimization problems:

Lemma 1 (first-order optimality condition, see [3]). Let g : Sn → R be a convex function. Then
X∗ ∈ Sn minimizes g over Sn if and only if there exists a subgradient G∗ ∈ ∂g(X∗) such that
〈X−X∗,G∗〉 ≥ 0 for all X ∈ Sn.
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For some G∗ ∈ ∂g(X∗) which satisfies the first-order optimality condition for an optimal solution
X∗, if the multiplicity of the smallest eigenvalue equals r∗ = rank(X∗), then it can be shown
that the optimal solution satisfies a strict complementarity assumption. The equivalence between
a standard strict complementarity assumption on some low-rank optimal solution of a smooth
optimization problem over the spectrahedron and an eigen-gap in the gradient of the optimal solution
was established in [39]. We generalize this equivalence to also include nonsmooth problems. The
proof follows similar arguments and is given in Appendix A.1.
Definition 1 (strict complementarity). An optimal solution X∗ ∈ Sn of rank r∗ for Problem (1)
satisfies the strict complementarity assumption with parameter δ > 0, if there exists an optimal
solution of the dual problem3 (Z∗, s∗) ∈ Sn ×R such that rank(Z∗) = n− r∗, and λn−r∗(Z∗) ≥ δ.
Lemma 2. Let X∗ ∈ Sn be a rank-r∗ optimal solution to Problem (1). X∗ satisfies the (standard)
strict complementarity assumption with parameter δ > 0 if and only if there exists a subgradient
G∗ ∈ ∂g(X∗) such that 〈X−X∗,G∗〉 ≥ 0 for all X ∈ Sn and λn−r∗(G∗)− λn(G∗) ≥ δ.

Throughout this paper we assume a weaker and more general assumption than strict complementarity,
namely generalized strict complementarity (GSC), which we present now.
Assumption 1 (generalized strict complementarity). We say an optimal solution X∗ to Problem (1)
satisfies the generalized strict complementarity assumption with parameters r, δ, if there exists a
subgradient G∗ ∈ ∂g(X∗) such that 〈X−X∗,G∗〉 ≥ 0 for all X ∈ Sn and λn−r(G∗)−λn(G∗) ≥
δ.

In [17] the author presents several characteristic properties of the gradient of the optimal solution in
optimization problems over the spectrahedron. Using the existence of subgradients which satisfy the
condition in Lemma 1, we can extend these properties also to the nonsmooth setting. The following
lemma shows that GSC with parameters (r, δ) for some δ > 0 (Assumption 1) is a sufficient condition
for the optimal solution to be of rank at most r. The proof follows immediately from the proof of the
analogous Lemma 7 in [17], by replacing the gradient of the optimal solution with a subgradient for
which the first-order optimality condition holds.
Lemma 3. Let X∗ be an optimal solution to Problem (1) and write its eigen-decomposition as
X∗ =

∑r∗

i=1 λiviv
T
i . Then, any subgradient G∗ ∈ ∂g(X∗) which satisfies 〈X−X∗,G∗〉 ≥ 0 for

all X ∈ Sn, admits an eigen-decomposition such that the set of vectors {vi}r
∗

i=1 is a set of leading
eigenvectors of (−G∗) which corresponds to the eigenvalue λ1(−G∗) = −λn(G∗). Furthermore,
there exists at least one such subgradient.

One motivation for assuming (standard) strict complementarity (Assumption 1 with parameters
r = rank(X∗) and δ > 0) is that it guarantees a certain notion of robustness of the problem to small
perturbations in the parameters. It is well known (see for instance [3]) that a projected subgradient step
from X∗ with respect to a subgradient G∗ ∈ ∂g(X∗) for which the first-order optimality condition
holds, returns the optimal solution X∗ itself. This implies that rank (ΠSn [X∗ − ηG∗]) = rank(X∗)
(here η is the step-size). Without (standard) strict complementarity however, a small change in the
parameters could result in a higher rank matrix. This is captured in the following lemma which is
analogous to Lemma 3 in [18], where again the proof is straightforward from the proof in [18] by
replacing the gradient of the optimal solution with a subgradient for which the first-order optimality
condition holds.
Lemma 4. Let X∗ be an optimal solution of rank r∗ to Problem (1). Let G∗ ∈ ∂g(X∗) be a
subgradient at X∗ such that 〈X −X∗,G∗〉 ≥ 0 for all X ∈ Sn. Then, λn−r∗(G∗) = λn(G∗) if
and only if for any arbitrarily small ζ > 0 it holds that rank

(
Π(1+ζ)Sn [X∗ − ηG∗]

)
> r∗, where

η > 0, (1 + ζ)Sn = {(1 + ζ)X |X ∈ Sn}, and Π(1+ζ)Sn [·] denotes the Euclidean projection onto
the set (1 + ζ)Sn.

2.1 The challenge of applying low-rank projected subgradient steps

We now demonstrate the difficulty of replacing the full-rank SVD computations required in projected
subgradient steps over the spectrahedron, with their low-rank SVD counterparts when attempting
to solve Problem (1). We prove that a projected subgradient step from a point arbitrarily close to a

3Denote q(Z, s) = minX∈Sn{g(X) + s(1− Tr(X))− 〈Z,X〉}. The dual problem of Problem (1) can be
written as: max{Z�0, s∈R}{q(Z, s) | (Z, s) ∈ dom(q)}.
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low-rank optimal solution — even one that satisfies strict complementarity (Definition 1), may result
in a higher rank matrix. The problem on which we demonstrate this phenomena is a well known
convex formulation of the sparse PCA problem [12]. The proof is given in Appendix A.2.
Lemma 5 (failure of low-rank subgradient descent on sparse PCA). Consider the problem
minX∈Sn{g(X) := −

〈
zz> + z⊥z

>
⊥,X

〉
+ 1

2k‖X‖1}, where z = (1/
√
k, . . . , 1/

√
k, 0, . . . , 0)> is

supported on the first k entries, z⊥ = (0, . . . , 0, 1/
√
n− k, . . . , 1/

√
n− k)> is supported on the

last n−k entries, and k ≤ n/4. Then, zz> is a rank-one optimal solution for which strict complemen-
tarity holds. However, for any η < 2

3 and any v ∈ Rn such that ‖v‖ = 1, support(v) ⊆ support(z),
and 〈z,v〉2 = 1 − 1

2‖vv
> − zz>‖2F ≥ 1 − 1

2k2 , it holds that rank
(
ΠSn [vv> − ηGvv> ]

)
> 1,

where Gvv> = −zz> − z⊥z
>
⊥ + 1

2k sign(vv>) ∈ ∂g(vv>).

Note that the subgradient of the `1-norm which we choose for the projected subgradient step simply
corresponds to the sign function, which is arguably the most natural choice.

3 From nonsmooth to saddle-point problems

To circumvent the difficulty demonstrated in Lemma 5 in incorporating low-rank SVDs into standard
subgradient methods for solving Problem (1), we propose tackling the nonsmooth problem with
saddle-point methods.

We assume the nonsmooth Problem (1) can be written as a maximum of smooth functions, i.e.,
g(X) = maxy∈K f(X,y), where K ⊂ Y is some compact and convex subset of the finite linear
space over the reals Y onto which it is efficient to compute Euclidean projections. We assume f(·,y)
is convex for all y ∈ K and f(X, ·) is concave for all X ∈ Sn. That is, we rewrite Problem (1) as the
following equivalent saddle-point problem:

min
X∈Sn

max
y∈K

f(X,y). (4)

Finding an optimal solution to problem (4) is equivalent to finding a saddle-point (X∗,y∗) ∈ Sn ×K
such that for all X ∈ Sn and y ∈ K, f(X∗,y) ≤ f(X∗,y∗) ≤ f(X,y∗).

We make a standard assumption that f(·, ·) is smooth with respect to all components. That is,
we assume there exist βX , βy, βXy, βyX ≥ 0 such that for any X, X̃ ∈ Sn and y, ỹ ∈ K the
following four inequalities hold: ‖∇Xf(X,y)−∇Xf(X̃,y)‖F ≤ βX‖X− X̃‖F , ‖∇yf(X,y)−
∇yf(X, ỹ)‖2 ≤ βy‖y − ỹ‖2, ‖∇Xf(X,y) − ∇Xf(X, ỹ)‖F ≤ βXy‖y − ỹ‖2, ‖∇yf(X,y) −
∇yf(X̃,y)‖2 ≤ βyX‖X− X̃‖F , where∇Xf = ∂f

∂X and ∇yf = ∂f
∂y .

We denote by β the full Lipschitz parameter of the gradient, that is for any X, X̃ ∈ Sn and y, ỹ ∈ K,

‖(∇Xf(X,y),−∇yf(X,y))− (∇Xf(X̃, ỹ),−∇yf(X̃, ỹ))‖ ≤ β‖(X,Y)− (X̃, ỹ)‖,
where ‖ · ‖ denotes the Euclidean norm over the product space Sn × Y.

The relationship between the full Lipschitz parameter β and its components βX , βy, βXy, βyX can

be written as β =
√

2 max
{√

β2
X + β2

yX ,
√
β2
y + β2

Xy

}
. See proof in Appendix B.

The following lemma highlights a connection between the gradient of a saddle-point of (4) and
subgradients of an optimal solution to (1) for which the first order optimality condition holds. One of
the connections we will be interested in, is that GSC for Problem (1) implies GSC (with the same
parameters) for Problem (4). However, to prove this specific connection we require an additional
structural assumption on the objective function g(·). We note that this assumption holds for all
applications mentioned in this paper.
Assumption 2. g(X) is of the form g(X) = h(X) + maxy∈K y>(A(X)−b), where h(·) is smooth
and convex, and A is a linear map.
Lemma 6. If (X∗,y∗) is a saddle-point of Problem (4) then X∗ is an optimal solution to Problem
(1), ∇Xf(X∗,y∗) ∈ ∂g(X∗), and for all X ∈ Sn it holds that 〈X − X∗,∇Xf(X∗,y∗)〉 ≥ 0.
Conversely, under Assumption 2, if X∗ is an optimal solution to Problem (1), and G∗ ∈ ∂g(X∗)
which satisfies 〈X −X∗,G∗〉 ≥ 0 for all X ∈ Sn, then there exists y∗ ∈ arg maxy∈K f(X∗,y)
such that (X∗,y∗) is a saddle-point of Problem (4), and ∇Xf(X∗,y∗) = G∗.
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The proof is given in Appendix C.1. The connection between the gradient of an optimal solution to
the saddle-point problem and a subgradient of a corresponding optimal solution in the equivalent
nonsmooth problem established in Lemma 6, naturally leads to the formulation of the following
generalized strict complementarity assumption for saddle-point problems.

Assumption 3 (generalized strict complementarity for saddle-points). We say a saddle-point
(X∗,y∗) ∈ Sn×K of Problem (4) with rank(X∗) = r∗ satisfies the generalized strict complementar-
ity assumption with parameters r ≥ r∗, δ > 0, if λn−r(∇Xf(X∗,y∗))− λn(∇Xf(X∗,y∗)) ≥ δ.

Remark 1. Note that under Assumption 2, due to Lemma 6, GSC with parameters r, δ for some
optimal solution X∗ to Problem (1) implies GSC with parameters r, δ to a corresponding saddle-point
(X∗,y∗) of Problem (4). Nevertheless, Assumption 2 is not necessary for proving our convergence
results for Problem (4), which are directly stated in terms of Assumption 3.

4 Projected extragradient method with low-rank projections

In this section we formally state and prove our main result: the projected extragradient method for
the saddle-point Problem (4), when initialized in the proximity of a saddle-point which satisfies GSC
(Assumption 3), converges with its original O(1/t) rate while requiring only two low-rank SVD
computations per iteration.

Algorithm 1 Projected extragradient method for saddle-point problems (see also [23, 30])

Input: sequence of step-sizes {ηt}t≥1

Initialization: (X1,y1) ∈ Sn ×K
for t = 1, 2, ... do
Zt+1 = ΠSn [Xt − ηt∇Xf(Xt,yt)]
wt+1 = ΠK[yt + ηt∇yf(Xt,yt)]
Xt+1 = ΠSn [Xt − ηt∇Xf(Zt+1,wt+1)]
yt+1 = ΠK[yt + ηt∇yf(Zt+1,wt+1)]

end for

Theorem 1 (main theorem). Fix an optimal solution (X∗,y∗) ∈ Sn ×K to Problem (4). Let r̃
denote the multiplicity of λn(∇Xf(X∗,y∗)) and for any r ≥ r̃ define δ(r) = λn−r(∇Xf(X∗,y∗)−
λn(∇Xf(X∗,y∗). Let {(Xt,yt)}t≥1 and {(Zt,wt)}t≥2 be the sequences of iterates generated by

Algorithm 1 with a fixed step-size η = min
{

1

2
√
β2
X+β2

yX

, 1

2
√
β2
y+β2

Xy

, 1
βX+βXy

, 1
βy+βyX

}
. Assume

the initialization (X1,y1) satisfies ‖(X1,y1)− (X∗,y∗)‖ ≤ R0(r), where

R0(r) :=
η

(1 +
√

2)
(
1 + (2 +

√
2)ηmax{βX , βXy}

) max
{√r̃δ(r − r̃ + 1)

2
,

δ(r)

(1 + 1/
√
r̃)

}
.

Then, for all t ≥ 1, the projections ΠSn [Xt − η∇Xf(Xt,yt)] and ΠSn [Xt − η∇Xf(Zt+1,wt+1)]
can be replaced with their rank-r truncated counterparts (see (3)) without changing the sequences
{(Xt,yt)}t≥1 and {(Zt,wt)}t≥2, and for any T ≥ 0 it holds that

1

T

T∑
t=1

max
y∈K

f(Zt+1,y)− 1

T

T∑
t=1

min
X∈Sn

f(X,wt+1)

≤
D2 max

{√
β2
X + β2

yX ,
√
β2
y + β2

Xy,
1
2 (βX + βXy), 1

2 (βy + βyX)
}

T
,

where D := sup(X,y),(Z,w)∈Sn×K ‖(X,y)− (Z,w)‖.
Remark 2. Note that Theorem 1 implies that if standard strict complementarity holds for Problem
(4), that is Assumption 3 holds with r = r∗ = rank(X∗) and some δ > 0, then only rank-r∗ SVDs
are required so that Algorithm 1 converges with the guaranteed convergence rate of O(1/t), when
initialized with a “warm-start”. Furthermore, by using SVDs of rank r > r∗, with moderately higher
values of r, we can increase the radius of the ball in which Algorithm 1 needs to be initialized quite
significantly.
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The complete proof of Theorem 1 is given in Appendix D. Below we give a short sketch of the proof.

Proof sketch for Theorem 1. The convergence rate of Algorithm 1 is well known in the literature
(see Appendix D.1 for completeness). Thus, we focus on the novel part of the low-rank projections.
For simplicity consider the case r = r̃. From (2) it can be deduced that for any P ∈ Sn it holds
that rank(ΠSn [P]) ≤ r̃ if and only if the condition

∑r̃
i=1 λi(P) ≥ 1 + r̃λr̃+1(P) holds. Denote

P∗ = X∗ − η∇Xf(X∗,y∗). From Lemma 6 and Lemma 3 it follows that
∀i ≤ rank(X∗) : λi(P

∗) = λi(X
∗)− ηλn(∇Xf(X∗,y∗));

∀i > rank(X∗) : λi(P
∗) = −ηλn−i+1(∇Xf(X∗,y∗)).

Using this and the fact that λn−i+1(∇fX(X∗,y∗)) = λn(∇fX(X∗,y∗)) for all i ≤ r̃ we have,
r̃∑
i=1

λi(P
∗) =

rank(X∗)∑
i=1

λi(X
∗)− η

r̃∑
i=1

λn(∇Xf(X∗,y∗)) = Tr(X∗)− ηr̃λn(∇Xf(X∗,y∗))

= 1− ηr̃λn−r̃(∇Xf(X∗,y∗)) + ηr̃δ(r̃) = 1 + r̃λr̃+1(P∗) + ηr̃δ(r̃). (5)
Thus, P∗ = X∗ − η∇Xf(X∗,y∗) not only satisfies the condition that ensures its projection onto Sn
is of rank at most r̃, but it satisfies it with a positive slack of ηr̃δ(r̃). Also, for any (X,y) sufficiently
close to (X∗,y∗), using the smoothness of f , we have that P = X− η∇Xf(X,y) is close to P∗.
Thus, by applying perturbation bounds for the eigenvalues of symmetric matrices to Eq. (5) and using
the fact that the positive slack ηr̃δ(r̃) in the RHS of (5) allows to absorb sufficiently small errors,
we can establish that for such points (X,y) it holds that rank(ΠSn [P]) ≤ r̃. A similar argument
shows that the second primal step in Algorithm 1: Xt+1 = ΠSn [Xt − η∇Xf(Zt+1,wt+1)], also
results in matrices of rank at most r̃ when Zt,wt are also in the proximity of X∗,y∗. Finally, we
prove a complementary argument, that when initialized in the proximity of (X∗,y∗), the iterates of
Algorithm 1 stay in the proximity of (X∗,y∗) throughout all iterations.

Remark 3. Note that when applying Algorithm 1 towards minimizing a nonsmooth objective
of the form g(X) = maxy∈K f(X,y) (as discussed in Section 3), a guarantee of the form
1
T

∑T
t=1 maxy∈K f(Zt+1,y) − 1

T

∑T
t=1 minX∈Sn f(X,wt+1) ≤ ε, for some ε > 0, which is

what we get from Theorem 1, implies in particular that mint∈[T ] g(Xt)− g(X∗) ≤ ε, where X∗ is a
minimizer of g(·) over Sn.
Remark 4. A downside of considering the saddle-point formulation (4) when attempting to solve
Problem (1) that arises from Theorem 1, is that not only do we need a “warm-start” initialization for
the original primal matrix variable X, in the saddle-point formulation we need a “warm-start” for
the primal-dual pair (X,y). Nevertheless, as we demonstrate extensively in Section 5, it seems that
very simple initialization schemes work very well in practice.

4.1 Efficiently-computable certificates for correctness of low-rank projections

Since Theorem 1 only applies in some neighborhood of an optimal solution, it is of interest to have a
procedure for verifying if the rank-r truncated projection of a given point indeed equals the exact
Euclidean projection. In particular, from a practical point of view, it does not matter whether the
conditions of Theorem 1 hold. In practice, as long as the truncated projection (see (3)) equals the
exact projection (see (2)), we are guaranteed that Algorithm 1 converges correctly with rate O(1/t),
without needing to verify any other condition. Luckily, the expression in (2) which characterizes
the structure of the Euclidean projection onto the spectrahedron, yields exactly such a verification
procedure. As already noted in [17], for any X ∈ Sn, we have Π̂r

Sn [X] = ΠSn [X] if an only if the
condition

∑r
i=1 λi(X) ≥ 1 + r · λr+1(X) holds. Note that verifying this condition simply requires

increasing the rank of the SVD computation by one, i.e., computing a rank-(r+ 1) SVD of the matrix
to project rather than a rank-r SVD.

5 Empirical evidence

The goal of this section is to bring empirical evidence in support of our theoretical approach. We
consider various tasks that take the form of minimizing a composite objective, i.e., the sum of a
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smooth convex function and a nonsmooth convex function, where the nonsmoothness comes from
either an `1-norm or `2-norm regularizer / penalty term, over a τ -scaled spectrahedron. In all cases
the nonsmooth objective can be written as a saddle-point with function f(X,y) which is linear in y
and in particular satisfies Assumption 2.

The tasks considered include 1. sparse PCA, 2. robust PCA, 3. low-rank and sparse recovery, 4.
phase synchronization, and 5. linearly-constrained low-rank estimation, under variety of parameters.
Due to lack of space many of the results are deferred to Appendix F.

For all tasks considered we generate random instances, and examine the sequences of iterates
generated by Algorithm 1 {(Xt,yt)}t≥1, {(Zt,wt)}t≥2, when initialized with simple initialization
procedures. Out of both sequences generated, we choose our candidate for the optimal solution to be
the iterate for which the dual-gap, which is a certificate for optimality, is smallest. See Appendix E.

In all tasks considered the goal is to recover a ground-truth low-rank matrix M0 ∈ Sn from
some noisy observation of it M = M0 + N, where N ∈ Sn is a noise matrix. We measure
the signal-to-noise ratio (SNR) as ‖M0‖2F

/
‖N‖2F . In all experiments we measure the relative

initialization error by
∥∥∥Tr(M0)

τ X1 −M0

∥∥∥2

F

/
‖M0‖2F , and similarly we measure the relative re-

covery error by
∥∥∥Tr(M0)

τ X∗ −M0

∥∥∥2

F

/
‖M0‖2F . Note that in some of the experiments we take

τ < Tr(M0) to prevent the method from overfitting the noise. In addition, we measure the (stan-
dard) strict complementarity parameter which corresponds to the eigen-gap gap(∇Xf(X∗,y∗)) :=
λn−r(∇Xf(X∗,y∗))− λn(∇Xf(X∗,y∗)), r = rank(M0).

In all experiments we use SVDs of rank r = rank(M0) to compute the projections in Algorithm
1 according to the truncated projection given in (3). To certify the correctness of these low-rank
projections (that is, that they equal the exact Euclidean projection) we confirm that the inequality∑r
i=1 λi(Pj) ≥ τ + r · λr+1(Pj) always holds for P1 = Xt − η∇Xf(Xt,Yt) and P2 = Xt −

η∇Xf(Zt+1,Wt+1) (see also Section 4.1). Indeed, we can now already state our main observation
from the experiments:

In all tasks considered and for all random instances generated, throughout all iterations of Algorithm
1, when initialized with a simple “warm-start” strategy and when computing only rank-r truncated
projections, r = rank(M0), the truncated projections of P1 = Xt − η∇Xf(Xt,Yt) and P2 =
Xt − η∇Xf(Zt+1,Wt+1) equal their exact full-rank counterparts. That is, Algorithm 1, using
only rank-r SVDs, computed exactly the same sequences of iterates it would have computed if using
full-rank SVDs.

Aside from the above observation, in the sequel we demonstrate that all models considered indeed
satisfy that: 1. the returned solution, denoted (X∗,y∗), is of the same rank as the ground-truth matrix
and satisfies the strict complementarity condition with non-negligible parameter (measured by the
eigengap λn−r(∇Xf(X∗,y∗))− λn(∇Xf(X∗,y∗))), 2. the recovery error of the returned solution
indeed improves significantly over the error of the initialization point.

Sparse PCA: We consider the sparse PCA problem in a well known convex formulation taken
from [12] and its equivalent saddle-point formulation:

min
Tr(X)=1,

X�0

〈X,−M〉+ λ‖X‖1 = min
Tr(X)=1,

X�0

max
‖Y‖∞≤1

{〈X,−M〉+ λ〈X,Y〉},

where M = zz> + c
2 (N + N>) is a noisy observation of a rank-one matrix zz>, with z being

a sparse unit vector. Each entry zi is chosen to be 0 with probability 0.9 and U{1, . . . , 10} with
probability 0.1, and then we normalize z to be of unit norm. We test the results obtained when adding
different magnitudes of Gaussian or uniform noise. We set the signal-to-noise ratio (SNR) to be a
constant. Thus, we set the noise level to c = 2

SNR·‖N+N>‖F for our choice of SNR. We initialize the
X variable with the rank-one approximation of M. That is, we take X1 = u1u

>
1 , where u1 is the top

eigenvector of M. For the Y variable we initialize it with Y1 = sign(X1) which is a subgradient of
‖X1‖1. We set the step-size to η = 1/(2λ) and we set the number of iterations to T = 1000 and for
any set of parameters we average the measurements over 10 i.i.d. runs.
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Table 1: Numerical results for the sparse PCA problem. Nij ∼ U [0, 1], SNR = 0.05.

dimension (n) 100 200 400 600

λ 0.04 0.02 0.01 0.0067
initialization error 1.7456 1.7494 1.7566 1.7625
recovery error 0.0425 0.0244 0.0149 0.0100
dual gap 2.0× 10−9 5.8× 10−6 4.5× 10−4 0.0018
gap(∇Xf(X∗,y∗)) 0.7092 0.7854 0.8340 0.8622

Robust PCA: We consider the robust PCA problem [28] in the following formulation:

min
Tr(X)=τ,

X�0

‖X−M‖1 = min
Tr(X)=τ,

X�0

max
‖Y‖∞≤1

〈X−M,Y〉,

where M = rZ0Z
>
0 + 1

2 (N+N>) is a sparsely-corrupted observation of some rank-r matrix Z0Z
>
0 .

We choose Z0 ∈ Rn×r to be a random unit Frobenius norm matrix. For N ∈ Rn×n, we choose
each entry to be 0 with probability 1 − 1/

√
n and otherwise 1 or −1 with equal probability. We

initialize the X variable with the projection X1 = Π{Tr(X)=τ, X�0}[M], and the Y variable with
Y1 = sign(X1 −M). We vary the rank of Z0, which in turn determines the step-size η. We set the
trace bound to τ = 0.95 · Tr(rZ0Z

>
0 ), and the number of iterations to T = 30, 000. For every set of

parameters we average the measurements over 10 i.i.d. runs.

Table 2: Numerical results for the robust PCA problem. rank(Z0Z
>
0 ) = 10, step-size η = 1.

dimension (n) 100 200 400 600

SNR 0.0229 0.0077 0.0026 0.0014
initialization error 1.5729 1.6485 1.6317 1.5949
recovery error 0.0079 0.0081 0.0073 0.0065
dual gap 0.0139 0.0338 0.1533 0.3561
gap(∇Xf(X∗,y∗)) 1.7945 16.9890 48.9799 82.2727

Linearly-constrained low-rank estimation: Consider the following penalized formulation:

min
Tr(X)=1,

X�0

〈X,−M〉+ λ‖A(X)− b‖2 = min
Tr(X)=1,

X�0

max
‖y‖2≤1

〈X,−M〉+ λ〈A(X)− b,y〉,

where M = z0z
>
0 + c

2 (N + N>) is a noisy observation of some rank-one matrix z0z
>
0

such that ‖z0‖2 = 1 and the noise matrix is chosen N ∼ N (0, In). We take A(X) =
(〈A1,X〉, . . . , 〈Am,X〉)> with matrices A1, . . . ,Am ∈ Sn of the form Ai = viv

>
i such that

vi ∼ N (0, 1). We take b ∈ Rm such that bi = 〈Ai, z0z
>
0 〉. We initialize the X variable with the

rank-one approximation of M. That is, we take X1 = u1u
>
1 , where u1 is the top eigenvector of

M. The y variable is initialized with y1 = (A(X1) − b)/‖A(X1) − b‖2. We set the number of
constraints to m = n, the penalty parameter to λ = 2, and the step-size to η = 1/(2λ). We set
the number of iterations in each experiment to T = 2000 and for each value of n we average the
measurements over 10 i.i.d. runs.

Low-rank and sparse matrix recovery: We consider the problem of recovering a simultaneously
low-rank and sparse covariance matrix [35], which can be written as the following saddle-point
optimization problem:

min
Tr(X)=1,

X�0

1

2
‖X−M‖2F + λ‖X‖1 = min

Tr(X)=τ,
X�0

max
‖Y‖∞≤1

1

2
‖X−M‖2F + λ〈X,Y〉,

where M = Z0Z0
> + c

2 (N + N>) is a noisy observation of some low-rank and sparse covariance
matrix Z0Z0

>. We choose Z0 ∈ Rn×r to be a sparse matrix where each entry Z0i,j is chosen to be
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Table 3: Numerical results for the linearly-constrained low-rank matrix estimation problem.

dimension (n) 100 200 400 600

SNR 0.15 0.075 0.04 0.027
initialization error 0.1219 0.1324 0.1242 0.1228
recovery error 0.0437 0.0617 0.0685 0.0735
dual gap 5.3× 10−11 5.0× 10−12 8.5× 10−12 2.3× 10−11

gap(∇Xf(X∗,y∗)) 0.2941 0.3409 0.4690 0.5069
‖A(X∗)− b‖2 0.0080 0.0082 0.0079 0.0073

0 with probability 0.9 and U{1, . . . , 10} with probability 0.1, and then we normalize Z0 to be of unit
Frobenius norm. We choose N ∼ N (0.5, In). We test the model with rank(Z0Z

>
0 ) = 5, 10. We set

the signal-to-noise ratio (SNR) to be a constant and set the noise level to c =
2‖Z0Z

>
0 ‖F

SNR·‖N+N>‖F for our
choice of SNR. We initialize the X variable with the rank-r approximation of M. That is, we take
X1 = Urdiag

(
Π∆τ,r [diag(−Λr)]

)
U>r , where UrΛrU

>
r is the rank-r eigen-decomposition of M

and ∆τ,r = {z ∈ Rr | z ≥ 0,
∑r
i=1 zi = τ} is the simplex of radius τ in Rr. For the Y variable

we initialize it with Y1 = sign(X1) which is a subgradient of ‖X1‖1. We set the step-size to η = 1,
τ = 0.7 · Tr(Z0Z

>
0 ), and the number of iterations in each experiment to T = 2000. For each value

of r and n we average the measurements over 10 i.i.d. runs.

Table 4: Numerical results for the low-rank and sparse matrix recovery problem.

dimension (n) 100 200 400 600

↓ r = rank(Z0Z
>
0 ) = 5, SNR = 2.4 ↓

λ 0.0012 0.0006 0.0003 0.0002
initialization error 0.2132 0.2103 0.1983 0.1907
recovery error 0.0641 0.0478 0.0349 0.0274
dual gap 9.0× 10−4 4.3× 10−4 1.4× 10−4 7.3× 10−5

gap(∇Xf(X∗,y∗)) 0.0148 0.0200 0.0257 0.0277

↓ r = rank(Z0Z
>
0 ) = 10, SNR = 4.8 ↓

λ 0.0007 0.0004 0.0002 0.0001
initialization error 0.1855 0.1661 0.1527 0.1473
recovery error 0.0702 0.0403 0.0268 0.0356
dual gap 4.9× 10−4 6.6× 10−4 4.2× 10−4 3.4× 10−5

gap(∇Xf(X∗,y∗)) 0.0072 0.0142 0.0187 0.0160

6 Discussion

This work expands upon a line of research that aims to harness the ability of convex relaxations to
produce low-rank and high-quality solutions to important low-rank matrix optimization problems,
while insisting on methods that, at least locally, store and manipulate only low-rank matrices.
Focusing on the challenging case of nonsmooth objective functions and following our evidence for
the difficulties of obtaining such a result for subgradient methods (Lemma 5), we consider tackling
nonsmooth objectives via saddle-point formulations. We prove that indeed under a generalized strict
complementarity condition, a state-of-the-art method for convex-concave saddle-point problems
converges locally while storing and manipulating only low-rank matrices. Extensive experiments
over several tasks demonstrate that our conceptual approach of utilizing low-rank projections for
more efficient optimization is not only of theoretical merit, but indeed seems to work well in practice.
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