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Abstract
Learning transferable data representations from
abundant unlabeled data remains a critical yet
challenging task in machine learning. While nu-
merous self-supervised contrastive learning meth-
ods have emerged to address this challenge, a
notable class of these approaches focuses on align-
ing the covariance or correlation matrix with the
identity matrix. Despite their impressive perfor-
mance across various downstream tasks, these
methods often suffer from biased sample risk.
This bias not only leads to significant optimization
offsets, especially in mini-batch scenarios, but
also complicates the development of theoretical
frameworks. In this paper, we introduce Adversar-
ial Contrastive Training (ACT), a novel unbiased
self-supervised transfer learning approach. This
method allows us to develop a comprehensive
end-to-end theoretical analysis for self-supervised
contrastive learning. Our theoretical results reveal
that minimaxing the loss function of ACT can lead
to the downstream data distribution being clus-
tered in the representation space, provided that
the upstream unlabeled sample size is sufficient.
As a result, even with a few downstream sam-
ples, ACT can achieve outstanding classification
performance, offering valuable insights for few-
shot learning. Furthermore, ACT demonstrates
state-of-the-art classification performance across
multiple benchmark datasets.

1. Introduction
Collecting unlabeled data is far more convenient and cost-
effective than gathering labeled data in real-world applica-
tions. Consequently, learning representations from abundant
unlabeled data presents a highly valuable yet challenging
problem. The learned representations can be transferred to
downstream tasks to enhance model performance or reduce
the sample size required for those tasks.

Recently, self-supervised contrastive learning has emerged
as a leading approach for learning representations from un-
labeled data. This method aims to learn representations that
are invariant to data augmentation. However, solely min-

imizing the distance between similar pairs leads to trivial
solutions, known as model collapse. To address this is-
sue, researchers have developed various strategies, broadly
categorized into three types.

The first strategy treats augmented views of different images
as negative pairs, ensuring their representations remain dis-
similar (Ye et al., 2019; He et al., 2020; Chen et al., 2020a;b;
HaoChen et al., 2021; Zhang et al., 2023). However, these
methods require large batch sizes to ensure sufficient nega-
tive samples, leading to substantial computational and mem-
ory demands that may be prohibitive in many applications.
Additionally, by treating augmented views of different im-
ages as negative pairs, these approaches fail to account for
semantic similarities between distinct images, potentially
forcing apart representations of conceptually related content.
As pointed out by Chuang et al. (2020; 2022), this design
can hurt the representation performance.

The second strategy prevents model collapse through asym-
metric network architectures (Grill et al., 2020; Chen & He,
2021; Caron et al., 2020; 2021). Although eliminating the
need for negative pairs, they exhibit significant sensitivity
to architectural design choices, where minor modifications
can lead to collapsed solutions (Grill et al., 2020; Chen &
He, 2021). The specific architectural constraints may also
limit the neural network’s approximation capabilities. Be-
sides, these methods simultaneously introduce significant
challenges for explanation.

The third strategy prevents model collapse by imposing a
regularization term to align the covariance or correlation
matrix with the identity matrix (Zbontar et al., 2021; Er-
molov et al., 2021; Bardes et al., 2022; HaoChen et al.,
2022; HaoChen & Ma, 2023; Huang et al., 2023), encour-
aging the separation of category centers. These methods do
not require negative samples and also facilitate a clear theo-
retical understanding. Among them, a typical regularization
term takes the form (Zbontar et al., 2021; HaoChen & Ma,
2023; Huang et al., 2023) as:

R(f) =
∥∥∥ExEx1,x2∈A(x)

{
f(x1)f(x2)

⊤}− Id∗∥∥∥2
F
, (1)

where f : Rd → Rd∗ denotes the representation mapping
from the original image space to the representation space,
∥·∥F denotes the Frobenius norm, x represents an original
image, and A(x) denotes the collection of all augmented
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views of x. The terms x1,x2 ∈ A(x) indicate two aug-
mented views independently and uniformly sampled from
A(x), while Id∗ is the identity matrix with the same dimen-
sion d∗ as the representation space.

The population risk defined in equation (1) is typically in-
tractable. The following sample-level risk is used to estimate
it (HaoChen et al., 2022; HaoChen & Ma, 2023; Zbontar
et al., 2021):

R̂(f) =
∥∥∥ 1
n

n∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − Id∗

∥∥∥2
F
, (2)

where {x(i)}i∈[n] denotes the original dataset, and D̃s =

{(x(i)
1 ,x

(i)
2 ) : x

(i)
1 ,x

(i)
2 ∈ A(x(i))}i∈[n] represents the

augmented dataset for learning representations. Unfortu-
nately, it is evident that R̂(f) is a biased estimator ofR(f),
i.e., ED̃S

{R̂(f)} ≠ R(f) due to the non-commutativity
between the expectation and the Frobenius norm. Two sig-
nificant challenges emerge due to this bias nature.

Firstly, the biased estimator (2) used in HaoChen et al.
(2022); HaoChen & Ma (2023); Zbontar et al. (2021) intro-
duces significant optimization deviations during the train-
ing procedure. Although theoretically ED̃s

{R̂(f)} con-
verges to R(f) as n approaches infinity, practical con-
straints necessitate the use of mini-batch samples to es-
timate ExEx1,x2∈A(x){f(x1)f(x2)

⊤}. In this regard, the
bias leads to an offset in the optimization direction. Further-
more, this offset would compound across successive training
iterations, as each gradient direction strongly depends on
the previous one, ultimately resulting in a learned repre-
sentation that may diverge significantly from the intended
minimizer of the population risk in equation (1), as shown
in Table 1.

Secondly, this inherent bias presents significant obstacles
in establishing end-to-end theoretical guarantees. The de-
velopment of such guarantees requires addressing three cru-
cial aspects: how does the downstream task error converge
with respect to both the number of unlabeled samples in
the source domain and labeled samples in the target do-
main, how does the abundance of unlabeled samples in
self-supervised learning benefit downstream tasks, and why
do self-supervised learning methods maintain their effec-
tiveness even with limited downstream labeled data?

Recent theoretical studies have significantly advanced our
understanding of self-supervised learning. These studies
can be categorized into two main lines of research. The first
line (Garrido et al., 2022; HaoChen et al., 2022; Awasthi
et al., 2022; Huang et al., 2023) focuses on analyzing the
population risk of self-supervised learning methods. Conse-
quently, these fundamental questions remain incompletely
addressed due to the lack of discussion at the sample level.
A comprehensive theoretical analysis requires bridging the

gap between population-level and sample-level risks, which
is a challenging task due to the biasedness of methods such
as Zbontar et al. (2021); HaoChen et al. (2022); HaoChen
& Ma (2023).

The second line of theoretical research (Saunshi et al., 2019;
HaoChen et al., 2021; Ash et al., 2022; Lei et al., 2023;
HaoChen & Ma, 2023) studies the generalization error
through Rademacher complexity while overlooking the ap-
proximation error. Since the learning performance is de-
cided by the overall error, which is the summation of gener-
alization error (evaluated by the Rademacher complexity)
and approximation error, the error analysis yielded from the
second line may be invalid.

In this study, we introduce Adversarial Contrastive Training
(ACT), a novel unbiased approach to self-supervised learn-
ing. ACT implements an innovative iteration format that
eliminates the bias between the population risk (1) and its
sample-level counterpart. This advancement effectively ad-
dresses two critical challenges: the training deviation and
the theoretical obstacle introduced by bias. Through com-
prehensive end-to-end analysis of ACT, we demonstrate
how the number of unlabeled data in the self-supervised
pre-training phase enhances downstream task performance.
Specifically, we demonstrate that through representation
learning using ACT, the downstream data can be clustered
in the representation space, provided that the upstream unla-
beled sample size is sufficient. As a result, even with a few
downstream samples, ACT can achieve outstanding classifi-
cation performance, offering valuable insights for few-shot
learning.

1.1. Related Work

Self-Supervised Loss The loss function proposed by
HaoChen et al. (2022) can be regarded as a special ver-
sion of ACT with the constraint x1 = x2. The main dif-
ference between ACT and the approach by HaoChen et al.
(2022) lies in the iteration format. As stated in Section 1,
optimization deviation can accumulate with each iteration,
particularly in the mini-batch scenario, while ACT employs
adversarial training to mitigate this issue. The same prob-
lem is encountered by Zbontar et al. (2021), which can be
loosely regarded as a biased sample version of (1).

Self-Supervised Theory Recent theoretical studies can
be categorized into two main lines of research. The first
line (Garrido et al., 2022; HaoChen et al., 2022; Awasthi
et al., 2022; Huang et al., 2023) focuses on analyzing the
population risk of self-supervised learning methods, which
can not characterize how the error in downstream tasks di-
minishes with increasing sample size. The second line of
research (Saunshi et al., 2019; HaoChen et al., 2021; Ash
et al., 2022; Lei et al., 2023; HaoChen & Ma, 2023) studies
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Unsupervised Transfer Learning via Adversarial Contrastive Training

the generalization error through Rademacher complexity
without the consideration of approximation error. How-
ever, the scarcity of approximation error makes the resulting
error analysis ineffective. Specifically, ignoring the approx-
imation error by simply supposing f belonging to a deep
neural network class, the Rademacher complexity can be
significantly reduced by controlling the scale of the network
class, leading to impressive upper bounds. However, this
controlled neural network class intuitively limits its approxi-
mation capacity. The increasing approximation error results
in a larger overall error. Therefore, these studies cannot pro-
vide theoretical guidance for hypothesis class selection nor
fully characterize the total error of self-supervised learning
methods. In contrast, our work provides a comprehensive
convergence analysis that characterizes how the downstream
task error converges with respect to both the number of un-
labeled samples in the source domain and labeled samples
in the target domain.

1.2. Contributions

Our main contributions can be summarized as follows:

• We introduce Adversarial Contrastive Training (ACT),
a novel self-supervised transfer learning method. This
approach learns representations from unlabeled data by
solving a min-max optimization problem that corrects
the bias inherent in existing methods (HaoChen et al.,
2022; Zbontar et al., 2021).

• Through extensive experiments, we demonstrate that
ACT significantly outperforms traditional biased itera-
tive methods (Table 1). Our empirical evaluation shows
that ACT achieves state-of-the-art classification perfor-
mance across multiple benchmark datasets using both
fine-tuned linear probes and k-nearest neighbor (k-nn)
protocols (Table 2).

• We establish comprehensive end-to-end theoretical
guarantees for ACT in transfer learning scenarios un-
der misspecified and overparameterized settings (The-
orem 3.9). Our theoretical analysis demonstrates that
ACT-learned representations that minimaxing the loss
function of ACT can lead to the downstream data distri-
bution being clustered by category in the representation
space, provided that the upstream unlabeled sample
size is sufficient. Hence, even with a few downstream
samples, ACT can achieve outstanding classification
performance, offering valuable insights for few-shot
learning.

1.3. Preliminaries

Given an integer n ∈ N, we use [n] to represent the
integer set {1, 2, · · · , n}. For any vector v, we denote

∥v∥2 and ∥v∥∞ as the 2-norm and ∞-norm of v respec-
tively. Let A,B ∈ Rd1×d2 be two matrices, we denote
their Frobenius inner product by ⟨A,B⟩F = tr(A⊤B).
Moreover, we denote ∥A∥F as the Frobenius norm of A,
which is the norm induced by Frobenius inner product, and
∥A∥∞ = sup∥x∥∞≤1 ∥Ax∥∞ as the∞-norm of a, which
is the maximum 1-norm of the rows of A. For a given
map f and 0 ≤ a1 ≤ a2, we use a1 ≤ ∥f∥2 ≤ a2 to
denote b1 ≤ infv ∥f(v)∥2 ≤ supv ∥f(v)∥2 ≤ b2. Be-
sides that, the Lipschitz norm of f is given by ∥f∥Lip =

supu̸=v
∥f(u)−f(v)∥2

∥u−v∥2
. Furthermore, for a given function

f : Rd1 → Rd2 , we use f ∈ Lip(L) to represent
∥f∥Lip ≤ L. For ease of presentation, throughout this
paper, we use X ≲ Y or Y ≳ X to denote the statement
that X ≤ CY for two quantities X and Y , where C > 0
can be arbitrary constant.

We will adopt the following ReLU neural network class as
the hypothesis space in the subsequent content.

Definition 1.1 (ReLU neural network class). Given
0 < d1, d2;L,N1, . . . , NL ∈ N; 0 < K and 0 <
B1 ≤ B2, define W = max{N1, . . . , NL}, a deep
ReLU network class with parameter (W,L,K, B1, B2),
NN d1,d2(W,L,K, B1, B2), is defined as the collection of
all maps of the form

fθ(x) = ALσ(AL−1σ(· · ·σ(A0x+ b0)) + bL−1)

such that B1 ≤ ∥fθ∥2 ≤ B2 and κ(θ) ≤ K,
where σ(x) = max{0, x} is the ReLU activate func-
tion, N0 = d1, NL+1 = d2, Ai ∈ RNi+1×Ni and
bi ∈ RNi+1 . The integers W and L are called the width
and depth of the neural network respectively. The pa-
rameters set of the neural network is defined as θ :=
((A0, b0), . . . , (AL−1, bL−1), AL). Further, κ(θ) is de-
fined as κ(θ) = ∥AL∥∞

∏L−1
l=0 max{∥(Al, bl)∥∞, 1}.

For any fθ ∈ NN d1,d2(W,L,K, B1, B2), we can jus-
tify ∥fθ∥Lip ≤ K. The proof details are deferred to Ap-
pendix A.1.

Besides that, for any two measures µ and ν, we
define the 1-Wasserstein distance as W(µ, ν) =
maxg∈Lip(1) EX∼µ{g(X)} − EY∼ν{g(Y )}.

1.4. Organization

This paper is structured as follows: Section 2 introduces the
core concept of ACT and presents our alternating optimiza-
tion algorithm. In Section 3, we develop a comprehensive
end-to-end theoretical guarantee for ACT. Section 4 demon-
strates ACT’s effectiveness through extensive experimental
evaluations across diverse datasets and metrics. Section 5
concludes with a summary of our findings. All detailed
proofs are provided in Section A.
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Unsupervised Transfer Learning via Adversarial Contrastive Training

2. Adversarial Contrastive Training
2.1. Notations for Unsupervised Transfer Learning

Throughout this paper, we use d and d∗ to represent the
dimensions of the original image and the representation
dimension, respectively. We denote image instances from
the source domain Xs ⊆ [0, 1]d with distribution Ps using
the letter x and its subscripted or superscripted variants. In
contrast, we use the letter z and its subscripted or super-
scripted variants for image instances from the target domain
Xt ⊆ [0, 1]d with distribution Pt. In this context, we can
independently and identically sample a total of ns source
image instances from Ps and nt downstream samples from
Pt. Notably, the label for each z(i) ∼ Pt is observable.
We refer to these two datasets as Ds = {x(i)}i∈[ns] and
Dt = {(z(i), yi)}i∈[nt], respectively.

Since the primary objective of contrastive learning is to learn
a representation that is invariant to augmentations, data aug-
mentation plays a crucial role in this area. A data augmenta-
tionA : Rd → Rd is essentially a predefined transformation
applied to original images. Common augmentations include
a composition of random transformations, such as Random-
Crop, HorizontalFlip, and Color Distortion (Chen et al.,
2020a). We refer to the collection of used data augmenta-
tions asA = {Ai(·)}i∈[m] as the collection of used data aug-
mentations, where m is the total number of data augmenta-
tion under consideration. Theoretically, m could be infinite.
But we might consider only a finite but sufficiently large m
for convenient theoretical treatment. In fact, as long as m is
sufficiently large, essentially any type of data augmentation
might be well approximated by some A ∈ A. Base on A,
we can construct an augmented dataset D̃s = {x̃(i)}i∈[ns],
where x̃(i) = (x

(i)
1 ,x

(i)
2 ) = (Ai,1(x

(i)), Ai,2(x
(i))), and

Ai,1 and Ai,1 are independently drawn from the uniform
distribution on A.

2.2. Adversarial Contrastive Training

We begin by recalling R(f) defined in (1), which is the
regularization term adopted by various studies (HaoChen
et al., 2022; HaoChen & Ma, 2023; Huang et al., 2023) to
prevent model collapse. Its empirical version at the sample
level is given by R̂(f). However, as stated in Section 1,
R̂(f) is a biased counterpart ofR(f), i.e., ED̃s

{R̂(f)} ̸=
R(f), which hinders establishing a theoretical foundation
at the sample level and introduces optimization deviation.

To address these two issues, we then propose a novel sample-
level estimator for the population risk (1). A key observation
to motivate ACT is that we can rewriteR(f) as

R(f) = sup
G∈G(f)

R(f,G), (3)

where G ∈ Rd∗×d∗ is a matrix variable, and

R(f,G) = ⟨ExEx1,x2∈A(x){f(x1)f(x2)
⊤} − Id∗ , G⟩F ,

G(f) =
{
G ∈ Rd

∗×d∗ : ∥G∥F ≤
√
R(f)

}
.

The equation (3) holds because of the fact that ⟨A,B⟩F ≤
∥A∥F ∥B∥F for any matrices A,B of same dimension, with
equality holding if and only if A = B. Correspondingly,
the sample-level counterpart associated with (3) is given by

R̂(f) = sup
G∈Ĝ(f)

R̂(f,G),

where

R̂(f,G) =
〈 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − Id∗ , G

〉
F
,

Ĝ(f) =
{
G ∈ Rd

∗×d∗ : ∥G∥F ≤
√
R̂(f)

}
.

It can be shown,

R(f,G) = ED̃s
{R̂(f,G)}.

Hence, the equivalent transformation (3) help us avoid the is-
sue of biasedness. Specifically, with the equivalent transfor-
mation (3) and its empirical version, we learn the contrastive
representation through the Adversarial Contrastive Training
(ACT) at the sample level, which can be formulated as a
mini-max problem as follows:

f̂ns
∈ argmin

f∈F
max
G∈Ĝ(f)

L̂(f,G), (4)

L̂(f,G) = L̂align(f) + λR̂(f,G),

L̂align(f) =
1

ns

ns∑
i=1

∥∥f(x(i)
1 )− f(x(i)

2 )
∥∥2
2
,

where F is defined as NN (W,L,K, B1, B2). We will
specify the appropriate parameters (W,L,K, B1, B2) to sat-
isfy the theoretical requirements in Section 3. The term
L̂align(f) embodies the core idea of contrastive learning:
learning a representation that is invariant to augmentations.
Additionally, λ > 0 serves as the regularization hyperpa-
rameter.

This mini-max problem naturally leads to an alternative op-
timization algorithm for solving it, where G is fixed during
the optimization of the encoder f and f is fixed when op-
timizing G. We present this algorithm in Algorithm 1. It
is important to note that Gt has been detached from the
computational graph when updating the encoder parameters
θ. This detachment implies that the gradient with respect
to θ is as given by the seventh line of Algorithm 1, rather
than∇θ

∥∥ 1
N

∑N
i=1 fθ(x

(nt
i)

1 )fθ(x
(nt

i)
2 )⊤− Id∗

∥∥2
F

, which is
the mini-batch gradient of R̂(f). In this regard, such a

4
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Algorithm 1 Alternative Optimization Algorithm

Require: Augmented dataset Ds = {x̃(i)}i∈[n], initial en-
coder parameter θ0, iteration horizon T , mini-batch size
N , learning rate η.

1: for t ∈ {0} ∪ [T − 1] do
2: Sample a mini-batch Bt = {x(nt

i)}i∈N ⊆ Ds of size
N , where nti represents the index of the i-th sample
in the mini-batch Bt within Ds.

3: if t = 0 then
4: G0 =

∑N
i=1 fθ0

(x
(nt

i)
1 )fθ0

(x
(nt

i)
2 )⊤ − Id∗ .

5: Detach: G0 ← G0.detach().
6: end if
7: Update encoder θt+1 = θt − η∆θ, where

∆θ = ∇θ
1
N

∑N
i=1

∥∥fθ(x(nt
i)

1 ) − fθ(x
(nt

i)
2 )

∥∥2
2
+〈

∇θ
1
N

N∑
i=1

fθ(x
(nt

i)
1 )fθ(x

(nt
i)

2 )⊤ − Id∗ , Gt
〉
F

.

8: Gt+1 =
∑N
i=1 fθt+1(x

(nt
i)

1 )fθt+1(x
(nt

i)
2 )⊤ − Id∗ .

9: Detach: Gt+1 ← Gt+1.detach().
10: end for
output The learned encoder fθT

.

mini-max iteration format will yield a distinctly different
encoder in the mini-batch scenario compared to previous
studies (Zbontar et al., 2021; HaoChen et al., 2022).

We compare ACT against two biased self-supervised learn-
ing methods: Barlow Twins (Zbontar et al., 2021) and the ap-
proach proposed by HaoChen et al. (2022), across multiple
benchmark datasets. The experimental results, summarized
in Table 1, demonstrate that ACT significantly improves
downstream classification accuracy compared to both base-
line methods, which are implemented using our repository,
with a total training of 1000 epochs and a representation
dimension of 512. While, ACT employs representation di-
mensions of 64, 64, and 128, which are significantly lower
than those of Zbontar et al. (2021); HaoChen et al. (2022);
yet, it achieved the most outstanding performance.

Table 1. Classification accuracy (top 1) of a linear classifier and a
5-nearest neighbors classifier for different methods and datasets.
Here BT indicates Barlow Twins (Zbontar et al., 2021) while BS
refers to the method proposed by HaoChen et al. (2022).
Method CIFAR-10 CIFAR-100 Tiny ImageNet

Linear k-nn Linear k-nn Linear k-nn

BT 83.96 81.18 56.75 47.91 34.08 19.40
BS 86.95 82.83 53.75 48.40 35.80 20.36

ACT 92.11 90.01 68.24 58.35 49.72 36.40

3. End-to-End Theoretical Guarantee
3.1. Problem Formulation

We first define the ideal f∗ for f as the minimizer at the
population level, which represents the ideal objective of
ACT.

f∗ ∈ argmin
f :B1≤∥f∥2≤B2

sup
G∈G(f)

L(f,G),

L(f,G) = Lalign(f) + λR(f,G),

Lalign(f) = ExEx1,x2∈A(x)

{∥∥f(x1)− f(x2)
∥∥2
2

}
.

Apart from that, we further denote

L(f) = Lalign(f) + λR(f).

Intuitively, in data representation, the most critical aspect
is the differentiation between various features, rather than
the specific ranges of their values. Therefore, the constraint
B1 ≤ ∥f∥2 ≤ B2 will not diminish the performance of the
encoder; instead, it facilitates the establishment of theoreti-
cal foundations for ACT.

Moreover, following a similar process to that used for obtain-
ing D̃s, we can construct the downstream augmented dataset
D̃t = {(z̃(i), yi)}i∈[nt], where z̃(i) = {(z(i)

1 , z
(i)
2 )}i∈[nt]

with z
(i)
1 = Ai,1(z

(i)), z
(i)
2 = Ai,2(z

(i)). Therein, Ai,1,
Ai,2 are independently and identically distributed samples
drawn from the uniform distribution defined on A. In this
context, we construct the following linear probe as a classi-
fier:

Qf̂ns
(z) = argmax

k∈[K]

(
Ŵ f̂ns

(z)
)
k
, (5)

where the k-th row of Ŵ is given as µ̂t(k) =
1

2nt(k)

∑nt

i=1(f̂ns
(z

(i)
1 ) + f̂ns

(z
(i)
2 ))1{yi = k}, therein,

nt(k) =
∑nt

i=1 1{yi = k}. The classifier defined in (5)
indicates that by calculating the average representations for
each class, we build a template for each downstream class
individually. Whenever a new sample needs to be classified,
it is assigned to the category of the template that it most
closely resembles. Furthermore, we use the following mis-
classification rate to evaluate the representation learned by
ACT.

Err(Qf̂ns
) =

K∑
k=1

Pt
{
Qf̂ns

(z) ̸= k, z ∈ Ct(k)
}
, (6)

where Ct(k) is a set such that z ∈ Ct(k) if and only if z
belongs to the k-th class. Correspondingly, similar to Huang
et al. (2023), we assume that any upstream instance x can be
categorized into one or more latent classes {Cs(k)}k∈[K].
For ease of presentation, let ps(k) = Ps{x ∈ Cs(k)}
and Ps(k)(·) = Ps{·|x ∈ Cs(k)}. Similarly, let pt(k) =

5
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Pt{z ∈ Ct(k)} and Pt(k)(·) = Pt(·|z ∈ Ct(k)). In this
context, we use the quantities

ϵ1 = max
k∈[K]

W(Ps(k),Pt(k)),

ϵ2 = max
k∈[K]

|ps(k)− pt(k)|,
(7)

to measure the divergence between the source and the target
domains, whereW denotes 1-Wasserstein distance.

3.2. Theoretical Limitation of Bias

In this section, we aim to elucidate the limitations im-
posed by bias from a theoretical perspective. We first
assert that ED̃s

{Err(Qf̂ns
)} ≲ ED̃s

{L(f̂ns
)} under spe-

cific conditions, the details of which can be found in Sec-
tion A.2. Consequently, analyzing the sample complexity of
ED̃s
{L(f̂ns

)} is essential to establish an end-to-end theory
for ACT. However, this analysis poses a significant chal-
lenge due to the presence of bias.

In fact, in the field of learning theory, the condition
ED̃s
{L̂(f)} = L(f) is quite important to establish the

upper bound of ED̃s
{L(f̂ns

)}. Specifically, let f̄ satisfy
L(f̄)− L(f∗) = inff∈F{L(f)− L(f∗)}, then

L(f̂ns) = L(f̂ns)− L̂(f̂ns) + L̂(f̂ns)− L̂(f∗) + L̂(f∗)
− L(f∗) + L(f∗)

≤ L(f∗) + 2 sup
f∈F
|L(f)− L̂(f)|+ {L̂(f̂ns

)− L̂(f∗)}

≤ L(f∗) + 2 sup
f∈F
|L(f)− L̂(f)|+ {L̂(f̄ns

)− L̂(f∗)}.

Taking the expectation regarding to D̃s on both sides yields
ED̃s
{L(f̂ns

)} ≤ L(f∗)+2ED̃s
{supf∈F |L(f)− L̂(f)|}+

inff∈F{L(f) − L(f∗)}. As observed, the first term is a
typical problem in the area of empirical process, where the
sample bound also require unbiasedness; not to mention
that such typical risk decomposition itself necessitates a
guarantee of unbiasedness. In contrast, based on the modifi-
cation of ACT, we develop an novel error decomposition as
follows:

ED̃s
[L(f̂ns

)] ≲ L(f∗) + inf
f∈F
{L(f)− L(f∗)}

+ ED̃s
{ sup
f∈F,G∈Ĝ(f)

|L(f,G)− L̂(f,G)|}

+ ED̃s

[
sup
f∈F
{G∗(f)− Ĝ(f)}

]
(8)

whereG∗(f) = ExEx1,x2∈A(x){f(x1)f(x2)
⊤−Id∗} and

Ĝ(f) = 1
ns

∑ns

i=1 f(x
(i)
1 )f(x

(i)
2 )⊤−Id∗ . The proof details

can be found in Section A.3.3. Through this decomposi-
tion in (8), we can systematically analysis ED̃s

[L(f̂ns
)].

Particularly, the first term in (8) can be bounded under As-
sumption 3.3, as will be demonstrated subsequently. The

second term, known as approximation error, represents the
error introduced by using F to approximate f∗. Utilizing
the unbiasedness of L̂(f,G), the third term can be bounded
using standard techniques from empirical process theory,
while the last term can be reformulated as a common prob-
lem regarding the rate of convergence of the empirical mean
to the population mean.

3.3. Assumptions

We begin with introducing the Hölder class, which plays
a curial role in bounding the approximation error, i.e., the
second term in (8).
Definition 3.1 (Hölder class). Let d ∈ N and α = r+β > 0,
where r ∈ N0 and β ∈ (0, 1]. We assert f : Rd → R
belongs to the Hölder classHα(Rd) if and only if

|∂sf(x)| ≤ 1 and max
∥s∥1=r

sup
x ̸=y

∂sf(x)− ∂sf(y)
∥x− y∥β∞

≤ 1,

where for a multi-index s = (s1, . . . , sd) ∈ Nd0 and f :
Rd → R, the symbol ∂sf denotes the partial differential
operator ∂s = ∂s1

∂x
s1
1

∂s2

∂x
s2
1

· · · ∂
sd

∂x
sd
d

. Furthermore, we define

Hα := {f : [0, 1]d → R, f ∈ Hα(Rd)} as the restriction
ofHα(Rd) to [0, 1]d.

The Hölder class is known to be a highly comprehensive
functional class, providing a precise characterization of the
low-order regularity of functions. In this regard, we make
following assumption:
Assumption 3.2. There exists α = r + β with r ∈ N0 and
β ∈ (0, 1] s.t f∗i ∈ Hα for each i ∈ [d∗].

Assumption 3.2 is standard and mild in the context of
nonparametric statistics (Tsybakov, 2008; Schmidt-Hieber,
2020) due to the universality of the Hölder class.

As for the term L(f∗) in eq (8), we make following As-
sumption 3.3 to ensure L(f∗) = 0.
Assumption 3.3. Assume there exists a measurable par-
tition {P1, . . . ,Pd∗} of Xs, such that 1/B2

2 ≤ Ps(Pi) ≤
1/B2

1 for each i ∈ [d∗].

Assumption 3.3 suggests that the data distribution in the
source domain should not be overly singular. All common
continuous distributions defined on Borel algebra satisfy
these requirements, as the measure of any single point is
zero. More details are deferred to Section A.3.2.
Remark 3.4. (HaoChen & Ma, 2023, Assumption 4.2) as-
sumes that the term L(f) can be sufficiently minimized by
a specific network. Constructing a network fθ ∈ F such
that population statistic L(fθ) is sufficiently small is too
complex. In contrast, we consider a more general setting
where f∗ may not belong to F . Based on the mild Assump-
tion 3.3, we can theoretically illustrate that L(f∗) vanishes.
This is crucial for subsequent theoretical analysis.
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Additionally, we need to introduce two assumptions regard-
ing to the data augmentation.

Assumption 3.5. Assume any data augmentation Ai ∈
A is M -Lipschitz map, i.e., ∥Ai(v1)−Ai(v2)∥2 ≤
M∥v1 − v2∥2 for any v1,v2 ∈ [0, 1]d.

A typical example to illustrate Assumption 3.5 is that the
augmented view yielded by cropping should not undergo
drastic changes when minor perturbations are applied to the
original image.

In addition to the Lipschitz property of data augmentation,
we adopt Definition 3.6 to mathematically quantify the qual-
ity of data augmentations.

Definition 3.6 ((σs, σt, δs, δt)-Augmentation). The aug-
mentations in A is (σs, σt, δs, δt)-augmentations, that
is, for each k ∈ [K], there exists a subset
C̃s(k) ⊆ Cs(k) and C̃t(k) ⊆ Ct(k), such that
(i) Ps{x ∈ C̃s(k)} ≥ σsPs{x ∈ Cs(k)}, (ii)
supx1,x2∈C̃s(k)

minx′
1∈A(x1),x′

2∈A(x2) ∥x′
1 − x′

2∥2 ≤ δs;

(iii) Pt{z ∈ C̃t(k)} ≥ σtPt{z ∈ Ct(k)}, (iv)
supz1,z2∈C̃t(k)

minz′
1∈A(z1),z′

2∈A(z2) ∥z′
1 − z′

2∥2 ≤ δt

and (v) Pt{∪Kk=1C̃t(k)} ≥ σt, where σs, σt ∈ (0, 1] and
δs, δt ≥ 0.

The (σs, σt, δs, δt)-augmentation is an extensive version of
the (σ, δ)-augmentation proposed by Huang et al. (2023).
This definition emphasizes that a robust data augmenta-
tion should consistently produce distance-closed augmented
views for semantically similar original images. Therein, con-
dition (v) replaces the assumptionA(Ct(i))∩A(Ct(j)) = ∅
proposed by Huang et al. (2023). This implies that the aug-
mentation methods used should be intelligent enough to
recognize objects that align with the image labels in multi-
objective images. A straightforward alternative to this re-
quirement is to assume that different classes Ct(k) are pair-
wise disjoint, meaning that for all i ̸= j, Ct(i) ∩ Ct(j) = ∅.
This implies that Pt{∪Kk=1C̃t(k)} =

∑K
k=1 Pt{C̃t(k)} ≥

σt
K∑
k=1

Pt{Ct(k)} = σt.

In the context of Definition 3.6, we introduce the following
assumption to delineate the data augmentation necessary for
the end-to-end theory of ACT.

Assumption 3.7 (Existence of augmentation sequence). As-
sume there exists a sequence of (σ(n)

s , σ
(n)
t , δ

(n)
s , δ

(n)
t )-data

augmentations An = {A(n)
i }i∈[m] and τ > 0 such that (i)

max{δ(n)s , δ
(n)
t } ≤ n−

τ+d+1
2(α+d+1) , (ii) min{σ(n)

s , σ
(n)
t } → 1

as n→∞.

It is noteworthy that this assumption closely aligns with
Assumption 3.5 in HaoChen et al. (2021) and Assumption
3.6 in HaoChen & Ma (2023), both of which stipulate that

the augmentations must be sufficiently robust to ensure that
the internal connections within latent classes remain strong
enough to prevent the separation of instance clusters. Re-
cently, various methods for developing more effective data
augmentations, as discussed by Jahanian et al. (2022) and
Trabucco et al. (2024), have been proposed, making it in-
creasingly feasible to satisfy the theoretical requirements for
data augmentation. Next, we will introduce the assumption
related to distribution shift.

Prior to characterizing the transferability from the source
domain to the target domain, we must first quantify the
similarity between these domains.

Assumption 3.8 (Domain shift). Assume there exists ν > 0

and ς > 0 such that (i) ϵ1 ≲ n
− ν+d+1

2(α+d+1)
s and (ii) ϵ2 ≲

n
− ς

2(α+d+1)
s , where ϵ1 and ϵ2 measure the divergence be-

tween the source and the target domains defined as (7).

As shown in (7), smaller values of ϵ1 and ϵ2 indicate less
discrepancy between the source and target domains. Similar
assumptions using alternative divergence measures have
been proposed in Ben-David et al. (2010); Germain et al.
(2013); Cortes et al. (2019).

3.4. End-to-end Theoretical Guarantee

Let µt(k) = Ex∈Ct(k)Ex′∈A(x){f̂ns(x
′)}, which is the

representation center of k-th class Ct(k). We present the
end-to-end theoretical guarantee of ACT as follows:

Theorem 3.9. Suppose Assumptions 3.2, 3.3, 3.5, 3.7
and 3.8 all hold. Set the width, depth and the Lipschitz
constraint of the deep neural network as

W ≥ O
(
n

2d+α
4(α+d+1)
s

)
, L ≥ O(1), K = O

(
n

d+1
2(α+d+1)
s

)
,

then the following inequality holds

ED̃s
{max
i ̸=j
|µt(i)⊤µt(j)|} ≲ (1− σ(ns)

s ) + ns
−min{α,2τ}

4(α+d+1) .

(9)

Furthermore, regarding to the misclassification rate ofQf̂ns
,

we have

ED̃s

{
Err(Qf̂ns

)
}
≤ (1− σ(ns)

t ) +O(n
−min{α,ν,ς}

8(α+d+1)
s ),

with probability at least σ(ns)
s − O(n

−min{α,ν,ς,τ}
16(α+d+1)

s ) −
O( 1√

mink nt(k)
) for ns sufficiently large.

Provable Advantages of ACT Theorem 3.9 demonstrates
how the abundance of unlabeled data in the source domain
leveraged by ACT benefits downstream tasks in the target
domain. Specifically, the quantity maxi ̸=j |µt(i)⊤µt(j)| in
eq (9) reflects the angle between different representation

7
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centers when R1 ≈ R2. A smaller value indicates that the
centers approach orthogonality, enhancing discriminability
among categories and thus improving classification accu-
racy. eq (9) essentially indicates that minimaxing the loss
function of ACT can lead to the downstream data distribu-
tion being clustered in the representation space, provided
that the upstream unlabeled sample size is sufficient. On
the other hand, the theorem shows that only the failure
probability depends on the downstream sample size nt with
fast convergence rate, while the misclassification rate con-
verges with respect to the number of unlabeled samples in
ACT. This finding indicates that the build classifier based on
ACT can achieve excellent performance with a few labeled
samples. In summary, this theorem not only demonstrates
the provable advantages of ACT but also provides rigorous
theoretical understandings for few-shot learning (Liu et al.,
2021; Rizve et al., 2021; Yang et al., 2022; Lim et al., 2023).

Over-parametrization Theorem 3.9 does not impose an
upper bound constraint on either the width W or depth L
of the deep neural network, implying that the number of
network parameters can grow arbitrarily large when only
the weight norm is constrained. This aligns with the over-
parameterization regime commonly concerned in deep learn-
ing.

4. Comparison with Existing Methods
As the experiments conducted in existing self-supervised
learning methods, we pretrain the representation on CIFAR-
10, CIFAR-100 and Tiny ImageNet, and subsequently con-
duct fine-tuning on each dataset with annotations. Table 2
shows the classification accuracy of representations learned
by ACT, compared with the results reported in Ermolov et al.
(2021). We can see that ACT consistently outperforms pre-
vious mainstream self-supervised methods across various
datasets and evaluation metrics.

Table 2. Classification accuracy (top 1) of a linear classifier and
a 5-nearest neighbors classifier for different loss functions and
datasets.
Method CIFAR-10 CIFAR-100 Tiny ImageNet

Linear k-nn Linear k-nn Linear k-nn

SimCLR 91.80 88.42 66.83 56.56 48.84 32.86
BYOL 91.73 89.45 66.60 56.82 51.00 36.24
WMSE2 91.55 89.69 66.10 56.69 48.20 34.16
WMSE4 91.99 89.87 67.64 56.45 49.20 35.44

ACT 92.11 90.01 68.24 58.35 49.72 36.40

Implementation details. Except for tuning λ for different
datasets, all other hyperparameters used in our experiments
align with Ermolov et al. (2021). Before each iteration, we
first standardize the representations and then calculate the

loss of ACT. We train for 1,000 epochs with a learning rate
of 3× 10−3 for CIFAR-10 and CIFAR-100, and 2× 10−3

for Tiny ImageNet. A learning rate warm-up is applied for
the first 500 iterations of the optimizer, in addition to a 0.2
learning rate drop at 50 and 25 epochs before the training
end. We use a mini-batch size of 256, and the dimension
of the hidden layer in the projection head is set to 1024.
The weight decay is set to 10−6. We adopt an embedding
size (d∗) of 64 for CIFAR10, CIFAR100 and 128 for Tiny
ImageNet during the pretraining process. The backbone
network used in our implementation is ResNet-18.

Image transformation details. We randomly extract crops
with sizes ranging from 0.08 to 1.0 of the original area and
aspect ratios ranging from 3/4 to 4/3 of the original aspect
ratio. Furthermore, we apply horizontal mirroring with a
probability of 0.5. Additionally, color jittering is applied
with a configuration of (0.4; 0.4; 0.4; 0.1) and a probability
of 0.8, while grayscaling is applied with a probability of 0.2.
For CIFAR-10 and CIFAR-100, random Gaussian blurring
is adopted with a probability of 0.5 and a kernel size of 0.1.
During testing, only one crop is used for evaluation.

Evaluation protocol. During evaluation, we freeze the
network encoder and remove the projection head after pre-
training, then train a supervised linear classifier on top of it,
which is a fully-connected layer followed by softmax. we
train the linear classifier for 500 epochs using the Adam op-
timizer with corresponding labeled training set without data
augmentation. The learning rate is exponentially decayed
from 10−2 to 10−6. The weight decay is set as 10−6. we
also include the accuracy of a k-nearest neighbors classifier
with k = 5, which does not require fine tuning.

All experiments were conducted using a single Tesla V100
GPU unit. The PyTorch implementations can be found in
https://anonymous.4open.science/r/ACT-1F45.

5. Conclusion
In this paper, we propose a novel adversarial contrastive
learning method for unsupervised transfer learning. Our ex-
perimental results achieved state-of-the-art classification ac-
curacy under both fine-tuned linear probe and k-nn protocol
on various real datasets, comparing with the self-supervised
learning methods. Meanwhile, we present end to end the-
oretical guarantee for the downstream classification task
under misspecified and over-parameterized setting. Our the-
oretical results not only indicate that the misclassification
rate of downstream task solely depends on the strength of
data augmentation on the large amount of unlabeled data,
but also bridge the gap in the theoretical understanding of
the effectiveness of few-shot learning for downstream tasks
with small sample size.
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A. Deferred Proof
A.1. K-Lipschitz property of NN d1,d2(W,L,K, B1, B2)

Proof. To demonstrate that any function fθ ∈ NN d1,d2(W,L,K, B1, B2) is a K-Lipschitz function, we first define two
special classes. The first class is given by

NN d1,d2(W,L,K) := {fθ(x) = ALσ(AL−1σ(· · ·σ(A0x)) : κ(θ) ≤ K}, (10)

which is equivalent to NN d1,d2(W,L,K, B1, B2) when ignoring the condition ∥fθ∥2 ∈ [B1, B2]. The second class is
defined as

SNN d1,d2(W,L,K) := {f̆(x) = ĂLσ(ĂL−1σ(· · ·σ(Ă0x̆)) :

L∏
l=1

∥Ăl∥∞ ≤ K}, x̆ :=

(
x
1

)
,

where Ăl ∈ RNl+1×Nl with N0 = d1 + 1.

It is clear that NN d1,d2(W,L,K, B1, B2) ⊆ NN d1,d2(W,L,K), and every element in SNN d1,d2(W,L,K) is a K-
Lipschitz function due to the 1-Lipschitz property of the ReLU activation function. Thus, it suffices to show that

SNN d1,d2(W,L,K) ⊆ NN d1,d2(W,L,K) ⊆ SNN d1,d2(W + 1, L,K)

to establish our claim.

To begin, any function fθ(x) = ALσ(AL−1σ(· · ·σ(A0x + b0)) + bL−1) ∈ NN d1,d2(W,L,K) can be restructured as
f̆(x) = ĂLσ(ĂL−1σ(· · ·σ(Ă0x̆))), where

x̆ :=

(
x
1

)
, Ă = (AL,0), Ăl =

(
Al bl
0 1

)
, l = 0, . . . , L− 1.

Notably, we have
∏L
l=0 ∥Ăl∥∞ = ∥AL∥∞

∏L−1
l=0 max{∥(Al, bl)∥∞, 1} = κ(θ) ≤ K, which implies that fθ ∈

SNN d1,d2(W + 1, L,K).

Conversely, since any f̆ ∈ SNN (W,L,K) can also be parameterized as ALσ(AL−1σ(· · ·σ(A0x + b0)) + bL−1) with
θ = (Ă0, (Ă1,0), . . . , (ĂL−1,0), ĂL), we can use the absolute homogeneity of the ReLU function to rescale Ăl such
that ∥ĂL∥∞ ≤ K and ∥Ăl∥∞ = 1 for l ̸= L. Consequently, we have κ(θ) =

∏L
l=0 ∥Ăl∥∞ ≤ K, which yields

f̆ ∈ NN (W,L,K). This completes the proof.

A.2. Proof of population theorem

In this section, we aim to present the population theorem of ACT and its proof. we begin by exploring the sufficient
condition for achieving small Err(Qf ) in A.2.1. Following that, we build the connection between the required condition
and optimizing our adversarial self-supervised learning loss in Lemma A.4 of A.2.3, it reveals that small value of L(f) may
induce significant class divergence and highly augmented concentration. Lastly, by combining Lemma A.1 and Lemma A.4,
we present the population theorem as Theorem A.5.

A.2.1. SUFFICIENT CONDITION OF SMALL MISCLASSIFICATION RATE

Lemma A.1. Given a (σs, σt, δs, δt)-augmentation, if the encoder f such that B1 ≤ ∥f∥2 ≤ B2 is K-Lipschitz and

µt(i)
⊤µt(j) < B2

2ψ(σt, δt, ε, f),

holds for any pair of (i, j) with i ̸= j, then the downstream error rate of Qf

Err(Qf ) ≤ (1− σt) +Rt(ε, f),

where ∆µ̂t = 1− mink∈[K] ∥µ̂t(k)∥2
2

B2
2

. For any ε > 0, Rt(ε, f) = Pt
(
z ∈ ∪Kk=1Ct(k) : supz1,z2∈A(z) ∥f(z1)− f(z2)∥2 >

ε
)

and ψ(σt, δt, ε, f) = Γmin(σt, δt, ε, f) −
√
2− 2Γmin(σt, δt, ε, f) −

∆µ̂t

2 − 2maxk∈[K] ∥µ̂t(k)−µt(k)∥2

B2
, wherein

Γmin(σt, δt, ε, f) =
(
σt − Rt(ε,f)

mini pt(i)

)(
1 +

(
B1

B2

)2 − Kδt
B2
− 2ε

B2

)
− 1.
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Proof. For any encoder f , let St(ε, f) := {z ∈ ∪Kk=1Ct(k) : supz1,z2∈A(z) ∥f(z1)− f(z2)∥2 ≤ ε}, if any z ∈
{C̃t(1) ∪ · · · ∪ C̃t(K)} ∩ St(ε, f) can be correctly classified by Qf , it turns out that Err(Qf ) can be bounded by
(1− σt) +Rt(ε, f). In fact,

Err(Qf ) =

K∑
k=1

Pt
{
Qf (z) ̸= k, ∀z ∈ Ct(k)

}
≤ Pt

[{
C̃t(1) ∪ · · · ∪ C̃t(K) ∩ St(ε, f)

}c]
= Pt

[
{C̃t(1) ∪ · · · ∪ C̃t(K)}c ∪ {St(ε, f)}c

]
≤ (1− σt) + Pt

[
{St(ε, f)}c

]
= (1− σt) +Rt(ε, f).

The first row is derived from the definition of Err(Qf ). Since any z ∈ {C̃t(1) ∪ · · · ∪ C̃t(K)} ∩ St(ε, f) can be correctly
classified by Qf , we obtain the second row. De Morgan’s laws imply the third row. The fourth row follows from
Definition 3.6. Finally, noting that Rt(ε, f) = Pt[{St(ε, f)}c] yields the last line.

Hence it suffices to show for given i ∈ [K], z ∈ C̃t(i) ∩ St(ε, f) can be correctly classified by Qf if for any j ̸= i,

µt(i)
⊤µt(j) < B2

2

(
Γi(σt, δt, ε, f)−

√
2− 2Γi(σt, δt, ε, f)−

∆µ̂t

2
− ∥µ̂t(i)− µt(i)∥2

B2
− ∥µ̂t(j)− µt(j)∥2

B2

)
,

where Γi(σt, δt, ε, f) =
(
σt − Rt(ε,f)

pt(i)

)(
1 +

(
B1

B2

)2 − Kδt
B2
− 2ε

B2

)
− 1.

To this end, without losing generality, consider the case i = 1. To turn out z0 ∈ C̃t(1) ∩ St(ε, f) can be correctly classified
by Qf , by the definition of C̃t(1) and St(ε, f), It just need to show ∀k ̸= 1, ∥f(z0)− µ̂t(1)∥2 < ∥f(z0)− µ̂t(k)∥2, which
is equivalent to

f(z0)
⊤µ̂t(1)− f(z0)⊤µ̂t(k)−

(1
2
∥µ̂t(1)∥22 −

1

2
∥µ̂t(k)∥22

)
> 0.

We first deal with the term f(z0)
⊤µ̂t(1),

f(z0)
⊤µ̂t(1) = f(z0)

⊤µt(1) + f(z0)
⊤(µ̂t(1)− µt(1))

≥ f(z0)⊤Ez∈Ct(1)Ez′∈A(z){f(z′)} − ∥f(z0)∥2∥µ̂t(1)− µt(1)∥2

≥ 1

pt(1)
f(z0)

⊤EzEz′∈A(z)[f(z
′)1{z ∈ Ct(1)}]−B2∥µ̂t(1)− µt(1)∥2

=
1

pt(1)
f(z0)

⊤EzEz′∈A(z)

[
f(z′)1{z ∈ Ct(1) ∩ C̃t(1) ∩ St(ε, f)}

]
+

1

pt(1)
f(z0)

⊤EzEz′∈A(z)

[
f(z′)1

{
z ∈ Ct(1) ∩ {C̃t(1) ∩ St(ε, f)}c

}]
−B2∥µ̂t(1)− µt(1)∥2

=
Pt{C̃t(1) ∩ St(ε, f)}

pt(1)
f(z0)

⊤Ez∈C̃t(1)∩St(ε,f)
Ez′∈A(z){f(z′)}

+
1

pt(1)
Ez

[
Ez′∈A(z){f(z0)⊤f(z′)}1[z ∈ Ct(1)\{C̃t(1) ∩ St(ε, f)}]

]
−B2∥µ̂t(1)− µt(1)∥2

≥ Pt{C̃t(1) ∩ St(ε, f)}
pt(1)

f(z0)
⊤ E

z∈C̃t(1)∩St(ε,f)
E

z′∈A(z)
[f(z′)]− B2

2

pt(1)
Pt
[
Ct(1)\{C̃t(1) ∩ St(ε, f)}

]
−B2∥µ̂t(1)− µt(1)∥2. (11)

The second row follows from the Cauchy–Schwarz inequality. The third and last rows are derived from the condition
∥f∥2 ≤ B2. Note that

Pt
[
Ct(1)\{C̃t(1) ∩ St(ε, f)}

]
= Pt

[
{Ct(1)\C̃t(1)} ∪ [C̃t(1) ∩ {St(ε, f)}c]

]
≤ (1− σt)pt(1) +Rt(ε, f), (12)

and

Pt
(
C̃t(1) ∩ St(ε, f)

)
= Pt(Ct(1))− Pt

(
Ct(1)\(C̃t(1) ∩ St(ε, f))

)
≥ pt(1)− {(1− σt)pt(1) +Rt(ε, f)}

13
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= σtpt(1)−Rt(ε, f). (13)

Plugging (12) and (13) into (11) yields

f(z0)
⊤µ̂t(1) ≥

(
σt −

Rt(ε, f)

pt(1)

)
f(z0)

⊤ E
z∈C̃t(1)∩St(ε,f)

E
z′∈A(z)

{f(z′)} −B2
2

(
1− σt +

Rt(ε, f)

pt(1)

)
−B2∥µ̂t(1)− µt(1)∥2.

(14)

Notice that z0 ∈ C̃t(1) ∩ St(ε, f). Thus, for any z ∈ C̃t(1) ∩ St(ε, f), by the definition of C̃t(1), we have
minz′

0∈A(z0),z′∈A(z) ∥z′
0 − z′∥2 ≤ δt. Further, denote (z∗

0 , z
∗) = argminz′

0∈A(z0),z′∈A(z) ∥z′
0 − z′∥2. Then, we have

∥z∗
0 −z∗∥2 ≤ δt. Combining this with the K-Lipschitz property of f , we obtain ∥f(z∗

0)−f(z∗)∥2 ≤ K∥z∗
0 −z∗∥2 ≤ Kδt.

Moreover, since z ∈ St(ε, f), it follows that for all z′ ∈ A(z), ∥f(z′) − f(z∗)∥2 ≤ ε. Similarly, as z0 ∈ St(ε, f) and
both z0 and z∗

0 belong to A(z0), we know ∥f(z0)− f(z∗
0)∥2 ≤ ε.

Therefore,

f(z0)
⊤Ez∈C̃t(1)∩St(ε,f)

Ez′∈A(z){f(z′)} = Ez∈C̃t(1)∩St(ε,f)
Ez′∈A(z){f(z0)⊤f(z′)}

= Ez∈C̃t(1)∩St(ε,f)
Ez′∈A(z)[f(z0)

⊤{f(z′)− f(z0) + f(z0)}]

≥ B2
1 + Ez∈C̃t(1)∩St(ε,f)

Ez′∈A(z)[f(z0)
⊤{f(z′)− f(z0)}]

= B2
1 + Ez∈C̃t(1)∩St(ε,f)

Ez′∈A(z)[f(z0)
⊤{f(z′)− f(z∗)︸ ︷︷ ︸

∥·∥2≤ε

+ f(z∗)− f(z∗
0)︸ ︷︷ ︸

∥·∥2≤Kδt

+ f(z∗
0)− f(z0)︸ ︷︷ ︸
∥·∥2≤ε

}]

≥ B2
1 − (B2ε+B2Kδt +B2ε)

= B2
1 −B2(Kδt + 2ε), (15)

where the fourth row is derived from ∥f∥2 ≥ B1.

Plugging (15) into the inequality (14) yields

f(z0)
⊤µ̂t(1) ≥

(
σt −

Rt(ε, f)

pt(1)

)
f(z0)

⊤ E
z∈C̃t(1)∩St(ε,f)

E
z′∈A(z)

{f(z′)} −B2
2

(
1− σt +

Rt(ε, f)

pt(1)

)
−B2∥µ̂t(1)− µt(1)∥2

≥
(
σt −

Rt(ε, f)

pt(1)

)(
B2

1 −B2(Kδt + 2ε)
)
−B2

2

{
1− σt +

Rt(ε, f)

pt(1)

}
−B2∥µ̂t(1)− µt(1)∥2

= B2
2

{(
1 +

(B1

B2

)2)(
σt −

Rt(ε, f)

pt(1)

)
−

(
σt −

Rt(ε, f)

pt(1)

)(Kδt
B2

+
2ε

B2

)
− 1

}
−B2∥µ̂t(1)− µt(1)∥2

= B2
2

{(
σt −

Rt(ε, f)

pt(1)

)(
1 +

(B1

B2

)2 − Kδt
B2
− 2ε

B2

)
− 1

}
−B2∥µ̂t(1)− µt(1)∥2

= B2
2Γ1(σt, δt, ε, f)−B2∥µ̂t(1)− µt(1)∥2.

Similar process can also turn out

f(z0)
⊤µt(1) ≥ B2

2Γ1(σt, δt, ε, f). (16)

Combining the fact that ∥µt(k)∥2 = ∥Ez∈C̃t(k)
Ez′∈A(z)[f(z

′)]∥2 ≤ Ex∈C̃t(k)
Ez′∈A(z)∥f(z′)∥2 ≤ B2 yields

f(z0)
⊤µ̂t(k) ≤ f(z0)⊤µt(k) + f(z0)

⊤(µ̂t(k)− µt(k))
≤ f(z0)⊤µt(k) + ∥f(z0)∥2∥µ̂t(k)− µt(k)∥2
≤ f(z0)⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2
= {f(z0)− µt(1)}⊤µt(k) + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2
≤ ∥f(z0)− µt(1)∥2 · ∥µt(k)∥2 + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2

≤ B2

√
∥f(z0)∥22 − 2f(z0)⊤µt(1) + ∥µt(1)∥22 + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2

14
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≤ B2

√
2B2

2 − 2f(z0)⊤µt(1) + µt(1)
⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2

≤ B2

√
2B2

2 − 2B2
2Γ1(σt, δt, ε, f) + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2

=
√
2B2

2

√
1− Γ1(σt, δt, ε, f) + µt(1)

⊤µt(k) +B2∥µ̂t(k)− µt(k)∥2,

where the inequality in eighth row stems from (16). Hence, by ∆µ̂t
= 1−mink∈[K] ∥µ̂t(k)∥22/B2

2 , we can conclude

f(z0)
⊤µ̂t(1)− f(z0)⊤µ̂t(k)−

(1
2
∥µ̂t(1)∥22 −

1

2
∥µ̂t(k)∥2

)
= f(z0)

⊤µ̂t(1)− f(z0)⊤µ̂t(k)−
1

2
∥µ̂t(1)∥22 +

1

2
∥µ̂t(k)∥22

≥ f(z0)⊤µ̂t(1)− f(z0)⊤µ̂t(k)−
1

2
B2

2 +
1

2
min
k∈[K]

∥µ̂t(k)∥22

= f(z0)
⊤µ̂t(1)− f(z0)⊤µ̂t(k)−

1

2
B2

2∆µ̂t

≥ B2
2Γ1(σt, δt, ε, f)−B2∥µ̂t(1)− µt(1)∥2 −

√
2B2

2

√
1− Γ1(σt, δt, ε, f)− µt(1)⊤µt(k)−B2∥µ̂t(k)− µt(k)∥2−

− 1

2
B2

2∆µ̂t
> 0,

which is what we desire. Here the last inequality is derived from the given condition.

A.2.2. PRELIMINARIES FOR LEMMA A.4

To obtain Theorem A.5, we need to bridge the gap between the condition in Lemma A.1 and the insights provided by ACT
in Lemma A.4. To this end, we first introduce Lemma A.2 and Lemma A.3.

Following the notations in the target domain, we denote the center of the k-th latent class in the representation space as
µs(k) := Ex∈Cs(k)Ex′∈A(x){f(x′)} = 1

ps(k)
ExEx′∈A(x)[f(x

′)1{x ∈ Cs(k)}]. Then Lemma A.2 can be presented as
follows:

Lemma A.2. If the encoder f is K-Lipschitz continuous, then for any k ∈ [K],

∥µs(k)− µt(k)∥2 ≤
√
d∗MKϵ1.

Proof. For all k ∈ [K],

∥µs(k)− µt(k)∥22 =

d∗∑
l=1

[
{µs(k)}l − {µt(k)}l

]2
=

d∗∑
l=1

[Ex∈Cs(k)Ex′∈A(x){fl(x′)} − Ez∈Ct(k)Ez′∈A(z){fl(z′)}]2

=

d∗∑
l=1

[ 1

m

m∑
γ=1

(
Ex∈Cs(k){fl(Ai(x))} − Ez∈Ct(k){fl(Ai(z))}

)]2
≤ d∗M2K2ϵ21.

The final inequality is obtained from ϵ1 = maxk∈[K]W(Ps(k),Pt(k)) and the definition of Wasserstein distance, along
with the fact that f(Ai(·)) is MK-Lipschitz continuous. In fact, since f ∈ Lip(K), it follows that for every l ∈ [d∗],
fl ∈ Lip(K). Combining this with the property that Ai(·) ∈ Lip(M) stated in Assumption 3.5, we conclude that f(Ai(·))
is MK-Lipschitz continuous. So that

∥µs(k)− µt(k)∥2 ≤
√
d∗MKϵ1.

Next we present Lemma A.3.
Lemma A.3. Given a (σs, σt, δs, δt)-augmentation, if the encoder f with ∥f∥2 ≤ B2 is K-Lipschitz continuous, then

E
x∈Cs(k)

E
x1∈A(x)

∥f(x1)− µs(k)∥22 ≤ 4B2
2

{(
1− σs +

Kδs + 2ε

2B2
+

Rs(ε, f)

ps(k)

)2

+
(
1− σs +

Rs(ε, f)

ps(k)

)}
,

where Rs(ε, f) = Ps
{
x ∈ ∪Kk=1Cs(k) : supx1,x2∈A(x) ∥f(x1)− f(x2)∥2 > ε

}
.

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Unsupervised Transfer Learning via Adversarial Contrastive Training

Proof. Let Ss(ε, f) := {x ∈ ∪Kk=1Cs(k) : supx1,x2∈A(x) ∥f(x1)− f(x2)∥2 ≤ ε}, for each k ∈ [K],

Ex∈Cs(k)Ex1∈A(x)∥f(x1)− µs(k)∥22 =
1

ps(k)
ExEx1∈A(x)[1{x ∈ Cs(k)}∥f(x1)− µs(k)∥22]

=
1

ps(k)
ExEx1∈A(x)[1{x ∈ C̃s(k) ∩ Ss(ε, f)}∥f(x1)− µs(k)∥22]

+
1

ps(k)
ExEx1∈A(x)[1{x ∈ Cs(k)\(C̃s(k) ∩ Ss(ε, f))}∥f(x1)− µs(k)∥22]

≤ 1

ps(k)
ExEx1∈A(x)

[
1{x ∈ C̃s(k) ∩ Ss(ε, f)}∥f(x1)− µs(k)∥22

]
+

4B2
2Ps

[
Cs(k)\{C̃s(k) ∩ Ss(ε, f)}

]
ps(k)

≤ 1

ps(k)
ExEx1∈A(x)

[
1{x ∈ C̃s(k) ∩ Ss(ε, f)}∥f(x1)− µs(k)∥22

]
+ 4B2

2

(
1− σs +

Rs(ε, f)

ps(k)

)
≤ Ps(C̃s(k) ∩ Ss(ε, f))

ps(k)
E

x∈C̃s(k)∩Ss(ε,f)
E

x1∈A(x)
∥f(x1)− µs(k)∥22 + 4B2

2

(
1− σs +

Rs(ε, f)

ps(k)

)
≤ Ex∈C̃s(k)∩Ss(ε,f)

Ex1∈A(x)∥f(x1)− µs(k)∥22 + 4B2
2

(
1− σs +

Rs(ε, f)

ps(k)

)
, (17)

where the second inequality is due to

Ps
[
Cs(k)\{C̃s(k) ∩ Ss(ε, f)}

]
= Ps

[
{Cs(k)\C̃s(k)} ∪ {Cs(k)\Ss(ε, f)}

]
≤ (1− σs)ps(k) +Rs(ε, f).

Furthermore,

Ex∈C̃s(k)∩Ss(ε,f)
Ex1∈A(x)∥f(x1)− µs(k)∥22 = Ex∈C̃s(k)∩Ss(ε,f)

Ex1∈A(x)∥f(x1)− Ex′∈Cs(k)Ex2∈A(x′)f(x2)∥22

= Ex∈C̃s(k)∩Ss(ε,f)
Ex1∈A(x)

∥∥∥f(x1)−
P{C̃s(k) ∩ Ss(ε, f)}

ps(k)
Ex′∈C̃s(k)∩Ss(ε,f)

Ex2∈A(x′)f(x2)

−
Ps

[
Cs(k)\{C̃s(k) ∩ Ss(ε, f)}

]
ps(k)

Ex′∈Cs(k)\{C̃s(k)∩Ss(ε,f)}Ex2∈A(x′)f(x2)
∥∥∥2
2

= Ex∈C̃s(k)∩Ss(ε,f)
Ex1∈A(x)

∥∥∥Ps{C̃s(k) ∩ Ss(ε, f)}
ps(k)

(
f(x1)− Ex′∈C̃s(k)∩Ss(ε,f)

Ex2∈A(x′)f(x2)
)

−
Ps

[
Cs(k)\{C̃s(k) ∩ Ss(ε, f)}

]
ps(k)

(
f(x1)− Ex′∈Cs(k)\{C̃s(k)∩Ss(ε,f)}Ex2∈A(x′)f(x2)

)∥∥∥2
2

≤ E
x∈C̃s(k)∩Ss(ε,f)

E
x1∈A(x)

[∥∥∥f(x1)− E
x′∈C̃s(k)∩Ss(ε,f)

E
x2∈A(x′)

f(x2)
∥∥∥
2
+ 2B2

(
1− σs +

Rs(ε, f)

ps(k)

)]2
(18)

For any x,x′ ∈ C̃s(k) ∩ Ss(ε, f), by the definition of C̃s(k), we can yield that

min
x1∈A(x),x2∈A(x′)

∥x1 − x2∥2 ≤ δs,

Thus, let (x∗
1,x

∗
2) = argminx1∈A(x),x2∈A(x′) ∥x1 − x2∥2, we have ∥x∗

1 − x∗
2∥2 ≤ δs. Furthermore, by the K-Lipschitz

continuity of f , we yield ∥f(x∗
1)− f(x∗

2)∥2 ≤ K∥x∗
1 − x∗

2∥2 ≤ Kδs. In addition, since x ∈ Ss(ε, f), we know for
any x1 ∈ A(x), ∥f(x1)− f(x∗

1)∥2 ≤ ε. Similarly, x′ ∈ Ss(ε, f) implies ∥f(x2)− f(x∗
2)∥2 ≤ ε for any x2 ∈ A(x′).

Therefore, for any x,x′ ∈ C̃s(1) ∩ Ss(ε, f) and x1 ∈ A(x),x2 ∈ A(x′),

∥f(x1)− f(x2)∥2 ≤ ∥f(x1)− f(x∗
1)∥2 + ∥f(x∗

1)− f(x∗
2)∥2 + ∥f(x∗

2)− f(x2)∥2 ≤ 2ε+Kδs. (19)

Combining inequalities (17), (18) and (19) concludes

Ex∈Cs(k)Ex1∈A(x)∥f(x1)− µs(k)∥22 ≤
[
2ε+Kδs + 2B2

(
1− σs +

Rs(ε, f)

ps(k)

)]2
+ 4B2

2

(
1− σs +

Rs(ε, f)

ps(k)

)
= 4B2

2

[(
1− σs +

Kδs
2B2

+
ε

B2
+
Rs(ε, f)

ps(k)

)2

+
(
1− σs +

Rs(ε, f)

ps(k)

)]

16
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Subsequently, we state Lemma A.4 to establish the connection between ACT and the requirements outlined in Lemma A.1.

A.2.3. THE EFFECT OF MINIMAXING OUR LOSS

Lemma A.4. Given a (σs, σt, δs, δt)-augmentation, if d∗ > K and the encoder f with B1 ≤ ∥f∥2 ≤ B2 is K-Lipschitz
continuous, then for any ε > 0,

R2
s(ε, f) ≤

m4

ε2
Lalign(f),

R2
t (ε, f) ≤

m4

ε2
Lalign(f) +

8m4

ε2
B2d

∗MKϵ1 +
4m4

ε2
B2

2d
∗Kϵ2,

and

max
i ̸=j
|µt(i)⊤µt(j)| ≤

√
2

mini ̸=j ps(i)ps(j)

{
R(f) + φ(σs, δs, ε, f)

}
+ 2
√
d∗B2MKϵ1.

where φ(σs, δs, ε, f) := 4B2
2

[(
1−σs+Kδs+2ε

2B2

)2

+(1−σs)+KRs(ε, f)
(
3−2σs+Kδs+2ε

B2

)
+R2

s(ε, f)
(∑K

k=1
1

ps(k)

)]
+

B2(ε
2 + 4B2

2Rs(ε, f))
1
2 .

Proof. Since the measure on A is uniform, we have

Ez1,z2∈A(z)∥f(z1)− f(z2)∥2 =
1

m2

m∑
γ=1

m∑
β=1

∥f(Aγ(z))− f(Aj(z))∥2,

hence,

sup
z1,z2∈A(z)

∥f(z1)− f(z2)∥2 = sup
γ,β∈[m]

∥f(Ai(z))− f(Aj(z))∥2 ≤
m∑
γ=1

m∑
β=1

∥f(Ai(z))− f(Aj(z))∥2

= m2Ez1,z2∈A(z)∥f(z1)− f(z2)∥2.

Denote S := {z : Ez1,z2∈A(z)∥f(z1)− f(z2)∥2 > ε
m2 }, by the definition of Rt(ε, f) along with Markov inequality, we

have

R2
t (ε, f) ≤ P2

t (S) ≤
(EzEz1,z2∈A(z)∥f(z1)− f(z2)∥2

ε
m2

)2

≤
EzEz1,z2∈A(z)∥f(z1)− f(z2)∥22

ε2

m4

=
m4

ε2
EzEz1,z2∈A(z)∥f(z1)− f(z2)∥22. (20)

Apart from that, similar process yields the first inequity to be justified in Lemma A.4:

R2
s(ε, f) ≤

m4

ε2
ExEx1,x2∈A(x)∥f(x1)− f(x2)∥22 =

m4

ε2
Lalign(f).

Furthermore, we can turn out

EzEz1,z2∈A(z)∥f(z1)− f(z2)∥22
= E

x
E

x1,x2∈A(x)
∥f(x1)− f(x2)∥22 + E

z
E

z1,z2∈A(z)
∥f(z1)− f(z2)∥22 − E

x
E

x1,x2∈A(x)
∥f(x1)− f(x2)∥22

=
1

m2

m∑
γ=1

m∑
β=1

{
Ez∥f(Ai(z))− f(Aj(z))∥22 − Ex∥f(Ai(x))− f(Aj(x))∥22

}
+ ExEx1,x2∈A(x)∥f(x1)− f(x2)∥22

=
1

m2

m∑
γ=1

m∑
β=1

d∗∑
l=1

[
Ez

{
fl(Ai(z))− fl(Aj(z))

}2 − Ex

{
fl(Ai(x))− fl(Aj(x))

}2
]
+ ExEx1,x2∈A(x)∥f(x1)− f(x2)∥22,

17
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we subsequently focus on dealing with the first term. Since for all γ ∈ [m], β ∈ [m] and l ∈ [d∗],

Ez

[
fl(Ai(z))− fl(Aj(z))

]2 − Ex

[
fl(Ai(x))− fl(Aj(x))

]2
=

K∑
k=1

[
pt(k)Ez∈Ct(k)

{
fl(Ai(z))− fl(Aj(z))

}2 − ps(k)Ex∈Cs(k)

{
fl(Ai(x))− fl(Aj(x))

}2
]

=

K∑
k=1

[
pt(k)

{
Ez∈Ct(k)

{
fl(Ai(z))− fl(Aj(z))

}2 − Ex∈Cs(k)

{
fl(Ai(x))− fl(Aj(x))

}2︸ ︷︷ ︸
g(x)

}
+
{
pt(k)− ps(k)

}
Ex∈Cs(k)

{
fl(Ai(x))− fl(Aj(x))

}2
]

≤ 8B2MKϵ1 + 4B2
2Kϵ2.

To obtain the last inequality, it suffices to show g(x) ∈ Lip(8B2MK). In fact, we know ∀l ∈ [d∗], fl ∈ Lip(K) as
f ∈ Lip(K), along with the fact that Ai(·) and Aj(·) are both M -Lipschitz continuous according to Assumption 3.5, we
can conclude fl(Ai(·))− fl(Aj(·)) ∈ Lip(2MK). Additionally, note that |fl(Ai(·))− fl(Aj(·))| ≤ 2B2 as ∥f∥2 ≤ B2,
we can turn out outermost quadratic function remains locally 4B2-Lipschitz continuity in [−2B2, 2B2], which implies that
g ∈ Lip(8B2MK). Furthermore, by the definition of Wasserstein distance, we yield

K∑
k=1

[
pt(k)

(
Ez∈Ct(k)

{
fl(Ai(z))− fl(Aj(z))

}2 − Ex∈Cs(k)

{
fl(Ai(x))− fl(Aj(x))

}2
)]
≤ 8B2MKϵ1

K∑
k=1

pt(k) = 8B2MKϵ1,

As for the second term in the last inequality, note that fl(Ai(x))− fl(Aj(x)) ≤ 2B2 to yield

K∑
k=1

[{
pt(k)− ps(k)

}
Ex∈Cs(k)

{
fl(Ai(x))− fl(Aj(x))

}2
]
≤ 4B2

2Kϵ2.

Therefore,

EzEz1,z2∈A(z)∥f(z1)− f(z2)∥22 ≤ ExEx1,x2∈A(x)∥f(x1)− f(x2)∥22 + 8B2d
∗MKϵ1 + 4B2

2d
∗Kϵ2. (21)

Combining (20) and (21) turns out the second inequality of Lemma A.4.

R2
t (ε, f) ≤

m4

ε2
Lalign(f) +

8m4

ε2
B2d

∗MKϵ1 +
4m4

ε2
B2

2d
∗Kϵ2.

To justify the third part of this Lemma, first recall Lemma A.2 that ∀k ∈ [K], ∥µs(k)− µt(k)∥2 ≤
√
d∗MKϵ1. Hence, for

any i ̸= j, we have

|µt(i)⊤µt(j)− µs(i)⊤µs(j)| = |µt(i)⊤µt(j)− µt(i)⊤µs(j) + µt(i)
⊤µs(j)− µs(i)⊤µs(j)|

≤ ∥µt(i)∥2∥µt(j)− µs(j)∥2 + ∥µs(j)∥2∥µt(i)− µs(i)∥2 ≤ 2
√
d∗B2MKϵ1,

so that we can further yield the relationship of class center divergence between the source domain and the target domain as
follows:

max
i̸=j
|µt(i)⊤µt(j)| ≤ max

i̸=j
|µs(i)⊤µs(j)|+ 2

√
d∗B2MKϵ1. (22)

Next, we will attempt to derive an upper bound for maxi ̸=j |µs(i)⊤µs(j)|. LetU =
(√

ps(1)µs(1), . . . ,
√
ps(K)µs(K)

)
∈

Rd∗×K , then

∥∥∥ K∑
k=1

ps(k)µs(k)µs(k)
⊤ − Id∗

∥∥∥2
F
= ∥UU⊤ − Id∗∥2F

= Tr(UU⊤UU⊤ − 2UU⊤ + Id∗) (∥A∥2F = Tr(A⊤A)))
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= Tr(U⊤UU⊤U − 2U⊤U) + Tr(IK) + d∗ −K (Tr(AB) = Tr(BA))

≥ ∥U⊤U − IK∥2F (d∗ > K)

=

K∑
k=1

K∑
l=1

(
√
ps(k)ps(l)µs(k)

⊤µs(l)− δkl)2

≥ ps(i)ps(j)(µs(i)⊤µs(j))2.

Therefore,

(µs(i)
⊤µs(j))

2 ≤

∥∥∥∑K
k=1 ps(k)µs(k)µs(k)

⊤ − Id∗
∥∥∥2

F

ps(i)ps(j)

=

∥∥∥E
x

E
x1,x2∈A(x)

{f(x1)f(x2)
⊤} − Id∗ +

K∑
k=1

ps(k)µs(k)µs(k)
⊤ − E

x
E

x1,x2∈A(x)
{f(x1)f(x2)

⊤}
∥∥∥2

F

ps(i)ps(j)

≤
2
∥∥∥E

x
E

x1,x2∈A(x)
{f(x1)f(x2)

⊤} − Id∗
∥∥∥2

F
+ 2

∥∥∥ K∑
k=1

ps(k)µs(k)µs(k)
⊤ − E

x
E

x1,x2∈A(x)
{f(x1)f(x2)

⊤}
∥∥∥2

F

ps(i)ps(j)
(23)

For the term
∥∥∥∑K

k=1 ps(k)µs(k)µs(k)
⊤ − ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]
∥∥∥2
F

, note that

=

K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x){f(x1)f(x1)
⊤} −

K∑
k=1

ps(k)µs(k)µs(k)
⊤

+

K∑
k=1

ps(k)Ex∈Cs(k)Ex1,x2∈A(x)[f(x1){f(x2)− f(x1)}⊤]

=

K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)[{f(x1)− µs(k)}{f(x1)− µs(k)}⊤] + ExEx1,x2∈A(x)[f(x1){f(x2)− f(x1)}⊤],

(24)

where the last equation is derived from

Ex∈Cs(k)Ex1∈A(x){f(x1)f(x1)
⊤} − µs(k)µs(k)⊤ = Ex∈Cs(k)Ex1∈A(x){f(x1)f(x1)

⊤}+ µs(k)µs(k)
⊤

−
(
Ex∈Cs(k)Ex1∈A(x){f(x1)}

)
µs(k)

⊤ − µs(k)
(
Ex∈Cs(k)Ex1∈A(x){f(x1)}

)⊤
= Ex∈Cs(k)Ex1∈A(x)[{f(x1)− µs(k)}{f(x1)− µs(k)}⊤].

So its norm is∥∥∥ K∑
k=1

ps(k)µs(k)µs(k)
⊤ − ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]
∥∥∥
F

≤
K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)[∥{f(x1)− µs(k)}{f(x1)− µs(k)}⊤∥F ] + ExEx1,x2∈A(x)[∥f(x1){f(x2)− f(x1)}⊤∥F ]

≤
K∑
k=1

ps(k) E
x∈Cs(k)

E
x1∈A(x)

{
∥f(x1)− µs(k)∥22

}
+ E

x
E

x1,x2∈A(x)

{
∥f(x1)∥2∥f(x2)− f(x1)∥2

}
≤

K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)

{
∥f(x1)− µs(k)∥22

}
+

{
ExEx1∈A(x)∥f(x1)∥22

} 1
2
{
ExEx1,x2∈A(x)∥f(x2)− f(x1)∥22

} 1
2

≤
K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)

[
∥f(x1)− µs(k)∥22

]
+B2

[
ε2 + ExEx1,x2∈A(x)

[
∥f(x2)− f(x1)∥221{x ̸∈ Ss(ε, f)}

]] 1
2
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Unsupervised Transfer Learning via Adversarial Contrastive Training(
Review that Ss(ε, f) := {x ∈ ∪Kk=1Cs(k) : sup

x1,x2∈A(x)

∥f(x1)− f(x2)∥2 ≤ ε}
)

≤
K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)

{
∥f(x1)− µs(k)∥22

}
+B2

[
ε2 + 4B2

2Ex

[
1{x ̸∈ Ss(ε, f)}

]] 1
2

=

K∑
k=1

ps(k)Ex∈Cs(k)Ex1∈A(x)

[
∥f(x1)− µs(k)∥22

]
+B2(ε

2 + 4B2
2Rs(ε, f))

1
2

≤ 4B2
2

K∑
k=1

ps(k)
{(

1− σs +
Kδs
2B2

+
ε

B2
+
Rs(ε, f)

ps(k)

)2

+
(
1− σs +

Rs(ε, f)

ps(k)

)}
+B2{ε2 + 4B2

2Rs(ε, f)}
1
2

(Lemma A.3)

= 4B2
2

{(
1− σs +

Kδs + 2ε

2B2

)2

+ (1− σs) +KRs(ε, f)
(
3− 2σs +

Kδs + 2ε

B2

)
+R2

s(ε, f)
( K∑
k=1

1

ps(k)

)}
+B2{ε2 + 4B2

2Rs(ε, f)}
1
2

If we define φ(σs, δs, ε, f) := 4B2
2

{(
1 − σs + Kδs+2ε

2B2

)2

+ (1 − σs) + KRs(ε, f)
(
3 − 2σs + Kδs+2ε

B2

)
+

R2
s(ε, f)

(∑K
k=1

1
ps(k)

)}
+B2(ε

2 + 4B2
2Rs(ε, f))

1
2 , above derivation implies

∥∥∥ K∑
k=1

ps(k)µs(k)µs(k)
⊤ − ExEx1,x2∈A(x){f(x1)f(x2)

⊤}
∥∥∥
F
≤ φ(σs, δs, ε, f). (25)

Besides that, Note that

R =
∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]− Id∗
∥∥∥2
F
, (26)

Combining (23), (24), (25) and (26) yields for any i ̸= j

(µs(i)
⊤µs(j))

2 ≤ 2

ps(i)ps(j)

{
R(f) + φ(σs, δs, ε, f)

}
,

which implies that

max
i ̸=j
|µs(i)⊤µs(j)| ≤

√
2

mini ̸=j ps(i)ps(j)

{
R(f) + φ(σs, δs, ε, f)

}
.

So we can get what we desired according to (22)

max
i ̸=j
|µt(i)⊤µt(j)| ≤

√
2

mini ̸=j ps(i)ps(j)

{
R(f) + φ(σs, δs, ε, f)

}
+ 2
√
d∗B2MKϵ1.

Next we present the population theorem as follows, which is a direct corollary of Lemma A.4 because of the facts that
R(f) ≲ L(f) and Lalign(f) ≲ L(f).
Theorem A.5. Given a (σs, σt, δs, δt)-augmentation, if d∗ > K, Assumption 3.5 holds and the encoder f with B1 ≤
∥f∥2 ≤ B2 is K-Lipschitz continuous, then for any ε > 0,

max
i̸=j
|µt(i)⊤µt(j)| ≲

√
L(f) + φ(σs, δs, ε, f) +Kϵ1.

Furthermore, if maxi ̸=j µt(i)
⊤µt(j) < B2

2ψ(σt, δt, ε, f), then the misclassification rate of Qf

Err(Qf ) ≤ (1− σt) +O
(
{Lalign(f) +Kϵ1 + ϵ2}/ε2

)
,

where the specific formulations of φ(σs, δs, ε, f) and ψ(σt, δt, ε, f) can be found in Lemma A.4 and Lemma A.1, respectively.
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A.3. Proof of Theorem 3.9

In this section, we focus on providing the proof of Theorem 3.9. Although Lemma A.4 elucidates some essential factors
behind the success of our method, its analysis remains at the population level, leaving the impact of sample size on Err(Qf̂ns

)

unresolved. To further explore this, applying Theorem A.5 yields Lemma A.6, indicating that investigating the sample
complexity of ED̃s

{L(f̂ns
)} is a correct direction towards our goal.

However, there are two main challenges that hinder this exploration. The first is L(f∗), which represents the gap between
L(f̂ns

) and the excess risk E(f̂ns
) defined in the Definition A.13. defined in Definition A.13. Since the excess risk can be

addressed through typical error decomposition techniques and tools from nonparametric statistics, we aim to construct a
measurable function under Assumption 3.3 that makes L(f∗) vanish, vanish, rather than directly assuming this term can be
well-implemented by a specific neural network in HaoChen & Ma (2023).

The second issue stems from bias. To tackle this problem, we develop a novel risk decomposition in Section A.3.3. Utilizing
this technique, ED̃s

{E(f̂ns)} can be decomposed into three parts: statistical error: Esta, approximation error brought by F :

EF and the error induced by using Ĝ(f) to approximate G(f): EG . We subsequently address each term in succession. For
Esta, we apply standard empirical process techniques and leverage results from Golowich et al. (2018) in A.3.4 to bound it
by K

√
L√
ns

. Regarding EF , we first reformulate the problem as a function approximation issue and adopt existing conclusions

from Jiao et al. (2023), yielding a bound of EF in Section A.3.5. By leveraging the property ED̃s
[L̂(f,G)] = L(f,G), , we

transform the problem of bounding ED̃s
{EG} into a common problem of mean convergence rate, further controlling it by

1
ns

1/4 in Section A.3.6.

After completing these preliminaries, we balance these errors to determine appropriate values for the width W , depth D
and the Lipschitz constant K of the neural network while establishing an end-to-end upper bound for ED̃s

{E(f̂ns
)}, More

details are deferred to Seciton A.3.7. Finally, Lemma A.20 presents the formal version of Theorem 3.9, with the connection
between Lemma A.20 and Theorem 3.9 detailed in A.3.8.

As stated above, we apply Theorem A.5 to the sample optimizer f̂ns
to yield Lemma A.6.

Lemma A.6. Given a (σs, σt, δs, δt)-augmentation, for any ε > 0, if ψ(σt, δt, ε, f̂ns) > 0, then with probability at least

1−

√
2

mini̸=j ps(i)ps(j)
[ 1λE

D̃s
{L(f̂ns )}+ϕ(σs,δs,ε,f̂ns )]+2

√
d∗B2MKϵ1

B2
2ψ(σt,δt,ε,f̂ns )

, we have

ED̃s
{Err(Qf̂ns

)} ≤ (1− σt) +
m2

ε

√
ED̃s
{L(f̂ns

)}+ 8B2d∗MKϵ1 + 4B2
2d

∗Kϵ2,

where

ϕ(σs, δs, ε, f̂ns
) := B2

(
ε2 + 4B2

2

m2

ε

√
ED̃s
{L(f̂ns

)}
) 1

2

+ 4B2
2

[(
1− σs +

Kδs + 2ε

2B2

)2

+ (1− σs) +
Km2

ε

√
ED̃s
{L(f̂ns

)}
(
3− 2σs +

Kδs + 2ε

B2

)
+
m4

ε2
ED̃s
{L(f̂ns

)}
( K∑
k=1

1

ps(k)

)]
.

In addition, the following inequalities always hold

ED̃s
{R2

t (ε, f̂ns
)} ≤ m4

ε2

(
ED̃s
{L(f̂ns

)}+ 8B2d
∗MKϵ1 + 4B2

2d
∗Kϵ2

)
.

Proof. Applying Lemma A.4 to f̂ns yields

R2
s(ε, f̂ns

) ≤ m4

ε2
L(f̂ns

) (27)

R2
t (ε, f̂ns

) ≤ m4

ε2
L(f̂ns

) +
8m4

ε2
B2d

∗MKϵ1 +
4m4

ε2
B2

2d
∗Kϵ2 (28)
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and

max
i ̸=j
|µt(i)⊤µt(j)| ≤

√
2

mini̸=j ps(i)ps(j)

( 1

λ
L(f̂ns

) + φ(σs, δs, ε, f̂ns
)
)
+ 2
√
d∗B2MKϵ1 (29)

Take expectation regarding to Ds on the both sides of (27), (28) and (29), along with the Jensen’s inequality to obtain

ED̃s
{R2

s(ε, f̂ns)} ≤
m4

ε2
ED̃s
{L(f̂ns)}

ED̃s
{R2

t (ε, f̂ns
)} ≤ m4

ε2
ED̃s
{L(f̂ns

)}+ 8m4

ε2
B2d

∗MKϵ1 +
4m4

ε2
B2

2d
∗Kϵ2

ED̃s
[max
i ̸=j
|µt(i)⊤µt(j)|] ≤

√√√√ 2

min
i̸=j

ps(i)ps(j)

( 1

λ
ED̃s
{L(f̂ns

)}+ ED̃s
[φ(σs, δs, ε, f̂ns

)]
)
+ 2
√
d∗B2MKϵ1

where ED̃s
{φ(σs, δs, ε, f̂ns

)} = 4B2
2

[(
1 − σs + Kδs+2ε

2B2

)2

+ (1 − σs) + KED̃s
{Rs(ε, f̂ns

)}
(
3 − 2σs +

Kδs+2ε
B2

)
+

ED̃s
{R2

s(ε, f̂ns
)}
(∑K

k=1
1

ps(k)

)]
+B2ED̃s

[{ε2 + 4B2
2Rs(ε, f̂ns

)} 1
2 ].

Therefore, by Jensen inequality, we have

ED̃s
{φ(σs, δs, ε, Rs(ε, f̂ns

))} ≤ 4B2
2

[(
1− σs +

Kδs + 2ε

2B2

)2

+ (1− σs) +KED̃s
[Rs(ε, f̂ns

)]
(
3− 2σs +

Kδs + 2ε

B2

)
+ ED̃s

[R2
s(ε, f̂ns

)]
( K∑
k=1

1

ps(k)

)]
+B2[ε

2 + 4B2
2ED̃s

{Rs(ε, f̂ns
)}] 12

≤ 4B2
2

[(
1− σs +

Kδs + 2ε

2B2

)2

+
Km2

ε

√
ED̃s
{L(f̂ns)}

(
3− 2σs +

Kδs + 2ε

B2

)
+
m4

ε2
ED̃s
{L(f̂ns)}

( K∑
k=1

1

ps(k)

)]
+ (1− σs) +B2

(
ε2 +

4B2
2m

2

ε

√
ED̃s
{L(f̂ns

)}
) 1

2

:= ϕ(σs, δs, ε, f̂ns
).

Since Lemma A.1 reveals that if maxi ̸=j |(µt(i))⊤µt(j)| < B2
2ψ(σt, δt, ε, f̂ns), then Err(Qf̂ns

) ≤ (1 − σt) +

Rt(ε, f̂ns). Thus, if ψ(σt, δt, ε, f̂ns) > 0, by Markov inequality, we know that with probability at least 1 −√
2

mini̸=j ps(i)ps(j)

(
1
λE

D̃s
{L(f̂ns )}+ϕ(σs,δs,ε,f̂ns )

)
+2

√
d∗B2MKϵ1

B2
2ψ(σt,δt,ε,f̂ns )

, maxi̸=j |µt(i)⊤µt(j)| < B2
2ψ(σt, δt, ε, f̂ns), which im-

plies that

ED̃s
{Err(Qf̂ns

)} ≤ (1− σt) +Rt(ε, f̂ns
) ≤ (1− σt) +

m2

ε

√
ED̃s
{L(f̂ns

)}+ 8B2d∗MKϵ1 + 4B2
2d

∗Kϵ2,

where the last inequality stems from (28).

Therefore, to justify Theorem 3.9, we need to explore the sample complexity of ED̃s
{L(f̂ns

)}. To this end, it is necessary
to introduce some basic facts about ACT and learning theory.

A.3.1. PRELIMINARIES FOR PROVING THEOREM 3.9

Recall that for any x ∈ Xs,x1,x2
i.i.d.∼ A(x), x̃ = (x1,x2) ∈ R2d∗ . If we define ℓ(x̃, G) := ∥f(x1)− f(x2)∥22 +

λ⟨f(x1)f(x2)
⊤ − Id∗ , G⟩F , then our loss function at sample level can be rewritten as

L̂(f,G) := 1

ns

ns∑
i=1

{
∥f(x(i)

1 )− f(x(i)
2 )∥22 + λ⟨f(x(i)

1 )f(x
(i)
2 )⊤ − Id∗ , G⟩F

}
=

1

ns

ns∑
i=1

ℓ(x̃(i), G),

moreover, let G1 := {G ∈ Rd∗×d∗ : ∥G∥F ≤ B2
2 +
√
d∗}. It is obvious that both G(f) for any f : ∥f∥2 ≤ B2 and Ĝ(f)

for any f ∈ NN d,d∗(W,L,K, B1, B2) are the subset of G1. In this regard, following Proposition A.7 reveals that ℓ(u, G)
is a Lipschitz function on the domain {u ∈ R2d∗ : ∥u∥2 ≤

√
2B2} × G1 ⊆ R2d∗+(d∗)2 .
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Proposition A.7. ℓ is a Lipschitz function on the domain {u ∈ R2d∗ : ∥u∥2 ≤
√
2B2} × G1.

Proof. We begin by proving that ∥ℓ(·, G)∥Lip < ∞ for any fixed G ∈ G1. To this end, let u = (u1,u2), where
u1,u2 ∈ Rd∗ . We first demonstrate that J(u) = ∥u1 − u2∥22 is a Lipschitz function. Define g(u) := u1 − u2. We have:

∥g(u)− g(v)∥22 = ∥u1 − u2 − v1 + v2∥22 ≤ (∥u1 − v1∥2 + ∥u2 − v2∥2)2

= ∥u1 − v1∥22 + ∥u2 − v2∥22 + 2∥u1 − v1∥2∥u2 − v2∥2
≤ 2

(
∥u1 − v1∥22 + ∥u2 − v2∥22

)
= 2∥u− v∥22,

which implies that g(u) ∈ Lip(
√
2). Furthermore, g possesses the property that ∥g(u)∥2 = ∥u1−u2∥2 ≤ ∥u1∥2+∥u2∥2 ≤

2∥u∥2 ≤ 2
√
2B2. Next, let h(v) := ∥v∥22. We have:∥∥∥∥∂h∂v (g(u))

∥∥∥∥
2

= 2∥g(u)∥2 ≤ 4
√
2B2.

Thus, J(u) = h(g(u)) = ∥u1 − u2∥22 ∈ Lip(8B2). Now, we show that Q(u) = ⟨u1u
⊤
2 − Id∗ , G⟩F is also a Lipschitz

function. Define g̃(u) := u1u
⊤
2 . We have:

∥g̃(u)− g̃(v)∥F = ∥u1u
⊤
2 − v1v

⊤
2 ∥F = ∥u1u

⊤
2 − u1v

⊤
2 + u1v

⊤
2 − v1v

⊤
2 ∥F

= ∥u1(u2 − v2)
⊤ + (u1 − v1)v

⊤
2 ∥F ≤ ∥u1∥F ∥u2 − v2∥F + ∥u1 − v1∥F ∥v2∥F

≤ (∥u1∥2 + ∥v2∥2)∥u− v∥2 ≤ 2
√
2B2∥u− v∥2.

Subsequently, denote h̃(A) := ⟨A − Id∗ , G⟩F . Then, we find that ∥∇h̃(A)∥F = ∥G∥F ≤ B2
2 +
√
d∗. Therefore, we

conclude thatQ(u) = h̃(g̃(u)) ∈ Lip(2
√
2B2(B

2
2 +
√
d∗)). Combining the above results, we establish that for anyG ∈ G1,

we have ∥ℓ(·, G)∥Lip <∞ on the domain {u : ∥u∥2 ≤
√
2B2}. Next, for a fixed u ∈ R2d∗ such that ∥u∥2 ≤

√
2B2, we

obtain:

|ℓ(u, G1)− ℓ(u, G2)| = |⟨u, G1 −G2⟩F | ≤ ∥u∥2∥G1 −G2∥F =
√
2B2∥G1 −G2∥F ,

which implies that ℓ(u, ·) ∈ Lip(
√
2B2). Finally, we note that:

|ℓ(u1, G1)− ℓ(u2, G2)|2 ≤ {|ℓ(u1, G1)− ℓ(u2, G1)|+ |ℓ(u2, G1)− ℓ(u2, G2)|}2

≤
[{√

2 + 2
√
2B2(B

2
2 +
√
d∗)

}
∥u1 − u2∥2 +

√
2B2∥G1 −G2∥F

]2
≤ 2

{√
2 + 2

√
2B2(B

2
2 +
√
d∗)

}2∥u1 − u2∥22 + 4B2
2∥G1 −G2∥2F

≤ C∥vec(u1, G1)− vec(u2, G2)∥22,

where C is a constant such that C ≥ max
{
2{
√
2 + 2

√
2B2(B

2
2 +
√
d∗)}2, 4B2

2

}
, thus yielding the desired result.

We summary the Lipschitz constants of ℓ(u, G) with respect to u ∈ {u ∈ R2d∗ : ∥u∥2 ≤
√
2B2} and G ∈ G1 in Table 3.

Table 3. Lipschitz constant of ℓ with respect to each component

Function Lipschitz Constant

ℓ(u, ·)
√
2B2

ℓ(·, G) 2
√
2B2(B

2
2 +
√
d∗)

ℓ(·) max
{√

2B2, 2
√
2B2(B

2
2 +
√
d∗)

}

Following Definition A.8, A.10 and Lemma A.9, A.11 are all typical elements in the area of learning theory.
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Definition A.8 (Rademacher complexity). Given a set S ⊆ Rn, the Rademacher complexity of S is denoted by

Rn(S) := Eξ
[

sup
(s1,...,sn)∈S

1

n

n∑
i=1

ξisi
]
,

where {ξi}i∈[n] is a sequence of i.i.d Radmacher random variables which take the values 1 and −1 with equal probability
1/2.

Following vector-contraction principle of Rademacher complexity will be used in later contents.

Lemma A.9 (Vector-contraction principle). Let X be any set, (x1, . . . , xn) ∈ Xn, let F be a class of functions f : X → ℓ2
and let hi : ℓ2 → R have Lipschitz norm L. Then

E sup
f∈F

∣∣∑
i

ϵihi(f(xi))
∣∣ ≤ 2

√
2LE sup

f∈F

∣∣∑
i,k

εikfk(xi)
∣∣,

where ϵik is an independent doubly indexed Rademacher sequence and fk(xi) is the k-th component of f(xi).

Proof. Combining Maurer (2016) and Theorem 3.2.1 of Giné & Nickl (2016) obtains the desired result.

Definition A.10 (Covering number). ∀n ∈ N+, Fix S ⊆ Rn and ϱ > 0, the set N is called an ϱ-net of S with respect to a
norm ∥·∥ on Rn, if N ⊆ S and for any u ∈ S, there exists v ∈ N such that ∥u− v∥ ≤ ϱ. The covering number of S is
defined as

N (S, ∥·∥, ϱ) := min{|Q| : Q is an ϱ-cover of S}

where |Q| is the cardinality of the set Q.

According to the Corollary 4.2.13 of Vershynin (2018), |N (B2, ∥·∥2, ϱ)|, which is the the covering number of 2-norm unit
ball in R(d∗)2 , can be bounded by ( 3ϱ )

(d∗)2 , so that if we denote NG1(ϱ) is a cover of G1 with radius ϱ whose cardinality

|NG1
(ϱ)| is equal to the covering number of G1, then |NG1

(ϱ)| ≤
{

3
(B2

2+
√
d∗)ϱ

}(d∗)2

.

Lemma A.11 (Finite maximum inequality). For any N ≥ 1, if Xi, i ≤ N , are sub-Gaussian random variables admitting
constants σi, then

Emax
i≤N
|Xi| ≤

√
2 log 2N max

i≤N
σi

The proof of this lemma can be found in Giné & Nickl (2016), Lemma 2.3.4.

Recall NN d1,d2(W,L,K) := {fθ(x) = ALσ(AL−1σ(· · ·σ(A0x)) : κ(θ) ≤ K}, as defined in eq 10. The second
lemma we will employ is related to the upper bound for the Rademacher complexity of the hypothesis space consisting of
norm-constrained neural networks, which was provided by Golowich et al. (2018).

Lemma A.12 (Theorem 3.2 of Golowich et al. (2018)). ∀n ∈ N+,∀x1, . . . ,xn ∈ [−B,B]d with B ≥ 1, S :=
{(f(x1), . . . , f(xn)) : f ∈ NN d,1(W,L,K)} ⊆ Rn, then

Rn(S) ≤
1

n
K
√
2(L+ 2 + log(d+ 1)) max

1≤j≤d+1

√√√√ n∑
i=1

x2i,j ≤
BK

√
2(L+ 2 + log(d+ 1))√

n
,

where xi,j is the j-th coordinate of the vector (x⊤
i , 1)

⊤ ∈ Rd+1.

Definition A.13 (Excess risk). The difference between L(f̂ns
) and L(f∗) is called excess risk, i.e.,

E(f̂ns) = L(f̂ns)− L(f∗).
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A.3.2. DEAL WITH L(f∗)

Since our objective is to explore the sample complexity of ED̃s
{L(f̂ns

)}, it is essential to assert thatL(f∗) = 0. This ensures
that the tools used to analyze ED̃s

{E(f̂ns
)} are also applicable for handling ED̃s

{L(f̂ns
)}. The justification comprises a

total of two steps. First, we assert that if there exists a measurable map f such that Σ = Ex∼Ps [f(x)f(x)
⊤] be positive

definite,then we can make minor modifications to obtain f̃ such that L(f̃) = 0. In the second step, we will demonstrate that
the required f exists under Assumption 3.3, and that the modified f̃ also satisfies the condition B1 ≤ ∥f̃∥2 ≤ B2, which
implies that L(f∗) = 0, since the definition of f∗ indicates that L(f∗) ≤ L(f̃).

Our final target is to result in a measurable map f , s.t B1 ≤ ∥f∥2 ≤ B2 and supf∈G(f) L(f) = 0, it suffices to find a

f : B1 ≤ ∥f∥2 ≤ B2 satisfying both Lalign(f) = 0 and
∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]− Id∗
∥∥∥
F
= 0. Note that

∥∥∥ExEx1,x2∈A(x){f(x1)f(x2)
⊤} − Id∗

∥∥∥
F

=
∥∥∥ExEx1,x2∈A(x){f(x1)f(x1)

⊤}+ ExEx1,x2∈A(x)

[
f(x1){f(x2)− f(x1)}⊤

]
− Id∗

∥∥∥
F

≤
∥∥∥ExEx1∈A(x){f(x1)f(x1)

⊤} − Id∗
∥∥∥
F
+ ExEx1,x2{∥f(x1)∥2∥f(x1)− f(x2)∥2}

≤
∥∥∥ExEx′∈A(x){f(x′)f(x′)⊤} − Id∗

∥∥∥
F
+B2ExEx1,x2∥f(x1)− f(x2)∥2. (∥f∥2 ≤ B2)

The above deduction indicates that finding a measurable map f such that B1 ≤ ∥f∥2 ≤ B2 and ensuring both Lalign(f)

and
∥∥∥ExEx′∈A(x){f(x′)f(x′)⊤} − Id∗

∥∥∥
F

vanish is sufficient to achieve our goal.

Lemma A.14. If there exists a measurable map f making Σ = Ex∼Ps
{f(x)f(x)⊤} positive definite, then there exists a

measurable map f̃ such that

Lalign(f̃) = 0, ∥ExEx′∈A(x){f̃(x′)f̃(x′)⊤} − Id∗∥F = 0.

Proof. We conduct modifications for given f as follows: For any x ∈ X , define

f̃x(x
′) =

{
V −1f(x) if x′ ∈ A(x)
f(x) if x′ ̸∈ A(x)

where Σ = V V ⊤, which is the Cholesky decomposition of Σ, which is evident well-defined as Σ is positive definite.
Iteratively repeat this argument for all x ∈ X to yield f̃ , then we have

ExEx′∈A(x){f̃(x′)f̃(x′)⊤} = V −1Ex{f(x)f(x)⊤}V −T = Id∗

and

∀x ∈ X ,x1,x2 ∈ A(x), ∥f̃(x1)− f̃(x2)∥2 = ∥f̃(x)− f̃(x)∥2 = 0.

That is precisely what we desire.

Remark A.15. If we have a measurable partition X = ∪d∗i=1Pi stated in Assumption 3.3 such that Pi ∩ Pj = ∅ and
∀i ∈ [d∗], 1

B2
2
≤ Ps(Pi) ≤ 1

B2
1

, just set the f(x) = ei if x ∈ Pi, where ei is the standard basis of Rd∗ , then Σ =

diag{Ps(P1), . . . ,Ps(Pi), . . . ,Ps(Pd∗)}, V −1 = diag{
√

1
Ps(P1)

, . . . ,
√

1
Ps(Pi)

, . . . ,
√

1
Ps(Pd∗)

}, f̃(x) =
√

1
Ps(Pi)

ei if

x ∈ Pi, it is obviously that B1 ≤ ∥f̃∥2 ≤ B2.

In this context, exploring the sample complexity of ED̃s
{E(f̂ns

)} is equivalent to investigating ED̃s
{L(f̂ns

)}. However,

the unbiasedness between L̂(f) and L(f) hinders our ability to analyze ED̃s
{E(f̂ns)}. To address this issue, we develop

the following novel risk decomposition.decomposition.
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A.3.3. RISK DECOMPOSITION

If denote Ĝ(f) = 1
ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − Id∗ and G∗(f) = ExEx1,x2∈A(x)[f(x1)f(x2)

⊤]− Id∗ , we can decompose

E(f̂ns
) into three terms shown as follow and then deal each term successively. To achieve conciseness in subsequent

conclusions, we employ X ≲ Y or Y ≳ X to indicate the statement that X ≤ CY form some C > 0 if X and Y are two
quantities.

Lemma A.16. The excess risk E(f̂ns) satisfies

ED̃s
{E(f̂ns)} ≲ 2ED̃s

{ sup
f∈F,G∈Ĝ(f)

|L(f,G)− L̂(f,G)|︸ ︷︷ ︸
statistical error : Esta

}+ inf
f∈F
{L(f)− L(f∗)}︸ ︷︷ ︸

approximation error of F : EF

+ED̃s

[
sup
f∈F
{G∗(f)− Ĝ(f)}

]
︸ ︷︷ ︸

approximation error of G : EG

,

That is,

E(f̂ns
) ≤ Esta + EF + EG .

Proof. Recall F = NN d,d∗(W,L,K, B1, B2), for any f ∈ F ,

L(f̂ns
)− L(f∗) = sup

G∈G(f̂ns )

L(f̂ns
, G)− sup

G∈G(f∗)

L(f∗, G)

=
[

sup
G∈G(f̂ns )

L(f̂ns
, G)− sup

G∈Ĝ(f̂ns )

L(f̂ns
, G)

]
+

[
sup

G∈Ĝ(f̂ns )

L(f̂ns
, G)− sup

G∈Ĝ(f̂ns )

L̂(f̂ns
, G)

]
+
[

sup
G∈Ĝ(f̂ns )

L̂(f̂ns
, G)− sup

G∈Ĝ(f)
L̂(f,G)

]
+

[
sup

G∈Ĝ(f)
L̂(f,G)− sup

G∈Ĝ(f)
L(f,G)

]
+
[

sup
G∈Ĝ(f)

L(f,G)− sup
G∈G(f)

L(f,G)
]
+

[
sup

G∈G(f)
L(f,G)− sup

G∈G(f∗)

L(f∗, G)
]
,

where the second and fourth terms can be bounded by Esta. In fact, regarding to the fourth term, we have

sup
G∈Ĝ(f)

L̂(f,G)− sup
G∈Ĝ(f)

L(f,G) ≤ sup
G∈Ĝ(f)

{L̂(f,G)− L(f,G)} ≤ sup
G∈Ĝ(f)

|L̂(f,G)− L(f,G)|

≤ sup
f∈F,G∈Ĝ(f)

|L̂(f,G)− L(f,G)|,

and the same conclusion holds for the second term.

The summation of first term and fifth term can be bounded by EG . Actually, for the first term

sup
G∈G(f̂ns )

L(f̂ns
, G)− sup

G∈Ĝ(f̂ns )

L(f̂ns
, G) ≤ sup

f∈F
{ sup
G∈G(f)

L(f,G)− sup
G∈Ĝ(f)

L(f,G)}

≤ sup
f∈F
{ sup
G∈G(f)

L(f,G)− L(f, Ĝ(f))} = sup
f∈F
{L(f,G∗(f))− L(f, Ĝ(f))}

≤
√
2B2 sup

f∈F
∥G∗(f)− Ĝ(f)∥F ≤

√
2B2 sup

f∈F

∥∥∥ExEx1,x2∈A(x)[f(x1)f(x2)
⊤]− 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤

∥∥∥
F
. (30)

where the second inequity stems from Ĝ(f) ∈ Ĝ(f) and the third inequality is due to ℓ(u, ·) ∈ Lip(
√
2B2), as outlined in

Table 3. and for the fifth term, we turn out

sup
G∈Ĝ(f)

L(f,G)− sup
G∈G(f)

L(f,G) = sup
G∈Ĝ(f)

ED̃s

{
⟨Ĝ(f), G⟩F

}
− sup
G∈G(f)

⟨G∗(f), G⟩F

≤ ED̃s

{
sup

G∈Ĝ(f)
⟨Ĝ(f), G⟩F

}
− sup
G∈G(f)

⟨G∗(f), G⟩F = ED̃s

{
∥Ĝ(f)∥2F

}
− ∥G∗(f)∥2F

≤ 2(B2
2 +
√
d∗)

(
ED̃s

{
∥Ĝ(f)∥F

}
− ∥G∗(f)∥F

)
≤ 2(B2

2 +
√
d∗)

(
sup
f∈F

[ED̃s

{
∥Ĝ(f)∥F

}
− ∥G∗(f)∥F ]

)
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≲ sup
f∈F

{
ED̃s

[∥∥∥ 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − Id∗

∥∥∥
F
−
∥∥∥ExEx1,x2∈A(x){f(x1)f(x2)

⊤} − Id∗
∥∥∥
F

]}
≤ sup
f∈F

{
ED̃s

[∥∥∥ 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − ExEx1,x2∈A(x){f(x1)f(x2)

⊤}
∥∥∥
F

]}
≤ ED̃s

[
sup
f∈F

{∥∥∥ 1

ns

ns∑
i=1

f(x
(i)
1 )f(x

(i)
2 )⊤ − ExEx1,x2∈A(x){f(x1)f(x2)

⊤}
∥∥∥
F

}]
(31)

where the first equality is due to ⟨G∗(f), G⟩F = ED̃s

{
⟨Ĝ(f), G⟩F

}
and the second inequality is derived from the facts that

∥Ĝ(f)∥F ≤ B2
2 +
√
d∗ and ∥G∗(f)∥F ≤ B2

2 +
√
d∗. Combining (30) and (31) yields ED̃s

{EG}.

Furthermore, the third term supG∈Ĝ(f̂ns )
L̂(f̂ns , G) − supG∈Ĝ(f) L̂(f,G) ≤ 0 because of the definition of f̂ns . Taking

infimum over all f ∈ NN d,d∗(W,L,K, B1, B2) yields

E(f̂ns
) ≲ Esta + EF + EG ,

which completes the proof.

A.3.4. BOUND Esta

Lemma A.17. Regarding to Esta, we have

ED̃s
[Esta] ≲

K
√
L

√
ns

.

Proof. We are going to be introducing the relevant notations at first.

For any f : Rd → Rd∗ , let f̃ : R2d → R2d∗ such that f̃(x̃) = (f(x1), f(x2)), where x̃ = (x1,x2) ∈ R2d. Furthermore,
define F̃ := {f̃ : f ∈ NN d,d∗(W,L,K)} and denote D′

s = {x̃′(i)}ns
i=1 as an independent identically distributed samples

to Ds, which is called as ghost samples of Ds.

Next, we are attempt to establish the relationship between ED̃s
[Esta] and the Rademacher complexity of NN d,d∗(W,L,K).

By the definition of Esta, we have

ED̃s
[Esta] = ED̃s

[
sup

f∈NNd,d∗ (W,L,K,B1,B2),G∈Ĝ(f)
|L(f,G)− L̂(f,G)|

]
≤ ED̃s

[
sup

(f,G)∈NNd,d∗ (W,L,K,B1,B2)×G1

|L(f,G)− L̂(f,G)|
]

(As Ĝ(f) ⊆ G1 for any f ∈ NN d,d∗(W,L,K, B1, B2))

≤ ED̃s

[
sup

(f,G)∈NNd,d∗ (W,L,K)×G1

|L(f,G)− L̂(f,G)|
]

(As NN d,d∗(W,L,K, B1, B2) ⊆ NN d,d∗(W,L,K))

= ED̃s

[
sup

(f̃ ,G)∈F̃×G1

∣∣∣ 1
ns

ns∑
i=1

ED′
s
[ℓ(f̃(x̃′(i)), G)]− 1

ns

ns∑
i=1

ℓ(f̃(x̃(i)), G)
∣∣∣]

≤ EDs,D′
s

[
sup

(f̃ ,G)∈F̃×G1

∣∣∣ 1
ns

ns∑
i=1

ℓ(f̃(x̃′(i)), G)− 1

ns

ns∑
i=1

ℓ(f̃(x̃(i)), G)
∣∣∣]

= EDs,D′
s,ξ

[
sup

(f̃ ,G)∈F̃×G1

∣∣∣ 1
ns

ns∑
i=1

ξi
(
ℓ(f̃(x̃′(i)), G)− ℓ(f̃(x̃(i)), G)

)∣∣∣] (32)

≤ 2EDs,ξ

[
sup

(f̃ ,G)∈F̃×G1

∣∣∣ 1
ns

ns∑
i=1

ξiℓ(f̃(x̃
(i)), G)

∣∣∣]
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≤ 4
√
2∥ℓ∥Lip

(
EDs,ξ

[
sup

f∈NNd,d∗ (W,L,K)

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

ξi,j,1fj(x
(i)
1 ) + ξi,j,2fj(x

(i)
2 )

∣∣∣]
+ Eξ

[
sup
G∈G1

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk

∣∣∣]) (33)

≤ 8
√
2∥ℓ∥LipEDs,ξ

[
sup

f∈NNd,d∗ (W,L,K)

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

ξi,j,1fj(x
(i)
1 )

∣∣∣]+ 4
√
2d∗∥ℓ∥Lipϱ

+ 4
√
2∥ℓ∥LipEξ

[
max

G∈NG1
(ϱ)

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk

∣∣∣] (34)

≤ 8
√
2∥ℓ∥LipEDs,ξ

[
sup

f∈NNd,d∗ (W,L,K)

∣∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

ξi,jfj(x
(i)
1 )

∣∣∣]+ 4
√
2d∗∥ℓ∥Lipϱ

+ 4
√
2(B2

2 +
√
d∗)∥ℓ∥Lip

√
2 log

(
2|NG1

(ϱ)|
)

ns
(35)

≤ 8
√
2d∗∥ℓ∥LipEDs,ξ

[
sup

f∈NNd,1(W,L,K)

∣∣∣ 1
ns

ns∑
i=1

ξif(x
(i)
1 )

∣∣∣]+ 4
√
2d∗∥ℓ∥Lipϱ

+ 4
√
2(B2

2 +
√
d∗)∥ℓ∥Lip

√
2 log

(
2( 3

(B2
2+

√
d∗)ϱ

)(d∗)2
)

n2
(|NG1

(ϱ)| ≤ ( 3
(B2

2+
√
d∗)ϱ

)(d
∗)2 )

≲
K
√
L

√
ns

+

√
log ns
ns

(Lemma A.12 and set ϱ = O(1/√ns))

≲
K
√
L

√
ns

(If K ≳
√
log ns)

Where (32) stems from the fact that ξi
(
ℓ(f̃(x̃′(i)), G) − ℓ(f̃(x̃(i)), G)

)
has identical distribution with ℓ(f̃(x̃′(i)), G) −

ℓ(f̃(x̃(i)), G). As we have shown that ∥ℓ∥Lip <∞, just apply Lemma A.9 to obtain (33). Regarding 34, as NG1(ϵ1) is a
ϵ1-covering, for any fixed G ∈ G1, we can find a HG ∈ NG1

(ϵ1) satisfying ∥G−HG∥F ≤ ϵ1, therefore we have

Eξ
[
max
G∈G1

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,k
{
(HG)jk +Gjk − (HG)jk

}∣∣]
≤ Eξ

{
max
G∈G1

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,k(HG)jk
∣∣}+ Eξ

{
max
G∈G1

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,k
{
Gjk − (HG)jk

}∣∣}

≤ Eξ
{

max
G∈NG1

(ϵ1)

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk
∣∣}+

1

ns

√
(d∗)2ns

√√√√ns

d∗∑
j=1

d∗∑
k=1

{
Gjk − (HG)jk

}2

(Cauchy-Schwarz inequality)

≤ Eξ
{

max
G∈NG1

(ϵ1)

∣∣ 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk
∣∣}+ d∗ϵ1.

To turn out the last term of (35), notice that ∥G∥F ≤ B2
2 +
√
d∗ implies that

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk ∼ subG(B2
2 +
√
d∗),

therefore 1
ns

ns∑
i=1

d∗∑
j=1

d∗∑
k=1

ξi,j,kGjk ∼ subG(B2
2 +
√
d∗), just apply Lemma A.11 to finish the proof.
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A.3.5. BOUND EF

If we denote

E(Hα,NN d,1(W,L,K)) := sup
g∈Hα

inf
f∈NNd,1(W,L,K)

∥f − g∥C([0,1]d),

where C([0, 1]d) is the space of continuous functions on [0, 1]d equipped with the sup-norm. Theorem 3.2 of Jiao et al.
(2023) has already proven E(Hα,NN d,1(W,L,K)) can be bound by a quantity related to K when setting appropriate
architecture of network, that is

Lemma A.18 (Theorem 3.2 of Jiao et al. (2023)). Let d ∈ N and α = r + β > 0, where r ∈ N0 and β ∈ (0, 1]. There
exists c > 0 such that for any K ≥ 1, any W ≥ cK(2d+α)/(2d+2) and L ≥ 2⌈log2(d+ r)⌉+ 2,

E(Hα,NN d,1(W,L,K)) ≲ K−α/(d+1).

For utilizing this conclusion, first notice that

inf
f∈NNd,d∗ (W,L,K)

∥f(u)− f∗(u)∥2 = inf
f∈NNd,d∗ (W,L,K)

√√√√ d∗∑
i=1

{fi(u)− f∗i (u)}2

≤ inf
f∈NNd,d∗ (W,L,K)

√√√√ d∗∑
i=1

∥fi − f∗i ∥2C([0,1]d)
≤ sup
g∈Hα

inf
f∈NNd,d∗ (W,L,K)

√√√√ d∗∑
i=1

∥fi − g∥2C([0,1]d)

≤ sup
g∈Hα

√√√√ d∗∑
i=1

inf
f∈NNd,1(⌊W/d∗⌋, L,K)

∥f − g∥2
C([0,1]d)

≤
√
d∗E(Hα,NN d,1(⌊W/d∗⌋, L,K)) ≲ K−α/(d+1),

where the third to last line inequality is from following reason: if fi ∈ NN d,1(⌊W/d∗⌋, L,K), where i ∈ [d∗], whose
parameter are independent with each other, then their concatenation f = (f1, f2, · · · , fd∗)⊤ can be regarded as an elements
of NN d,d∗(W,D,K) with specific parameters, by following Proposition A.19, we have f ∈ NN d,d∗(W,L,K).
Proposition A.19 ((iii) of Proposition 2.5 in Jiao et al. (2023)). Let f1 ∈ NN d,d∗1

(w1, L1,K1) and f2 ∈
NN d,d∗2

(W2, L2,K2), define f(x) := (f1(x), f2(x)), then f ∈ NN d,d∗1+d
∗
2
(W1 +W2,max{L1, L2},max{K1,K2}).

Above conclusion implies optimal approximation element of f∗ in NN d,d∗(W,L,K) can be arbitrarily close to f∗ under
the setting that K is large enough. Hence we can conclude optimal approximation element of f∗ is also contained in
F = NN d,d∗(W,L,K, B1, B2) as the setting that B1 ≤ ∥f∗∥2 ≤ B2.

Therefore, if we denote

T (f) := ExEx1,x2∈A(x){∥f(x1)− f(x2)∥22}+ λ∥ExEx1,x2∈A(x){f(x1)f(x2)
⊤} − Id∗∥2F ,

we can yield the upper bound of EF by following deduction

EF = inf
f∈F
{ sup
G∈G(f)

L(f,G)− sup
G∈G(f∗)

L(f∗, G)} = inf
f∈F
{T (f)− T (f∗)} = inf

f∈NNd,d∗ (W,L,K)
{T (f)− T (f∗)}

≤ ∥ℓ∥Lip inf
f∈NNd,d∗ (W,L,K)

ExEx̃∥f̃(x̃)− f̃∗(x̃)∥2 ≤ ∥ℓ∥Lip inf
f∈NNd,d∗ (W,L,K)

ExEx′∈A(x)

√√√√2

d∗∑
i=1

{fi(x′)− f∗i (x′)}2

≤
√
2d∗∥ℓ∥Lip sup

g∈Hα

inf
f∈NNd,1(⌊W/d∗⌋, L,K/

√
d∗)
∥f − g∥C([0,1]d) ≤

√
2d∗∥ℓ∥LipE(Hα,NN d,1(⌊W/d∗⌋, L,K/

√
d∗))

≲ K−α/(d+1).

where the first inequality is because of Proposition A.7.
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A.3.6. BOUND EG

LetM(u) = u1u
⊤
2 , u1,u2 ∈ Rd∗ , which is a Lipchitz map on {u ∈ R2d∗ : u ≤

√
2B2}, as presented in Proposition A.7.

Then

ED̃s
{EG} ≲ ED̃s

[
sup
f∈F

∥∥∥ExEx1,x2∈A(x)

[ 1

ns

ns∑
i=1

{
M(f̃(x̃))−M(f̃(x̃(i)))

}]∥∥∥
F

]
≤ ∥M∥LipED̃s

[∥∥∥ExEx1,x2∈A(x){f̃(x̃)} −
1

ns

ns∑
i=1

f̃(x̃(i))
∥∥∥
2

]
Furthermore, according to the multidimensional Chebyshev’s inequality, we turn out that Ps

(∥∥ 1
ns

∑ns

i=1 f̃(x̃
(i)) −

ExEx1,x2∈A(x){f̃(x̃)}
∥∥
2
≥ 1

n
1/4
s

)
≤ E∥f̃(x̃)−E{f̃(x̃)}∥2

2√
ns

≤ 8B2
2√
ns

as ∥f̃(x̃)∥2 ≤
√
2B2. Thus we have

ED̃s
{EG} ≲

1

n
1/4
s

· Ps
(∥∥ 1

ns

ns∑
i=1

f̃(x̃(i))− ExEx1,x2∈A(x){f̃(x̃)}
∥∥
2
≥ 1

n
1/4
s

)
+ 2
√
2B2 ·

8B2
2√
ns

≤ 1

n
1/4
s

+ 16
√
2B3

2

1
√
ns

≲
1

n
1/4
s

.

where the first inequity is due to ∥f̃(x̃)∥2 ≤
√
2B2.

A.3.7. SUBSECTION: TRADE OFF BETWEEN STATISTICAL ERROR AND APPROXIMATION ERROR

Let W ≥ cK(2d+α)/(2d+2) and L ≥ 2⌈log2(d+ r)⌉+ 2, combine the bound results of statistical error and approximation
error to yield

ED̃s
{E(f̂ns

)} ≲ ED̃s
[Esta] + EF + ED̃s

{EG} ≲
K
√
ns

+K−α/(d+1).

Taking K = n
d+1

2(α+d+1)
s to yield ED̃s

{E(f̂ns
)} ≲ n

− α
2(α+d+1)

s . As we have shown that L(f∗) = 0, above inequality

implies ED̃s
{L(f̂ns

)} ≲ n
− α

2(α+d+1)
s . To ensure above deduction holds, We need to set W ≥ cn

2d+α
4(α+d+1)
s and L ≥

2⌈log2(d+ r)⌉+ 2.

A.3.8. THE PROOF OF MAIN THEOREM

Next, we are going to prove our main theorem 3.9. We will state its formal version at first and then conclude Theorem 3.9 as
a corollary.

To notation conciseness, let p =

√
2

min
i̸=j

ps(i)ps(j)

(
C
λ n

− α
2(α+d+1)

s +ϕ(ns)

)
+2

√
d∗B2Mn

− ν
2(α+d+1)

s

B2
2ψ(σ

(ns)
s ,δ

(ns)
s ,εns ,f̂ns )

, where C is a constant, 0 ≤

ϕ(ns) ≲ (1−σ(ns)
s +n

−min{α,ν,ς,τ}
4(α+d+1)

s )2+(1−σ(ns)
s )+n

−min{α,ν,ς,τ}
8(α+d+1)

s , then the formal version of our main theoretical result
can be stated as follow.

Lemma A.20. When Assumptions 3.5, 3.3, 3.2, 3.7 and 3.8 all hold, set εns
= m2n

−min{α,ν,ς,τ}
8(α+d+1)

s ,W ≥ cn
2d+α

4(α+d+1)
s ,

L ≥ 2⌈log2(d+ r)⌉+ 2,K = n
d+1

2(α+d+1)
s and A = Ans

in Assumption 3.7, then we have

ED̃s
[R2
t (εns

, f̂ns
)] ≲ n

−min{α,ν,ς}
4(α+d+1)

s (36)

and

ED̃s
{max
i ̸=j
|µt(i)⊤µt(j)|} ≲ (1− σ(ns)

s ) + ns
−min{α,2τ}

4(α+d+1) . (37)

Furthermore, If ψ(σ(ns)
s , δ

(ns)
s , εns

, f̂ns
) > 0, then with probability at least 1− p, we have

ED̃s
{Err(Qf̂ns

)} ≤ (1− σ(ns)
t ) +O(n

−min{α,ν,ς}
8(α+d+1)

s ).
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Proof. First recall the conclusion we’ve got in Lemma A.6

ED̃s
{R2

t (ε, f̂ns
)} ≤ m4

ε2
(
ED̃s
{L(f̂ns

)}+ 8B2d
∗MKϵ1 + 4B2

2d
∗Kϵ2

)
,

ED̃s
[max
i̸=j
|µt(i)⊤µt(j)|] ≤

√√√√ 2

min
i ̸=j

ps(i)ps(j)

( 1
λ
ED̃s
{L(f̂ns)}+ ED̃s

{ϕ(σs, δs, ε, f̂ns)}
)
+ 2
√
d∗B2MKϵ1,

and with probability at least 1−

√
2

mini̸=j ps(i)ps(j)

(
1
λE

D̃s
{L(f̂ns )}+ϕ(σs,δs,ε,f̂ns )

)
+2

√
d∗B2MKϵ1

B2
2ψ(σt,δt,ε,f̂ns )

, we have

ED̃s
{Err(Qf̂ns

)} ≤ (1− σt) +
m2

ε

√
ED̃s
{L(f̂ns)}+ 8B2d∗MKϵ1 + 4B2

2d
∗Kϵ2,

where ϕ(σs, δs, ε, f̂ns) = 4B2
2

[(
1 − σs + Kδs+2ε

2B2

)2

+ (1 − σs) + Km2

ε

√
ED̃s
{L(f̂ns)}

(
3 − 2σs + Kδs+2ε

B2

)
+

m4

ε2 ED̃s
{L(f̂ns

)}
( K∑
k=1

1
ps(k)

)]
+B2

(
ε2 +

4B2
2m

2

ε

√
ED̃s
{L(f̂ns

)}
) 1

2

.

To obtain the conclusion shown in this theorem from above formulations, first we plug ϵ1 ≤ n
− ν+d+1

2(α+d+1)
s and ϵ2 ≤

n
− ς

2(α+d+1)
s into it. apart from that, we have shown ED̃s

{L(f̂ns
)} ≲ n

− α
2(α+d+1)

s in A.3.7 and known δ(ns)
s ≤ n

− τ+d+1
2(α+d+1)

s ,

combining with the setting εns
= m2n

−min{α,ν,ς,τ}
8(α+d+1)

s ,K = n
d+1

2(α+d+1)
s implies that Kϵ1/ε2ns

≤ n
− τ

2(α+d+1)
s , ϵ2/ε

2
ns
≤

ns
− τ

2(α+d+1) ,Kδ(ns)
s ≤ ns−

τ
2(α+d+1) and ED̃s

{L(f̂ns
)}/ε2ns

≤ n
− α

4(α+d+1)
s .

Plugin these facts into the corresponding term of above formulations to get what we desired.

Let us first state the formal version of Theorem 3.9 and then prove it.

Theorem A.21 (Formal version of Theorem 3.9). If Assumptions 3.5, 3.3, 3.2, 3.7 and 3.8 all hold, setW ≥ cn
2d+α

4(α+d+1)
s , L ≥

2⌈log2(d+ r)⌉ + 2,K = n
d+1

2(α+d+1)
s and A = Ans

in Assumption 3.7, then, provided that ns is sufficiently large, with

probability at least σ(ns)
s −O

(
n
−min{α,ν,ς,τ}

16(α+d+1)
s

)
−O

(
1√

mink nt(k)

)
, we have

ED̃s
{Err(Qf̂ns

)} ≤ (1− σ(ns)
t ) +O(n

−min{α,ν,ς}
8(α+d+1)

s ).

Proof of Theorem 3.9. Note that the main difference between Theorem A.20 and Theorem 3.9 is the condition
ψ(σ

(ns)
s , δ

(ns)
s , εns , f̂ns

) > 0, so we are going to focus on whether this condition holds under the condition of Theo-
rem 3.9.

To show this, first recall ψ(σ(ns)
t , δ

(ns)
t , εns , f̂ns) = Γmin(σ

(ns)
t , δ

(ns)
t , εns , f̂ns)−

√
2− 2Γmin(σ

(ns)
t , δ

(ns)
t , εns , f̂ns)−

∆µ̂t

2 −
2maxk∈[K] ∥µ̂t(k)−µt(k)∥2

B2
. Note (28) and dominated convergence theorem imply Rt(εns , f̂ns)→ 0 a.s., thus

Γmin(σ
(ns)
t , δ

(ns)
t , εns

, f̂ns
) =

(
σ
(ns)
t − Rt(εns , f̂ns)

mini pt(i)

)(
1 +

(B1

B2

)2 − Kδ(ns)
t

B2
− 2εns

B2

)
− 1→

(B1

B2

)2

Combining with the fact that ∆µ̂t

2 =
1−mink∈[K] ∥µ̂t(k)∥2/B2

2

2 < 1
2 can yield

Γmin(σ
(ns)
t , δ

(ns)
t , εns

, f̂ns
)−

√
2− 2Γmin(σ

(ns)
t , δ

(ns)
t , εns

, f̂ns
)− ∆µ̂t

2
> 1/2

if we select proper B1 and B2.
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Besides that, by Multidimensional Chebyshev’s inequality, we know that

Pt
(
∥µ̂t(k)− µt(k)∥2 ≥

B2

8

)
≤

64
√
Ez∈C̃t(k)

Ez′∈A(z)∥f(z′)− µt(k)∥22
B2

2

√
2nt(k)

≤ 128

B2

√
nt(k)

,

so that ψ(σ(ns)
t , δ

(ns)
t , εns

, f̂ns
) ≥ 1

4 with probability at least 1 − 128K

B2

√
mink nt(k)

if ns is large enough, of course the

condition ψ(σ(ns)
t , δ

(ns)
t , εns

, f̂ns
) > 0 in Theorem A.20 can be satisfied.

Therefore, with probability at least

1− p− 128K

B2

√
mink nt(k)

≳ 1− (1− σ(ns)
s )−O

(
n
−min{α,ν,ς,τ}

16(α+d+1)
s

)
−O

( 1√
mink nt(k)

)
= σ(ns)

s −O
(
n
−min{α,ν,ς,τ}

16(α+d+1)
s

)
−O

( 1√
mink nt(k)

)
.

we have the conclusions shown in Theorem 3.9, which completes the proof.
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