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Abstract

In recent years, multimodal large language001
models (MLLMs) have achieved significant002
breakthroughs, enhancing understanding across003
text and vision. However, current MLLMs still004
face challenges in effectively integrating knowl-005
edge across these modalities during multimodal006
knowledge reasoning, leading to inconsisten-007
cies in reasoning outcomes. To systematically008
explore this issue, we propose four evaluation009
tasks and construct a new dataset. We conduct a010
series of experiments on this dataset to analyze011
and compare the extent of consistency degrada-012
tion in multimodal knowledge reasoning within013
MLLMs. Based on the experimental results,014
we identify factors contributing to the observed015
degradation in consistency. Our research pro-016
vides new insights into the challenges of multi-017
modal knowledge reasoning and offers valuable018
guidance for future efforts aimed at improving019
MLLMs.020

1 Introduction021

Currently, multimodal large language models022

(MLLMs)(Yin et al., 2023) have garnered signif-023

icant attention for their ability to integrate mul-024

tiple data modalities, such as text, images, and025

audio, thereby enhancing the model’s capability026

in cross-modal understanding and reasoning(Nie027

et al., 2024). Despite the progress MLLMs have028

made in specific reasoning tasks such as language029

understanding and image recognition, significant030

challenges remain in multimodal knowledge rea-031

soning tasks that involve knowledge fusion across032

modalities. A major limitation is their insufficient033

ability to effectively integrate knowledge across034

different modalities, resulting in inconsistencies in035

reasoning outcomes, making it difficult for MLLMs036

to maintain reliable performance in complex rea-037

soning tasks.038

To evaluate the reasoning capabilities of039

MLLMs, researchers have proposed numerous040

Figure 1: An example of measuring the consistency of a
multimodal language model in a multimodal knowledge
reasoning task. (Given three pictures of Michael Jordan
and one picture of basketball star Kyrie Irving, the team
Michael Jordan played for the longest time was the
Chicago Bulls).

benchmark datasets that assess model performance 041

across various tasks(Li et al., 2024; Yu et al., 2023). 042

However, many of these benchmarks primarily fo- 043

cus on evaluating the model’s ability to interpret 044

superficial visual information, such as object recog- 045

nition(Wu and Xie, 2024), multi-class identifica- 046

tion(Wang et al., 2023), and basic image descrip- 047

tion(Fu et al., 2024). While these tasks provide 048

insights into the model’s perceptual understanding, 049

they fall short in assessing its capability to perform 050

complex reasoning that requires deep integration of 051

both visual and textual knowledge. As a result, ex- 052

isting evaluation frameworks may not fully capture 053

the true reasoning potential of MLLMs, particu- 054

larly in scenarios where the model needs to syn- 055

thesize multimodal knowledge to derive nuanced 056

inferences. 057

Figure 1 shows an example where model suffer 058

from inconsistency during multimodal knowledge 059

reasoning. When we input a black picture and 060

ask the model about the knowledge chain in the 061

text, the model provides the correct answer. Sim- 062

ilarly, when we input three pictures of basketball 063

star Michael Jordan and one picture of basketball 064

star Kyrie Irving, the model successfully completes 065
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the visual task of identifying the most frequent066

character. However, when we combine these two067

questions to assess the model’s ability to reason068

about multimodal knowledge, the model delivers069

an incorrect answer. This phenomenon indicates070

that even when all individual steps in the reasoning071

chain are correct, the model still struggles to pro-072

duce a consistent reasoning result, highlighting a073

failure in maintaining consistency.074

Motivated by the above observation, we propose075

four evaluation tasks (See Section 3.2 for details076

of all tasks.) and construct a new dataset to study077

the consistency problem encountered by MLLM078

in multimodal reasoning. Specifically, we intro-079

duce tasks involving multiple images and multiple080

reasoning hops to thoroughly investigate this issue.081

Our dataset can serve as a common benchmark for082

complex multimodal knowledge reasoning. We sys-083

tematically evaluate various popular MLLMs using084

our dataset and analyze the factors contributing to085

the inconsistency.086

The contributions of our work can be summa-087

rized as follows: 1) We discover that MLLMs suf-088

fer from inconsistency in multimodal knowledge089

reasoning. 2) We construct a multimodal, multi-090

image, multi-hop, multi-task dataset for evaluating091

multimodal knowledge reasoning. 1. 3) Based on092

the experimental results, we analyzed the causes of093

MLLM inconsistency and found that consistency is094

affected by factors such as the number of inference095

hops and inference relations.096

2 Related works097

2.1 Multimodal Large Language Models098

In recent years, the remarkable success of large099

language models (LLMs) (Achiam et al., 2023) has100

significantly influenced the development of multi-101

modal large language models (MLLMs), leading102

to breakthrough advancements in visual-language103

alignment. Early works such as CLIP (Radford104

et al., 2021) and BLIP (Li et al., 2023b) established105

cross-modal pretraining to achieve multimodal abil-106

ity. Models like Flamingo (Alayrac et al., 2022)107

and BLIP-2 demonstrated strong zero-shot reason-108

ing capabilities by aligning visual features with109

LLMs. With the advent of models like LLaVA-110

NeXT (Liu et al., 2024), MiniGPT-4 (Zhu et al.,111

2023), InstructBLIP (Dai et al., 2023), mPLUG-112

Owl3 (Ye et al., 2024), and Qwen2-VL(Wang et al.,113

2024b), there has been a growing trend of using114

1Our dataset will be released to the community.

multimodal instruction fine-tuning data to further 115

enhance the reasoning capabilities of MLLMs in 116

visual-language tasks. 117

2.2 Multimodal Large Language Model 118

reasoning 119

To evaluate the reasoning capabilities of MLLMs, 120

numerous benchmarks have been introduced. Chen 121

et al. (2024) focuses on visual modality and mul- 122

tihop tasks within single-image scenarios, limit- 123

ing broader multimodal applicability. Wang et al. 124

(2024c) includes temporal dimensions in image 125

series reasoning but prioritizes visual tasks over 126

deep multimodal interactions. Similarly, Zhao et al. 127

(2024) provides a comprehensive multi-image un- 128

derstanding benchmark but lacks complexity for 129

advanced multimodal inference. Li et al. (2023a), 130

Fu et al. (2024), and Xu et al. (2024) focus on 131

simple reasoning using image information with- 132

out addressing complex multimodal tasks. Balesni 133

et al. (2024) investigates inconsistencies between 134

single-hop and multi-hop tasks but only considers 135

textual reasoning. Although some work (Wang 136

et al., 2024a) proposes a knowledge benchmark, it 137

lacks an analysis of model performance in knowl- 138

edge reasoning. Other works, including Chou et al. 139

(2024) and Zhang et al. (2024b), explore consis- 140

tency of model outputs across different modalities 141

but primarily assess alignment between text and 142

vision rather than the deeper integration required 143

multimodal reasoning. 144

A common limitation is the focus on unidirec- 145

tional reasoning (e.g., vision-to-text) rather than 146

bidirectional multimodal reasoning. Moreover, 147

there is a lack of systematic analysis on informa- 148

tion degradation—a critical issue in multimodal 149

knowledge reasoning where essential details are 150

lost between modalities. Addressing this gap is 151

crucial for enhancing the robustness of MLLMs in 152

real-world applications. 153

3 Problem Definition 154

3.1 Multimodal Knowledge Reasoning and 155

Consistency 156

To clearly define the consistency problem in multi- 157

modal knowledge reasoning explored in this study, 158

we adopt a multimodal knowledge definition pro- 159

vided by Zhang et al. (2024a), where multimodal 160

knowledge is considered a joint representation of 161

visual and textual information. Specifically, a piece 162

of visual knowledge is denoted as (i, e), where 163
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i represents the image, and e is the entity recog-164

nized from it. (Note that a visual knowledge can165

also be reversed in image retrieval task, noted as166

(e, i).) What’s more, when there are multiple im-167

ages to discuss, we use an extended representation168

(i1, ..., im, e), where e is the recognized entity that169

appears most often in {i1, ..., im}. 2 Similarly, a170

piece of textual knowledge is expressed as a triple171

(s, r, o), where s denotes the subject, r represents172

the relation, and o is the object.173

In our multimodal knowledge reasoning task, to174

answer a question, multiple pieces of knowledge175

are concatenated into a chain, namely reasoning176

chain. For example, to answer a question “What is177

the r of the entity in image i?", the model needs to178

first identify the entity in the image, requiring (i, e)179

knowledge, then get the correct o corresponding r180

and the entity, requiring (s, r, o) knowledge. The181

corresponding reasoning chain is shown in Equa-182

tion 1, where the entity(▷◁e=s) concatenates visual183

knowledge and textual knowledge.184

(i, e) ▷◁e=s (s, r, o) ⇒ (i, r, o) (1)185

Normally, a reasoning chain can be represented186

as:187

k1 ▷◁ k2 ▷◁ ... ▷◁ kn ⇒ k (2)188

where ki represents either visual knowledge189

(i, e)((e, i), (i1, ..., im, e)) or textual knowledge190

(s, r, o) and concatenated by the same entity (▷◁e=s191

, ▷◁ o = s or ▷◁o=e), k is the final knowledge cor-192

responding to a multimodal knowledge reasoning193

question.194

There are two ways forming a multimodal knowl-195

edge reasoning question qk from the above reason-196

ing chain. Forward is giving the beginning and all197

intermediate relations in k and querying the ending198

of k, while Backward is giving the ending of k199

and all intermediate relations in k and querying the200

beginning of k. As can be seen, Backward prob-201

lems are often open with many possible answers,202

making it more difficult to answer.203

Ideally, if a model correctly understands all204

knowledge ki in the reasoning chain, it can cor-205

rectly solve the overall multimodal knowledge rea-206

soning question qk. However, this is not always207

the case in reality, where models can correctly pass208

each step in the reasoning chain while still failing209

to address the overall multimodal reasoning task.210

We name this phenomenon inconsistency, and the211

2This is not a necessary definition but rather a helpful
notation in this research.

opposite side is consistency, inspired by (Zhang 212

et al., 2024a). 213

The primary focus of this study is to investi- 214

gate how well consistency is maintained during 215

multimodal knowledge reasoning. We introduce 216

multiple tasks in Section 3.2 to thoroughly evaluate 217

consistency. In each experimental task, the follow- 218

ing three-step reasoning subtask is performed to 219

evaluate consistency. 220

1. Step 1 (Vision Centered Task): Asking the 221

model to identify the entity in the image, 222

which focuses on visual knowledge (i, e). 223

2. Step 2 (Text Centered Task): Asking the 224

model to generate the object given subject s 225

and relations r1, ..., rn, which focuses mainly 226

on textual knowledge reasoning chain. 227

(s1, r1, o1) ▷◁o1=s2 ... ▷◁on−1=sn (sn, rn, on)

⇒ (s1, r1, ..., rn, on)
(3) 228

3. Step 3 (Multimodal Task): Asking the model 229

a question which requires concatenating both 230

visual and textual knowledge. 231

A model can only be evaluated for consistency 232

using overall multimodal knowledge reasoning 233

question qk when it correctly understands each 234

component ki and the textual reasoning chain (3) 235

in Steps 1 and 2. Otherwise, even if qk is incor- 236

rectly answered, this mistake may simply come 237

from model failing on a certain piece of knowledge 238

ki or the textual reasoning chain 3, which is noth- 239

ing surprising. Therefore, to evaluate consistency 240

in multimodal knowledge reasoning, we introduce 241

the Consistency Rate (CR) metric. Let S be the 242

samples for which all steps ki and textual reasoning 243

chain (3) are correctly answered. The CR metric 244

is defined as the proportion of samples in S, for 245

which the overall multimodal knowledge reasoning 246

question qk also produces the correct answer. The 247

formula is given as follows. 248

CR =
|{qk | qk ∈ S, qk is correctly answered.}|

|S|
(4) 249

It is important to again note that we assess con- 250

sistency of multimodal knowledge reasoning task 251

only when the model provides correct answers for 252

all steps ki in the reasoning chain. A failure of mul- 253

timodal knowledge reasoning under this premise. 254
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By utilizing this metric, our study aims to analyze255

multimodal knowledge reasoning consistency and256

propose improvements to enhance overall model257

consistency.258

3.2 Task Design259

There are many possible ways of constructing rea-260

soning chain for evaluating consistency. We design261

four representative tasks for evaluation as follows262

and present an example of each task in Figure 2:263

• Single-Image Recognition: This task requires264

first identifying the entity in the image, then per-265

forming single or multiple reasoning steps on266

textual knowledge. The reasoning chain is for-267

mulated as:268

(i, e) ▷◁e=s1 (s1, r1, o1) ▷◁o1=s2 ...

▷◁on−1=sn (sn, rn, on) ⇒ (i, r1, ..., rn, o)
(5)269

• Multi-Image Recognition: This task is an ex-270

tended version of single-image one, with multiple271

images and the model should identify the entity272

of each image, then select the entity appearing273

most often in the images and answer correspond-274

ing textual knowledge. The reasoning chain is275

formulated as:276

(i1, ..., im, e) ▷◁e=s1 (s1, r1, o1)

▷◁o1=s2 ... ▷◁on−1=sn (sn, rn, on) ⇒
(i1, ..., im, r1, ..., rn, o)

(6)277

• Multi-Image Retrieval: The model needs to278

select the correct image from the given images279

to answer qk. We consider both forward and280

backward ways of forming the question. For281

Forward Retrieval, the task is identifying the282

correct image representing the object of a textual283

reasoning chain, and the corresponding reasoning284

chain is formulated as:285

(s1,r1, o1) ▷◁o1=s2 ... ▷◁on−1=sn (sn, rn, on)

▷◁on=e (e, i) ⇒ (s1, r1, ..., rn, i)
(7)286

While for Backward Retrieval, the task is iden-287

tifying the correct image representing the subject288

of a textual reasoning chain, the corresponding289

reasoning chain is formulated as:290

(i, e) ▷◁e=s1 (s1, r1, o1) ▷◁o1=s2 ... ▷◁on−1=sn

(sn, rn, on) ⇒ (i, r1, ..., rn, o)
(8)291

Note that qk is formulated in the backward way in 292

Backward Retrieval, so both Forward Retrieval 293

and Backward Retrieval are image retrieval tasks 294

querying i. Please refer to Appendix A.1 for 295

more details. 296

• Knowledge Association: Previous three tasks 297

only involve modality transfer (from textual 298

knowledge to visual knowledge or from visual 299

knowledge to textual knowledge) once, so we 300

would like to evaluate model performance when 301

there are multiple modality transformations. This 302

task combines the Multi-Image Recognition task 303

and the Forward Retrieval task, requiring the 304

model to associate knowledge by transferring 305

between modalities multiple times. The model 306

needs to correctly identify the images, complete 307

text reasoning, and then complete the Forward 308

Retrieval task. The reasoning chain is formulated 309

as follows: 310

(i1, i2, ..., in, e1) ▷◁e1=s (s, r, o) ▷◁o=e2

(e2, i) ⇒ (i1, ..., in, r, i)
(9) 311

This task simulates the complex reasoning re- 312

quirements in real-world scenarios. An example 313

can be found in Figure 2 and more details can be 314

found in Appendix A.2. 315

4 Dataset Construction 316

The text data used in the experiments is sourced 317

from the MQuake dataset(Zhong et al., 2023), 318

which is designed for knowledge graph editing and 319

contains multiple data instances based on triples 320

(s, r, o), where s represents the subject, r repre- 321

sents the relation, and o represents the object. We 322

construct our data based on the knowledge triples 323

before knowledge editing. The dataset’s triple re- 324

lations cover various levels of reasoning tasks, in- 325

cluding two-hop, three-hop, and four-hop reason- 326

ing tasks. For each subject s and object o in the 327

triple, we crawled ten relevant images from Google. 328

These images together with the text data triplets 329

constitute the basic dataset D with a size of 3,770. 330

We also decompose all multi-hop data in the origi- 331

nal dataset D into two-hop dataset DT , with a size 332

of 3,240. We introduce how the dataset of the four 333

tasks are constructed separately as follows. 334

Single-Image Recognition For Single-Image 335

Recognition task, we utilize all four-hop data points 336

in D and construct n− hop reasoning data by trun- 337

cating first n hops in the four hop question and 338
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Figure 2: Examples of our multimodal knowledge reasoning tasks.

selecting an image corresponding to the s in the339

first hop as the image input.340

Multi-Image Recognition For the Multi-Image341

Recognition task, we utilize all data in two-hop342

dataset DT but focus only on the first hop to reduce343

the difficulty of multi-image reasoning. We used344

GPT-4o to rank the relevance of the crawled images345

and entities, selecting the top three as relevant im-346

ages and one irrelevant as interfering item. These347

four images form the input images.348

Multi-Image Retrieval For the Multi-Image Re-349

trieval task, we also utilize all data in two-hop350

dataset DT . We construct both single-hop (using351

the first hop) and two-hop questions based on DT .352

We select the image most relevant to the entity to353

be retrieved as the input and randomly selected354

other images of the same type of entity as interfer-355

ence options. For text problems, we used GPT-4o356

to generate two prompts for each type of retrieval357

reasoning data based on Forward Retrieval and358

Backward Retrieval reasoning chains.359

Knowledge Association For the Knowledge As-360

sociation task, we reused the images and texts from361

the Multi-Image Recognition and Multi-Image For-362

ward Retrieval tasks. Using GPT-4o, we generated363

two question prompts, requiring the model to com- 364

plete the Multi-Image Recognition task from the 365

first four images and the Multi-Image Forward Re- 366

trieval task from the second four images. 367

The amount of data, number of images, and num- 368

ber of reasoning hops for different tasks are shown 369

in the Table 1. 370

Reasoning Task Hops Data Images

Single-Image Recognition

1 729 1
2 729 1
3 729 1
4 729 1

Multi-Image Recognition 1 3240 4

Multi-image Retrieval
1 3240 4
2 3240 4

Knowledge Association 1 3240 8

Table 1: Data information of different tasks (including
Number of Reasoning Hops, Number of Data, and Num-
ber of Input Images)

For the textual questions, the MQuake dataset 371

provides reasoning questions. We also used GPT- 372

4o to generate two distinct questions per data point. 373

To increase diversity and enhance robustness, we 374

5



Reasoning Task Type LLava-NeXT mPLUG-Owl3 GPT-4o Qwen2-VL InstructBLIP

Single-Image
Recognition

single-hop 74.63 72.45 86.38 74.40 31.58
two-hop 62.05 33.33 83.49 53.74 31.58

three-hop 59.72 27.59 81.01 53.17 33.33
four-hop 60.00 21.15 79.06 49.21 25.00

Multi-Image Recognition 76.46 60.41 94.52 / /

Multi-Image
Retrieval(Forward)

single-hop 21.13 85.43 87.18 / /
two-hop 13.21 72.05 77.69 / /

Multi-Image
Retrieval(Backward)

single-hop 13.57 81.12 82.20 / /
two-hop 10.37 71.93 72.65 / /

Knowledge Association 15.31 24.87 70.58 / /

Table 2: Comparison of the consistency performance of different models on different tasks. We label the best result
of each task in bold and the second best result with underline. / refers to models with no multi-image ability and
cannot be evaluated.

randomly selected one question during testing, al-375

lowing us to build a diverse dataset covering multi-376

hop, multi-image, multi-task knowledge reasoning,377

for robustly evaluating multimodal knowledge rea-378

soning ability of MLLMs.379

When checking the correctness of an answer, we380

use aliases to match model output more accurately.381

More details can be found in Appendix A.3.382

5 Experiments383

5.1 Experiment Setup384

We selected LLava-NeXT(Liu et al., 2024), In-385

structBLIP(Dai et al., 2023), Qwen2-VL(Wang386

et al., 2024b), mPLUG-Owl3(Ye et al., 2024), and387

GPT-4o (Achiam et al., 2023)models to test their388

consistency capabilities on single-image tasks. For389

reasoning tasks that require multiple images, we390

selected LLava-NeXT, mPLUG-Owl3, and GPT-4o391

models for testing.392

5.2 Experiment Results393

The experiment results are presented in Table 2. As394

observed, GPT-4o performs best among all models395

in various tasks. However, its consistency is still396

worrying in more challenging tasks such as Multi-397

Image Retrieval, indicating that there is still much398

room for improvement in its multimodal knowl-399

edge reasoning consistency.400

What’s more, other models show even weaker401

consistency. Although certain models excel on spe-402

cific tasks, their performance deteriorates largely403

on others. For instance, LLaVA-NeXT performs404

competitively in multi-hop reasoning subtask in405

Single-Image Recognition, achieving strong results 406

compared to other open-source models. However, 407

in the Multi-Image Retrieval task, it shows a clear 408

drop in performance, struggling to maintain consis- 409

tency. Similarly, the InstructBLIP model exhibits 410

overall mediocre performance, and even struggles 411

to achieve favorable results in simpler tasks such 412

as Single-Image single-hop reasoning, highlighting 413

its limitations in consistency. 414

All models perform poorly on Knowledge As- 415

sociation task, indicating that multiple transfers 416

between modalities pose significant challenges for 417

even the most powerful MLLMs, underscoring the 418

difficulties of our designed tasks. 419

5.3 Analysis 420

In this section, we would like analyze the impact of 421

knowledge reasoning hops on consistency, different 422

reasoning relation types, different task types and 423

reasoning process. 424

5.3.1 Impact of Knowledge Reasoning Hops 425

We investigate the changes in multimodal knowl- 426

edge reasoning consistency across different rea- 427

soning hops. As is shown in the Single-Image 428

Recognition task of Table 2, as the number of hops 429

increases, the models’ reasoning consistency grad- 430

ually declines. This phenomenon suggests that cur- 431

rent models lack sufficient capabilities for inferring 432

extended reasoning chains in multi-hop reasoning 433

tasks, leading to cumulative information loss and 434

a failure to maintain consistency throughout the 435

inference process. 436
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Reasoning Task Type Stepwise

LLava-NeXT mPLUG-Owl3 GPT-4o Qwen2-VL InstructBLIP

Single-Image
Recognition

single-hop 75.57 (+0.94) 77.55 (+5.10) 88.10 (+1.72) 79.00 (+4.60) 31.58 (+0.00)
two-hop 61.45 (-0.60) 76.19 (+42.86) 85.32 (+1.83) 61.92 (+8.18) 31.58 (+0.00)

three-hop 62.50 (+2.78) 58.62 (+31.03) 80.78 (-0.23) 57.07 (+3.90) 33.33 (+0.00)
four-hop 60.00 (+0.00) 55.77 (+34.62) 78.82 (-0.24) 56.02 (+6.81) 33.33 (+8.05)

Multi-Image Recognition 77.54 (+1.08) 67.83 (+7.42) 94.25 (-0.27) / /

Multi-Image
Retrieval(Forward)

single-hop 11.33 (-2.24) 80.35 (-0.77) 83.32 (+1.12) / /
two-hop 9.88 (-0.49) 70.28 (-1.65) 72.97 (+0.32) / /

Multi-Image
Retrieval(Backward)

single-hop 19.98 (-1.15) 84.78 (-0.65) 87.31 (+0.13) / /
two-hop 14.02 (+0.81) 71.22 (-0.83) 78.58 (+0.89) / /

Knowledge Association 15.39 (+0.08) 27.05 (+2.18) 70.13 (-0.45) / /

Table 3: The performance on different reasoning tasks using Stepwise prompts. Values in bracelets refer is compared
with end-to-end prompts.

LLava-NeXT mPLUG-Owl3 GPT-4o Qwen2-VL InstructBLIP
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Figure 3: Inconsistency rate of different relation types
in different models

5.3.2 Impact of Relation Types437

We would like to investigate whether different types438

relations r affect consistency. Specifically, we clas-439

sify different relations into two types: relations440

with clear visual associations (e.g., "nationality"441

and "genre") and relations with no clear visual as-442

sociations (e.g., "author" and "creator"). We cal-443

culate the inconsistency rate on Single-hop Single-444

Image Recognition task within each relation type445

and present the result in Figure 3.446

Our results indicate that relations with clear vi-447

sual associations exhibit higher consistency rates,448

while relations that rely on non-visual cues and do449

require external knowledge often exhibit lower con-450

sistency rates. We attribute this to the presence of451

clear visual cues, which establish direct and stable452

mappings between visual inputs and corresponding453

attributes. For example, if an image shows a per-454

son wearing a soccer jersey, models may correctly455

answer the job of this person more easily. Models 456

may achieve accurate outputs without complex in- 457

termediate reasoning through utilizing image infor- 458

mation when faced with a relation with clear visual 459

associations. Detailed statistics are presented in 460

Appendix B.1. 461

5.3.3 Impact of Task Bias 462

In multimodal reasoning tasks, besides the chal- 463

lenges posed by modality conversion and informa- 464

tion transmission, task type also plays a key role 465

in performance inconsistency. Specifically, differ- 466

ent models may be good at addressing different 467

tasks while neglecting others, leading to notable 468

performance variations across different types of 469

tasks. As can be seen from Table 2, LLaVA-NeXT 470

achieves high consistency on Image Recognition 471

tasks while low consistency on Image Retrieval 472

tasks, indicating that it excels at identifying enti- 473

ties in images but performing poorly in retrieving 474

images with given entities, while mPLUG-Owl3 is 475

just the opposite. 476

We attribute this phenomena to an imbalance 477

in model training tasks and objectives, where the 478

model fails to comprehensively cover and balance 479

optimization across different types of reasoning 480

tasks (e.g., recognition tasks, retrieval tasks, and 481

compound tasks), causing task-specific inconsis- 482

tencies in multimodal knowledge reasoning. 483

5.3.4 Impact of Reasoning Process 484

The reasoning process is an important factor af- 485

fecting multimodal knowledge reasoning consis- 486

tency. In this part, we investigate different rea- 487
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Reasoning Task Type VE

LLava-NeXT mPLUG-Owl3 GPT-4o Qwen2-VL InstructBLIP

Single-Image
Recognition

single-hop 82.47 (+7.84) 81.63 (+9.18) 90.69 (+4.31) 82.60 (+8.20) 68.42 (+36.84)
two-hop 71.69 (+9.64) 90.48 (+57.15) 89.22 (+5.73) 80.43 (+26.69) 62.50 (+30.92)

three-hop 77.78 (+18.06) 89.66 (+62.07) 86.96 (+5.95) 71.71 (+18.54) 50.00 (+16.67)
four-hop 71.43 (+11.43) 75.00 (+53.85) 86.76 (+7.70) 72.25 (+23.04) 50.00 (+24.72)

Multi-Image Recognition 78.11 (+1.65) 77.00 (+16.59) 93.59 (-0.93) / /

Multi-Image
Retrieval(Forward)

single-hop 11.89 (-1.68) 80.86 (-0.26) 83.56 (+1.36) / /
two-hop 10.06 (-0.31) 73.82 (+1.89) 73.51 (+0.86) / /

Multi-Image
Retrieval(Backward)

single-hop 23.87 (+2.74) 85.29 (-0.14) 88.71 (+1.53) / /
two-hop 11.84 (-1.37) 72.55 (+0.50) 78.26 (+0.57) / /

Knowledge Association 18.32 (+3.01) 28.96 (+4.09) 70.27 (-0.31) / /

Table 4: The performance on different reasoning tasks using VE (Visual Consistency Enhancement) prompts. Values
in bracelets refer is compared with end-to-end prompts.

soning processes to assess their performance. We488

mainly discuss two processes: Stepwise Prompt in489

Text and Visual Consistency Enhancement Prompt.490

The detailed design of these prompts is provided in491

Appendix B.2.492

Stepwise Prompt in Text The Chain-of-Thought493

(CoT)(Wei et al., 2022; Kojima et al., 2022)494

paradigm, as a step-by-step reasoning approach,495

has been proven to effectively enhance model per-496

formance in complex reasoning tasks. Under purely497

textual prompts, CoT guides the model to de-498

compose reasoning steps, progressively building499

a chain of reasoning, thereby reducing the risk of500

reasoning failure. Therefore, we first introduce a501

stepwise prompt in text using CoT prompt to en-502

force our multimodal knowledge reasoning tasks503

and present the consistency results in Table 3.504

It can be seen that guiding the model to perform505

CoT during reasoning can improve the consistency506

to some extent, indicating that a reasonable break-507

down of the reasoning chain can help the model508

complete multimodal knowledge reasoning tasks509

more consistently. Although end-to-end prompt510

are more intuitive for humans, they do not show511

advantages in consistency for MLLMs. Further-512

more, as the number of reasoning hops increases,513

the end-to-end prompt performs even worse and the514

improvement of stepwise prompt in text becomes515

even higher, indicating the superiority of CoT in516

complex multimodal knowledge reasoning.517

Visual Consistency Enhancement Prompt Aside518

of simple stepwise prompt in text (CoT), we519

wonder if there is a better reasoning process for520

MLLMs. Therefore, we investigate visual con-521

sistency enhancement prompt. The core idea be- 522

hind visual enhancement prompting is explicitly 523

decompose the reasoning chain to twp steps, first 524

to extract key visual features through explicit visual 525

recognition and summarization, and then integrate 526

these features into the textual reasoning. 527

Specifically, in multimodal knowledge reasoning 528

tasks, this methodology constrains the prompting to 529

explicitly identify all visual inputs and extract key 530

features (such as objects, scenes, or relationships 531

within images) before proceeding with stepwise 532

textual reasoning. This reduces the model’s ten- 533

dency to overly focus on the textual modality or to 534

produce results inconsistent with the visual modal- 535

ity. As demonstrated in Table 4, Visual Consis- 536

tency Enhancement Prompt improves consistency 537

across various tasks, especially on complex reason- 538

ing tasks which requires more than one reasoning 539

hop. Models integrating visual enhancement with 540

Chain-of-Thought (CoT) prompting exhibit high 541

consistency across different tasks. 542

6 Conclusion 543

In this research, we discover the consistency 544

problem in multimodal knowledge reasoning in 545

MLLMs. We construct multiple tasks and design a 546

multi-hop, multi-image, multi-task benchmark for 547

evaluating consistency in multimodal knowledge 548

reasoning. We find that current MLLMs struggle to 549

maintain consistency when faced with complex rea- 550

soning task. The analysis further reveals multiple 551

factors affecting consistency, including reasoning 552

hops, relation type, task type and reasoning process, 553

pointing out directions for future research. 554
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Limitations555

We mainly conduct experiments on five common556

MLLMs, with more MLLMs unexplored. We only557

design four multimodal knowledge reasoning tasks,558

with more complex tasks to be discussed.559

Ethics Statement560

We use open-source dataset and models as their in-561

tended uses and licenses. Our dataset contains pho-562

tos of celebrities available online with no harmful563

or private content. We respect everyone’s privacy.564

ChatGPT is used to assist writing only.565
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A Experiment Details713

A.1 Multi-image Retrieval and Reasoning714

Task715

To evaluate the consistency of MLLMs in visual716

and multimodal reasoning tasks, we designed an717

experimental dual retrieval paradigm, including 718

Forward Retrieval and Backward Retrieval modes, 719

each with three progressive test tasks. 720

Forward Retrieval: This stage includes the fol- 721

lowing three tasks: 722

• Visual Retrieval: Given an image of a tar- 723

get attribute (e.g., the logo of Chicago Bulls) 724

and three distracting images, the model must 725

identify the target attribute ("Which image 726

represents Chicago Bulls?"). 727

• Text Knowledge Retrieval: Input a black 728

neutral image , requiring the model to in- 729

fer the answer based on textual knowledge 730

("Which team did Michael Jordan play for the 731

longest?"). 732

• Cross-modal Backward Retrieval: Reuse 733

the four candidate images from Task 1 and 734

require the model to reverse-locate the visual 735

attribute using entity knowledge ("Which pic- 736

ture represents the team that Michael Jordan 737

played for the longest?"). 738

Backward Retrieval: This stage includes the 739

following three tasks: 740

• Visual Retrieval: Given an image of a target 741

entity (e.g., Michael Jordan) and three dis- 742

tracting images, the model is required to iden- 743

tify the target entity ("Which image shows 744

Michael Jordan?"). 745

• Text Knowledge Retrieval: Input a black 746

neutral image and provide four candidate en- 747

tity names, requiring the model to infer the 748

answer based on textual knowledge ("Which 749

player played for Chicago Bulls?"). 750

• Cross-modal Forward Retrieval: Reuse the 751

four candidate images from Task 1 and re- 752

quire the model to combine visual recognition 753

and knowledge reasoning ("Which picture rep- 754

resents the person who played for Chicago 755

Bulls??"). 756

In order to increase the difficulty of the task, 757

select pictures of the same type to construct candi- 758

date answers. Both tasks are evaluated using the 759

same criterion: if the model can correctly answer 760

Tasks (1) and (2) but fails in Task (3), it indicates 761

an inconsistency between the visual features and 762

semantic knowledge. 763
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A.2 Cross-modal Knowledge Association764

Tasks765

The Knowledge Association task aims to assess766

the model’s reasoning consistency across multiple767

cross-modal transformations. This task combines768

Multi-image Recognition and Backward Retrieval769

tasks and requires the model to repeatedly perform770

information association reasoning across multiple771

modalities. Specifically, it includes the following772

four sub-tasks:773

• Visual Recognition: Given several images,774

the model needs to identify the entity that ap-775

pears most frequently in these images.776

• Textual Reasoning: Input a black image and777

ask, "Which team did Michael Jordan play for778

the longest time?"779

• Visual Retrieval: Provide an image of780

Chicago Bulls and three distracting images,781

and ask the model to recognize which image782

represents Chicago Bulls.783

• Cross-modal Reasoning: Given the images784

from Task (1) and the images from Task (3),785

ask the model, "Which of the last four images786

represents the team that the player who ap-787

pears most frequently in the first four images788

played for the longest time?"789

The key aspect of this task is whether the model790

can maintain consistency across successive cross-791

modal reasoning steps. If the model performs well792

in Tasks (1)-(3) but fails in Task (4), it indicates793

that there are still limitations in the model’s con-794

sistency in multiple cross-modal reasoning tasks.795

The uniqueness of the Knowledge Association task796

lies in simulating real-world complex reasoning de-797

mands, where the model needs to switch between798

modalities repeatedly and maintain reasoning con-799

sistency. This design not only reveals the model’s800

performance in individual tasks but also evaluates801

its stability in complex reasoning chains.802

A.3 Alias Matching803

In multimodal reasoning tasks, the model’s out-804

put may semantically align with the standard an-805

swer but differ in vocabulary. Therefore, exact806

word-level matching is insufficient for accurate807

assessment. To address this, we extracted syn-808

onyms and aliases for each candidate answer from809

Wikipedia and created a key-value (KV) table that810

includes the candidate answers and their corre- 811

sponding aliases. Each entry in this table records a 812

candidate answer and its list of synonyms or aliases. 813

Most words in our dataset, such as names of people 814

and places, have clear aliases or variants, effec- 815

tively covering the diverse expressions the model 816

may use. 817

During the evaluation process, we compare 818

the model’s output with each entry in the 819

candidate answer and alias table. If the model’s 820

output matches any of the candidate answers or 821

their synonyms/aliases, it is considered correct. 822

This approach evaluates the model’s ability to rea- 823

son in natural language based on semantics rather 824

than exact word matching. 825

B Detailed Experimental Data 826

B.1 Relation Type - Error Rate Comparison 827

Data 828

Model Consistency Analysis in Single-Hop Rea- 829

soning Tasks 830

We compared the consistency of all models in 831

single-hop reasoning tasks and analyzed the in- 832

consistency distribution across different relation 833

categories, as shown in the figure. We categorized 834

relations such as "sport," "country of citizenship," 835

"position played on team/speciality," "capital," and 836

"religion or worldview" as relations that can be 837

directly inferred from visual information. These re- 838

lations usually do not require complex background 839

knowledge for inference. On the other hand, rela- 840

tions like "author," "spouse," etc., cannot typically 841

be inferred from visual information and rely on 842

language understanding and knowledge reasoning 843

abilities. 844

To better visualize the sources of errors in differ- 845

ent models, we calculated the proportion of errors 846

related to visual reasoning relations in all errors, as 847

shown in the table 5. 848

Results Analysis: 849

• mPLUG-Owl3 produced the most errors (784 850

in total), with 82.40% of them being non- 851

visual errors (646 errors), indicating that its 852

consistency in language understanding tasks 853

is poor. 854

• GPT-4o produced fewer errors overall (331 in 855

total), with the lowest number of non-visual 856

errors (243 errors), but the highest proportion 857

of visual errors (26.59%), indicating that its 858
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Model Visual inconsistency Num Non-Visual inconsistency Num Total inconsistency Num Visual inconsistency Rate (%)

LLava-NeXT 92 317 409 22.49%
mPLUG-Owl3 138 646 784 17.60%
Qwen2-VL 59 243 302 20.14%
InstructBLIP 71 405 476 14.92%
GPT-4o 88 243 331 26.59%

Table 5: Comparison of inconsistency in single-hop reasoning tasks

Type Context

End-to-End Prompting1 Give you a picture <image>, please answer the following question,
which team did the person in the picture play for the longest time?

End-to-End Prompting2 Give you a picture <image>, please complete the following fill-in-
the-blank question, the team of the person in the picture played
for the longest timeis ______

Stepwise Prompt1 Give you a picture <image>. Please think carefully and answer
the following questions step by step. Which team did the person
in the picture play for the longest time? Please give your answer.

Stepwise Prompt2 Give you a picture <image>. Please think carefully and answer
the following questions. Which team did the person in the picture
play for the longest time? Please give your answer step by step.

Stepwise Prompt3 You are shown a picture of a person. <image>.
Based on your knowledge of this person, please provide the name
of the team that the person played for the longest time. Let’s think
step by step.

Visual Consistency
Enhancement Prompt

Give you a picture <image> and answer the following questions .
Step 1: Carefully identify who is in the picture.
Step 2: Based on your knowledge of this person, Which team did
he play for the longest time? Let’s think step by step.

Table 6: Comparison of Different Prompting Methods

consistency in visual reasoning tasks requires859

improvement.860

• LLaVA-NeXT and Qwen2-VL performed at861

an intermediate level, with inconsistencies862

present in both visual and non-visual tasks,863

but without the extreme characteristics ob-864

served in mPLUG-Owl3 or GPT-4o.865

• Instruct exhibited high consistency in visual866

reasoning tasks (the lowest proportion of vi-867

sual errors, 14.92%), but had a relatively high868

total error count (476 errors), with 85.08% of869

the errors (405 errors) being non-visual, indi-870

cating that its primary source of inconsistency871

lies in non-visual tasks.872

These results suggest significant differences in873

model consistency across visual and non-visual874

reasoning tasks, further revealing the limitations875

of current multimodal models in their reasoning 876

capabilities. 877

B.2 Prompt Design Templates 878

In this study, we aim to investigate how different 879

prompt designs affect the consistency of multi- 880

modal models in cross-modal reasoning tasks. We 881

hypothesize that the way prompts are phrased can 882

lead to reasoning path breaks, which can cause rea- 883

soning inconsistencies. Therefore, we designed 884

a series of experiments to compare how different 885

types of prompt structures influence model consis- 886

tency. Using the recognition task as an example, we 887

manually constructed, generated with GPT, and se- 888

lected several types of prompts, as shown in Table 889

6 890

We used the single-hop recognition task as the 891

core testing scenario and constructed the following 892
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three main prompt formats:893

• End-to-End Prompting: Directly ask the ques-894

tion in natural language and require the model895

to complete the full cross-modal reasoning896

process from visual recognition to textual rea-897

soning in a single inference step.898

• Stepwise Prompt: Build on the original end-899

to-end prompt by guiding the model to gen-900

erate a chain of thought (CoT) during textual901

reasoning to enhance reasoning stability.902

• Visual Consistency Enhancement Prompt: Ex-903

plicitly identify all visual inputs in the prompt,904

and then perform textual reasoning step by905

step.906

C Case Study907
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Which team did
Michael Jordan
play for the longest
time?

Michael Jordan
played for the
Chicago Bulls for
the longest time

Who is the person
in the image?

The person in the
image is Michael
Jordan.

What team did the
person in the image
play for the longest
time?

The person in the
image played for
the Los Angeles
Lakers for the
longest time
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Who is the origi-
nal broadcaster of
Grey’s Anatomy?

The original broad-
caster of Grey’s
Anatomy is ABC
(American Broad-
casting Company).

What is the TV
show in the picture?

The TV show in the
picture is "Grey’s
Anatomy."

Who is the original
broadcaster of the
TV show in the pic-
ture?

The image you’ve
provided appears to
be from a TV show,
but it’s not clear
which show it is.
The characters are
dressed in medical
scrubs, suggesting
they are nurses or
doctors, but without
more context or a
clearer image of the
show’s title or logo,
it’s not possible to
identify the original
broadcaster of the
TV show.
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