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Towards Artist-Like Painting Agents with Multi-Granularity
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ABSTRACT
Mainstream painting agents based on stroke-based rendering (SBR)
attempt to translate visual appearance into a sequence of vectorized
painting-style strokes. Lacking a direct mapping (and consequently
the differentiable ability) between pixel domain and stroke parame-
ter searching space, these methods often yield non-realistic/artist-
incompatible stroke decompositions, hindering its further applica-
tion in high quality art generation. To explicitly address this issue,
we propose a novel SBR based image-to-painting framework which
aligns with artistic oil painting behaviors/techniques. In the heart is
a semantic content stratification module which decomposes images
into hierarchical painting regions encapsulated with semantics, ac-
cording to which a coarse-to-fine strategy is developed to first fill-in
the abstract structure of the painting with coarse brushstrokes; and
then depict the detailed texture portrayal with parallel-run local-
ized multi-scale stroke search. In the meantime, we also propose a
novel method that integrates SBR frameworks into a simulation-
based interactive painting system for stroke quality assessment.
Extensive experimental results on a wide range of images show that
our method not only achieves high fidelity and artist-like painting
rendering effect with a reduced number of strokes, but also exhibits
greater stroke quality over prior methods.

CCS CONCEPTS
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper.

KEYWORDS
Painting Agent, Stroke-based Rendering, Semantic Stratification

1 INTRODUCTION
With the emergence of fluid-simulation in computer graphics [2]
and AIGC [1, 18], automatic painting agents have aroused great
interest among many professional artists for its flexibility and ap-
plication potential in digital art/design creation, art education, and
interactive art, etc. Current methods are mainly based on stroke-
based rendering (SBR) [8, 9, 14, 16, 19, 20, 25], which decomposes a
photo-realistic image into a sequence of brushstrokes (in the for-
mat of vectorized representation) and then draws in order these
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Figure 1: Illustration of our motivation. Current methods
in stroke-based rendering (SBR) fail to align with realistic
human painting techniques, which can be attributed to three
main issues: 1) Uniform Painting Regions [8, 9, 14] that ig-
nore the hierarchical structure of images; 2) Chaotic Stroke
Sequence [20] that is inconsistent with the artistic progres-
sive painting habits; and 3) Single-granularity Strokes [9, 25]
that accumulate in local patterns of paintings. To address
above issues, this paper is motivated to develop a novel SBR
method which aligns with artistic painting techniques by de-
composing the image into hierarchical painting regions and
generating strokes in a coarse-to-fine fashion that progresses
from background to foreground, from abstract to concrete
and from coarse granularity to fine granularity.

discrete strokes on the canvas through template-based [24], neural-
based [8, 9, 19] or simulation-based [2] stroke rendering techniques.

While a human artist typically plan his/her painting strokes with
a strategy that progresses from abstract (overall structure fill-in)
to concrete (local details highlighting), and from coarse-grained to
fine-grained semantics, current stroke planning algorithms, how-
ever, mainly rely on pixel-level rendering loss based reinforcement
learning, completely ignoring this important hierarchical seman-
tic structure in outputting their stroke sequences. In other words,
no artist knowledge/experience is incorporated, which apparently
leads to the following serious issues: On the one hand, as the rela-
tionship between brushstroke granularity and the coarse-to-fine
content structural semantics is NOT explicitly modelled, most meth-
ods tend to stack a large number of semantic-agnostic fine-grained
strokes for reconstructing the highly textured regions [9, 20, 25],
leading to great redundancy/complexity in the resulting stroke se-
quence. For example, a 512 × 512-sized image often requires more
than ten thousand strokes.

On the other hand, as the optimization objective is only to re-
cursively build the pixel gap between the ground-truth image and
the rendered one, with NO regard to whether the generated stroke

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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is compatible with real artist’s stroke characteristics like stroke
ordering, the resulting rendered painting often presents non-artist
style, which forbids real applications.

Pioneer works such as Intelli-Paint [19] attempt to plan the
painting process in an artist-like fashion, but it relies solely on
object detection for basic background-to-foreground separation
and the planned strokes do not explicitly align with the coarse-
to-fine image structure. Other algorithms tend to divide images
into discrete/regular square regions and paint each square region
independently for efficiency improvement. For instance, PaintTrans-
former [14] decomposes images into multi-scale patches to gen-
erate corresponding brushstrokes, which results in a pronounced
visual fragmentation. DPPR [8] employs reinforcement learning
to dynamically identify painting regions within an image to avoid
visual fragmentation. However, these painting regions remain reg-
ular squares, thus inhibiting precise alignment with the underlying
structure/semantics of the image content.

In pursuit of artistic-like painting agents and addressing the
aforementioned limitations, we propose a novel image2stroke frame-
work which enforces the generated sequence of strokes to align
with artistic oil painting styles. Specifically, our framework gener-
ates a hierarchy of image painting regions/semantic segmentations
through a semantic content stratification module, with the help of
off-the-shelf image parsing big models such as Depth-Anything [23]
and Segment-Anything [10], based on which a structure-aligned
coarse-to-fine stroke ordering and parameter adaptation scheme
is developed, for generating artistic-compatible stroke sequences.
Specifically, with the above painting region stratification, ourmethod
generates strokes imitating the artistic painting style in a two-stage
fashion. We first utilize coarse brushstrokes to fill in the abstract
layout/structure of the input image content by employing the dif-
ferentiable stroke renderer to optimize the stroke parameters in
parallel, thereby achieving a rough yet very efficient semantic struc-
tural alignment. Second, a divide-and-conquer strategy is adopted
for efficient multi-scale brushstroke search within each distinct
region for a more detailed and textured portrayal in a progressive
and coarse-to-fine paradigm. To mitigate boundary inconsistency
artifacts between regions caused by localized stroke search, we
further develop an edge compensation module based on the image
gradient field.

Extensive comparisons on rendering quality with state-of-the-art
methods show that our method achieves high-fidelity stroke-based
rendering with a reduced number of brushstrokes. Specifically, we
can achieve better visual rendering results than previous methods
with a 20% reduction in the number of strokes. When using the
same amount of strokes, our method can depict significantly more
realistic and finer image textures. Compared to previous work, our
painting areas are characterized by the diverse shapes encapsulated
with content semantics and hierarchically structural ordering, i.e.,
from object level to local part level, evolving from intricate textures
to smoother textures, thus yielding artistic-like painting styles. In
addition, we develop an automatic painting agent based on physical
fluid simulation [11], which uses the generated stroke sequences to
automatically drive physical brushes and paint on a canvas, allow-
ing us to directly assess the practicality/artistic quality of different
brushstroke planning algorithms. The experiments demonstrate
that our algorithm performs the best among the state-of-the-art.

2 RELATEDWORK
Traditional SBR algorithms include greedy strategies [4, 6, 13],
energy function optimization algorithms [7, 21], and user-guided
semi-automatic methods [5]. These algorithms all utilize stroke
primitives based onmathematical models, such as cubic B-spline [6],
with constant texture within a stroke, which are unable to display
the realistic details. Im2Oil [20] adopts a texture-encapsulated meta
brushstroke [24] as painting primitive and employs adaptive sam-
pling for stroke parameters search, which produces compelling
painting textures. However, its stroke sequence is unrelated to im-
age semantics, leading to the painting process artist-incompatible
and short of practical significance.

With the popularity of deep learning technology, SBR algorithms
based on neural networks raise widespread attention. [9] is a pio-
neering work that incorporates reinforcement learning (RL) frame-
work [12] for realistic painting, which provides satisfying results for
high-resolution scene paintings, although with noticeable artifacts
at the fixed grid edges. To mimic human painting habits, Intelli-
Paint [19] trains the RL model to output strokes within the special
semantic region, achieving a painting sequence that progresses
from background to foreground. But it relies solely on object detec-
tion for basic background-to-foreground separation and generates
strokes in block-style painting region, which can not explicitly align
with finer-grained image semantics.

To enhance efficiency for generating stroke parameters, Paint-
Transformer [14] utilizes a self-supervised sequence-to-sequence
model to generate strokes in a feed-forward manner. Zou et al. [25]
propose a neural stroke renderer to optimize stroke parameters
directly through gradient descent. However, their results are unsat-
isfactory, primarily due to regional voids and lack of fine-grained
strokes. DPPR [8] proposes to train a RL model to dynamically
predict the next painting region on the current canvas, signifi-
cantly reducing the boundary artifacts caused by uniformly divided
painting regions. However, DPPR requires truncating the stroke pa-
rameters within the corresponding rectangular areas for rendering,
which does not align with the techniques of realistic painting.

Different from abovemethods, we propose a novel SBR algorithm
with multi-granularity semantic alignment, which aligns the stroke
generation process with artistic oil painting styles, particularly
tailored for artist-like painting agents.

3 METHODOLOGY
As mentioned above, our novel framework contains 1) a semantic
content stratification module, 2) a two-stage artist-like stroke gen-
eration/planning module along with an edge compensation module,
as illustrated in Fig. 2, for the purpose of aligning artist’s knowl-
edge towards image-based efficient and high-fidelity vectorized
brushstroke sequence recreation (in the style of oil painting). The
overall pipeline is elaborated as follows.

3.1 Semantic Content Stratification Module
Previous methods divides image into regular image grids either in
fixed [14] or dynamic (run-time) identified [8, 19] schemes, in order
to generate brushstrokes in seperate painting regions independently.
These practices seriously violate the artistic painting process: 1)
boundary inconsistency/artefacts between grids are induced; and
2) the ordering and granularity of the generated brushstrokes are
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Figure 2: Overview of our framework. Our framework contains a semantic content stratification module, a two-stage artist-like
stroke generation module and an edge compensation module. Our method starts from decomposing the input image into
hierarchical semantic painting regions. Then a two-stage stroke generation method is utilized to firstly fill in the abstract
structure of the image through optimizing a small number of coarse-grained strokes and then perform parallel localized
multi-scale stroke search within each painting region to depict fine-grained image textures. Finally, we refine the boundaries
among painting regions to generate better visual effects.

NOT compatible with a typical artist’s behaviour. More specific, an
oil painting artist usually attempts to use coarse-grained strokes to
fill the rough structure of the entire scene such as the background
layout, sky, and ground, etc., and then use median size strokes to
outline major objects in the scene such as human body, face, etc.,
and finally use fine-grained strokes to depict important local object
parts such as eyes, mouths, and fine textures, etc.

The above observation motivates us to propose the following
semantic content stratification module to divide the image into a
sequence of painting regions that not only to mimic the artistic
painting ordering but also to align with the hierarchical/multi-
granularity semantic information of the image content, e.g., back-
ground→ human/face→ eye/mouth, so that following this hier-
archical/tree structure, strokes with different granularities could
be planned accordingly for both efficiency and painting fidelity
boosting.

For the input image 𝑰 ∈ R𝑊 ×𝐻×3, we separate it into background
(with relatively smoother textures) and foreground (containing
richer semantics and textures) areas. For such a purpose, we utilize
Depth Anything Model (DAM) [23] to obtain the depth map and
cluster all pixels into two sorted clusters according to the depth
values via k-means [15], which can be described as:

{𝑹𝑏 , 𝑹 𝑓 } = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (𝑑𝑒𝑝𝑡ℎ(𝑰 ), 2), (1)
where 𝑹𝑏 , 𝑹 𝑓 ∈ {0, 1}𝑊 ×𝐻 represents the background and fore-
ground areas (as masks), respectively. The background area is fur-
ther segmented into several disjoint regions according to the in-
uniform geometry due to the presence of the foreground objects
by the Meanshift algorithm [3], denoted as:

𝑹𝑏 = 𝑹1
𝑏
∪ 𝑹2

𝑏
, ...,∪𝑹𝑛

𝑏
, (2)

where 𝑛 denotes the number of background sub-regions and the
sub-regions are sorted by area size. Brushstrokes within these sub-
regions can be planned independently. For foreground areas that

are rich in semantics and texture, we further decompose it into
instance-level semantic regions (e.g., a face, a human body, etc.),
so that we can plan strokes individually for each semantic object
region. For such a purpose, we utilize Automatic Masks Generator
(AMG) from SAM model [10] to produce a series of object instance
masks/regions (sorted by area size) as:

𝑹 𝑓 = 𝑹1
𝑓
∪ 𝑹2

𝑓
, ...,∪𝑹𝑚

𝑓
. (3)

However, we observe that directly using AMG for foreground
instance segmentation results in coarse-grained semantic regions.
To obtain more fine-grained semantic regions (i.e., object parts),
we adopt a prompt strategy guided by image gradients to SAM for
further subdivision of the foreground masks into various textured
regions which are highly probably corresponding to different object
parts. Observing that areas with greater image gradients most likely
correspond to regions that are richer in semantic information, we
propose to guide SAM to retrieve more fine-grained foreground
masks based on the spatial distributions of image gradients.

More concretely, we follow Im2Oil [20] to extract smoothed
image gradient map 𝑮 using Sobel filter and Mean filter. For each
foreground mask 𝑹𝑖

𝑓
, we firstly generate a masked gradient map

𝑮 𝒊
𝒇
. Then, we sample one point with the greatest gradient in 𝑮 𝒊

𝒇

and use its circular neighborhood as a prompt for SAM to generate
a fine-grained mask 𝑹𝑖,1

𝑓
. When the intersection over union (IoU)

between 𝑹𝑖,1
𝑓

and 𝑹𝑖
𝑓
is less than a threshold 𝜖1, we consider 𝑹𝑖,1

𝑓
to

be a meaningful subdivision. We retain 𝑹𝑖,1
𝑓
and then remove the

corresponding areas from 𝑹𝑖
𝑓
and 𝑮𝑖

𝑓
. This process is recursively

performed until the IoU between the newly generated mask and
the remaining image area exceeds the threshold, as shown in Alg. 1.
Finally, we obtain a set of fine-grained regions (sorted by area size)
as:

𝑹𝑖
𝑓
= 𝑹𝑖,1

𝑓
∪ 𝑹𝑖,2

𝑓
, ...,∪𝑹𝑖,𝑜𝑖

𝑓
, (4)
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𝑹𝑖, 𝑗
𝑓

= 𝑆𝐴𝑀 (𝑹𝑖
𝑓
\ ∪𝑗−1

𝑘=1𝑹
𝑖,𝑘

𝑓
· 𝑰 , 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑮𝑖

𝑓
\ ∪𝑗−1

𝑘=1𝑮
𝑖,𝑘

𝑓
)), (5)

where 𝑠𝑎𝑚𝑝𝑙𝑒 (·) denotes sampling a point with the greatest gra-
dient value from the gradient map and generating its circular
neighborhood. After subdividing all the foreground masks, we
parse/arrange the original image into a tree of hierarchical semantic
painting regions:

{{𝑹1
𝑏
, ..., 𝑹𝑛

𝑏
}, {{𝑹1,1

𝑓
, ..., 𝑹1,𝑜1

𝑓
}, ..., {𝑹𝑚,1

𝑓
, ..., 𝑹𝑚,𝑜𝑚

𝑓
}}}, (6)

and it is noted that all regions within each hierarchical level are
arranged in descending order of area size.

Algorithm 1: Semantic Content Stratification
Input : 𝑰 , 𝑮 , 𝜖1;
// Input Image, Gradient Map, Threshold
𝑫 = 𝐷𝐴𝑀 (𝑰 ); // Depth Map
{𝑹𝑏 , 𝑹 𝑓 } = 𝑘𝑚𝑒𝑎𝑛𝑠 (𝑫); // cluster by depth values
{𝑹1

𝑏
, 𝑹2

𝑏
, ..., 𝑹𝑛

𝑏
} = 𝑠𝑜𝑟𝑡𝑒𝑑 (𝑀𝑒𝑎𝑛𝑆ℎ𝑖 𝑓 𝑡 (𝑹𝑏 ));

// cluster by pixel coordinates
{𝑹1

𝑓
, 𝑹2

𝑓
, ..., 𝑹𝑚

𝑓
} = 𝑠𝑜𝑟𝑡𝑒𝑑 (𝑆𝐴𝑀 (𝑹 𝑓 · 𝑰 , 𝑎𝑢𝑡𝑜));

// segment coarse foreground areas
for 𝑹𝑖

𝑓
= 𝑹1

𝑓
: 𝑹𝑚

𝑓
do

// segment fine foreground areas
Initialize an empty set 𝑻 𝑖

𝑓
and a mask 𝑹𝑛𝑒𝑤 = {0}𝑊 ×𝐻 ;

do
𝑹𝑖
𝑓
= 𝑹𝑖

𝑓
\ 𝑹𝑛𝑒𝑤 ; 𝑮𝑖

𝑓
= 𝑮 · 𝑹𝑖

𝑓
;

Find the point 𝑝 with greatest value in 𝑮𝑖
𝑓
;

Generate a circular neighborhood N(𝑝) for 𝑝;
𝑹𝑛𝑒𝑤 = 𝑆𝐴𝑀 (𝑹𝑖

𝑓
· 𝑰 , 𝑝𝑟𝑜𝑚𝑝𝑡 = N(𝑝));

// retrieve a fine mask
𝑻 𝑖
𝑓
.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑹𝑛𝑒𝑤 );

while 𝐼𝑜𝑈 (𝑹𝑛𝑒𝑤 , 𝑹𝑖𝑓 ) ≤ 𝜖1;
end
Output :Hierarchical regions {{𝑹1

𝑏
, ..., 𝑹𝑛

𝑏
}, {𝑻 1

𝑓
, ..., 𝑻𝑚

𝑓
}}.

3.2 Coarse-Grained: Rough Structure Fill-in
After obtaining the above hierarchical painting semantic region
parsing, we first draw a few number of rough strokes in each seman-
tic area to fill-in the overall structure/abstract layout of the target
painting. Mathematically, we follow previous methods [8, 14, 20]
and utilize parametric rectangular stroke model as our painting
primitive, where a stroke 𝒔 can be denoted as {𝑥,𝑦,𝑤,ℎ, 𝜃, 𝑟, 𝑔, 𝑏}
with (𝑥,𝑦) representing the coordinates of the stroke rectangular
center, (𝑤,ℎ) representing the stroke size, 𝜃 denoting the angle
of counter-clockwise rotation and (𝑟, 𝑔, 𝑏) meaning the template
stroke color. Such a stroke can be painted on canvas by modifying
its color and transferring its shape and location in canvas coor-
dinate system through affine transformation as described in [14],
which is a differentiable process.

For algorithmic simplicity, we allocate𝑁𝑏 strokes for background
regions and 𝑁𝑓 strokes for foreground regions considering that
the foreground part has more complex textures. For each sub-
region, we adaptively allocate the specific number of brush strokes
based on its area size. More specific, we define the size factors for

background and foreground areas as 𝜎𝑖
𝑏
= 𝑠𝑖𝑧𝑒 (𝑹𝑖

𝑏
)/𝑠𝑖𝑧𝑒 (𝑹𝑏 ) and

𝜎
𝑖,𝑗

𝑓
= 𝑠𝑖𝑧𝑒 (𝑹𝑖,𝑗

𝑓
)/𝑠𝑖𝑧𝑒 (𝑹 𝑓 ) respectively. Then the number of strokes

needed for painting region 𝑹𝑖
𝑏
and 𝑹𝑖,𝑗

𝑓
can be described as:

𝑁 𝑖
𝑏
= ⌈𝜎𝑖

𝑏
𝑁𝑏⌉, 𝑁

𝑖, 𝑗

𝑓
= ⌈𝜎𝑖, 𝑗

𝑓
𝑁𝑓 ⌉, (7)

where ⌈·⌉ denotes ceiling function.
Instead of learning based schemes, we adopt a gradient descent

algorithm to directly optimize the parameters of the rough strokes
for the sake of generalization and computational efficiency. We first
initialize strokes by randomly sampling points within each painting
region, and use their coordinates and colors as the initial positions
(i.e., {𝑥,𝑦}) and colors (i.e., {𝑟, 𝑔, 𝑏}). The stroke size is initialized as
below:

[𝑤𝑖
𝑏
, ℎ𝑖

𝑏
] = 𝜎𝑖

𝑏
[𝑤𝑏 , ℎ𝑏 ], [𝑤

𝑖, 𝑗

𝑓
, ℎ

𝑖, 𝑗

𝑓
] = 𝜎

𝑖, 𝑗

𝑓
[𝑤 𝑓 , ℎ𝑓 ], (8)

where we set [𝑤𝑏 , ℎ𝑏 ] = 1
𝛼 [𝑊,𝐻 ], [𝑤 𝑓 , ℎ𝑓 ] = 1

8𝛼 [𝑊,𝐻 ] with 𝛼

controlling the stroke sizes. Subsequently, we add all initial strokes
onto a blank canvas in a hierarchical order from background to
foreground and from large to small areas to create a new painting 𝑰𝑐 .
We then iteratively compare it with the input image 𝑰 and optimize
all stroke parameters via gradient descent. In order to encourage
the strokes to roughly reflect the semantic layout in the image while
also achieving visual consistency, we follow [22] and utilize a pre-
trained image encoder model of CLIP [17] to measure the semantic
distances between the input image and the output painting. The
overall loss function for optimizing is formulated as:

L = ∥𝑰 − 𝑰𝑐 ∥22 + 𝛽𝑑𝑖𝑠𝑡 (𝐶𝐿𝐼𝑃 (𝑰 ),𝐶𝐿𝐼𝑃 (𝑰𝑐 )), (9)

where 𝑑𝑖𝑠𝑡 (·, ·) is the cosine distance and 𝛽 is utilized to balance
loss contributions.

3.3 Fine-Grained: Region Depiction via
Multi-Scale Stroke Planning

For each semantic painting region, an artist typically begins filling
with a rough sketch and then adds layers of details with brushes
of smaller and smaller sizes. Therefore, we plan a specific number
of painting scales/layers (here we plan 2 and 4 painting layers for
the background and foreground regions respectively considering
image texture distribution), and then search brushstrokes with
progressively decreasing scales/granularities/sizes layer-by-layer,
depicting the region/segment under consideration in a coarse-to-
fine manner. The proposed multi-scale stroke search algorithm is
shown in Alg. 2, which is elaborated as follows.

Layer-by-layer optimization: Starting from the coarsest/initial
scale layer, the proposed layer-wise iteration scheme works the
following way. At each scale, first we apply an annealing kernel
F (·, 𝑖) to obtain a smoothed version of the error map. Here, the
kernel size anneals with the layer: 𝑘𝑖 = ⌈( 12 )

𝑖−1𝑘1⌉, namely, smaller
size kernels are used in finer-scale layers. The purpose of this pre-
blurring operation is to guide the stroke searcher/planner to focus
on only strong/high-contrast textured structures such as edges and
ignoring the spurious image textures or noisy errors. The philos-
ophy of using smaller blur kernels for later layers/finer scales is
that as the stroke sizes we adopted decrease layer-by-layer, we
believe low frequency errors have been mostly eliminated during
previous iterations and thus we should force the stroke planner to
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concentrate on higher frequency errors at finer-scale layers, corre-
sponding to using small-scaled image filtering kernels. For strokes
searched at each scale/layer, we set𝑤𝑖

𝑚𝑖𝑛
= 1

2𝑘
𝑖 ,𝑤𝑖

𝑚𝑎𝑥 = 4𝑤𝑖
𝑚𝑖𝑛

as
the minimum and maximum stroke widths limits, thus encouraging
finer-grained strokes to reduce finer-scale painting errors. We set
ℎ𝑖
𝑚𝑖𝑛

= 2𝑤𝑖
𝑚𝑖𝑛

,ℎ𝑖𝑚𝑎𝑥 = 2𝑤𝑖
𝑚𝑎𝑥 to prevent the search from producing

strokes that are either too short or too long. Specific to each painting
regions/segment, the minimum and maximum widths/lengths are
further clamped to 𝜎𝑤𝑖

𝑚𝑖𝑛
/𝜎ℎ𝑖

𝑚𝑖𝑛
and 𝜎𝑤𝑖

𝑚𝑎𝑥/𝜎ℎ𝑖𝑚𝑎𝑥 respectively,
where 𝜎 is the size factor for each region, as defined in Sec. 3.2.
The stopping criterion for terminating stroke searching in the cur-
rent scale/layer and turning to the next layer search are set as: the
IoU threshold 𝜖2 of the layer-wise total strokes with respect to the
masked region is less than 0.98 and the consecutive search failure
number exceeds a threshold 𝑐1

𝑓
= 5 to avoid repetitive smearing of

over-coarse sized strokes. The case of search failure is defined in
the following paragraph.

Within-layer optimization: At each layer, to search each
stroke parameter {𝑥,𝑦,𝑤,ℎ, 𝜃, 𝑟, 𝑔, 𝑏}, according to the pixel-wise
error map 𝑬𝑐 between current canvas 𝑰𝑐 and the target image 𝑰 ,
we propose to place the initial stroke position, i.e., (𝑥0, 𝑦0) at points
with large errors. Then, we use the color of the sampled point in
the original image, i.e., (𝑟0, 𝑔0, 𝑏0) = 𝑰 [𝑥0, 𝑦0] as the color for this
brushstroke. The next is to determine the rotation direction 𝜃 of the
stroke. Although [20] achieves superior results with Edge Tangent
Flow (ETF) determining stroke direction, it is only suitable for ar-
eas with clear gradient flows, such as hairs. For generality, we use
image gradients extracted by Sobel filter as the search direction for
brushstrokes. Based on the initial point (𝑥0, 𝑦0) with stroke color
(𝑟0, 𝑔0, 𝑏0) and direction 𝜃 , we follow the common strategy [20]
to search the stroke size (𝑤,ℎ) by moving the search point (𝑥,𝑦)
pixel-by-pixel in four directions {𝜃, 𝜃 + 𝜋, 𝜃 + 𝜋

2 , 𝜃 − 𝜋
2 }. In addi-

tion to the commonly used two search termination conditions, i.e.,
|𝑰 [𝑥,𝑦] − 𝑰 [𝑥0, 𝑦0] | ≤ 𝑡𝑐 and𝑤𝑚𝑖𝑛 ≤ 𝑤 ≤ 𝑤𝑚𝑎𝑥 , ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥 ,
we also add a new condition: the search point must not exceed the
painting area. This restricts stroke search within each painting
region, which not only greatly improving the efficiency of stroke
search (i.e., enabling parallel searching) but also ensuring precise
alignment of brushstrokes with image structures such as edges and
boundaries. After searching a stroke, we add it into current canvas
and update the error map 𝑬𝑐 . If the 𝐿2 loss in the corresponding
region decreases, we retain this stroke and then sample the starting
point for the next search from the remaining points in this region.
If the 𝐿2 loss in the corresponding region increases, we consider
this stroke fails and abandon it, and then resample a start point and
search again in this region.

3.4 Edge Compensation Module
Our semantic content stratification module may result in formation
of voids or overlaps at the boundaries of painting regions, leading
to the ignorance of the masked error map to accurately capture
this information. Moreover, the convolution of filters at the edges
may reduce the sampling rate of edge pixels. Additionally, the rect-
angular strokes may partially cross beyond the boundaries of the
painting regions. These three factors collectively diminish the rep-
resentation of edge details. To address these issues, we develop an

edge compensation module aiming at more detailed visual effects.
Concretely, after completing the multi-scale stroke search, we cal-
culate the error map between the current canvas and the target
image, and use the image gradient field to weight the error map.
Then, we iteratively sample starting points from the weighted error
map to perform stroke search with the same constraints as the last
layer in the progressive stroke search as described in Sec. 3.3.

Note that in the edge compensation module, we search stroke
parameters in the global image and terminate the search process
when the number of consecutive search failures exceeds a pre-
defined threshold 𝑐2

𝑓
.

Algorithm 2:Multi-scale Stroke Search

Input : 𝑰 , 𝑰𝑐 , F (·, ·), 𝑹, 𝜎𝑹 , 𝑘1, 𝜖2, 𝑐1𝑓 ;
// Input Image, Current Canvas, Painting Region, Size Factor
// Filter, Initial Kernel Size, IoU and Failure Number Threshold
Init: 𝑬𝑐 = 𝐿2 (𝑰 , 𝑰𝑐 ) · 𝑹; // local error map
for i=1:4 do

𝑘𝑖 = ⌈( 12 )
𝑖−1𝑘1⌉;

𝑤𝑖
𝑚𝑖𝑛

= 1
2𝑘

𝑖 ;𝑤𝑖
𝑚𝑎𝑥 = 4𝑤𝑖

𝑚𝑖𝑛
;

ℎ𝑖
𝑚𝑖𝑛

= 2𝑤𝑖
𝑚𝑖𝑛

; ℎ𝑖𝑚𝑎𝑥 = 2𝑤𝑖
𝑚𝑎𝑥 ;

𝑛𝑖
𝑓 𝑎𝑖𝑙

= 0; // number of consecutive search failures

𝑹𝑖
𝑠𝑡𝑟𝑜𝑘𝑒

= {0}𝑊 ×𝐻 ; // stroke areas
do

(𝑥0, 𝑦0) = 𝑠𝑎𝑚𝑝𝑙𝑒 (F (𝑬𝑐 , 𝑖));
Search a stroke 𝒔 starting from (𝑥0, 𝑦0) constrained
by (𝜎𝑹𝑤𝑖

𝑚𝑖𝑛
, 𝜎𝑹𝑤

𝑖
𝑚𝑎𝑥 ) and (𝜎𝑹ℎ𝑖𝑚𝑖𝑛

, 𝜎𝑹ℎ
𝑖
𝑚𝑎𝑥 );

𝑰
′
𝑐 = 𝑑𝑟𝑎𝑤 (𝑰𝑐 , 𝑠); 𝑬

′
𝑐 = 𝐿2 (𝑰 , 𝑰

′
𝑐 ) · 𝑹;

if 𝑚𝑒𝑎𝑛(𝑬 ′
𝑐 ) ≤ 𝑚𝑒𝑎𝑛(𝑬𝑐 ) then

𝑰𝑐 = 𝑰
′
𝑐 ; 𝑬𝑐 = 𝑬

′
𝑐 ; 𝑹𝑖𝑠𝑡𝑟𝑜𝑘𝑒 = 𝑹𝑖

𝑠𝑡𝑟𝑜𝑘𝑒
∪𝑚𝑎𝑠𝑘 (𝒔);

𝑛𝑖
𝑓 𝑎𝑖𝑙

= 0; search failure consecutiveness is broken

else
𝑰𝑐 = 𝑰𝑐 ; 𝑬𝑐 = 𝑬𝑐 ; 𝑛𝑖𝑓 𝑎𝑖𝑙+ = 1;

end
while 𝑛𝑖

𝑓 𝑎𝑖𝑙
≤ 𝑐1

𝑓
and 𝐼𝑜𝑈 (𝑹𝑖

𝑠𝑡𝑟𝑜𝑘𝑒
, 𝑹) ≤ 𝜖2;

end

4 EXPERIMENT
4.1 Datasets and Settings
Datasets.We adopt the gallery dataset from Im2Oil [20] and sup-
plement it with five categories: scenery, portrait, animal, building,
and still life, to form a dataset of one hundred images.
Implementation details. Our framework includes several hyper-
parameters. In the semantic content stratification module, when the
IoU of a newly retrievedmaskwith its corresponding region exceeds
0.8, we consider that region as no longer subject to finer-grained
segmentation, i.e., 𝜖1 = 0.8. In the rough structure fill-in module, we
set𝑁𝑏 = 10 and𝑁𝑓 = 40. In fact,𝑁𝑏 and𝑁𝑓 can be flexibly adjusted
according to the texture distribution of the image’s background
and foreground regions. We set 𝛼 = 8 to initialize the size of the
coarse brush strokes. 𝛽 is set to 1.0 to control loss contributions.
During multi-scale stroke search, we use a gaussian filter with an
initial size of 𝑘1 × 𝑘1 with 𝑘1 = ⌈ 1

32𝑚𝑖𝑛{𝑊,𝐻 }⌉, where [𝑊,𝐻 ]
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Figure 3: Qualitative comparison with state-of-the-art methods. We showcase the rendering results of previous methods and
ours. 𝑁 denotes the number of strokes used. As shown, our method achieves significantly better painting rendering effect than
other methods. Im2Oil produces comparable rendering quality, but our method substantially reduces the number of strokes.
Please zoom in to capture more details.
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Figure 4: We compare the stroke planning convergence speed
with DPPR [8]. As shown, our method is able to the same
painting quality as DPPR with significantly fewer strokes.

denotes the image size. Regarding the termination condition of
the stroke search, we set 𝑡𝑐 = 0.05, 𝜖2 = 0.98 and 𝑐1

𝑓
= 5. During

edge compensation, since the search is based on the entire image,
we terminate the search when the number of consecutive search
failures exceeds 8, i.e., 𝑐2

𝑓
= 8. All experiments are conducted on a

3090 GPU. The runtime it takes to paint an image is on the order of
minutes due to the highly parallel stroke search.

4.2 Comparison with State-of-the-Art Methods
4.2.1 Qualitative Comparison. We compare our method with five
state-of-the-art SBRmethods, including Tong et al. [20], Hu et al. [8],
Liu et al. [14], Huang et al. [9] and Zou et al. [25]. All compared
methods are experimented with their default official parameters
and for Tong et al. [20] we adopt the 𝑝𝑚𝑎𝑥 = 1

4 version. For Tong
et al. [20], the number of strokes is determined by their search
strategy. For other methods, we set the number of strokes the same
as ours. The qualitative results are shown in Fig. 3.

We observe that our method achieves the best rendering results
with the most realistic painting textures and the most intricate
visual details. Previous methods produce significant stroke redun-
dance on fine-grained areas like eyes due to the accumulation of
small strokes. In contrast, our approach utilizes multi-scale strokes
and encourages the use of larger strokes for initial filling, followed
by finer-grained strokes to add details. Consequently, our method
does not produce a piled-up effect and achieves higher-quality
strokes with practical/artistic value. Huang et al. [9] and Liu et
al. [14] all exhibit boundary discontinuities in their paintings. In
contrast, our hierarchical painting areas naturally align strokes
with the hierarchy of image structure/semantics, inherently avoid-
ing edge discontinuities and conforming to artistic painting habits.
Hu et al. [8] fail to capture the fine-grained details of images be-
cause their stroke parameters are predicted by neural networks,
which often overlook features of fine-grained areas (with only a
few pixels) such as human eyes and hairs. Tong et al. [20] produce
visually appealing results, but suffer from issues like stroke over-
stacking and swirl-like errors at areas with complex textures. In
contrast, our localized multi-scale stroke search strategy effectively
reproduces fine-grained details. In addition, our method achieves
better rendering quality while reducing the number of strokes by
20% in average compared to Tong et al. [20], primarily due to the
rough structure fill-in and efficient localized stroke search.

DPPR [8] is currently the state-of-the-artmethod that can quickly
converge to the abstract structure of an image with few strokes.
Thus we use SSIM as a metric to compare the convergence speed
with DPPR, as shown in Fig. 4. When achieving the same painting
quality (SSIM value), the number of strokes we need is significantly
fewer than DPPR. When further increasing the stroke number, our
method achieves significantly better painting results than DPPR.

4.2.2 User Study. To further demonstrate the superiority of our
method, we invite 47 volunteers to evaluate the painting quality
of five state-of-the-art methods and ours. Specifically, for each
image in the dataset, we generate a group of six oil paintings with
a shuffled order. Then volunteers are requested to observe each
group of paintings for at least one minute, and provide a rating for
each painting, with the score ranging from 1 to 6, where 1 means
the best painting of this group. To prevent volunteers from scoring
arbitrarily and leading to an unfair evaluation, we ask volunteers to
distinguish the areas in each input image that could be prominently
painted by human artists and pay special attention to these areas
when scoring.

We calculate the average score for each method across each set
of images. The average scores for different methods are presented
in Tab. 1. We see that users show obvious preference to paintings
produced by ourmethod, which can be attributed to that ourmethod
greatly aligns the stroke with image semantics and depicts intricate
and realistic textures in key areas of the image, such as human eyes
and leaves.

Table 1: User study results. Set 1-5 correspond to still life,
animal, portrait, scenery, and building, respectively.

Methods Set-1 Set-2 Set-3 Set-4 Set-5 Mean

Huang et al. [9] 4.88 4.87 2.55 4.74 4.91 4.39
Liu et al. [14] 5.11 5.02 5.98 4.87 5.11 5.22
Zou et.al. [25] 5.01 5.11 5.17 5.38 4.98 5.13
Hu et al. [25] 2.38 1.83 4.85 2.09 2.34 2.70
Tong et al. [20] 2.09 2.36 1.83 2.42 2.28 2.20
Ours 1.55 1.81 1.62 1.49 1.38 1.57

4.2.3 Stroke Quality Assessment. Current SBR methods commonly
use pixel loss to evaluate the generated strokes, lacking a direct
quality assessment for stroke sequence.

Our belief is that high-quality stroke sequence should allow
users to understand stroke parameters from a semantic perspective
and provide interactive suggestions modifications. Therefore, we
integrate the SBR algorithms into an interactive simulation-based
painting system, using the generated stroke sequence to drive a
physical brush to draw realistic painting pigments onto the canvas
for rendering and then evaluate the quality of the painted results,
which reflects the degree of alignment between generated strokes
and realistic painting strokes.

As for a stoke {𝑥,𝑦,𝑤,ℎ, 𝜃, 𝑟, 𝑔, 𝑏}, we can easily calculate the
start and end points of the painting stroke in the ℎ-direction, while
𝑤-direction represents the brush width. By using linear interpola-
tion, we can obtain the coordinates of the brushstroke movement
trajectory, so as to drive the brush to move on canvas according to
the generated stroke parameters.
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Figure 5: Painting results produced by simulation-based painting system. We also show the painting process of the painting
system. Our method generates high-quality strokes that are suitable for practical automatic painting agents.

We compare stroke quality with two methods with great ren-
dering effects (DPPR [8] and Im2Oil [20]). The results are shown
in Fig. 5. We see that the simulated painting results of DPPR [8]
are very poor(e.g. the sunflower image). The reason is that DPPR
truncates the strokes using a rectangular painting region before
rendering them onto the image during training, hence the stroke
parameters do not align with the visual information. However, in
the real painting process, it is not feasible to truncate each stroke
with a corresponding rectangle, making the strokes generated by
DPPR lack practical value. Im2Oil [20] suffers from highly disor-
ganized stroke order which does not align with human painting
habits. Additionally, it fails to adequately display fine-grained de-
tails. Compared to these two methods, our method plans the stroke
sequence in an artist-like fashion, which better aligns with real
painting process.

4.3 Ablation Study
We evaluate the impact of some important components in our
method by individually removing them. We use the set-3 (portrait)
in the dataset to compare the image quality and number of strokes
with each module being removed individually. Tab. 2 shows the
comparison results. (1) Removing semantic content stratification
results in no alignment between semantics and strokes, leading
to repeatedly smudging in local areas. Additionally, the program
can only search for strokes serially, resulting in unacceptable time
consumption. (2) Removing rough structure fill-in module makes
the stroke number increase while maintaining rendering quality. (3)
Removing filtering mechanism leads to that fine textures are easily
captured at coarse level strokes searching and then are repeatedly

smeared, increasing the number of strokes. (4) Removing edge
compensation results in unacceptable artifacts in region boundaries.
(5) We also compare an ablated verion without L𝐶𝐿𝐼𝑃 in rough
structure fill-in, which makes the convergence speed decrease and
the strokes tend to span across multiple semantic areas, leading to
an increasing number of strokes at following edge compensation
module.

Table 2: Ablation study on key components of our method.
This experiment is conducted on the portrait dataset.

Module 𝐿2 Dist ↓ PSNR ↑ Stroke number

w/o semantic stratification 0.0022 26.49 +38.4%
w/o rough structure fill-in 0.0016 27.96 +17.3%
w/o filtering mechanism 0.0017 27.74 +28.9%
w/o edge compensation 0.0020 26.89 -4.5%
w/o L𝐶𝐿𝐼𝑃 0.0016 28.02 +6.4%
Ours 0.0015 28.15 -

5 CONCLUSION
In this paper, we present a novel SBR method which aligns with
artistic painting techniques through decomposing the input image
into hierarchical painting regions and generating multi-granularity
strokes in a two-stage manner. We also integrate SBR frameworks
into a simulation-based painting system for stroke quality assess-
ment. Extensive experimental results show that ourmethod achieves
high fidelity rendering effects with a reduced number of strokes
and exhibits great stroke quality over previous methods.
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