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Abstract

Pretraining data has a direct impact on the behaviors and quality of language
models (LMs), but we only understand the most basic principles of this relationship.
While most work focuses on pretraining data and downstream task behavior, we
look at the effect on LM representations. Previous work has discovered that, in
language models, some concepts are encoded as “linear representations” argued
to be highly interpretable and useful for controllable generation. We study the
connection between differences in pretraining data frequency and differences in
trained models’ linear representations of factual recall relations. We find evidence
that the two are directly linked, with the formation of linear representations strongly
connected to pretraining term frequencies. First, we establish that the presence of
linear representations for subject-relation-object-formatted facts is highly correlated
with both subject-object co-occurrence frequency and in-context learning accuracy.
This is the case across all phases of pretraining, i.e., it is not affected by the
model’s underlying capability. In OLMo 7B and GPT-J (6B), we find that a linear
representation forms predictably when the subjects and objects within a relation
co-occur at least 1–2k times. Thus, it appears linear representations form as a result
of consistent repeated occurrences, not due to lengthy pretraining time. In the
OLMo 1B model, formation of these features only occurs after 4.4k occurrences.
Finally, we train a regression model on measurements of linear representation
robustness that can predict how often a term was seen in pretraining with low
error, which generalizes to GPT-J without additional training, providing a new
unsupervised method for exploring how possible data sources of closed-source
models. We conclude that the presence/absence of linear representations contain a
weak but significant signal that reflects an imprint of the pretraining corpus across
LMs.

1 Introduction

Understanding how the content of pretraining data affects language model (LM) behaviors and
performance is a very active area of research [Ma et al., 2024, Xie et al., 2024, Aryabumi et al.,
2024, Longpre et al., 2024]. In such work, a common goal is to understand how to understand how
to encourage certain behaviors as cheaply as possible. It has been shown, for example, that the
frequency of a concept in pretraining encourages the model to use it [Razeghi et al., 2022, Mallen
et al., 2023]. The ways in which frequency is affecting the representations of LMs to cause this are
unclear, but this problem has been investigated by a separate line of work determining what about
the closed-source training data we can infer from an open model [Hayase et al., 2024a, Carlini et al.,
2021]. We bridge connect this to recent work in interpretability which focuses on the emergence of
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simple linear features of concepts in LMs, which strongly correlate with the frequency of terms in
the pretraining corpus.

Linear representations/features in LMs have been central to much interpretability work in the past few
years [Elhage et al., 2021, Olah et al., 2020, Park et al., 2024, Jiang et al., 2024, Black et al., 2022,
Chanin et al., 2024] . The significance of this idea is that much of the behaviors and capabilities of
LMs can be localized to directions in activation space, allowing certain behaviors to be activated or
modulated by intervening on these directions at inference time (also known as steering) [Todd et al.,
2024, Subramani et al., 2022, Hendel et al., 2023, Merullo et al., 2024, Rimsky et al., 2023], or for
changing weights for fact editing [Meng et al., 2022]. Testbeds for steering generation often focuses
on common concepts like country-capital relations or sentiment. Hernandez et al. [2024], Chanin
et al. [2024] both examine how linearity of different types of relations varies greatly depending on the
exact relationship being depicted. Such findings complicate the picture of the Linear Representation
Hypothesis [Elhage et al., 2021, Park et al., 2024] which proposes that LMs will represent features
linearly, without mandating that all features be represented this way. Jiang et al. [2024] provide
theoretical and empirical evidence that the training objective of LMs encourages linear representations
implicitly, however, it is not well understood why some features are represented this way and not
others.

Whether linear representation form for more ‘common’ concepts, or some concepts are just easier to
identify is unclear. We hypothesize that concepts that form linear features are inherently linked to
their higher frequency in their pretraining data, which we provide positive evidence for in Section
4. We also investigate whether the converse holds: that the measurable presence of linear features
tells us something about concept frequency. In Section 5, we fit a regression model to predict the
frequency of individual terms (like “The Beatles”) in pretraining data, using the measurements of the
presence/absence linearity of features (§2). We find that the signal is noisy but allows us to predict
the frequencies of heldout relations/terms in approximate ranges; something that is not possible to
predict using log probabilities and/or task performance as features alone. Importantly, the regression
generalizes beyond the model it was trained on without additional supervision, thus providing the
groundwork for analyzing the pretraining corpora of closed-data models with open weights.

2 Background

2.1 Linear Features

Despite how much effort goes in to understanding what features LMs learn, little is understood
about why some features form linearly and not others, which we explore here. In his work we study
Linear Relational Embeddings (LREs) in LMs from Hernandez et al. [2024], Paccanaro and Hinton
[2001] because it allows us to predefine the concepts we want to search for, as well as use a handful
of linear features to relate thousands of terms. We choose this method because alternatives, like
Sparse Autoencoders (SAEs) [Huben et al., 2023, Gao et al., 2024, Templeton et al., 2024] can be
be unwieldy. Finding interpretable latents is not always straightforward, training costs are high, and
it is not clear whether we could extract the same features across checkpoints/models. Hernandez
et al. [2024] approximate the computation performed by a model to predict the output of common
subject-relation-object triplets (e.g., Miles Davis [subject] plays the [relation] Trumpet [object]) as an
affine transformation from s, the subject token representation at some middle layer of the model to
the hidden state o in the last layer when the model is about to predict the object (e.g., the final hidden
state that decodes as trumpet in the above example). This transformation holds for approximately
every subject and object in the relation set. This is surprising because, despite the non-linearities
within the many layers and token positions separating the utterance of the subject and object, a simple
structure within the representation space underlies the model.

2.2 Inferring Training Data from Models

There has been significant interest in understanding the extent to which it is possible to infer the
training data from a fully trained network, predominantly in the form of membership inference attacks
[Shokri et al., 2017, Carlini et al., 2022], judging memorization of text [Carlini et al., 2023, Oren
et al., 2024, Shi et al., 2024], or distribution of data sources [Hayase et al., 2024b, Ateniese et al.,
2015, Suri and Evans, 2022]. Our work is related in that we find that a significant imprint of the
pretraining data appears in the structure of the LM activation space.
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Figure 1: Overview of this work. A.) We count co-occurrences of subjects and objects in s-r-o
factual relation triplets throughout pretraining batches. B.) We measure how well these relations are
represented within an LM using the Linear Relational Embeddings (LRE) method from Hernandez
et al. [2024] across training steps. C.) We establish a strong relationship between average co-
occurrence freqeuncy and the tendency to form linear features for relations. D.) We introduce a
method using LREs to roughly approximate the frequencies of individual terms in models that for
which we do not have access to the training data in order to help infer domains in which a model may
have been trained.

3 Methods

At a high level, we explore the connection between pretraining data frequency and the formation
of linear features in LMs. Our analysis is based on two main aspects: Counts of terms in the
pretraining corpus of LMs, and measurements of how well factual relations are approximated by
affine transformations. We use the OLMo (7B and 1B) [Groeneveld et al., 2024] and GPT-J (6B)
[Wang and Komatsuzaki, 2021] and their corresponding datasets: Dolma [Soldaini et al., 2024] and
the Pile [Gao et al., 2020], respectively.

3.1 Linear Relational Embeddings (LREs)

Hernandez et al. [2024] approximate LREs in an LM as a first-order Taylor Series approximation. Let
F (s, c) be the computation the model does to predict the object representation o given a subject s and
a context c, this approximation is denoted as F (s, c) ≈ W s+ b = F (si, c) +W (s− si) where we
approximate the relation about some specific subject point si. Following the original work, W and b
are approximated using the average of n examples from the relation (n=8 here) with ∂F

∂s representing
the Jacobian of F :

W = Esi,ci

[
∂F

∂s

∣∣∣∣
(si,ci)

]
and b = Esi,ci

[
F (s, c)− ∂F

∂s
s

∣∣∣∣
(si,ci)

]
(1)
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Empirically, Hernandez et al. [2024] find that this approximation underestimates the true slope of the
transformation, so they scale by scalar hyperparameter β. Unlike the original work, which finds one
β per model, we use one beta per relation, as it simplifies analysis. We also find that this does not
make a very substantial difference in the results. Another difference in our calculation of LREs is that
we do not impose the constraint that the model has to predict the answer correctly to be used as one
of the 8 examples used to approximate the Jacobian. We were surprised that using incorrect examples
could work as well as it did, but it is very convenient for analyzing early checkpoints (§4), as they can
have low performance on some relations. We explore the effect of example choice in Appendix A.

We use the same 25 factual relations from the Relations dataset used in the Hernandez et al. [2024]
work (such as capital-city, person-mother). Across these relations there are 10,488 unique subjects
and objects. To evaluate the quality of LREs, the authors introduce the Faithfulness and Causality
metrics. The former measures whether the LRE produces the same next token as the original LM,
and causality measures the proportion of the time a prediction of an object can be changed to the
output of a different example from the relation (e.g., editing the Miles Davis subject representation
so that the LM predicts he plays the guitar). For specifics on implementation we refer the readers
Hernandez et al. [2024].

3.2 Counting Frequencies Throughout Training

A major question we explore in this work is how term frequencies affect the formation of linear
features. We hypothesize that more commonly occurring relations will lead to more robust LREs for
those relations. Following Elsahar et al. [2018], we count an occurrence of a relation when a subject
and object co-occur together. They show that when a subject and object occur together, the relation
triplet is also likely to have occurred in the same span. To rule out the confound that linear features
simply form due to extended pretraining time, we test model checkpoints in the OLMo family of
models [Groeneveld et al., 2024] to test this. In this section we discuss how we compute these counts.

What’s in My Big Data? (WIMBD) Elazar et al. [2024] index many popular pretraining datasets,
including Dolma and the Pile, and provide search tools that allows for counting individual terms/co-
occurrences within a pretraining document. However, we are interested in counting term frequencies
throughout pretraining, and WIMBD would only give us accurate counts for the full training set.
Additionally, counting co-occurrences in a document is not exactly accurate to how LMs are pretrained.
Since LMs receive gradient updates from batches of fixed lengths which often split documents into
multiple sequences, miscounts are likely to occur. Additionally, case sensitivity and tokenization can
differ from the LMs we want to study. Because of these reasons we count tokens in batched tokenized
text. That being said, we compare WIMBD co-occurrence counts to the Batch Search method (§3.2)
for counts in the final checkpoint in Appendix B and find that the counts are extremely close. When
per-batch counts are not available, WIMBD offers a good approximation for final checkpoints, which
is what we do in the case of GPT-J.

Batch Search In order to accurately count subject-object co-occurrences throughout pretraining, we
count how often s-o pairs in the Relations dataset appear in the same relation in pretraining batches.
Data counting tools can not typically provide accurate counts for model checkpoints at arbitrary
training steps. Thus, we design a tool to efficiently count exact co-occurrences within sequences of
tokenized batches. The OLMo family of models [Groeneveld et al., 2024] provide tools for accurately
recreating the batches from the Dolma dataset [Soldaini et al., 2024]. We use these to reconstruct
the training data batches as it was presented to the model, noting every time one of our 10k terms
appears throughout the dataset. We count a co-occurrence as any time two terms appear in the same
sequence within a batch (a (batch-size, sequence-length) array). We search 10k terms in 2T tokens
of the Dolma dataset this way. Using our implementation we are able to complete this on a standard
compute node of CPUs in about a day. To support future work, we release our code as well as the
occurrence positions for every term.

4 Frequency of Subject-Object Co-Occurrences Aligns with Emergence of
Linear Features

In this section we explore when LREs begin to appear in training time, and how these are related
to pretraining term frequencies. Our main findings are that 1.) average co-occurrence frequency
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Figure 2: TODO: What to do about awkward spacing (maybe take GPT-J out)? We find that linear
features form consistently across relations

Model Co-Occurrence Threshold
(Mean Causality >.9)

GPT-J (6B) 1,097
OLMo-7B 1,998
OLMo-1B 4,447

3 Frequency of Subject-Object Co-Occurrences Aligns with Emergence of160

Linear Features161

TODO: I was going to define causality and faithfulness here.162

4 Linear Features Help Predict Pretraining Corpus Frequencies163

5 Related Work164

TODO: make more concise, fill in other sections165

5.1 Linear Features166

Linearity of features in LMs has been heavily studied in recent years because of the promise it has167

shown in understanding and intervening on LM generation. Therefore, there are many methods that168

we could have used in our study. For example, Sparse Autoencoders (SAEs), have gained popularity169

in recent years for automating much of the interpretability work [Huben et al., ?, Templeton et al.].170

These networks work through sparse dictionary learning [Olshausen and Field, 1997, Lee et al.,171

2006] on the residual streams of LMs and extract latent feature vectors corresponding sometimes to172

interpretable concepts. We choose not to use these for our study because finding interpretable latents173

is not always straightforward, training costs, and it is not clear whether we could extract the same174

features across checkpoints/models.175
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Figure 2: We find that LREs have consistently high causality scores across relations after some
average frequency threshold is reached (table top right). In OLMo models, red dots show the model’s
LRE performance at 41B steps, which is at 10k training steps for OLMo 7B, blue dots show the final
checkpoint performance ( 550k steps in 7B), and gray dots show intermediate checkpoints. Even at
very early training steps, if the average subject-object cooc. count is high enough, the models are very
likely to already have robust LREs formed in the representation space. We are able to derive loose
threshold bounds above which average causality for a relation exceeds .9. For clarity, we highlight
five relations to demonstrate the pattern of frequency determining performance.3

within a relation strongly correlates with whether a LRE will form. In two similarly sized models,
we can draw a similar threshold where LREs are consistently robust. And 2.) that this frequency
effect is independent of pretraining time; if the average subject-object co-occurrence within a relation
surpasses some threshold it is very likely to have a robust LRE, and this is true even for extremely
early pretraining steps. This is also exclusive to co-occurrences rather than individual subject or
object occurrences. Our results are summarized in Figure 2. In the OLMo models we use checkpoints
at [41B, 104B, 209B, 419B, 628B, 838B, 1T, and 2T] pretraining tokens4. Co-occurrence frequencies
highly correlate with causality (r=.82), the metric used by Hernandez et al. [2024] to judge the linear
structure of the intermediate representations for items in a relation. This is notably higher than the
correlations with subject frequencies and object frequencies: r=.66, .59 (.66, .59) for OLMo 7B
(OLMo 1B), respectively.

We consider a causality score above .9 to be nearly perfectly linear. The top left table shows the
frequency threshold where the average causality is above .9 and is shown by dashed black lines on
the scatterplots. Regardless of pretraining step, models that surpass this threshold have very high
causality scores. Although we can not define strict rules for what this threshold is, it appears to be
scale dependent, as both OLMo 7B and GPT-J. Lastly, in all models, ICL accuracy correlates strongly
with causality. An interesting direction for future work would be testing whether it is this linear
structure that facilitates ICL accuracy; the finding of task vectors produced during ICL [Hendel et al.,
2023] may be suggestive of this.

A fundamental question in the interpretability community is why linear structures form. While we
do know that the training objective encourages this type of representation [Jiang et al., 2024], our
results suggest that why some concepts form this way and not others is strongly controlled by the
pretraining frequency.

3These are: ’country largest city’, ’country currency’, ’company hq’, ’company CEO’, and ’star constellation
name’ in order from best to worst performing final checkpoints.

4In OLMo 7B 0424, this corresponds to 10k, 25k, 50k, 100k, 150k, 200k, 250k, 409k pretraining steps. We
report training tokens because the step count differs between 7B and 1B.
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Predicting Object Occs. Predicting Subject-Object Co-Occs.
Train OLMo Train GPT-J Train OLMo Train GPT-J

LRE Features 0.65±0.12 0.49±0.12 0.76±0.12 0.68±0.08
LogProb Features 0.42±0.10 0.41±0.09 0.66±0.09 0.60±0.07
Mean Freq. Baseline 0.31±0.15 0.41±0.17 0.57±0.15 0.67±0.16

Table 1: Overall, we find that fitting a regression on one model’s LREs and evaluating on the other
provides a meaningful signal compared to fitting using only log probability and task performance, or
predicting the average training data frequency. The metric here is proportion of predictions within
one order of 10x the ground truth.

5 Linear Features Help Predict Pretraining Corpus Frequencies

In this section, we aim to understand this relationship further by exploring what we can understand
about pretraining term frequency from linearity of LM representations. We target the challenging
problem of predicting how often a term, or co-occurrence of terms appears in an LM in which we do
not have access to the training data. In this setting, we train a regression model to predict frequencies
given either LRE features or the log probabilities of the correct answer. The intuition here is that
more common answers will have higher probabilities of being the next token for completing the
relation, and if the linearity contains an especially meaningful signal about ferquency, using those
features will outperform log probs alone.

5.1 Experimental Setup

We train a random forest regression model with 100 estimators to predict the frequency of terms
(either the subject-object frequency, or the object frequency alone; e.g., predicting “John Lennon"
and “The Beatles" or just “The Beatles") on features from one of two models: either OLMo 7B (final
checkpoint) or GPT-J, treating the other as the ‘closed’ model. We test the hypothesis that LRE
features (faithfulness, causality) are useful in predicting term frequencies compared to baseline
features such as the LM log probabilities or example accuracy. We remove any examples with 0
co-occurrences or less than 10 object occurrences. We evaluate on held out objects and relations to
remove any bias of certain relations having tight frequency distributions. To give a better idea of
whether the model’s predictions are in the right range of values, we report the accuracy of predictions
within one order of magnitude of the ground truth.

5.2 Results

Our results are presented in Table 1. First, we find that there is a signal in the LRE features that
does not exist in the LM features: We are able to fit a much better generalizable model when using
LRE features as opposed to the LM probabilities alone. Second, evaluating on the LRE features
of a heldout model (scaled by the ratio of total tokens trained between the two models) maintains
around the same accuracy, allowing us to predict whether. We find that predicting either the subj-obj.
co-occurrences or object frequencies using LREs alone is extremely noisy, and closing these bounds
likely require specialized solutions integrating related approaches on dataset inference. Nevertheless,
we show that linearity of features within LM representations encode a rich signal representing dataset
frequency.

6 Conclusion

We find a connection between linear representations of subject-relation-object factual triplets in LMs
and the pretraining frequencies of the subjects and objects in those relations. This finding can guide
future interpretabilty work in deciphering whether a linear feature for a given concept will exist in
a model, since it seems reasonably certain that frequencies below a certain threshold will not yield
LREs (a particular class of linear feature). From there we show that we can use the presence of
linear features to predict with some accuracy, the frequency of terms in the pretraining corpus of a
closed-data model without supervision. Future work could aim to improve on our bounds of predicted
frequencies. Overall, our work presents a meaningful step towards understanding the interactions
between pretraining data and internal LM representations.
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Figure 3: Comparison in performance of LREs when fitting with examples the LM gets correct or
incorrect. We found this did not make a significant difference in LRE quality.
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Figure 4: Comparison between WIMBD and Batch Search subject-object co-occurrences

entirely dependent on the model ’knowing’ that relation perfectly (i.e., attains high accuracy). This
is convenient for our study, where we test early checkpoint models, that do not necessarily have all
of the information that they will have seen later in training. In Figure 3, we show faithfulness on
relations where the LRE was fit with all, half, or zero correct examples. We omit data for which the
model did not get enough incorrect examples.

B Batch Search Counts Compared to WIMBD

In Figure 4, we find that What’s in My Big Data [Elazar et al., 2024] match very well to batch search
co-occurrences, however, WIMBD tends to overpredict co-occurrences (slope less than 1), due to the
sequence length being shorter than many documents, as discussed in the main paper.
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