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ZIGZAG DIFFUSION SAMPLING:
THE PATH TO SUCCESS IS ZIGZAG

Anonymous authors
Paper under double-blind review

Counting:
One cats and three dogs 

sitting on the grass.

Text:
A sign that says 'Diffusion'.

Object co-occurrence:
a photo of a zebra and a bed.

Color:
A blue colored dog.

Position:
A laptop on top of a teddy 

bear.

Style:
A man is cooking, 
MineCraft Style.
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Figure 1: The qualitative results of Z-Sampling demonstrate the effectiveness of our method in
various aspects, such as style, position, color, counting, text rendering, and object co-occurrence.
We present more cases in Appendix D.2.

ABSTRACT

Diffusion models, the most popular generative paradigm so far, can inject con-
ditional information into the generation path to guide the latent towards desired
directions. However, existing text-to-image diffusion models often fail to main-
tain high image quality and high prompt-image alignment for those challenging
prompts. To mitigate this issue and enhance existing pretrained diffusion models,
we mainly made three contributions in this paper. First, we theoretically and em-
pirically demonstrate that the conditional guidance gap between the denoising and
inversion processes captures prompt-related semantic information. Second, moti-
vated by theoretical analysis, we derive Zigzag Diffusion Sampling (Z-Sampling),
a novel sampling method that leverages the guidance gap to accumulate seman-
tic information step-by-step throughout the entire generation process, leading to
improved sampling results. Moreover, as a plug-and-play method, Z-Sampling
can be generally applied to various diffusion models (e.g., accelerated ones and
Transformer-based ones) with very limited coding costs. Third, extensive ex-
periments demonstrate that Z-Sampling can generally and significantly enhance
generation quality across various benchmark datasets, diffusion models, and per-
formance evaluation metrics. Particularly, Z-Sampling is good at handling those
challenging fine-grained prompts, such as style, position, counting, and multiple
objects, due to its guidance-gap-based information gain. Moreover, Z-Sampling
can even further enhance existing diffusion models combined with other orthogo-
nal methods, including Diffusion-DPO.

1 INTRODUCTION

Diffusion models, known for its powerful generative capabilities and diversity, have become a main-
stream generation paradigm in images (Podell et al., 2023; Lin et al., 2024b), videos (Ho et al., 2022;
Blattmann et al., 2023), and 3D objects (Luo & Hu, 2021; Voleti et al., 2024) and beyond. One key
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ability of diffusion model is to guide the sampling path based on additional conditions (e.g., text
prompts), leading to conditional or controllable generation (Ho & Salimans, 2022).

However, while strong guidance may improve semantic alignment to those challenging prompts, it
often causes significant decline in image fidelity, leading to mode collapse, and resulting inevitable
accumulation of errors during the sampling process (Chung et al., 2024). To mitigate this issue,
some studies apply additional manifold constraints to the sampling paths (Chung et al., 2024; Yang
et al.; He et al.), which compromises the diversity of generated outputs. Others design varying guid-
ance scales across different denoising regions to mitigate this issue (Shen et al., 2024), but such
explicit strategies often lead to unnatural outputs. Thus, enhancing high generation quality while
maintaining prompt alignment effectively during sampling remains a crucial challenge, especially
for those challenging prompts. This challenge may require more controllable prompt guidance be-
yond classical guidance like classifer-free guidance (Ho & Salimans, 2022).

Fortunately, we discover that semantic information may be inherently embedded in the random latent
space, influencing the quality of image generation (Xu et al., 2024b; Po-Yuan et al., 2023; Mao et al.,
2023b; Wu et al., 2023c). In Figure 2, we demonstrate the following phenomenon: if a latent can
generate images aligned with a specific concept c under no conditional prompt, it will generate high-
quality results with c as the conditional prompt. This implies that the latent naturally carries relevant
semantic information and can align with relevant semantic prompts very well. Figure 3 intuitively
illustrates that the green initial point with certain semantic information is usually superior to the red
initial point for the prompts associated with the semantic information.

unconditional
results

Prompt related to
“Flower”

21.8685

Prompt related to
“Man”

21.2177

Se
ed

: 2
1

Se
ed

: 1
4

19.5408 21.4374

Figure 2: Semantic-rich latents effectively generate
images aligned with intended semantics. For in-
stance, the random latent (seed 21) is better suited
for generating images related to the concept of “flow-
ers”. We present more cases in Appendix C.1.

: Low Guidance Scale

: High Guidance Scale

: Latent without sematic information

: Latent with sematic information

Figure 3: If the latent carries seman-
tic information, we can obtain prompt-
related results from this latent even
without conditional guidance.

Is it possible to leverage this insight for improved sampling methods? Fortunately, we discover
that employing strong guidance during denoising process and employing weak guidance during
inversion process establishes a guidance gap that can inject prompt semantic information to the
latent. Accumulating or enlarging this guidance gap allows the latent to encode more semantic
information, aligning more closely with the properties of the green point in Figure 3. We present
more examples and discussion in Appendix C.2.

Just as “the path to success is zigzag”, past experience during zigzag processes can teach people
to learn and succeed. Inspired by the wisdom, we let a latent denoise in a zigzag manner, namely
a denoising step and a inversion step, step-by-step along the sampling path, which can accumulate
semantic information as “past experience”. As Figure 4 illustrates, we propose Zigzag Diffusion
Sampling, or Z-Sampling, which can capture semantic information with such repeated zigzag steps
and move to more desirable results along the sampling path. Through each zigzag step, the latent
accumulates additional semantic information.

The contributions of this work can be summarized as follows.

2
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First, we theoretically and empirically demonstrate that the guidance gap between denoising and in-
version processes can capture the semantic information embedded in the latent space, which matters
to generation quality and prompt-image alignment.

Second, motivated by the theoretical results, we derive Z-Sampling, a novel sampling method that
can leverage the guidance gap to accumulate semantic information through each zigzag step and
generate more desirable results. It allows flexible control over the injection of semantic information
and is applicable across various diffusion architectures with very limited coding costs. To the best of
our knowledge, Z-Sampling is the first method that successfully improve generation via leveraging
semantic information from the guidance gap.

Third, extensive experiments demonstrate the effectiveness and generalization of Z-Sampling across
various benchmark datasets, diffusion models, and evaluation metrics. As theoretical analysis sug-
gests, Z-Sampling especially excels in challenging complex or fine-grained prompts, such as posi-
tion, counting, color-attribution, and multi-object, breaking through the performance limit of pre-
trained diffusion models. Moreover, orthogonal methods, such as Diffusion-DPO (Wallace et al.,
2024), can be further enhanced by Z-Sampling. Importantly, as a training-free method, Z-Sampling
can still exhibits significant improvements over the baselines with limited computational cost, which
suggests its efficiency and practical value. In the efficiency study, even with 36% less computational
time, Z-Sampling can reach the best performance of standard sampling.

Algorithm 1 Z-Sampling

1: Input: Denoising at timestep t: Φt, In-
version at timestep t: Ψt, text prompt:
c, denoising guidance: γ1, inversion
guidance: γ2, inference steps: T , zigzag
optimization steps: λ

2: Output: Clean image x0
3: Sample Gaussian noise xT
4: for t = T to 1 do
5: xt−1 = Φt(xt|c, γ1)
6: if t >T − λ then
7: #Denoising by equation 2

x̃t = Ψt(xt−1|c, γ2)
8: #Inversion by equation 4

xt−1 = Φt(x̃t|c, γ1)
9: end if

10: end for
11: return x0

: Low Guidance Scale

: High Guidance Scale : Target Distribution

: Gaussain Distribution

a)

b)
c)

T

T-1

1

0

…
…

Figure 4: The illustration of our method. (a) weak
guidance sampling. (b) strong guidance sampling.
(c) Z-Sampling.

2 PRELIMINARIES

In this section, we formally introduce prerequisites and background.

Diffusion Model. We define the total numeber of denoising steps T and conditional prompt c.
Given the denoising procss Φ : N × C → D and guidance scale γ1, starting from xT ∈ N , we can
generate x0 = Φ(xT |c, γ1) ∈ D, where N represents the distribution of Gaussian and D represents
the distribution of target data. We note that the mapping function Φ corresponds to the probability
P (x0|c, γ1, x1:T ). For simplicity, we simplify only the initial input xT in Φ. Similarly, we can also
reverse this process, given the inversion process Ψ : D×C → N under guidance scale γ2, we obtain
inverted data x̃T = Ψ(x̃0|c, γ2) ∈ N from x̃0 ∈ D.

Following Ho et al. (2020), we treat diffusion model as a Monte Carlo process and decompose Φ
into T times single-step denoising mappings as

Φ(xT |c, γ1) = ΦT (xT |c, γ1) ◦ ΦT−1(xT−1|c, γ1) ◦ · · · ◦ Φ2(x2|c, γ1) ◦ Φ1(x1|c, γ1)︸ ︷︷ ︸
T×Times

. (1)

3
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And we define Φt as

xt−1 = Φt(xt|c, γ) =
√
αt−1

xt −
√
1− αtϵ

t
θ(xt)√

αt
+
√

1− αt−1ϵ
t
θ(xt), (2)

where at :=
∏t

i=1(1−βi) and βt are the pre-defined parameters for scheduling the scales of adding
noises in DDIM scheduler (Song et al., 2020). we denote ϵtθ as the predicted score by the denoising
network θ at timestep t, with further details provided in the next paragraph.

Similarly, for the inversion process Ψ, we can also perform this decomposition as

Ψ(x̃0|c, γ2) = Ψ1(x̃0|c, γ2) ◦Ψ2(x̃1|c, γ2) ◦ · · · ◦ΨT−1(x̃T−2|c, γ2) ◦ΨT (x̃T−1|c, γ2)︸ ︷︷ ︸
T×Times

, (3)

where we obtain x̃t−1 via Ψt as

x̃t = Ψt(x̃t−1|c, γ2) =
√

αt

αt−1
x̃t−1 +

√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵtθ(x̃t−1). (4)

In equation 4 we approximate the score predicted at timestep t with timestep t−1 along the inversion
path, i.e, set ϵtθ(x̃t−1) ≈ ϵtθ(x̃t). If this approximation error is negligible, Φ and Ψ can be proven to
be inverse functions (Mokady et al., 2023), meaning that Ψ = Φ−1.

Classifier free guidance. Controllable generation typically involves guiding or constraining the
semantic representation. In classifier free guidance (Ho & Salimans, 2022), a score prediction net-
work uθ is trained both conditionally and unconditionally. During inference, denoising scores are
computed by interpolating between conditional and unconditional scores predicted by uθ, thus en-
abling the adjustment of guidance scale across various levels.

Specifically, for denoising and inversion process, we use guidance scales γ1 and γ2, with the corre-
sponding scores as

ϵtθ(xt) = (1 + γ1)uθ(xt, c, t)− γ1uθ(xt,∅, t),

ϵtθ(x̃t) = (1 + γ2)uθ(x̃t, c, t)− γ2uθ(x̃t,∅, t),
(5)

where uθ is the noise predictor, and ∅ is the null prompt, representing the denoising result under
unconditional settings.

3 METHODOLOGY

In this section, we discuss how to encode semantic information into latents through the guidance
gap and derive Z-Sampling according to theoretical analysis.

3.1 LATENTS WITH RELEVANT SEMANTIC INFORMATION

Our inspiration stems from the question: what makes a good latent in the diffusion process? As
Figure 3 illustrates, we argue that a latent with relevant semantic information (green point) can
align with the prompt under weak or sometimes even negative conditional guidance. In contrast,
a latent lacking semantic information (red point) necessitates strong conditional guidance to attain
comparable alignment and may remain unaligned under unconditional generation.

To verify this, we generate images using different latents (seeds) under unconditional settings, shown
in Figure 2. We observe that if a latent can generate a image of a certain concept c unconditionally,
then, under certain prompt guidance, this latent usually performs higher in generating images re-
lated to c compared to other latents. For example, in Figure 2, if the latent (seed 21) generates the
images of flowers unconditionally, it yields higher-quality images when used with flower-related
prompts in conditional generation. Previous studies also argued that the properties of latents par-
tially predetermine image composition or contents during generation, affecting object position, size,
and depth (Wu et al., 2023c; Guttenberg, 2023; Lin et al., 2024a; Xu et al., 2024b; Mao et al., 2023b).
However, they did not formally explore how to encode semantic information into the latents.
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3.2 CAPTURE SEMANTIC INFORMATION FROM THE GUIDANCE GAP

Considering a denoising process Φ : N × C → D, under text condition c ∈ C, we sample a initial
latent xT ∈ N , and obtain the generated data x0 as

x0 = Φ(xT |c, γ1), (6)

where γ1 is condition guidance scale during denoising. Now, we further perform inversion operation
on x0 under the guidance scale of γ2 as

x̃T = Ψ(x0|c, γ2). (7)

If the approximation error in the inversion process is negligible, meaning Ψ−1 = Φ, then equation 7
can be equivalently inverted as

x0 = Ψ−1(x̃T |c, γ2) = Φ(x̃T |c, γ2). (8)

Generally, the denoising guidance scale γ1 is set to a common value (e.g., γ1 = 5.5) to maintain
standard generation and alignment to the prompt (Ho & Salimans, 2022). Conversely, the inversion
guidance scale γ2 is usually set to a small value (e.g., γ2 = 0) to achieve inversion with weak
guidance (Mokady et al., 2023). By comparing equation 6 and equation 8, we note that starting
from x̃T , we can generate x0 under weak or even unconditional guidance scale γ2 = 0. In contrast,
starting from xT requires strong conditional guidance scale γ1 = 5.5 to produce similar results.

According to the insight discussed in Section 3.1, if a initial latent can generate results related to
prompt c under weak guidance, it indicates this latent contains more semantic information related to
c. Since guidance scale γ2 is less than γ1, we argue that the corresponding inverted latent x̃T contains
more semantic information compared to xT . We present more empirical evidence in Appendix C.2,

3.3 ZIGZAG DIFFUSION SAMPLING

Now we know that the guidance gap can capture additional semantic information. The next question
is how to effectively leverage this property to inject semantic information into the sampling process.

Vanilla Inversion A vanilla way is to use the inverted latent x̃T in place of xT as the starting
point to generate semantically aligned results in the denoising process (see Algorithm 2). We pro-
vide Theorem 1 and show that the difference between the original xT and the inverted x̃T , namely
δend2end = (xT − x̃T )

2, may reveal how significant the vanilla end-to-end information injection is.
An illustrative diagram of the latents’ difference is provided in Figure 26 (a) of Appendix F.

Theorem 1 (See the proof in Appendix F.1) For a random latent xT ∈ N and an inverted latent
x̃T given by equation 7, the latent difference δend2end between xT and x̃T is

δend2end = (xT − x̃T )
2 = αT (

T∑
t=1

ht( ϵtθ(xt)− ϵtθ(x̃t)︸ ︷︷ ︸
τ1(t):semantic information gain term

+ ϵtθ(x̃t)− ϵtθ(x̃t−1)︸ ︷︷ ︸
τ2(t):approx error term

))2, (9)

where ht =
√
1/αt − 1−

√
1/αt−1 − 1, and ϵtθ(·) is the predicted score given by equation 5.

Here, τ1(t) represents the semantic information gain induced by the guidance gap at timestep t,
whereas τ2(t) represents the approximation error inherent in the inversion process, which may be
neglected for semantic information. We note that in equation 9, the end-to-end aggregation may let
the sum of the semantic information τ1 over each step be small and fail to accumulate the desired
semantic information gain step-by-step.

Z-Sampling To let τ1 of each step be accumulated step-by-step instead of being canceled out in the
vanilla sum, we decompose Φ into {Φ1,Φ2, · · · ,ΦT }, as defined in equation 1. We first denoise xt

to obtain xt−1 = Φt(xt|c, γ1) and then we invert xt−1 to get x̃t = Ψt(xt−1|c, γ2) for each timestep
t ∈ [T, 1]. The proposed Z-Sampling method is presented in Algorithm 1 and illustrated in Figure 4.
Note that Z-Sampling injects semantic information by replacing xt with x̃t at each timestep. We
prove Theorem 2 and demonstrate the cumulative latent difference δZ−Sampling =

∑T
t=1(xt−x̃t)

2,
depicted in Figure 26 (b) of Appendix F.

5
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A carrot on the left of a broccoli. A blue colored dog. One car on the street.
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A blue bird and a brown bear.

Figure 5: The cross-attention map highlights the interaction between the entity token (red color) and
latent variables. Z-Sampling optimizes the latent so that it is more suitable for generating concepts
in the related-prompt. For example, in the zigzag path of the second column, semantically injected
latents exhibit sharper attention on “dog” with relatively clear boundaries.

Theorem 2 (See the proof in Appendix F.2) Suppose xt is the denoised latent at step t, and x̃t

be the corresponding inverted latent given by equation 4. Then the cumulative latent difference in
Z-Sampling can be written as

δZ-Sampling =

T∑
t=1

(xt − x̃t)
2 =

T∑
t=1

αth
2
t ( ϵtθ(xt)− ϵtθ(x̃t)︸ ︷︷ ︸

τ1(t):semantic information gain term

+ ϵtθ(x̃t)− ϵtθ(x̃t−1)︸ ︷︷ ︸
τ2(t):approx error term

)2, (10)

where ht and ϵtθ(·) are consistent with Theorem 1.

Again, focusing on the semantic information gain term, we report that δend2end ∝ (
∑T

1 τ1(t))
2

holds for vanilla inversion and δZ−Sampling ∝
∑T

1 (τ1(t))
2 holds for Z-Sampling. Given the

Jensen’s inequality, we have
∑T

1 (τ1(t))
2 ≥ (

∑T
1 τ1(t))

2, showing that the cumulative semantic
information gain δZ-Sampling is larger than the end-to-end semantic information gain δend2end. The se-
mantic information gain induced by the guidance gap in Z-Sampling can be effectively accumulated,
solving the previous issue of the semantic information gain cancellation.

We further prove Theorem 3 and show the significant impact of the guidance gap δγ on δZ−Sampling .

Theorem 3 (See the proof in Appendix F.3) Under the conditions of Theorem 2, the cumulative
semantic information gain in Z-Sampling can be written as

δZ-Sampling =

T∑
t=1

αth
2
t (δγ (uθ(xt, c, t)− uθ(xt,∅, t)))

2
, (11)

where the guidance gap is defined as δγ = γ1 − γ2.

We note that the larger the δγ , the more pronounced the effect of Z-Sampling. When δγ = 0, it is
approximately equivalent to standard sampling. This is also empirically verified in Figure 8.

In Figure 5, we visualize the cross-attention map of Z-Sampling during the early stages (i.e,
t/T = 49/50) of the generation process. And we observe that Z-Sampling indeed makes the at-
tention regions corresponding to entity tokens more semantically focused, further illustrating the
effectiveness of Z-Sampling on the semantic information gain. Mao et al. (2023b) reported that
certain regions in random latents can induce objects representing specific concepts, which aligns
with our observation that Z-Sampling enhances the association of certain regions with the prompt.
Additionally, we discuss the impact of the approximation error τ2 in Appendix E.2 and E.3.

4 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of our method,
and perform robustness analysis for a more detailed investigation.

6
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4.1 EXPERIMENTS SETTING

Datasets Pick-a-Pic (Kirstain et al., 2023), DrawBench dataset (Saharia et al., 2022), and
GenEval (Ghosh et al., 2024). We leave more details in Appendix A.1.

Metrics We use multiple evaluation metrics, including HPS v2 (Wu et al., 2023c),
PickScore (Kirstain et al., 2023), and ImageReward (Xu et al., 2024a). They are trained on large-
scale human preference datasets, providing a reliable indication of genuine human preferences.
Furthermore, we also employ the traditional metric AES (Schuhmann et al., 2022), which purely
evaluate image quality. More details are found in Appendix A.2.

Diffusion Models We use various diffusion models as the generation backbone in main experi-
ments. For SD2.1 (Rombach et al., 2022), SDXL (Podell et al., 2023), and Hunyuan-DiT (Li et al.,
2024), we perform 50 denoising steps. For DreamShaper-xl-v2-turbo, which achieves efficient and
high-quality generation by fine-tuning SDXL Turbo (Sauer et al., 2023), we set denoising step T
only to 4. And we set γ1 = 5.5 in SDXL/SD2.1, γ1 = 6.0 in Hunyuan-DiT, and γ1 = 3.5 in
DreamShaper-xl-v2-turbo, all to the recommended default values. For all diffusion models, we set
the zigzag operation to be executed throughout the entire path (λ = T − 1) and inversion guidance
scale γ2 as zero.

Baselines We validate the effectiveness of Z-Sampling and compare it against the following base-
line: (a) standard sampling, we use the Multistep DPM Solver (Lu et al., 2022) for DreamShaper-
xl-v2-turbo and Hunyuan-DiT, and DDIM (Song et al., 2020) for the SD-2.1 and SDXL. (b) Resam-
pling (lug, 2022), repeatedly performs denoising at the same timestep by adding random noise to
maintain the latent on the data manifold. Moreover, due to the page limit, we discuss related works
and how they differs from Z-Sampling in Appendix A.3.

4.2 MAIN EXPERIMENTS
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DrawBench

Figure 6: The winning rates of Z-Sampling over standard sampling. The blue bars represent the side
of our method. The orange bars represent the side of the standard sampling. Model: DreamShaper-
xl-v2-turbo. We present more results in Appendix D.3

In Table 1, we evaluate our method against standard sampling and Resampling across various dif-
fusion architectures, including U-Net, DiT, and distillation architectures. Z-Sampling achieves top
performance across nearly all metrics and Figure 6 shows the winning rates across these two bench-
marks, exceeding 80% on HPS v2. Furthermore, for a more detailed comparison, we present results
on GenEval (Ghosh et al., 2024), which serves as a challenging benchmark. As Table 2 show, Z-
Sampling significantly enhances alignment in aspects such as counting, two-object relations, and
color attribution, further demonstrating the effectiveness of our method.

We also compare our method with a recent sampling technique designed to enhance semantic in-
jection. Shen et al. (2024) proposed Semantic-aware CFG, dividing the latent into independent
semantic regions at each denoising step and adaptively adjusting their guidance, thereby unifying
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Table 1: The quantitative results of Z-Sampling on Pick-a-Pic and DrawBench.

Method Pick-a-Pic DrawBench
HPS v2 ↑ AES ↑ PickScore ↑ IR ↑ Average ↑ HPS v2 ↑ AES ↑ PickScore ↑ IR ↑ Average ↑

SD-2.1
Standard 0.2305 5.2778 19.0793 -0.4366 6.0376 0.2390 5.2006 20.4970 -0.4434 6.3733

Resampling 0.2446 5.4620 19.5135 -0.1807 6.2598 0.2394 5.0838 20.4031 -0.3090 6.3543
Z-Sampling(ours) 0.2453 5.4704 19.5144 -0.1862 6.2609 0.2467 5.2891 20.8238 -0.2361 6.6814

SDXL
Standard 0.2989 6.0870 21.6353 0.5865 7.1520 0.2881 5.5595 22.3086 0.6075 7.1909

Resampling 0.3054 6.0395 21.7256 0.7860 7.2141 0.2962 5.5797 22.5178 0.7269 7.2802
Z-Sampling(ours) 0.3128 6.1302 21.8477 0.7922 7.2682 0.3050 5.6739 22.4581 0.7997 7.3092

DreamShaper
-xl-v2-turbo

Standard 0.3004 5.9355 21.5899 0.6618 7.1219 0.2685 5.2846 21.7861 0.4022 6.9354
Resampling 0.3142 6.0416 21.9517 0.8243 7.2829 0.2855 5.3912 22.3292 0.6469 7.1632

Z-Sampling(ours) 0.3238 6.1542 22.1025 0.9087 7.3723 0.2990 5.6433 22.3485 0.7351 7.2565

Hunyuan-DiT
Standard 0.3082 6.20461 21.8851 0.9422 7.3350 0.3022 5.7033 22.2926 0.8263 7.2811

Resampling 0.3110 6.1932 21.8745 0.9551 7.3334 0.3072 5.6763 22.3175 0.9582 7.3148
Z-Sampling(ours) 0.3112 6.3071 21.8982 0.9788 7.3738 0.3053 5.7525 22.3988 0.9613 7.3545

Table 2: The quantitative results of Z-Sampling on GenEval. Model: SDXL

Method Single object ↑ Two object ↑ Counting ↑ Colors ↑ Position ↑ Color attribution ↑ Overall ↑
Standard 97.50% 69.70% 33.75% 86.71% 10.00% 18.00% 52.52%

Resampling 98.75% 76.77% 38.75% 88.30% 5.00% 20.00% 54.594%
Z-Sampling(ours) 100.00% 74.75% 46.25% 87.23% 10.00% 24.00% 57.04%

Table 3: The quantitative results of Z-Sampling and Semantic-CFG. Model: SD-2.1. For fairness,
we follow the default settings of Semantic-CFG with the 768×768 resolution and SD-2.1.

Method Pick-a-Pic DrawBench
HPS v2↑ AES↑ PickScore↑ IR↑ Average↑ HPS v2↑ AES↑ PickScore↑ IR↑ Average↑

Standard 0.2567 5.6579 20.2041 0.0053 6.5310 0.2598 5.3707 21.3889 0.0797 6.7747
Semantic-aware CFG 0.2602 5.6512 20.2818 0.0203 6.5534 0.2603 5.3729 21.3754 0.0939 6.7756

Z-Sampling(ours) 0.2705 5.7423 20.4113 0.3689 6.6983 0.2671 5.4349 21.5466 0.2542 6.8757

Table 4: Z-Sampling can enhance the training-free AYS. Model: DreamShaper-xl-v2-turbo.

Method Pick-a-Pic DrawBench
HPS v2↑ AES↑ PickScore↑ IR↑ Average↑ HPS v2↑ AES↑ PickScore↑ IR↑ Average↑

Standard 0.3280 6.0493 22.3139 0.9148 7.4015 0.3094 5.5738 22.6760 0.7744 7.3334
Z-Sampling(ours) 0.3353 6.1614 22.4479 1.0395 7.4960 0.3192 5.7145 22.7786 0.9582 7.4427

AYS 0.3278 6.0523 22.3174 0.9188 7.4041 0.3095 5.5709 22.6798 0.7785 7.3347
AYS + Z-Sampling(ours) 0.3357 6.1528 22.4463 1.0422 7.4942 0.3193 5.7152 22.7524 0.9482 7.4338

Table 5: Z-Sampling can enhance the training-based Diffusion-DPO. Model: SDXL.

Method Pick-a-Pic DrawBench
HPS v2↑ AES↑ PickScore↑ IR↑ Average↑ HPS v2↑ AES↑ PickScore↑ IR↑ Average↑

Standard 0.2989 6.0870 21.6353 0.5865 7.1520 0.2881 5.5595 22.3086 0.6075 7.1909
Z-Sampling(ours) 0.3128 6.1302 21.8477 0.7822 7.2682 0.3050 5.6739 22.4581 0.7997 7.3092

Diffusion-DPO 0.3141 5.9997 22.0070 0.9028 7.3059 0.2980 5.6604 22.4695 0.8594 7.3218
DPO + Z-Sampling(ours) 0.3160 6.0836 22.1784 0.9448 7.3807 0.3035 5.6731 22.4673 0.9334 7.3443

the effects across regions. While the setting is different from previous experiments, this results still
underscore the effectiveness of Z-Sampling remains unaffected. As shown in Table 10, we observe
that Z-Sampling demonstrates a higher improvement.

Moreover, we present more quantitative experimental results in Appendix D.1 and more qualitative
comparison across various dimensions (e.g, color, style, and etc.) in Appendix D.2.

Specifically, we also discuss the effect of Z-Sampling under extremely high CFG guidance in Ap-
pendix D.4, demonstrating its ability to achieve a favorable balance between image quality and
prompt adherence, suppressing artifacts and oversaturation.

Orthogonal Methods Z-Sampling can be combined with other orthogonal methods to further
enhance diffusion models. In Table 4, Z-Sampling further enhances AYS-Sampling, a sampling

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

-20 -10 0 5.5 10
inversion guidance 2

0.20

0.22

0.24

0.26

0.28

0.30

0.32 HPS V2

ZDS
baseline

-20 -10 0 5.5 10
inversion guidance 2

19.5

20.0

20.5

21.0

21.5

22.0 Pick Score
ZDS
baseline

-20 -10 0 5.5 10
inversion guidance 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 Image Reward

ZDS
baseline

-20 -10 0 5.5 10
inversion guidance 2

5.90

5.95

6.00

6.05

6.10

6.15

6.20 AES
ZDS
baseline

Figure 7: Robustness to the inversion guidance scale. When the gap is zero, i.e., the inversion
guidance equals the denoising guidance (e.g. γ1 = γ2), the positive gains almost disappear.
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Figure 8: The guidance gap δγ between γ1 and γ2 influences both the magnitude and direction
of semantic injection. When δγ is larger (δγ=5), the gain of Z-Sampling becomes pronounced.
Conversely, when δγ is zero or even negative, it approximately degenerates into standard sampling
or significantly break generation.

strategy that optimizes the denoising scheduler, leading to improved overall performance. Note
that AYS-Sampling only released the 10-step scheduler, which is more applicable to DreamShaper-
v2-turbo. Additionally, Table 5 shows that Z-Sampling can also be combined with training-based
methods, further enhancing the generation quality of Diffusion-DPO. We leave more quantitative
results of enhancing orthogonal methods in Table 8.

The Guidance Gap We first examine the impact of guidance scale. In Section 3.1, we show that
the guidance gap between denoising and inversion dictates the degree of semantic information gain.
To further verify this, we fix the guidance scale γ1 as 5.5 following standard sampling. By varying
γ2, we control the guidance gap δγ = γ1 − γ2 to observe its impact. As shown in Figure 7, when
γ2 increases and the guidance gap δγ narrows, the benefits of Z-Sampling diminish. According to
the theoretical results of semantic information gain, a zero guidance gap can approximately lead
to standard sampling. When the gap is below zero (γ2 > γ1), it can result in a negative gain. In
Figure 8, we present a qualitative analysis showing that when the zero guidance gap indeed yields
very similar results to standard sampling.

Zigzag Diffusion Steps We note that λ indicates the first λ steps using the zigzag operation. For
example, when λ is 0, it reverts to standard SDXL. When λ is 25, it means the first 25 steps of the
denoising process use the zigzag operation. We conducted experiments on Pick-a-Pick using SDXL
(50 steps), as shown in Figure 9, when λ increases from 0 to 25, the winning rate rises from 50% to
75%. However, when λ increases from 25 to 50 steps, it only rises from 75% to 80%. This indicates
that the zigzag operation is more effective during the early stages of denoising process.

Time Efficiency Comparison When the denoising steps are fixed (e.g., T=50), Z-Sampling nat-
urally incurs additional time consumption due to the zigzag step. To facilitate a fairer comparison

9
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pretrained SDXL. The horizontal axis shows the
average time per image, while the vertical axis
shows the average HPS v2 on the Pick-a-Pic
benchmark.

in terms of computation time, we compare evaluation score under the same generation time con-
sumption per image, where Z-Sampling can maintain high quality with fewer sampling steps than
standard methods. Here we apply Z-Sampling to the first half path, namely λ = T/2. Figure 10, in-
dicates that Z-Sampling outperforms standard sampling and significantly enhance the performance
limit of SDXL. Particularly, even with 36% less computational time, Z-Sampling can reach the best
performance of standard sampling with HPS v2 ≈ 0.3.

5 DISCUSSION

In this section, we further discuss the limitations and future directions of our work. First, we note
that Z-Sampling relies on the semantic information gain through deterministic inversion, limiting
its applicability to deterministic samplers, such as DDIM. Extending it to the SDE-based diffusion
framework is an important direction for future work (see Appendix E.1). Second, while Z-Sampling
exhibits strong generalization, we only studied text-to-image diffusion models in this work. There-
fore, exploring its applications to areas such as video generation, 3D generation, and molecular
synthesis is naturally another promising research direction. However, due to the different natures of
latent space and sampling schedulers, this direction may require further algorithm design and theo-
retical understanding. Third, Z-Sampling can take more computational time than standard sampling
due to its zigzag step given the fixed inference step T . It will be helpful to employ different step
sizes for denoising and inversion. It is possibile to accelerate Z-Sampling with less zigzap steps
while maintaining the comparable performance.

6 CONCLUSION

To the best of our knowledge, this work is the first to theoretically and empirically discover that
the guidance gap between denoising and inversion can inject semantic information into the latent
space, which can lead to improved generation with relevant semantic information as the prompt.
By theoretically investigating how the semantic information gain depend on the guidance gap, we
naturally derive a novel Z-Sampling method that can accumulate semantic information through each
zigzag step and, thus, generate more desirable results. The conducted extensive experiments not
only demonstrate that Z-Sampling significant outperforms the baselines in various settings, but also
suggest that Z-Sampling can further enhance other orthogonal methods. In summary, Z-Sampling
is flexible, additive, and powerful with limited time consumption. Given the theoretical mechanism
and empirical success of Z-Sampling, we believe this work will motivate better theoretical under-
standing of diffusion sampling and inspire more advanced diffusion sampling methods along this
approach beyond T2I generation.
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ETHICS STATEMENT

We propose Z-Sampling, a novel guidance mechanism designed to enhance the quality of diffusion
model generation. Although it does not directly involve human subjects or issues related to dataset
privacy, we have carefully considered its potential ethical and moral implications. We ensure the
transparency of all datasets used for debugging and developing the algorithm, and their randomness
guarantees the absence of bias in the ethical domain, which is of utmost importance. Additionally,
all models used comply with the terms of open-source licenses. Given Z-Sampling’s significant
commercial potential, we strive to apply this technology responsibly, ensuring that its applications
yield positive societal benefits.
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A EXPERIMENTAL DETAILS

In this section, we introduce the details of the metrics and benchmarks used in the experiments.

A.1 DATASETS

Pick-a-Pic. The Pick-a-Pic dataset (Kirstain et al., 2023) was generated by logging user inter-
actions with the Pick-a-Pic web application for text-to-image generation. Each entry includes a
prompt, two generated images, and a label indicating the preferred image or a tie if neither is signif-
icantly favored. Here we use only the first 100 prompts as the test set, which is sufficient to reflect
the model’s capabilities.

Drawbench. DrawBench is a comprehensive and challenging benchmark for text-to-image mod-
els, introduced by the Imagen research team (Saharia et al., 2022). It contains 11 categories, includ-
ing aspects such as color, counting, and text, with approximately 200 text prompts.

GenEval. Geneval (Ghosh et al., 2024) is an object-focused framework designed to evaluate com-
positional properties of images, including object co-occurrence, position, count, and color. It incor-
porates 553 prompts, achieving an 83% agreement with human judgments regarding the correctness
of the generated images1.

PartiPrompts. PartiPrompts (Yu et al.) is a collection of over 1,600 diverse prompts in English,
designed to assess the capabilities of models across different categories and challenges. The prompts
cover a wide range of topics and styles, helping evaluate the strengths and weaknesses of models
in areas like language understanding, creativity, coherence. Here we randomly select 100 prompts
from Part for evaluation.

A.2 METRICS

AES. Aesthetic score (AES) (Schuhmann et al., 2022) refers to a mechanism for evaluating the vi-
sual quality of generated images, which assigns a quantitative score based on attributes like contrast,
composition, color, and detail, reflecting alignment with human aesthetic standards.

1To ensure consistency with other experiments, we used a denoising guidance scale of 5.5, differing from
the default 9.0 in GenEval.
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PickScore. Kirstain et al. (2023) developed Pick-a-Pic, a large open dataset consisting of text-
to-image prompts and real user preferences for generated images. They then utilized this dataset to
train a CLIP-based scoring function, PickScore, for the task of predicting human preferences.

ImageReward. Xu et al. (2024a) developed ImageReward, the first general-purpose text-to-image
human preference reward model. which is trained based on systematic annotation pipeline, including
rating and ranking and has collected 137,000 expert comparisons to date.

HPS v2. Wu et al. (2023c) first introduced the Human Preference Dataset v2 (HPD v2), a large-
scale dataset comprising 798,090 human preference choices on 433,760 pairs of images. By fine-
tuning CLIP using HPD v2, they developed the Human Preference Score v2 (HPS v2), a scoring
model that more accurately predicts human preferences for generated images.

A.3 BASELINES

Semantic-aware CFG (Shen et al., 2024), adaptively adjust the CFG scales across different se-
mantic regions to mitigate the undesired effects caused by guidance.

Diffusion-DPO (Wallace et al., 2024), finetune a pretrained Diffusion model using carefully cu-
rated high quality images and captions to improve visual appeal and text alignment.

AYS-Sampling (Sabour et al., 2024), a strategy for optimizing sampler timesteps, which accounts
for the dataset, model, and sampler to enhance image quality.

B RELATED WORKS

In this section, we discuss existing work related to Z-Sampling.

Semantic Information in Latent Space Recent works have shown that the prior information
present in the noise latent can significantly impact the quality of image generation (Xu et al., 2024b;
Mao et al., 2023a; Samuel et al., 2024). For example, Mao et al. (2023b) found certain regions in
random latents can induce objects representing specific concepts. And (Po-Yuan et al., 2023) found
slight perturbations can lead to significant changes in the diffusion model’s generated results. And
injecting semantic information (e.g., low-frequency wavelengths) into Gaussian noise can enhance
image quality, particularly improving alignment performance (Wu et al., 2023c; Guttenberg, 2023;
Lin et al., 2024a). IRFDS (Yang et al., 2024) utilizes a pretrained rectified flow model to provide a
prior, optimizing the initial latent for image editing task. Building on these studies, we investigate
semantic information from the guidance perspective, implicitly integrating it into the generation
process without requiring explicit reference data.

Sampling Strategies of Diffusion Model To improve the sampling process, lug (2022) proposed
Resampling that involves adding random noise and performing multiple back-and-forth samples at
each timestep. Subsequent studies adopted this paradigm for tasks such as video generation (Wu
et al., 2023b) and universal classifier guidance (Bansal et al., 2023). IRFDS () utilizes a pretrained
rectifying flow model to provide a prior, optimizing the initial latent for better image editing. How-
ever, they overlooked the importance of inverted latent and simply applied random noise, which does
not effectively enhance prompt adherence. In Tune-a-Video, to ensure structural consistency, Wu
et al. (2023a) incorporate the denoising-inversion paradigm as a subcomponent. However, their
end-to-end approach is not optimal and overlooks the importance of the guidance gap. To reduce
spatial inconsistency in different latent regions under the same guidance scale, Shen et al. (2024)
developed adaptive guidance based on semantic segmentation. It relies on attention-level changes,
limiting adaptability to other algorithms, and its robustness is influenced by semantic segmentation
effectiveness. Constraint-based approaches aim to improve sampling, for example, Chung et al.
(2024) substitutes conditional noise with unconditional noise to enhance generation quality from an
image manifold perspective, though improvements are minimal. Yang et al. applies spherical gaus-
sian constraint during guidance, but it requires a reference data, limiting its applicability. Finally,
Garibi et al. (2024) proposed Renoise, which enhances image editing by ensembling latents through
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inversion operations. However, it focuses on inversion error smoothing after multiple inversions and
lacks a thorough investigation of the guidance mechanism.

C MOTIVATION AND PHENOMENA

C.1 LATENTS WITH SEMANTIC INFORMATION

In Figure 11, we present additional cases illustrating that random latents encode relevant semantic
information. For instance, for prompts related to the concept “Jeep Cars”, the latent corresponding
to seed 20 achieves the highest performance, with PickScore of 23.4784, whereas latents from other
seeds fail to exceed PickScore of 23.

unconditional
results

Prompt related to
“Jeep Cars”

23.4784

Prompt related to
“Sparrow”

21.6440

Se
ed

: 2
0

Se
ed

: 2
5

22.6294 21.9558

Se
ed

: 4
7

Prompt related to
“Living room”

Prompt related to
“Human Sculpture”

Se
ed

: 2
2

21.8029

21.9288

21.4053

21.7024

21.6225

21.0152

21.8181

21.1175

20.0000

19.8468

19.2551

20.4304

Figure 11: Latents with relevant semantic information about a specific concept can generate images
more effectively from prompts related to that concept. Each row shows the results of the same latent
across different prompts, while each column shows results from different latents under the same
prompts. For each cell, we compute the PickScore. For example, the latent related seed 20 achieves
an PickScore of 23.4784 when generating images related to “Jeep Cars”.

C.2 INVERSION PROCESS MAKES GOOD LATENT

In this section, we show that the inverted latent inherently carries semantic information related to the
conditional prompt c. These extra semantic information gain leads to superior generation outcomes.

Prompt: “a cute cat”
latentinv_1

Prompt: “a spider”

DDIM Inversion 
(guidance=0)

latentinv_2

 DDIM Inversion 
(guidance=0)

Figure 12: Given two natural images and their corresponding prompts, we perform DDIM inversion
to reverse them and obtain the corresponding initial noise latents.
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First, we choose images of “cats” and “spiders” as depicted in Figure 12. Employing the DDIM
inversion algorithm with guidance scale set to 0, we obtatin latentinv 1 and latentinv 2. We hypoth-
esize that latentinv 1 encapsulates semantic information associated with “cat” whereas latentinv 2

inherently relates more closely to “spiders”.

latentinv_1

Diffusion

latentinv_2

Diffusion
a cute cat
a small cat
a red cat

a yellow cat
cat smile

a cute cat
a small cat
a red cat

a yellow cat
cat smile

a ugly spidera 
a big spidera a 

small spider
a yellow spider

spider smile

a ugly spidera 
a big spidera a 

small spider
a yellow spider

spider smile

score: 21.9041score: 21.1783score: 21.9507 score: 21.2363

Figure 13: Generate images related to “cat” and “spider” using two latents respectively, and calculate
the PickScore.

Next, we use these two latents to generate images conditioned on text prompts “cats” and “spiders”
respectively, as illustrated in Figure 13. We observe that latentinv 1 performs better when condi-
tioned on text related to “cats” while latentinv 2 performs better when conditioned on text related to
“spiders”. This phenomenon empirically validates our hypothesis that inverted latent does matter.

D SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we present more quantitative and qualitative results of Z-Sampling.

D.1 SUPPLEMENTARY QUANTITATIVE RESULTS

Results of Z-Sampling in other benchmarks In Table 6, we evaluate 100 randomly selected
prompts from PartiPrompts using the SDXL model, with Z-Sampling demonstrating the higher per-
formance. Additionally, we also compare classical metrics such as FID (Seitzer, 2020), IS (Sali-
mans et al., 2016), and clip-score (Radford et al., 2021) on MS-COCO 2014 (Lin et al., 2014). Due
to numerous evaluation prompts (30K), we employ the distilled model, DreamShaper-xl-v2-turbo,
with 4 denoising steps, showing the higher generation quality in Table 7. We also report additional
comparative results on Geneval in Table 8, including Resampling and Diffusion-DPO, showcasing
Z-Sampling’s superiority in average scores.

Table 6: The quantitative results of Z-Sampling on
PartiPrompts. Model: SDXL.

Method HPS v2 ↑ AES ↑ PickScore ↑ IR ↑ Average↑
Standard 0.2934 5.8122 22.2719 0.7253 7.2757

Resampling 0.3021 5.7811 22.4247 0.9234 7.3578
Z-Sampling(ours) 0.3100 5.8472 22.4317 0.9732 7.3905

Table 7: The quantitative results of Z-
Sampling on MS-COCO 2014. Model:
DreamShaper-xl-v2-turbo.

Method IS-30K ↑ FID-30K ↓ Clip-Score ↑
Standard 34.0745 24.1420 0.3267

Z-Sampling(ours) 34.4173 23.4958 0.3288

Table 8: The additional quantitative results of Z-Sampling on GenEval. Model: SDXL

Method Single object ↑ Two object ↑ Counting ↑ Colors ↑ Position ↑ Color attribution ↑ Overall ↑
Standard 97.50% 69.70% 33.75% 86.71% 10.00% 18.00% 52.52%

Diffusion-DPO 100.00% 80.81% 45.00% 88.30% 10.00% 31.00% 59.18%
DPO+Z-Sampling(ours) 100.00% 82.83% 46.25% 89.36% 10.00% 29.00% 59.57%

Results of Z-Sampling in other baselines and tasks We also compare Z-Sampling with other
methods that improve the effect of guidance. Specifically, Hong et al. (2022) proposed SAG, which
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employs blur guidance and intermediate self-attention maps to achieve higher quality samples. Fur-
thermore, SEG (Hong, 2024) further optimized SAG from the energy landscape perspective. Here
we report the comparison results with SEG in Table 9. Additionally, We have also compared Z-
Sampling with CFG++ (Chung et al., 2024), which optimizes the classifier-free guidance mecha-
nism from the perspective of manifold constraints. since it restricts the cfg scale to the range from
0.0 to 1.0, while the classic Z-Sampling is larger, a fair comparison is not possible. Given this, we
use ω = 0.5 in CFG++, corresponding to a cfg scale of 5.5 in Z-Sampling.

Table 9: The quantitative results of Z-Sampling and SEG. Model: SDXL.

Method Pick-a-Pic DrawBench
HPS v2↑ AES↑ PickScore↑ IR↑ Average↑ HPS v2↑ AES↑ PickScore↑ IR↑ Average↑

Standard 0.2989 6.0870 21.6353 0.5865 7.1520 0.2881 5.5595 22.3086 0.6075 7.1909
SEG 0.3053 6.1231 21.4186 0.6157 7.1156 0.2960 5.6596 22.1453 0.6042 7.1763

Z-Sampling(ours) 0.3128 6.1302 21.8477 0.7822 7.2682 0.3050 5.6739 22.4581 0.7997 7.3092

Table 10: The quantitative results of Z-Sampling and CFG++. Model: SDXL. It is worth noting
that in the official implementation of CFG++, the VAE encoder uses madebyollin/sdxl-vae-fp16-
fix checkpoint. For fair comparison, we follow this setting, so the results reported for SDXL and
Z-Sampling are slightly different from the previous results.

Method Pick-a-Pic DrawBench
HPS v2↑ AES↑ PickScore↑ IR↑ Average↑ HPS v2↑ AES↑ PickScore↑ IR↑ Average↑

Standard 0.3004 6.1121 21.8053 0.6007 7.2046 0.2885 5.6245 22.4213 0.6761 7.2526
CFG++ 0.3028 6.0989 21.8337 0.6730 7.2271 0.2865 5.6174 22.3797 0.6266 7.2275

Z-Sampling(ours) 0.3124 6.1170 21.8444 0.7855 7.2648 0.3035 5.6594 22.4392 0.7911 7.2983

Finally, as a general method, we test Z-Sampling’s performance on the video generation task. We
choose AnimateDiff (Guo et al., 2023) as the baseline model and test it on Chronomagic-Bench-
150 (Yuan et al., 2024), and we set γ1 = 7.5 and γ2 = 0 in Z-Sampling. With the results shown in
Table 11, we note that Z-Sampling outperforms both AnimateDiff and another train-free sampling
method FreeInit (Wu et al., 2025) in UMT-FVD (Liu et al., 2024), UMT-SCORE (Li et al., 2023),
GPT4o-MTSCORE (Achiam et al., 2023).

Table 11: The quantitative results of Z-Sampling
on Chronomatic-Bench-150. Model: AnimateD-
iff.

Method UMT-FVD ↓ UMT-SCORE ↑ GPT4o-MTSCORE ↑
Standard 275.18 2.82 2.83

FREEINIT 268.31 2.82 2.59
Z-Sampling(ours) 243.26 2.97 2.88

Table 12: The quantitative results of Z-
Sampling under different denoising steps k.
Model: SDXl.

k HPS v2 ↑ AES ↓ PickScore ↑ IR ↑
0 (SDXL) 0.2989 6.0870 21.6353 0.5865

1 0.3128 6.1302 21.8477 0.7922
2 0.3111 6.0764 21.7163 0.8453
3 0.3075 6.0885 21.4848 0.7854
4 0.3059 6.0940 21.3357 0.7860

Multiple steps of denoising and inversion operation in Z-Sampling We have explored the
one-step scenario, i.e, xt → xt−1 → x̃t. Here, we extend to multiple steps scenario, i.e.,
xt → xt−k → x̃t. As shown in Table 12, the best performance is achieved when k=1. As k
increases, the performance of Z-Sampling deteriorates, which aligns with the Theorem 1 and Theo-
rem 2, where increasing k gradually brings the step-by-step approach closer to end-to-end, thereby
increasing the error term τ2. Specifically, when k=T-1 and the zigzag operation is only performed
on the initial latent, it corresponds to the scenario in Table 16.

D.2 SUPPLEMENTARY QUALITATIVE RESULTS

In Figure 14, we note Z-Sampling can better recognize the stylistic descriptions in prompts. For
example, it can generate “Mario characters” that are more realistic and lifelike.
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Figure 14: Qualitative comparison in terms of style.

In Figure 15, we note Z-Sampling accurately interprets object positional relationships, e.g., ‘under-
neath’, ‘on top of’, ‘on the right of’, etc.
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Figure 15: Qualitative comparison in terms of position.

In Figure 16, Z-Sampling enhances color richness and saturation, aligning images more closely with
prompts and improving quality. For instance, a ‘red’ dog (2-nd Column) is rendered with a more
intense red, distinct from real-world lighter shades.
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Figure 16: qualitative comparison in terms of color.
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In Figure 17, we note Z-Sampling demonstrates enhanced capability in understanding quantitative
relationships, effectively addressing the persistent challenge in diffusion models. For example, it
can effectively understand and generate images such as ‘three dogs’, ‘five cars’, and ‘one cat and
two dogs’.

Five cars on the street. One cat and one dog 
sitting on the grass.

Three cats and one dog 
sitting on the grass.

One cat and two dogs 
sitting on the grass.

Three cars on the 
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Figure 17: qualitative comparison in terms of counting.

In Figure 18, we find that Z-Sampling aids in generating Multi-object composite (e.g., a mouse
and a bowl) or counterfactual (e.g., an elephant in the sea) images, manifested in its enhanced ‘co-
occurrence’ capability.
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Figure 18: Qualitative comparison in terms of object co-occurrence.
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D.3 WINNING RATES COMPARISON

Here, we present a comparative analysis of winning rates under various settings, such as different
models and denoising steps. The blue bars represent Z-Sampling (ours), while the orange bars
represent the standard sampling method. Winning rates of our method exceeds 50% in all metrics.
Especially HPS v2, which is much better than standard method.
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Figure 19: Comparison of Winning Rates with 10 Denoising Steps in the SDXL.
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Figure 20: Comparison of Winning Rates with 50 Denoising Steps in the SDXL.
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Figure 21: Comparison of Winning Rates with 50 Denoising Steps in the SD 2.1.
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Figure 22: Comparison of Winning Rates with 10 Denoising Steps in the Hunyuan-DiT.

D.4 PERFORMANCE OF Z-SAMPLING UNDER HIGH CFG SCALE

We also report the performance of Z-Sampling under different intensities of classifier free guidance
γ1 during denoising process.

We use DreamShaper-xl-turbo-v2 as the base model. As shown in Table 13, the standard sampling
performs best at γ1 = 3.5, which is also the official recommended guidance sclae. When γ1 ≥ 3.5,
the standard sampling begins to exhibit issues such as oversaturation and artifacts.

However, Z-Sampling consistently yields positive gains, indicating that our method can still work
effectively under high guidance scales. And we present the winning rate of Z-Sampling over Stan-
dard sampling on HPS v2 across different guidance sclae γ1 in Figure 23, further validating this
point.

Table 13: Performance of Z-Sampling under different guidance γ1. Model: DreamShaper-xl-turbo-
v2. We note that the official recommended guidance scale γ1 = 3.5. When γ1 > 3.5, the quality of
standard sampling gradually declines, while Z-Sampling still shows improvement on this basis.

Method γ1 HPS v2 ↑ AES ↑ PickScore ↑ IR ↑ Winning Rate↑
Standard Sampling 1.5 0.2851 5.8327 21.3729 0.4325 -

Z-Sampling 1.5 0.2951 6.0143 21.6541 0.5589 73%

Standard Sampling 3.5 0.3004 5.9355 21.5899 0.6618 -
Z-Sampling 3.5 0.3238 6.1542 22.1025 0.9087 88%

Standard Sampling 5.5 0.2996 5.9668 21.3718 0.6446 -
Z-Sampling 5.5 0.3142 6.0513 21.8309 0.7600 85%

Standard Sampling 7.5 0.2910 5.8816 21.0236 0.6026 -
Z-Sampling 7.5 0.3090 5.9537 21.5977 0.7418 86%

Standard Sampling 9.5 0.2798 5.7649 20.5981 0.4170 -
Z-Sampling 9.5 0.2995 5.8788 21.2806 0.6340 92%

Standard Sampling 11.5 0.2693 5.6030 20.3055 0.3145 -
Z-Sampling 11.5 0.2897 5.7694 20.9710 0.5569 91%

Generally, classifier-free guidance serves as a mechanism for semantic control, balancing image
quality and prompt adherence, with excessive guidance scale causing deviations and artifacts. Z-
Sampling, as a similar semantic enhanced mechanism, employs an iterative approach (unlike the
vanilla CFG mechanism, which directly alters the latent distribution) to more effectively explore
this balance. And we presents some visual cases in Figure 24, showcasing Z-Sampling’s capability
to maintain image quality even under high guidance scale.
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Figure 23: Comparison of Winning Rates under different guidance scale γ1. Model: DreamShaper-
xl-turbo-v2. Horizontal axis: guidance scales γ1. Vertical axis: Z-Sampling vs Standard Sampling
winning rates on Pick-a-Pic.
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Figure 24: Qualitative comparison under high guidance scale. When γ1 = 3.5 (the official recom-
mended guidance scale), both Z-Sampling and Standard exhibit no artifacts or degradation in image
quality. As γ1 increases, standard sampling exhibits artifacts and oversaturation, while Z-Sampling
is less affected.
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E ANALYSIS OF THE APPROXIMATION ERROR TERM

In this section, we undertake a more in-depth analysis of the approximation error term τ2 within
Equation 10. We first demonstrate Z-Sampling’s results under the uncertainty scheduler. Then, we
analyze how this approximation error affects the performance of Z-Sampling.

E.1 UNCERTAINTY AND STOCHASTIC SAMPLERS

To assess the impact of different inversion algorithms on generation quality, we test various inversion
methods. Specifically, we use SDXL-Turbo (4 steps) (Sauer et al., 2023) , an adversarial distilla-
tion diffusion model. Notably, SDXL-Turbo’s default sampler is an ancestral Euler sampler, which
introduces random noise at each denoising step, leading to highly inaccurate inversion.

Table 14: With stochastic samplers (e.g., Euler(a)), inversion inaccuracies reduce Z-Sampling’s
effectiveness. In contrast, deterministic samplers (e.g., Euler) yield better results with Z-Sampling.

Method HPS v2 ↑ AES ↑ PickScore ↑ IR ↑ Average ↑
Standard SamplingEuler(a) 0.3123 5.9561 21.6364 0.8224 7.1818

Z-SamplingEuler(a) 0.3078 5.9523 21.6503 0.8060 7.1791

Standard SamplingEuler 0.2705 5.6023 20.3643 0.4144 6.6628
Z-SamplingEuler 0.2857 5.8482 20.9639 0.3954 6.8733

From Table 14, it can be seen that when using the Euler ancestral sampler, e.g., Euler(a), which in-
troduces randomness in the denoising process, most metrics show a decline. This is because Euler(a)
leads to inaccuracies in the inversion process, causing the approximation error term in equation 23 to
increase significantly. As a result, Z-Sampling diverges from the data manifold, leading to reduced
effectiveness.

However, when using deterministic Euler samplers, although the overall performance does not match
that of the Euler(a) Sampler—acknowledging that other sampling methods on the turbo model may
introduce blurring and related issues—Z-Sampling still demonstrates performance improvements
over the corresponding baseline. For example, the PickScore increase from 20.3643 to 20.9639
This highlights the importance of the inversion algorithm and presents opportunities for improving
Z-Sampling under stochastic samplers

Corresponding to equation 10, a deterministic sampler implies that the inversion process is impre-
cise, leading to an increase in τ2(t). We note that end-to-end inversion amplifies the approximation
error (Mokady et al., 2023), risking latents deviating from the data manifold. Z-Sampling, on the
other hand, truncates the error at each step, reducing τ2, making semantic injection more efficient.

E.2 THE INCREASE IN APPROXIMATION ERROR RESULTS IN NEGATIVE GAINS

To focus solely on the approximation error τ2 in Equation 10, we need to eliminate the influence of
the semantic term τ1. So we set γ1 = γ2 = 5.5, which means δγ = 0 and τ1 = 0. Then Equation 10
can be transformed as

δZ-Sampling =

T∑
t=1

(xt − x̃t)
2 =

T∑
t=1

αth
2
t (ϵ

t
θ(x̃t)− ϵtθ(x̃t−1)︸ ︷︷ ︸
τ2(t):approx error term

)2. (12)

Similarly, Equation 9 can be transformed as

δend2end = (xT − x̃T )
2 = αT (

T∑
t=1

ht(ϵ
t
θ(x̃t)− ϵtθ(x̃t−1)︸ ︷︷ ︸
τ2(t):approx error term

)2. (13)
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Since the semantic term τ1 no longer contributes, only the effect of τ2 remains, as shown in Table 15
and Figure 25, both the end-to-end and step-by-step approaches result in negative gains. Notably,
the approximation error introduced by the end-to-end method is two orders of magnitude higher than
that of the step-by-step method, significantly degrading the image quality. This demonstrates that:

• An increase in the error term τ2 degrades the sampling effect.
• The step-by-step approach helps reduce the error term τ2, mitigating this negative

gain.

SDXL Step-by-Step End-to-End
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Figure 25: When the semantic term τ1 is removed (e.g., τ1 = 0), the presence of only the error term
τ2 degrades the quality of generation results, and this negative gain effect is more pronounced in the
end-to-end method.

Additionally, we test the performance of end-to-end and step-by-step methods in the presence of the
semantic term τ1, as shown in Table 16. Since in this case, τ1 and τ2 are mixed together, so we only
report the PickScore to reflect the quality of the generated results, as we are unable to report the
exact Approx Error. It can be observed that with the presence of the semantic term, both methods
yield positive gains, and the step-by-step method performs better.

Table 15: The results on Pick-a-Pick, excluding se-
mantic term τ1. Model: SDXL.

Method δγ PickScore ↑ Approx Error τ2
SDXL - 21.6353 0

End-to-End 0 18.8182 160.3313
Step-by-Step 0 21.5257 0.9919

Table 16: The results on Pick-a-Pick, in-
cluding semantic term τ1. Model: SDXL.

Method δγ PickScore ↑
SDXL - 21.6353

End-to-End 5.5 21.6485
Step-by-Step 5.5 21.8477

E.3 ARTIFICIALLY INTRODUCING GAUSSIAN ERROR

Specifically, to further illustrate that the approximation error τ2 leads to negative gains, we consider
adding an additional random Gaussian term errorgs to Equation 12, artificially simulating and
controlling the inversion approximation error as

δZ-Sampling =

T∑
t=1

(xt − x̃t)
2 =

T∑
t=1

αth
2
t (ϵ

t
θ(x̃t)− ϵtθ(x̃t−1)︸ ︷︷ ︸
τ2(t):approx error term

+s ∗ norm(ϵtθ(xt))

norm(errorgs)
errorgs)

2, (14)
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where s is used to control the magnitude of the error. As seen in Table 17, the larger the value of s,
the worse the performance of Z-Sampling, further illustrating that reducing the error term introduced
by inversion is a direction that warrants attention.

Table 17: As the coefficient of the Gaussian error term increases, the quality of generation decreases.

s HPS v2 ↑ AES ↑ PickScore ↑ IR ↑ Average ↑
0 0.2995 6.1889 21.5257 0.5112 7.1313

0.5 0.2993 6.1502 21.5139 0.4553 7.1046
1.0 0.2812 6.0076 20.7824 0.2874 6.8396

F PROOFS

In this section, we derive the relationship between the end-to-end semantic injection approach and Z-
Sampling, proving Z-Sampling’s superiority. Then we formalize how Z-Sampling injects semantics
via the guidance gap.

Proof F.1 (Theorem 1) Given inference timesteps of T , from equation 4, we can obtain the inverted
latent x̃T as

x̃T =

√
αT

αT−1
x̃T−1 +

√
αT

(√
1

αT
− 1−

√
1

αT−1
− 1

)
ϵTθ (x̃T−1). (15)

For the sake of convenience, we set

mT =

√
αT

αT−1
, nT =

√
αT

(√
1

αT
− 1−

√
1

αT−1
− 1

)
. (16)

So, equation 15 could also be written as

x̃T = mT x̃T−1 + nT ϵ
T
θ (x̃T−1). (17)

Through iterative and combinatorial processes in equation 3, x̃T could be expressed as

x̃T = mT x̃T−1 + nT ϵ
T
θ (x̃T−1)

= mTmT−1x̃T−2 +mTnT−1ϵ
T−1
θ (x̃T−2) + nT ϵ

T
θ (x̃T−1)

= mTmT−1mT−2x̃T−3 +mTmT−1nT−2ϵ
T−2
θ (x̃T−3) +mTnT−1ϵ

T−1
θ (x̃T−2) + nT ϵ

T
θ (x̃T−1)

=

T∏
i=0

mix̃0 +

T∑
t=1

nt

T∏
k=t+1

mkϵ
t
θ(x̃t−1). (18)

Similarly, based on equation 1 and equation 2, we can perform iterative derivations to obtain the
equivalent form of xT as

xT =

T∏
i=0

mix0 +

T∑
t=1

nt

T∏
k=t+1

mkϵ
t
θ(xt). (19)
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We can determine the difference between xT and x̃T , representing the gain from end-to-end semantic
injection as

δend2end = (xT − x̃T )
2

=

(
T∏

i=0

mi (x0 − x̃0) +

T∑
t=1

nt

T∏
k=t+1

mk

(
ϵtθ(xt)− ϵtθ(x̃t−1)

))2

=

(
T∑

t=1

√
αT

(√
1

αt
− 1−

√
1

αt−1
− 1

)(
ϵtθ(xt)− ϵtθ(x̃t−1)

))2

= αT

(
T∑

t=1

(√
1

αt
− 1−

√
1

αt−1
− 1

)(
ϵtθ(xt)− ϵtθ(x̃t−1)

))2

,

(20)

where we set ht =
nt√
αt

, and further refine equation 20 to yield the semantic injection term τ1 and
the approximation error term τ2 as

δend2end = αT

(
T∑

t=1

ht

(
ϵjθ(xt)− ϵtθ(x̃t)

))2

= αT

 T∑
t=1

ht

 ϵtθ(xt)− ϵtθ(x̃t)︸ ︷︷ ︸
τ1:semantic information gain term

+ ϵtθ(x̃t)− ϵtθ(x̃t−1)︸ ︷︷ ︸
τ2:approx error term




2

. (21)

Proof F.2 (Theorem 2) Unlike end-to-end approaches, in Z-Sampling, we focus solely on the local
cycle of “xt → xt−1 → x̃t”. Substituting equation 2 into equation 4 yields x̃t as

x̃t = xt −
√
1− αtϵ

t
θ(xt) +

√
(1− αt−1)αt

αt−1
ϵtθ(xt)

+
√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)
ϵtθ(x̃t−1)

= xt +
√
1− αt

(
ϵtθ(x̃t−1)− ϵtθ(xt)

)
+

√
(1− αt−1)αt

αt−1

(
ϵtθ(xt)− ϵtθ(x̃t−1)

)
= xt +

(
√
1− αt −

√
(1− αt−1)αt

αt−1

)(
ϵtθ(xt)− ϵtθ(x̃t−1)

)
= xt +

√
αt

(√
1

αt
− 1−

√
1

αt−1
− 1

)(
ϵtθ(xt)− ϵtθ(x̃t−1)

)
. (22)

The latent difference of Z-Sampling is accumulated as

δZ-Sampling =

T∑
t=1

(xt − x̃t)
2

=

T∑
t=1

αth
2
t

(
ϵtθ(xt)− ϵtθ(x̃t−1)

)2

=

T∑
t=1

αth
2
t

 ϵtθ(xt)− ϵtθ(x̃t)︸ ︷︷ ︸
τ1:semantic information gain term

+ ϵtθ(x̃t)− ϵtθ(x̃t−1)︸ ︷︷ ︸
τ2:approximation error term


2

. (23)
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Figure 26: The End-to-End injection risks semantic cancellation across stages, leading to suboptimal
results. In contrast, Z-Sampling captures and injects semantic information at each step in a timely
manner along the sampling path, resulting in a stronger injection effect.

In Figure 26, we visually represent the effect of equation 21 and equation 23. Z-Sampling clearly
injects semantic information at each step in a timely manner, leading to a more pronounced effect
and a deeper level of semantic injection.

We note in Equation 24 that ϵtθ(x̃t) actually represents the denoising result of latent xt under low
guidance γ2, written this way for consistency with Equation 5. Therefore, the only difference be-
tween ϵtθ(x̃t) and ϵtθ(xt) is the guidance scale: ϵtθ(xt) uses the guidance scale of γ1, while ϵtθ(x̃t)
uses the guidance scale of γ2. The latent input to the denoising network is the same for both xt.

Proof F.3 (Theorem 3) Excluding the approximation error introduced by inversion algorithm, we
can rewrite equation 23 as

δZ-Sampling =

T∑
t=1

αth
2
t

(
ϵtθ(xt)− ϵtθ(x̃t)

)2
. (24)

Although the step-by-step approach results in xt and x̃t being the same at each timestep t, from
equation 5, we note that ϵtθ(xt) and ϵtθ(x̃t) are obtained under guidance scales γ1 and γ2 respec-
tively. Thus, the effect of Z-Sampling is further equivalent as

δZ-Sampling =

T∑
t=1

αth
2
t ((γ1 − γ2)uθ(xt, c, t)− (γ1 − γ2)uθ(xt,∅, t))

2

=

T∑
t=1

αth
2
t ((γ1 − γ2) (uθ(xt, c, t)− uθ(xt,∅, t)))

2

=

T∑
t=1

αth
2
t (δγ (uθ(xt, c, t)− uθ(xt,∅, t)))

2
. (25)

Here, δγ represents the guidance gap between denoising and inversion, i.e., γ1 − γ2.

From equation 25, we note that the effectiveness of Z-Sampling primarily depends on:
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1. The guidance gap δγ , which we can control to regulate the magnitude and intensity of the
optimization.

2. The difference between the conditional branch uθ(xt, c, t) and unconditional branch
uθ(xt,∅, t), which is determined by the prompt c and the model parameters θ.

As mentioned in the end of Proof F.2, in the absence of inversion approximate errors, the only differ-
ence between ϵtθ(xt) and ϵtθ(x̃t) in Equation 24 is they use the different guidance scale. Therefore,
even when γ2 = 0, our focus remains on the invariant, which is the difference between the network
outputs of the conditional and unconditional branches uθ(xt, c, t)− uθ(xt,∅, t).

G THE END-TO-END SEMANTIC INJECTION ALGORITHM

In this section, we show how to inject semantic information end-to-end as described in Section 3.3.

Algorithm 2 End-to-End Semantic Injection
1: Input: Denoising Process: Φ, Inversion Process: Ψ, text prompt: c, denoising guidance: γ1, inversion

guidance: γ2, inference steps: T , zigzag optimization steps: λ
2: Output: Clean image x0
3: Sample Gaussian noise xT
4: x0 = ϕ(xT |c, γ1) #see equation 6
5: x̃T = ψ(x0|c, γ2) #see equation 7
6: x0 = ϕ(x̃T |c, γ1) #see equation 8
7: return x0
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