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ABSTRACT

Domain generalizable person re-identification (DG-ReID) aims to learn a ready-
to-use domain-agnostic model directly for cross-dataset/domain evaluation, while
current methods mainly explore the demographic information such as domain
and/or camera labels for domain-invariant representation learning. However, the
above-mentioned demographic information is not always accessible in practice
due to privacy and security issues. In this paper, we consider the problem of
person re-identification in a more general setting, i.e., domain generalizable person
re-identification without demographics (DGWD-ReID). To address the underlying
uncertainty of domain distribution, we introduce distributionally robust optimiza-
tion (DRO) to learn robust person re-identification models that perform well on all
possible data distributions within the uncertainty set without demographics. How-
ever, directly applying the popular Kullback-Leibler divergence constrained DRO
(or KL-DRO) fails to generalize well under the distribution shifts in real-world
scenarios, since the convex condition may not hold for overparameterized neural
networks. Inspired by this, we analyze and reformulate the popular KL-DRO by
applying the change-of-measure technique, and then propose a simple yet efficient
approach, Unit-DRO, which minimizes the loss over a new dataset with hard
samples up-weighted and other samples down-weighted. We perform extensive ex-
periments on both domain generalizable and cross-domain person ReID tasks, and
the empirical results show that Unit-DRO achieves superior performance compared
to all baselines without using demographics.

1 INTRODUCTION

Person re-identification (ReID) aims to find the correspondences between person images from the
same identity across multiple camera views. As illustrated in Figure 1, previous studies mainly
follow three different settings: 1) supervised person ReID Zhang et al. (2020), where training
and test data are independently and identically (i.i.d) drawn from the same distribution. Though
recent supervised methods have achieved remarkable performance, they are usually non-robust in
out-of-distribution (OOD) settings; 2) unsupervised domain adaptative person ReID (UDA-ReID)
and cross-domain person ReID (CD-ReID) Luo et al. (2020), where UDA-ReID relies on large
amounts of unlabeled data for retraining and CD-ReID cannot exploit the benefits brought by multi-
source domains; 3) domain generalizable person ReID (DG-ReID) Dai et al. (2021a), where the
model is trained on multiple large-scale datasets and tested on unseen domains directly without extra
data collection/annotation and model updating on new domains. Therefore, DG-ReID is receiving
increasing attention due to its great value in real-world person retrieval applications.

However, current DG-ReID research usually comes at a serious disadvantage: it requires the demo-
graphic information (e.g., domain labels Choi et al. (2021); Zhao et al. (2021), camera IDs Zhang
et al. (2021b); Dai et al. (2021a), and video timestamps Yuan et al. (2020)) as the extra supervision for
model training. Such demographics implicitly define the variations in training data that the learned
model should be invariant or robust to. Unfortunately, the demographic information is usually not
available in practice due to the following reasons: 1) the collection of demographics inevitably leads
to privacy problems Veale & Binns (2017), e.g., the risks of exposing the geographical location
and/or the environment information; 2) the collection/annotation of domain labels is very expensive
and ethically fraught endeavours Michel et al. (2021); and 3) such coarse-grained labels and the
noise of manual annotation collected domain labels may exacerbate the hidden stratification issue,
which hinders a variety of safety-critical applications Creager et al. (2021); Kim & Lee (2021) (see
Appendix A for more discussions). Therefore, as shown in Figure 1d, we consider a more general
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Figure 1: An illustration of different person re-identification settings. (a) Supervised person ReID.
(b) CD-ReID and UDA-ReID. (c) DG-ReID. (d) DGWD-ReID.

setting for person ReID, i.e., Domain Generalizable Person Re-identification Without Demographics
(DGWD-ReID), where the model is trained on multiple large-scale datasets without demographics.

To address the underlying uncertainty of domain distribution without using demographics, distri-
butionally robust optimization (DRO) is a promising paradigm, which explicitly obtains prediction
functions robust to distribution shifts Hu et al. (2018). Specifically, DRO considers a minimax game:
the inner optimization objective is to shift the training distribution within a pre-specified uncertainty
set so as to maximize the expected loss on the test distribution. The outer optimization minimizes
the adversarial expected loss. The uncertainty set defined by an f -divergence ball (such as Kullback-
Leibler divergence) from the training distribution has been very popular, which is also known as
KL-DRO Hu & Hong (2013). However, the convex assumption in KL-DRO usually cannot hold in
real-world scenarios, thus leading to inferior performance for overparameterized neural networks.

We address the above-mentioned issue and reformulate KL-DRO to first solve the inner step opti-
mization problem and then obtain a closed-form expression of the optimal objective. Specifically,
different from previous work that converts the minimax DRO problem into a single minimization
problem by the closed-form expression Hu & Hong (2013), we utilize a change-of-measure technique
and reformulate the minimax optimization as an importance sampling problem, termed Unit-DRO1.
By doing this, Unit-DRO avoids bi-level optimization in traditional DRO problems and scales well
to overparameterized regimes. Specifically, Unit-DRO upweights samples that are prone to be
misclassified and downweights others. It assigns a normalized weight eℓ/τ

∗
/E[eℓ/τ∗

] to each pair
of data and label (x, y), where ℓ indicates the error incurred by (x, y) and τ∗ is a hyperparameter.
During implementation, there are still two main challenges for applying Unit-DRO: 1) it struggles
with the hyperparameter parameter τ∗ and we observe that a constant τ∗ during training always
leads to inferior performance in practice; 2) the normalization factor E[eℓ/τ∗

] requires an expectation
over the training distribution, which is not complementary with the stochastic mini-batch training.
To tackle the first problem, we propose a multi-step solution to adaptively determine the value of
τ∗ by the training step. We then maintain a weight queue to store historical sample weights for a
better estimation of E[eℓ/τ∗

] over the training distribution. Compared to previous DG-ReID methods,
Unit-DRO avoids the need for either meta-learning pipelines or model structure engineering.

In this paper, we evaluate the proposed Unit-DRO for person ReID by comparing it with existing DG-
ReID and CD-ReID methods. Unit-DRO outperforms a variety of recent methods with a large margin
on both DG-ReID and CD-ReID benchmarks, even including those methods using demographics. To
better understand the proposed Unit-DRO, we perform comprehensive ablation studies on several
important components, such as the multi-step τ∗ solution and the weight queue. Furthermore, we also
visualize the learned weight distributions, t-SNE embeddings, and measure the domain divergence
and error set to show the good invariant learning capability of Unit-DRO. Empirical results show that
the proposed Unit-DRO can effectively retrieve valuable samples or subgroups without demographics.

2 RELATED WORK

DG-ReID. Generalizable methods are recently proposed to learn invariant representations that
can generalize to unseen domains Song et al. (2019); Choi et al. (2021); Zhang et al. (2021b).

1In contrast to the word “Group” in Group-DRO Sagawa et al. (2019) where it assigns weights for domains,
the word “Unit” in our proposed Unit-DRO assigns weights for samples.
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Existing methods mainly utilize domain divergence minimization strategies or a meta-learning
pipeline. In view of the current research trend (Table 1), most methods rely on demograph-
ics to learn invariant features. Though existing strong baseline Liao & Shao (2020), normal-
ization Jin et al. (2020), and augmentation methods Yan et al. (2020) require no demographics,

Table 1: The current research trend of DG-ReID.

Method Source Domain Camera

DIR-ReID Zhang et al. (2021b) Arxiv 21 ✓ ✓
MetaBIN Choi et al. (2021) CVPR 21 ✓ ✓
M3L Zhao et al. (2021) CVPR 21 ✓
DMG-Net Bai et al. (2021) CVPR 21 ✓ ✓
RaMoE Dai et al. (2021b) CVPR 21 ✓
CBN Zhuang et al. (2020) ECCV 20 ✓
CAIL Luo et al. (2020) ECCV 20 ✓ ✓
QAConv Liao & Shao (2019) ECCV 20 Backbone
SNR Jin et al. (2020) CVPR 20 Normalization

they are plug-and-play modules and thus orthog-
onal to the proposed Unit-DRO. Different from
existing studies, DGWD-ReID adds a strict re-
striction on demographics and has ambitious tar-
gets that “can we learn invariant features even
without demographics? can we partition do-
mains better?”.

Fairness without Demographics. Methods in
Fairness Dwork et al. (2012) aim to develop a
model that performs well for worst-case group
assignments according to some fairness criteria
for addressing the underperformance in minority
subgroups. Though there are several works con-
sidering fariness without demographics Liu et al. (2021); Creager et al. (2021), they mostly evaluate
their algorithms in datasets with predefined distribution shifts. Note that DGWD-ReID is more
challenging than the category-level recognition problem considered in the existing fariness w or
w/o demographics study. In DGWD-ReID, the target identities are different from source ones and
we need to tackle both domain gap and disjoint label space problems simultaneously. For more
discussions about domain generalization, DRO, and cross-domain person ReID (CD-ReID), please
also refer to Appendix B.

3 METHOD

Problem Formulation. Given the current DG-ReID setting, there is a labeled set of training data
from several different domains: P = ∪Nk=1Pk and Pk = {(xi, yi)}Nk

i=1, where N is the number of
domains, Nk is the number of images in domain Pk, and xi ∈ X , yi ∈ Y indicate an image and its
corresponding label, respectively. During training, we use all aggregated image-label pairs from P .
During testing, we evaluate the person retrieval performance on the unseen target domain G without
any additional model updating. Therefore, the goal of DG-ReID is to learn a model fθ : X → Y that
minimizes the empirical error on the unseen target domain G:

min
θ∈Θ

E(x,y)∈G [ℓ(x, y; θ)] , (1)

where ℓ is the predefined loss function. This objective encodes the goal of learning a model that
does not depend on spurious correlations. If a model makes decisions according to domain-specific
information, it is natural to be brittle in an entirely distinct domain. However, previous studies
mostly leverage demographics (e.g., domain/camera labels and video timestamps) to clip the spurious
correlations, which is not always available in real-world applications. Therefore, we consider a more
general setting where the above-mentioned demographic information is unknown during training,
i.e., DG-ReID without demographics or DGWD-ReID, which is in line with the motivation that
annotating demographics is expensive and also likely to expose privacy information.

Baseline Algorithm. We introduce the objectives used in our baseline as follows. The first one is the
cross-entropy loss. Given n training points {(x1, y1), ..., (xn, yn)}, we then have the loss for person
identity classification: Lce =

1
n

∑n
i=1 ℓ(xi, yi; θ), where ℓ indicates the cross-entropy loss function.

Label-smoothing is also applied to prevent the model from overfitting to the identity labels. Inspired
by recent ReID methods, we further introduce triplet loss to enhance the intra-class compactness and
inter-class separability in the embedding space. Following Hermans et al. (2017), given an anchor
sample xa

i , we then evaluate triplet loss using the hardest positive and negative samples, xp
i and

xn
i within each mini-batch: Ltr(x

a
i , x

p
i , x

n
i ; θ) = max {d(xa

i , x
p
i ; θ)− d(xa

i , x
n
i ; θ) +m, 0}, where

d(·, ·) indicates a pairwise distance such as the Euclidean distance, and m is the margin between
positive and negative pairs. We use a BNNeck structure Luo et al. (2019a) to maximize the synergy
between Lce and Ltrand integrate a mixture of batch normalization and instance normalization with
learnable parameters Choi et al. (2021), which are shown very useful for DG-ReID. In the following,
we reuse ℓ(x, y; θ) as the sum of both cross-entropy loss and triplet loss.
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3.1 UNIT-DRO
To address the underlying uncertainty of domain distribution without demographics, we introduce
Unit-DRO, a novel generalization framework that does not require priors about demographics. We
first introduce the basic distributionally robust optimization (DRO) framework Ben-Tal et al. (2009);
Rahimian & Mehrotra (2019) as follows. In DRO, the worst-case expected risk over a predefined
family of distributions Q (termed uncertainty set) is used to replace the expected risk on the unseen
target distribution G in Equ.1. Therefore, the objective is as follows,

min
θ∈Θ

max
q∈Q

E(x,y)∈q[ℓ(x, y; θ)]. (2)

Specifically, the uncertainty set Q encodes the possible test distributions that we want our model to
perform well on. If Q contains G, the DRO object can upper bound the expected risk under G.

An important question for using DRO is how to choose the uncertainty set (please also see more
discussions in Appendix. B). Note that in real-world applications, we can obtain only the empirical
(training) data distribution. The uncertainty set can thus be constructed by collecting the distributions
within a certain distance from the training distribution. For example, previous work may choose a
KL-divergence ball Hu & Hong (2013)/MMD ball Sinha et al. (2017) around the training distribution,
which confers robustness to a wide set of distribution shifts. However, it can also lead to overly
pessimistic models which optimize for implausible worst-case distributions Duchi et al. (2019). In
other words, Q should be sufficiently large to contain G, while it may also contain noisy distribu-
tions Michel et al. (2021). Group-DRO Sagawa et al. (2019) thus leverages demographics to define
the uncertainty set Q and attains superior OOD performance. Different from Group-DRO, here we
consider a new extension of DRO to improve OOD generalization without demographics.

KL-DRO. We first introduce the construction of uncertainty set Q based on the KL-divergence ball
around the empirical distribution P . Given the KL upper bound (radius) η, we have the uncertainty
set Q = {Q : KL(Q||P) ≤ η}. The min-max problem in Equ.2 can then be reformulated as

min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈Q [ℓ(x, y; θ)] . (3)

Lemma 1 (Modified from Section 2 in Hu & Hong (2013)) Assume the model family θ ∈ Θ and
Q to be convex and compact. The loss ℓ is continuous and convex for all x ∈ X , y ∈ Y . Suppose
empirical distribution P has density p(x, y). Then the inner maximum of Equ.3 has a closed-form
solution

q∗(x, y) =
p(x, y)eℓ(x,y;θ)/τ

∗

EP
[
eℓ(x,y;θ)/τ∗] , (4)

where τ∗ satisfies EP

[
eℓ(x,y;θ)/τ∗

EP [eℓ(x,y;θ)/τ∗ ]

(
ℓ(x,y;θ)

τ∗ − logEP [e
ℓ(x,y;θ)/τ∗

]
)]

= η and q∗(x, y) is the
optimal density of Q. The min-max problem in Equ.3 is then equivalent to

min
θ∈Θ,τ>0

τ logEP

[
eℓ(x,y;θ)/τ

]
+ ητ. (5)
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Figure 2: Training statistics.

We refer to Equ.5 as KL-DRO. Unfortunately, the convex condition
of KL-DRO is not held for overparameterized neural networks, such
that applying it may fail to generalize under the distribution shifts
in real-world scenarios. As illustrated in Figure 2, we compare the
training statistics with the baseline, where KL-DRO is highly unstable
and attains inferior results. Therefore, instead of following KL-DRO
to directly use the inner maximum, we reformulate Equ.3 as follows.

min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈Q[ℓ(x, y; θ)] = min
θ∈Θ

max
Q:KL(Q||P)≤η

∫
ℓ(x, y; θ)q(x, y)dxdy

= min
θ∈Θ

max
Q:KL(Q||P)≤η

∫
ℓ(x, y; θ)

q(x, y)

p(x, y)
p(x, y)dxdy

= min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈P

[
q(x, y)

p(x, y)
ℓ(x, y; θ)

]
= min

θ∈Θ
E(x,y)∈P

[
eℓ(x,y;θ)/τ

∗

EP [eℓ(x,y;θ)/τ
∗ ]
ℓ(x, y; θ)

]
.

(6)

4



Under review as a conference paper at ICLR 2023

Specifically, to obtain the third line, we apply the change-of-measure technique. The fourth line
replaces the inner maximum by its closed-form solution q∗(x, y) in Equ.4. Note that both the value
of τ∗ and the normalizer EP [e

ℓ(x,y;θ)/τ∗
] depend on the expectation of losses over all training data,

which is untrackable at each mini-batch based optimization step. For simplicity, we can serve τ∗

as a hyperparameter and take the average over each mini-batch as a preliminary estimator of the
normalizer. Therefore, we have the formulation of vanilla Unit-DRO as follows:

LUnit-DRO(θ, τ
∗) = min

θ∈Θ

1

N

N∑
i=1

(
eℓ(x,y;θ)/τ

∗

1
N

∑N
i=1

(
eℓ(x,y;θ)/τ∗)ℓ(x, y; θ)

)
, (7)

where N is the batch size. However, vanilla Unit-DRO does not work well in practice, and we address
the following two problems to form a robust Unit-DRO solution.

Multi-Step τ∗. The first problem is that a constant hyperparameter τ∗ is usually suboptimal
for the whole learning process. As shown in Figure 3, we visualize the densities of the weight
eℓ(x,y;θ)/τ

∗
/EP [e

ℓ(x,y;θ)/τ∗
] at different optimization steps when using a constant τ∗ (please refer to

Section 4.3 for the detailed setups). Specifically, we find that: 1) a small τ∗ leads to the high variance
on the weight distribution and is also sensitive to outliers; 2) a large τ∗ is so conservative that the
weights for all samples are almost similar, and the performance is thus similar to the baseline method.
To tackle this problem, we propose a multi-step solution for the hyparameter τ∗, which declines with
the training/optimization steps. The intuition behind the multi-step τ∗ is that: at the beginning, we
use a large τ∗, and the model thus assigns almost similar weights to all samples and cannot identify
which sample is more important or not. With the increase of training steps, we decrease the value of
τ∗ and improve the weights for important (i.e., hard-to-distinguish) samples.
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Figure 3: Visualizing the distribution of sample weight at 1k, 5k, 10k, 20k steps, respectively (from
left to right). The horizontal axis represents the weight.

Weight QueueM. The second problem is that the expectation over each mini-batch may not be a
good estimator of the normalizer EP [e

ℓ(x,y;θ)/τ∗
]. To address this problem, we introduce a queue

M = {wi := eℓ(xi,yi;θ)/τ
∗}Mi=1 to maintain the historical weights, where M depends on the batch

size N and determines how well M can estimate EP [e
ℓ(x,y;θ)/τ∗

]. (Please see more empirical
analysis in Section 4.3).

Lastly, we have the objective function of Unit-DRO as follows:

LUnit-DRO(θ, τ
∗(t)) = min

θ∈Θ

1

N

N∑
i=1

(
eℓ(x,y;θ)/τ

∗(t)

1
|M|

∑
wi∈M (wi)

ℓ(x, y; θ)

)
, (8)

where t is the index of training step and τ∗ is a piecewise function of t. As shown in Figure 2, the
training statistics of Unit-DRO is more stable than KL-DRO, and its performance also outperforms
baseline methods by a large margin. We depict the online optimization algorithm in Appendix
Algorithm 1. Note that in Algorithm 1 of Group-DRO Sagawa et al. (2019), all samples in the
same domain share the same weight, which can be seen as a special case of the proposed Unit-DRO.
Compared with Group-DRO, one of the key improvements is the implementation trick in that the
group weights are updated using exponential gradient ascent instead of picking the group with the
worst average loss at each step. Specifically, Group-DRO shows that such an improvement is useful
for training stability and model convergence but cannot explain why it works. In contrast, the adaptive
weights used in this paper are interpretable: the optimal distribution of DRO with KL constraint is
proportional to the empirical distribution composite with the exponential term eℓ(x,y;θ)/τ

∗
.
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4 EXPERIMENTS

In this section, we evaluate the proposed Unit-DRO and try to answer the following questions:
“without demographics, how does Unit-DRO perform compared to other CD-ReID and DG-ReID
methods? what is the influence of different hyperparameters in Unit-DRO? why Unit-DRO improves
the baseline?”. To answer the first question, we compare Unit-DRO with baseline methods on both
DG-ReID and CD-ReID benchmarks. We then perform detailed ablation studies to answer the second
question. Comprehensive analyses are conducted for the third question, e.g., error set analysis, feature
visualization, and domain divergence measure.

4.1 EXPERIMENTAL SETUP

Datasets. Following Song et al. (2019); Jia et al. (2019); Zhang et al. (2021b), we evaluate the
Unit-DRO with multiple data sources (MS), where source domains cover five large-scale ReID
datasets, including CUHK02 Li & Wang (2013), CUHK03 Li et al. (2014), Market1501 Zheng
et al. (2015), DukeMTMC-ReID Zheng et al. (2017), and CUHK-SYSU PersonSearch Xiao et al.
(2016). The unseen test domains are VIPeR Gray et al. (2007), PRID Hirzer et al. (2011), QMUL
GRID Liu et al. (2012), and i-LIDS Wei-Shi et al. (2009). We include the detailed illustration of
datasets and evaluation protocols in Appendix D.1. In the CD domain setting, we employ Market1501
and DukeMTMC-ReID. We alternately construct the two datasets into source and target domains.

Table 2: Summary of different DG-ReID protocols.
(M:market1501, C2: Cuhk02, C3: Cuhk03, D:
DukeMTMC, MT: MSMT17, CS: CUHK-SYSU,
V: ViPeR, P: PRID, G: GRID, I: i-LIDS).

Protocol Source Target Augmentation

(1) M/D D/M+V+P+G+I Color-Jittering
(2) MS+D+M (train) C3 None
(3) M+D+MT C3 Color-Jittering
(4) M+D+C3+MT V+P+G+I Color-Jittering

Baselines We compare our model with 1) DG-
ReID methods, including AugMining Tamura &
Murakami (2019), DIMN Song et al. (2019), Du-
alNorm Jia et al. (2019), SNR Jin et al. (2020),
DDAN Chen et al. (2021), DIR-ReID Zhang
et al. (2021b), and MetaBIN Choi et al. (2021);
and 2) CD-ReID methods, including Cross-
Grad Shankar et al. (2018), QAConv Liao
& Shao (2019), L2A-OT Zhou et al. (2020),
OSNet-AIN Zhou et al. (2021), SNR Jin et al.
(2020), DIR-ReID Zhang et al. (2021b), and
MetaBIN Choi et al. (2021).

Implementation Details. Following previous DG-ReID methods, we use MobileNetV2 Sandler
et al. (2018) with the width multiplier of 1.4 as the backbone network, which is initialized using the
weights pre-trained on ImageNet Deng et al. (2009). All training images are resized to 256× 128
pixels and the batch size is N = 80. We use the SGD optimizer with momentum 0.9 and the weight
decay 5e − 4. The learning rate starts from 0.01 and then decays to its 0.1× at 40 and 70 epochs.
We also use a warmup learning rate schedule at the first 10 epochs. We initialize the multi-step τ∗

with τ∗ = 100, which is then decayed to 20 and 5 at 40 and 70 epochs, respectively. The default size
of the weight queue is M = 800. The training process includes 100 epochs. During training, we
also use the label-smoothing with the parameter 0.1 and the margin of triplet loss is 0.3. We conduct
all the experiments on a machine with i7-8700K CPU, 32G RAM, and four GeForce RTX2080Ti
(12GB) GPU cards.

4.2 RESULTS

DG-ReID. Considering that most existing methods can not work without demographic information,
we thus compare the proposed Unit-DRO with methods on a typical DG-ReID setting, i.e., all other
methods use the demographics except Unit-DRO. As shown in Table 3, the proposed Unit-DRO
significantly outperforms Group-DRO, while it also achieves either comparable or better performance
when compared with recent state-of-the-art DG-ReID methods using demographics. By doing this, we
hope that the proposed Unit-DRO can serve as a strong baseline for both DG-ReID and DGWD-ReID.
We observe that current DG ReID methods all apply a utopian model selection method to report their
best result by carefully checking the test performance after each training epoch. So the numbers
of training epochs corresponding to the best performance are varying for different test datasets We
argue that such a model selection method is inadvisable. Under the DG setting, we should restrict
access to the test domain data for model selection. Thus, we use the last checkpoint and report its
results as the final performance over all test datasets. The results in Table 3 show that, without the
utopian model selection method, there is always a certain degree of performance decline for existing
DG ReID methods, which further indicates the advantages of the proposed Unit-DRO..

6



Under review as a conference paper at ICLR 2023

Table 3: Comparison with recent state-of-the-art DG-ReID methods. † means the results of the last
checkpoint are reported.

Methods Average VIPeR PRID GRID i-LIDS
R-1 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

AugMining 51.8 - 49.8 70.8 77.0 - 34.3 56.2 65.7 - 46.6 67.5 76.1 - 76.3 93.0 95.3 -
DIMN 47.5 57.9 51.2 70.2 76.0 60.1 39.2 67.0 76.7 52.0 29.3 53.3 65.8 41.1 70.2 89.7 94.5 78.4

DualNorm 57.6 61.8 53.9 62.5 75.3 58.0 60.4 73.6 84.8 64.9 41.4 47.4 64.7 45.7 74.8 82.0 91.5 78.5
DDAN 59.0 63.1 52.3 60.6 71.8 56.4 54.5 62.7 74.9 58.9 50.6 62.1 73.8 55.7 78.5 85.3 92.5 81.5

DDAN w/DualNorm 60.9 65.1 56.5 65.6 76.3 60.8 62.9 74.2 85.3 67.5 46.2 55.4 68.0 50.9 78.0 85.7 93.2 81.2
DIR-ReID 63.8 71.2 58.5 76.9 83.3 67.0 69.7 85.8 91.0 77.1 48.2 67.1 76.3 57.6 79.0 94.8 97.2 83.4
DIR-ReID† 62.3 70.8 57.2 74.1 80.2 64.9 67.6 87.1 91.6 76.6 47.2 66.1 75.4 57.0 77.3 93.3 97.2 84.5
MetaBIN 64.7 72.3 56.9 76.7 82.0 66.9 72.5 88.2 91.3 79.8 49.7 67.5 76.8 58.1 79.7 93.3 97.0 85.5
MetaBIN† 64.2 71.9 59.3 76.8 81.9 67.6 70.6 86.5 91.5 78.2 47.3 66.0 74.0 56.4 79.5 93.0 97.5 85.5

Group-DRO 57.1 65.9 48.5 68.4 77.2 57.8 66.1 86.5 90.6 74.8 38.7 58.8 66.6 48.6 74.8 90.8 96.8 81.9
Group DRO† 56.7 65.6 48.5 68.9 76.6 58.1 65.4 85.4 89.8 74.1 38.4 58.6 66.1 48.4 74.5 91.0 96.0 81.7
Unit-DRO† 65.4 72.8 60.0 78.2 82.8 68.4 73.5 85.3 91.7 79.4 47.5 69.3 77.4 57.2 80.7 94.0 97.0 86.2

Table 5: Results for general DG tasks.

Domain PACS VLCS
A C P S Avg C L S V Avg

IRM 85.7 ± 1.0 79.3 ± 1.1 97.6 ± 0.4 75.9 ± 1.0 84.6 97.6 ± 0.5 64.7 ± 1.1 69.7 ± 0.5 76.6 ± 0.7 77.2
Group-DRO 88.2 ± 0.7 82.4 ± 0.8 97.7 ± 0.2 80.6 ± 0.9 87.2 97.8 ± 0.0 66.4 ± 0.5 68.7 ± 1.2 76.8 ± 1.0 77.4

MIXUP 87.4 ± 1.0 80.7 ± 1.0 97.9 ± 0.2 79.7 ± 1.0 86.4 98.3 ± 0.3 66.7 ± 0.5 73.3 ± 1.1 76.3 ± 0.8 78.7
DANN 86.4 ± 1.4 80.6 ± 1.0 97.7 ± 0.2 77.1 ± 1.3 85.5 95.3 ± 1.8 61.3 ± 1.8 74.3 ± 1.0 79.7 ± 0.9 77.7

Unit-DRO 88.3 ± 0.1 84.8 ± 0.1 96.4 ± 0.1 82.1 ± 0.1 87.9 98.1 ± 0.1 68.0 ± 0.0 71.3 ± 0.1 78.8 ± 0.0 79.1

Other DG-ReID Protocols. In addition to the most popular evaluation protocols used in Gulra-
jani & Lopez-Paz (2020) and Tab. 12, we also compare Unit-DRO with other methods using the
following protocols: (1) one-to-multiple setting Jin et al. (2020); (2) multiple-to-one setting Dai
et al. (2021b); (3) multiple-to-one setting Zhao et al. (2021); and (4) multiple-to-multiple setting Jin
et al. (2020). We summarize the difference between different protocols in Tab. 2. As shown in
Tab. 11, Unit-DRO outperforms other methods with a clear margin in both average mAP and Rank-
1 accuracy. Due to the page limit, please also see the results of protocols (2)∼(4) in Appendix,
which demonstrate the robustness of the proposed Unit-DRO across different evaluation protocols.
Besides, due to privacy issues, the Duke dataset is not appropriate for use. We thus conduct ex-
periments under different evaluation protocols but remove the Duke from source/target domains,
and Table 4 shows that the performance margin between Unit-DRO and other baselines becomes
larger. Because these protocols are used in different DG-ReID papers, we choose the SOTA method
under every protocol for comparison. The privacy issue is also the motivation of our DGWD
setting, where images are randomly sampled and are harder to identify which domain it is from.

Table 4: Comparison with SOTA DG-ReID meth-
ods under different evaluation protocols, where the
Duke is removed from source and target domains.
The best accuracy is highlighted by bold.

Protocol (i) mAP Rank-1 Protocol (ii) mAP Rank-1
SNR 54.3 48.48 RaMoE 31.2 32.4
Ours 58.84 52.7 Ours 41.7 40.4

Protocol (iii) mAP Rank-1 Protocol (iv) mAP Rank-1
M3L 26.7 27.9 RaMoE 68.8 58.9
Ours 27.8 29.1 Ours 73.2 65.4

General Domain Generalization. Apart from
person ReID, we also compare Unit-DRO with
other general domain generalization methods,
including IRM Arjovsky et al. (2020), Group-
DRO Sagawa et al. (2019), DANN Ganin et al.
(2016), and Mixup Yan et al. (2020). For a
fair comparison, we use test-domain validation,
which is one of the most important methods
in Gulrajani & Lopez-Paz (2020). Specifically,
this strategy is an oracle selection one since we
choose the model maximizing the accuracy on a
validation set that follows the distribution of the
test domain. As shown in Table. 5, Unit-DRO consistently outperforms all baseline methods for
general domain generalization tasks with a clear margin without using demographics.

4.3 ANALYSIS

Ablation studies. Choosing the best |M|. |M| denotes the size of memory. |M| = 0 means that we
use the batch data as the normalizer EP [e

ℓ(x,y;θ)/τ∗
], which cannot attain the best performance (line

3,5 in the table). A hugeM contains much out-of-date data and also attains inferior results (line 7).
In our experiments, we propose to use |M| = 10× bsz, where bsz is the batch size during training.
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Figure 4: Visualizing the distribution of the sample weight at 1k, 5k, 10k, 20k steps, respectively
(from left to right). The horizontal axis is the value of the weight and the vertical axis is the density.

Choosing the best τ∗. Actually, the selection of multi-step τ∗ is not complicated. At the first few
epochs, we simply set τ∗ to a large value such as 100. In epochs 40, and 70, we decay it to smaller
values.When |M| = 800, the performance gap will not be much sensitive to different choices of τ∗.
Sensitivity. As shown in line 3, even with a constant τ∗ and without a memory bank, the performance
of Unit-DRO beats both ERM and KL-DRO by a large margin, which is not too sensitive. To avoid grid
search for hyper-parameters, we further propose an alternative approach (Linear-decay τ∗), which
models τ∗ as a decreasing function of training steps. Specifically, τ∗ = 100(1− t

T+1 ), such a method
attains 65.0 R-1 accuracy and 72.3 mAP, which is comparable to the grid search result and simpler.

Table 6: Ablation studies on different
Unit-DRO components.

Line τ∗ |M| R-1 mAP
1 KL-DRO KL-DRO 35.7 41.2
2 ERM ERM 57.8 66.2
3 20 0 63.6 71.5
4 [50,5,3] 800 64.2 72.1
5 [100, 5, 3] 0 63.4 71.6
6 [100, 5, 3] 800 65 72.2
7 [100, 5, 3] 4000 63.9 71.9
8 [100,20,3] 1600 64.2 72

Sample Weights. Considering that the proposed Unit-DRO
will upweight and downweight different samples, we thus
visualize the distribution of sample weight to better un-
derstand the influences of different components. Specifi-
cally, during training, we save the mean and variance of
sample weights for every 1k iterations/steps. We assume
these weights follow the Gaussian distribution N (µ, δ) and
plot diagrams based on the mean µ and variance δ. The
x-coordinate of these diagrams is just the value between
[µ−3∗δ, µ+3∗δ], not the real values of weights. Based on
the loss values of each sample, we calculate the weights un-
der the following two settings: 1) sample weights without
the weight queue. In this case, these weights are normal-
ized in their batches, so the mean of all distributions here is 1. As shown in Figure 3, we have already
discussed this setting in the former sections; 2) sample weights with different length of weight
queue |M|. In Figure 4, we show the distribution of sample weight at 1k, 5k, 10k, 20k training steps
to indicate how the weight distribution changes during training. Intuitively, we need a large |M| to
better estimate EP [e

ℓ(x,y;θ)/τ∗
]. However, as |M| becomes larger, the estimation becomes inaccurate.

For example, we consider an extreme case: |M| = T − 1, then the queue absolutely contains all
training data. Therefore, it is catastrophic to estimate EP [e

ℓ(x,y;θ)/τ∗
] in step T by such a queue.

The large queue contains too many old weights which are unsuitable for the current model. Figure 4
depicts the phenomenon, where the distribution with a larger |M| has smaller µ. See Appendix E.2
for more visualization results and discussions about the distribution diagrams of the multi-step τ∗.

Visualization using t-SNE. We compare the proposed Unit-DRO with MetaBIN and DualNorm
through t-SNE visualization. We observe a distinct division of different domains in Figure 5a,
which indicates that a domain-specific feature space is learned by the DualNorm. MetaBIN and the
proposed Unit-DRO tackle this problem well and the overlaps in Figure 5b and Figure 5c between
different domains are more prominent. With t-SNE visualization, we see that Unit-DRO can learn
domain-invariant representations while keeping discriminative capability for ReID tasks. However,
MetaBIN follows a meta-learning pipeline and requires extra expensive demographics. In contrast,
the proposed framework Unit-DROis much simpler without using any demographics. We also provide
more visualization results and analysis of the discriminative capability in Section E.3 of Appendix.

Domain Divergence. We explore MMD distance Tolstikhin et al. (2016) or A-distance Long et al.
(2015) as the measure of domain discrepancy Ben-David et al. (2010). As shown in Table 7, we find
that Unit-DRO can learn comparable or even more invariant representations compared to MetaBIN,
which outperforms DualNorm by a large margin. We also study the correlation between the weights
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(a) DualNorm (b) MetaBIN (c) Unit-DRO

Figure 5: Visualization of the embeddings on training and test datasets. Query and gallery samples of
these unseen datasets are shown using different types of mark. Best viewed in color.

Table 7: Divergence measurement on unseen datasets (U), training datasets (T), and all datasets (A).

Method MMD↓ (U) MMD↓ (T) MMD↓ (A) A ↓ (U) A ↓ (T) A ↓ (A)
DualNorm 0.52 0.21 0.41 1.96 1.91 1.88
MetaBIN 0.41 0.19 0.36 1.96 1.89 1.86
Unit-DRO 0.41 0.19 0.35 1.95 1.89 1.85

for each dataset and the MMD distance. For each dataset, we calculate the sum of MMD distance
between it to all other datasets. Besides, we calculate the average weights of the final model for
each dataset. Table 8 shows that for a tough dataset (e.g., , CUHK02) that has a large divergence to
other datasets, Unit-DRO assigns a relatively higher average weight. This phenomenon depicts that
even without demographics, Unit-DRO can also find meaningful subgroups and upweight them. We
can also see that Unit-DRO upweights samples in CUHK-SYSU which has a relatively small MMD
distance with other datasets. It is because the generalization ability is not only dependent on domain
divergence, but also on some other factors. We discuss these influence factors and perform error set
analysis in Section E.6 of Appendix. We also plot the MMD distance for every pair of datasets and
give further analysis in Section E.5 of Appendix.

5 CONCLUSION AND FUTURE WORK

Traditional DG-ReID methods fail to work in the cases where domain information, such as camera
labels, or other demographics, are not available due to security and privacy issues. To this end, we
introduce DGWD-ReID, a more general setting that requires the model to learn domain-invariant
representations without demographics. To address this problem, we propose Unit-DRO, which is a
simple yet effective algorithm that substantially improves the model generalization performance with-
out requiring expensive demographics during training. Extensive experimental results demonstrate
that the proposed Unit-DRO not only achieves comparable or better performance compared with
other DG-ReID methods using the demographic but also attains superior generalization capability on
general domain generalization applications.

Different from the typical classification datasets, where domains are usually partitioned by image
styles, ReID datasets have more fine-grained variation factors, e.g., the styles of images, camera
perspective changes within one dataset, and the shooting conditions at different times on the same
camera. We believe that simply specifying each dataset as a domain is suboptimal and better domain
inference methods that consider the above variation factors will be the subject of future study.

Table 8: Average weight and one-to-all MMD distance for training datasets.

Cuhk02 Cuhk03 Market Duke SYSU
Weight 1.02 0.99 0.99 1.00 1.01
MMD 1.66 1.17 1.15 1.16 1.04
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Generalizable Person Re-identification Without
Demographics
– Appendix –

A SUPPLEMENTARY DISADVANTAGES OF DG REID SETTING
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Figure 6: Samples on ReID datasets.

1. Privacy Risks on using demographics in ReID
tasks. ReID is a research about person which is nat-
urally with higher requirements for privacy. Utilizing
demographic information will bring the following two
concerns. 1) Although the demographic data used in
current ReID research is simple, e.g., the different cam-
puses in Market1501 and CUHK, the demographic in-
formation in practical ReID deployments is much richer
and can be obtained easily based on some inherent phys-
ical properties of cameras (such as network cameras’
MAC address and geographical locations). Thus, the
utilization of finer and richer physical properties of cam-
eras will increase the leakage risk of the privacy information of pedestrians. 2) The social relationships
between different people are also possibly to be exposed by demographic information, which may be
more sensitive than geographical information. For example, if two-person IDs’s images are marked
with the same camera, their social relationships may be easily measured by counting their occurrence
frequency in all cameras. In summary, the uses of demographic data in real-world ReID applications
have evident risks for personal privacy. Thus, we propose the setting of DGWD- ReID, where only a
large-scale gallery of pedestrian images without any demographic data, e.g., camera IDs, can be used
for training ReID models. Based on the setting of DGWD- ReID, researchers will be forced to exploit
invariant features from the training data itself, rather than resort to the side information, i.e.,
demographic data, so as to reduce the risks of privacy leakage in ReID applications. We also agree
that the annotation of subject ID is much more expensive and has more risks to personal privacy.
We will tackle the challenging problem of unsupervised DG-ReID in future work. Thanks for your
valuable suggestion again!

2. The importance of DGWD setting in ML. Learning generalizable models without domain labels
is becoming an important matter of concern in the ML community Creager et al. (2021); Kim & Lee
(2021). Our algorithm can also be applied to generalized DG tasks where environment labels are
unavailable at training time, either because they are difficult to obtain or due to privacy.

3. Finally, a previous study Srivastava et al. (2020) shows that how to optimally partition domains
in training images that can benefit generalization capability most is still unclear, which indicates
the direct use of demographic data as domain labels may be inferior for learning domain-invariant
representations. Thus, it is also a promising topic for DGWD-ReID as we discussed in the conclusion.
In the fairness community, existing work has found that designing rational methodology can find
domains that are maximally informative for downstream invariance learners. These domain IDs, and
camera IDs make sense for humans, however, the similarities between different domains/camera
views vary greatly. How to find more optimal domain partitions for ReID tasks is still an open
problem.

B EXTENDED RELATED WORK

Domain generalization. Domain/Out-of-distribution generalization Muandet et al. (2013); Zhang
et al. (2021a) aims to learn a model that can extrapolate well in unseen environments. Representative
methods like Invariant Risk Minimization (IRM) Arjovsky et al. (2020) and its variant Ahuja et al.
(2020) are recently proposed to tackle this challenge. IRM centers on the objective of extracting
data representations that lead to invariant prediction across environments under a multi-environment
setting. The main difference here is that we propose to learn invariant representations without
demographics.
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Figure 7: An illustration of DGWD-ReIDthat propose to reweight training instances without demo-
graphic information.

Unsupervised-domain adaptation Person ReID. Unsupervised Domain Adaptation (UDA) tech-
nologies have great progress Peng et al. (2020) and have been widely adopted for cross-domain
person ReID. The UDA-based ReID methods usually attempt to transfer the knowledge learned from
the labeled source domains to target domains, depending on target-domain images Luo et al. (2020);
Huang et al. (2020), features Wang et al. (2018) or metrics Peng et al. (2016). Another group of
UDA-based methods Ge et al. (2020); Zhai et al. (2020) propose to explore hard or soft pseudo labels
in the unlabeled target domain using its data distribution geometry. Though UDA-based methods
improve the performance of cross-domain ReID to a certain extent, most of them require a large
amount of unlabeled target data for model retraining.

Distributionally Robust optimization. Distributionally Robust optimization Ben-Tal et al. (2009)
solve robust versions of ERM, which replace the expected risk under the training data distribution with
the worst expected risk over a pre-defined uncertainty set Q (refer to Rahimian & Mehrotra (2019)
for a review). Recent studies constitute Q analytically, such as using moment constraint Delage &
Ye (2010); Nguyen et al. (2020), f -divergence Hu & Hong (2013); Michel et al. (2021), Wasser-
stein/MMD ball Sinha et al. (2017); Staib & Jegelka (2019) or coarse-grained mixture models Oren
et al. (2019); Duchi et al. (2019). We reformulate KL-constraint DRO to an important sampling
problem (Unit-DRO) and propose an efficient implementation, which scales to large datasets and
overparameterized neural networks.

C OPTIMIZATION ALGORITHM AND FRAMEWORK DIAGRAM

The optimization algorithm is shown in Algorithm 1 and the diagram is shown in Figure 7.

Algorithm 1: Online optimization algorithm for Unit-DRO.
Input: training data P , batch size N , learning rate η, training iterations T .
Initial: model parameters θ0 and weight queueM0 = {1}Mi=1.
for t = 1, . . . , T do

(xi, yi)
N
i=1 ∼ P //Data sampling

L = 1
N

∑N
i=1

(
eℓ(x,y;θt−1)/τ∗(t)

1
|M|

∑
wi∈M(wi)

ℓ(x, y; θt−1)

)
//Calculate the reweighted loss

Mt =
[
Mt−1[N :], {eℓ(xi,yi;θ

t−1)/τ∗(t)}Ni=1

]
//Update the weight queue

θt ← SGD
(
L, θt−1, η

)
//Update model parameters

end

15



Under review as a conference paper at ICLR 2023

D DETAILED DATASET SETTING

D.1 DATASET DETAILS

Details of the training datasets are summarized in Table 9 and the test datasets are summarized in
Table 10. All the assets (i.e., datasets and the codes for baselines) we use include an MIT license
containing a copyright notice and this permission notice shall be included in all copies or substantial
portions of the software.

D.2 EVALUATION PROTOCOLS

GRID Liu et al. (2012) contains 250 probe images and 250 true match images of the probes in the
gallery. Besides, there are a total of 775 additional images that do not belong to any of the probes.
We randomly take out 125 probe images. The remaining 125 probe images and 1025(775 + 250)
images in the gallery are used for testing.

i-LIDS Wei-Shi et al. (2009) has two versions, images and sequences. The former is used in our
experiments. It involves 300 different pedestrian pairs observed across two disjoint camera views 1
and 2 in public open space. We randomly select 60 pedestrian pairs, two images per pair are randomly
selected as probe image and gallery image respectively.

PRID2011 Hirzer et al. (2011) has single-shot and multi-shot versions. We use the former in our
experiments. The single-shot version has two camera views A and B, which capture 385 and 749
pedestrians respectively. Only 200 pedestrians appear in both views. During the evaluation, 100
randomly identities presented in both views are selected, the remaining 100 identities in view A
constitute the probe set, and the remaining 649 identities in view B constitute the gallery set.

VIPeR Gray et al. (2007) contains 632 pedestrian image pairs. Each pair contains two images of
the same individual seen from different camera views 1 and 2. Each image pair was taken from
an arbitrary viewpoint under varying illumination conditions. To compare to other methods, we
randomly select half of these identities from camera view 1 as probe images and their matched images
in view 2 as gallery images.

We follow the single-shot setting. The average rank-k (R-k) accuracy and mean Average Precision
(mAP) over 10 random splits are reported based on the evaluation protocol

For the general DG setting, we use two datasets

PACS Li et al. (2017) includes 9, 991 images with 7 classes y ∈ { dog, elephant, giraffe, guitar,
horse, house, person } from 4 domains d ∈ {art, cartoons, photos, sketches}.
VLCS Torralba & Efros (2011) is composed of 10,729 images, 5 classes y ∈ { bird, car, chair, dog,
person } from domains d ∈ {Caltech101, LabelMe, SUN09, VOC2007}.

D.3 BASELINES

The baselines in Table. 11 follow the settings in Jin et al. (2020), where

1. A-IN: a naive model where we replace all the Batch Normalization(BN) layers in Baseline by
Instance Normalization(IN).

2. IBN: we add IN only to the last layers of Conv1 and Conv2 blocks of Baseline respectively.

3. A-SN: a model where we replace all the BN layers in the Baseline by Switchable Normalization
(SN). SN Luo et al. (2019b) can be regarded as an adaptive ensemble version of normalization
techniques of IN, BN, and LN (Layer Normalization).

4. IN: four IN layers are added after the first four convolutional blocks/stages of Baseline respectively.
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Table 9: Training Datasets Statistics.

Dataset IDs Images
CUHK02 1,816 7,264
CUHK03 1,467 14,097

DukeMTMC-Re-Id 1,812 36,411
Market-1501 1,501 29,419

CUHK-SYSU 11,934 34,547

Table 10: Testing Datasets statistics.

Dataset Probe Gallery
Pr. IDs Pr. Imgs Ga. IDs Ga. imgs

PRID 100 100 649 649
GRID 125 125 1025 1,025
VIPeR 316 316 316 316
i-LIDS 60 60 60 60

E EXTEND EXPERIMENTAL RESULTS

E.1 CROSS-DOMAIN REID PERFORMANCE

For cross-domain evaluation, we use the Market1501 dataset and DukeMTMC-ReID as the
source/target domains iteratively. For example, “Market-Duke” indicates that the labeled source
domain is Market1501 and DukeMTMC-ReID is the unseen target domain. Since the style variation
within a single dataset is relatively small, previous DG-ReID methods must utilize fine-grained
demographics, e.g., camera labels Zhang et al. (2021b), or carefully tune all hyperparameters Choi
et al. (2021). Similar to DG-ReID setting, here Unit-DRO does not use any demographic information.
As shown in Table 12, we see that the proposed Unit-DRO even achieves a slightly better performance
than recent state-of-the-art CD-ReID methods using demographics, suggesting the good cross-domain
generalizability of Unit-DRO.

E.2 DISTRIBUTION DIAGRAMS OF STEP τ∗

Compared to a constant τ∗, weights with step τ∗ always have low δ and are more stable.

E.3 ADDITIONAL t-SNE VISUALIZATION RESULTS

Figure 9 shows the t-SNE results on four unseen datasets. Figure 10 shows the t-SNE results on five
training datasets and Figure 12 shows the t-SNE results on the Market-Duke benchmark. All of these
results demonstrate a common pattern, DualNorm Jia et al. (2019) retains large domain divergences
and its embedding vector is far from “domain invariant”. MetaBIN Choi et al. (2021) utilizes a
complex framework and expensive demographics, which is able to reduce domain divergences. Unit-
DRO achieves a comparable or even better result than MetaBIN Choi et al. (2021) in a simpler and
cheaper paradigm. Consider discriminative capability. Figure 11 visualizes the probe and gallery
samples on four test datasets individually. The utopian discrimination result is that every query-galley
pair has the closest intra-identity distance and a relatively large inter-identity distance. Figure 11d
and Figure 11b shows that Unit-DRO performs well matching on the i-LIDS and the PRID dataset.
However, we observe an interesting phenomenon, termed “Inter-Identity Cluster”. Specifically, probes
and galleries of different identities came together in some clusters. These clusters are always seen on
the VIPeR and the GRID datasets (Figure 11a and Figure 11b), which reveals why Unit-DRO performs
much poorly on these two datasets.

E.4 IMPLEMENTATION OF DOMAIN DIVERGENCE MEASUREMENT

In general, MMD distance Tolstikhin et al. (2016) is defined by the idea of representing distances be-
tween distributions as distances between mean embeddings of features. Following MMFA model Lin
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Table 11: Comparison with recent DG-ReID methods using the protocol (1).

Avg Target:Market1501 Target:Duke Target:PRID Target:GRID Target:VIPeR Target:iLIDs
Source Methods mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

A-IN 45.2 44.1 75.3 89.8 24.1 42.7 33.9 21 35.6 27.2 38.1 29.1 64.2 55
IBN 39.9 39.1 81.1 92.2 21.5 39.2 19.1 12 27.5 19.2 32.1 23.4 58.3 48.3

A-SN 42.2 40.9 83.2 93.9 20.1 38 35.4 25 29 22 32.2 23.4 53.4 43.3
IN 45.7 45.1 79.5 90.9 25.1 44.9 35 25 35.7 27.8 35.1 27.5 64 54.2

SNR 50.9 49.6 84.7 94.4 33.6 55.1 42.2 30 36.7 29 42.3 32.3 65.6 56.7

Market1501

Ours 54.7 53.2 83.5 92.2 33.8 55.5 56.7 44.5 40 31 44.7 35.3 69.3 60.7
A-IN 41.2 43.6 21.8 56 64.5 78.9 38.6 29 19.6 13.6 35.1 27.2 67.4 56.7
IBN 39.9 41.7 26.5 52.5 69.5 81.4 27.4 19 19.9 12 32.8 23.4 63.5 61.7

A-SN 42.3 45.5 24.6 55 73 85.9 41.4 32 18.8 12.8 31.3 24.1 64.8 63.3
IN 43.7 45.1 27.2 58.5 68.9 80.4 40.5 27 20.3 13.2 34.6 26.3 70.6 65

SNR 51.3 52.2 33.9 66.7 72.9 84.4 45.4 35 35.3 26 41.2 32.6 79.3 68.7

Duke-MTMC

Ours 55.6 56.2 36.4 69.2 72.8 81.7 63.2 53.23 39.9 30.4 44.5 34.8 76.7 68

Table 12: Comparison with recent state-of-the-art CD-ReID methods.

Method Market-Duke Duke-Market
R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

CrossGrad 48.5 63.5 69.5 27.1 56.7 73.5 79.5 26.3
QAConv 48.8 - - 28.7 58.6 - - 27.6
L2A-OT 50.1 64.5 70.1 29.2 63.8 80.2 84.6 30.2

OSNet-AIN 52.4 66.1 71.2 30.5 61.0 77.0 82.5 30.6
SNR 55.1 - - 33.6 66.7 - - 33.9

DIR-ReID 54.5 66.8 72.5 33.0 68.2 80.7 86.0 35.2
MetaBIN 55.2 69.0 74.4 33.1 69.2 83.1 87.8 35.9

Unit-DRO 55.5 70.3 74.9 33.8 69.2 83.7 88.0 36.4

et al. (2018), we use the RBF characteristic kernel with bandwidth α2 = 1 : 5 : 10 to compute the
MMD distance. A-distance Long et al. (2015) can be approximated as dA(di, dj) = 2(1−2σ), where
σ is the error of a two-sample classifier distinguishing features of samples from two distinct domains
di, dj . Note that we have not only two domains. To measure the A-distance or MMD-distance on
four unseen datasets, we calculate the average mean distance of each domain pair, namely

A(U) =
1

6

4∑
i=1

4∑
j=i+1

A(di, dj). (9)

E.5 ADDITIONAL DOMAIN DIVERGENCE MEASUREMENT RESULTS

The MMD distance between every dataset pair of all the datasets is plotted in Figure 13a. The MMD
distance between every dataset pair of five training datasets is shown in Figure 13b and that of four
test datasets is shown in Figure 13c. For the training dataset, we find that the CUHK02 dataset
remains large divergences with almost all the other domains. Namely, the CUHK02 dataset is more
likely to be an out-of-distribution dataset and is more important to generalization capability. Hence,
Unit-DRO assigns relatively higher weights for samples in the CUHK02 dataset. In terms of test
datasets, the GRID dataset maintains the largest MMD distance among these datasets. It is also the
reason why Unit-DRO performs badly on the GRID dataset. However, domain divergence is not the
only factor that affects generalization performance. Figure 13c shows that the PRID dataset has a
larger domain divergence than VIPeR. However, Unit-DRO performs better on the PRID dataset than
on the VIPeR dataset. We exploit the underlying reasons in Section E.6.

E.6 ERROR SET ANALYSIS

We select some successfully retrieved pairs2 and failure cases in Figure 14. We plot query images
and corresponding gallery images at the top and bottom of these figures respectively. Figure 14a

2We name a query-gallery images pair “successfully retrieved pair” such that the distance between the query
image and its corresponding gallery image is the closest in all of the gallery images. Other pairs are named
failure cases.
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Table 13: Comparisons against state-of-the-art DG methods for person ReID on evaluation protocol
(ii) and (iii). Protocol (ii) and (iii) are both multiple-to-one setting which used in RaMoE Dai et al.
(2021b) and M3L Zhao et al. (2021) respectively. Unit DRO beats them in both these two settings.

Protocol (ii) Protocol (iii)

Method mAP Rank-1 Rank-5 Rank-10 Method mAP Rank-1
RaMoE 35.5 36.6 54.3 64.6 M3L 29.9 30.7

Ours 43.8 43.6 65.3 74.5 Ours 30.9 31.1

Table 14: Comparisons against state-of-the-art DG methods for person ReID on evaluation protocol
(iv). Unit DRO outperforms RaMoE Dai et al. (2021b) in protocols (iv) by a large margin.

Avg Target:PRID Target:GRID Target:VIPeR Target:iLIDs
Method mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1

SNR 64.6 55.4 60.0 49.0 41.3 30.4 65.0 55.1 91.9 87.0
RaMoE 71.3 63.0 66.8 56.9 53.9 43.4 72.2 63.4 92.3 88.4

Ours 76.1 68.0 79.4 71.3 59.8 50.2 77.1 68.9 88.2 81.7

shows that query and gallery images in the failure case have a relatively large view change (front and
back shooting). In contrast, successfully retrieved query-gallery pairs in Figure 14b have almost the
same camera view. This result shows that Unit-DROcannot well overcome the challenges brought
by changes in the camera view. Namely, we can leverage advanced structure in supervised ReID
methods to eliminate the sensitivity of Unit-DRO to camera perspective. Figure 14c and Figure 14b
show that the camera perspective changes between query and gallery set in the PRID dataset are small,
which is one of the reasons why Unit-DRO performs much better on the PRID dataset than the GRID
dataset3. According to error set analysis, we can explain the phenomenon mentioned in Section E.5
that Unit-DRO performs superior on the dataset with a relatively high domain divergence (the PRID
dataset) than the dataset with low domain divergence (the VIPeR dataset). Figure 14e shows that
query-gallery pairs in the VIPeR dataset always maintain camera view changes that more than 90◦,
which is harder to identify compared to the PRID dataset. Finally, the i-LIDS dataset has the lowest
MMD distances among other datasets and the camera perspective changes between its query-gallery
pairs are always small. These good properties enable Unit-DRO to achieve a rank-1 accuracy of
80.7 on the i-LIDS dataset. So far, we can conclude that all of the domain style divergence, intrinsic
characteristics of datasets (camera perspective changes), and model capacity 4 affect the performance
of DG ReID and DGWD-ReID methods.

3Another reason is the domain divergence, as we discussed in Section E.5.
4larger backbones and advanced learning paradigm always attains better generalization capability.
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Figure 8: Distribution visualization of sample weights (|M| = 800 by default) of steps
[1000, 50000, 100000, 150000] (from left to right). The horizontal axis represents the weight, and
the vertical axis represents the density. τ∗ = [τ1, τ2, τ3] means τ∗ = τ1 initially and decayed to τ2
and τ3 at 40 and 70 epochs.

(a) (b) (c)

Figure 9: The t-SNE visualization of embedding vectors on four unseen target datasets. Query and
gallery samples are expressed in different shapes. Best viewed in color.

(a) (b) (c)

Figure 10: The t-SNE visualization of embedding vectors on five training datasets. Best viewed in
color.
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Figure 11: The t-SNE visualization of embedding vectors on four test datasets individually. Best
viewed in color.

(a) (b) (c)

Figure 12: The t-SNE visualization of embedding vectors on Market1501 Zheng et al. (2015) and
DukeMTMC-ReID Zheng et al. (2017). Models are trained on the Market-Duke benchmark. Best
viewed in color.
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Figure 13: The heatmaps of MMD distance on training and test dataset pairs. (a, b): 0: CUHK02,
1: CUHK03, 2: Market1501, 3: DukeMTMC, 4: CUHK-SYSU, 5: GRID, 6: VIPeR, 7: PRID, 8:
i-LIDS. (c): 0: GRID, 1: VIPeR, 2: PRID, 3: i-LIDS.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14: Error set analysis. (a): Failure cases in the GRID datasets. (b) Successfully retrieved pairs
in the GRID datasets. (c) Failure cases in the PRID datasets. (d) Successfully retrieved pairs in the
PRID datasets. (e): Failure cases in the VIPeR datasets. (f) Successful retrieved pairs in the VIPeR
datasets. (g) Failure cases in the i-LIDS datasets. (h) Successfully retrieved pairs in the i-LIDS
datasets.
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