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Abstract

Unsupervised multi-object segmentation has shown impressive results on images
by utilizing powerful semantics learned from self-supervised pretraining. An addi-
tional modality such as depth or motion is often used to facilitate the segmentation
in video sequences. However, the performance improvements observed in synthetic
sequences, which rely on the robustness of an additional cue, do not translate to
more challenging real-world scenarios. In this paper, we propose the first fully
unsupervised method for segmenting multiple objects in real-world sequences. Our
object-centric learning framework spatially binds objects to slots on each frame
and then relates these slots across frames. From these temporally-aware slots,
the training objective is to reconstruct the middle frame in a high-level semantic
feature space. We propose a masking strategy by dropping a significant portion
of tokens in the feature space for efficiency and regularization. Additionally, we
address over-clustering by merging slots based on similarity. Our method can
successfully segment multiple instances of complex and high-variety classes in
YouTube videos.1

1 Introduction

Given a video sequence of a complex scene, our goal is to train a vision system that can discover,
track, and segment objects, in a way that abstracts the visual information from millions of pixels
into semantic components, i.e., objects. This is commonly referred to as object-centric visual
representation learning in the literature. By learning such abstractions of the visual scene, the
resulting object-centric representation acts as fundamental building blocks that can be processed
independently and recombined, thus improving the model’s generalization and supporting high-level
cognitive vision tasks such as reasoning, control, etc. [13, 29].

The field of object-centric representation learning in computer vision has made significant progress
over the years, starting from synthetic images [34, 37], and has since shifted towards in-the-wild
image [20, 49] and real-world videos [65, 85, 87, 46, 60]. In general, existing approaches typically
follow an autoencoder training paradigm [52, 26], i.e., reconstructing the input signals with certain
bottlenecks, with the hope to group the regional pixels into semantically meaningful objects based
on the priors of architecture or data. In particular, for images, low-level features like color, and
semantic features from pretrained deep networks, are often used to indicate the assignment of pixels
to objects, while for videos, additional modalities/signals are normally incorporated, such as optical
flow [40], depth map [17], with segmentation masks directly available from the discontinuities.
Despite being promising, using additional signals in videos naturally incurs computation overhead
and error accumulation, for example, optical flow may struggle with static or deformable objects and
large displacements between frames, while depth may not be readily available in generic videos and
its estimation can suffer in low-light or low-contrast environments.

1Project page: https://kuis-ai.github.io/solv
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Figure 1: We introduce SOLV, an object-centric framework for instance segmentation in real-world
videos. This figure depicts instance segmentation results of first, middle, and last frames of videos
on Youtube-VIS 2019 [87]. Without any supervision both in training and inference, we manage to
segment object instances accurately.

In this paper, we introduce SOLV, a self-supervised model capable of discovering multiple objects in
real-world video sequences without using additional modalities [2, 36, 40, 17] or any kind of weak
supervision such as first frame initialization [40, 17]. To achieve this, we adopt axial spatial-temporal
slot attentions, that first groups spatial regions within frame, then followed by enriching the slot
representations using additional cues from interactions with neighboring frames. We employ masked
autoencoder (MAE)-type training, with the objective of reconstructing dense visual features from
masked inputs. This approach has two benefits: first, it acts as an information bottleneck, forcing the
model to learn the high-level semantic structures, given only partial observations; second, it alleviates
memory constraints, which helps computational efficiency. Additionally, due to the complexity of
visual scenes, a fixed number of slots often leads to an over-segmentation issue. We address this issue
by merging similar slots with a simple clustering algorithm. Experimentally, our method significantly
advances the state-of-the-art without using information from additional modalities on a commonly
used synthetic video dataset, MOVi-E [25] and a subset of challenging Youtube-VIS 2019 [87] with
in-the-wild videos (Fig. 1).

To summarize, we make the following contributions: (i) We propose a self-supervised multi-object
segmentation model on real-world videos, that uses axial spatial-temporal slots attention, effectively
grouping visual regions with similar property, without relying on any additional signal; (ii) We
present an object-centric learning approach based on masked feature reconstruction, and slot merging;
(iii) Our model achieves state-of-the-art results on the MOVi-E and Youtube-VIS 2019 datasets, and
competitive performance on DAVIS2017.

2 Related Work

Object-centric Learning: The field of unsupervised learning of object-centric representations
from images and videos has gained considerable attention in recent years. Several approaches have
been proposed to address this problem with contrastive learning [31, 41, 84] or more recently with
reconstruction objectives. An effective reconstruction-based approach first divides the input into a set
of region identifier variables in the latent space, i.e. slots, that bind to distinctive parts corresponding to
objects. Slot attention has been applied to both images [26, 5, 10, 12, 18, 50, 89, 19, 27, 15, 52, 69] and
videos [35, 71, 28, 40, 33, 75, 90, 43]. However, these methods are typically evaluated on synthetic
data and struggle to generalize to real-world scenarios due to increasing complexity. To address this
challenge, previous works explore additional information based on the 3D structure [8, 58, 32] or
reconstruct different modalities such as flow [40] or depth [17]. Despite these efforts, accurately
identifying objects in complex visual scenes without explicit guidance remains an open challenge.
The existing work relies on guided initialization from a motion segmentation mask [1, 2] or initial
object locations [40, 17]. To overcome this limitation, DINOSAUR [67] performs reconstruction in
the feature space by leveraging the inductive biases learned by recent self-supervised models [7]. We
also follow this strategy which has proven highly effective in learning object-centric representations
in real-world data without any guided initialization or explicit supervision.

Object Localization from DINO Features: The capabilities of Vision Transformers (ViT) [14]
have been comprehensively investigated, leading to remarkable findings when combined with self-
supervised features from DINO [7]. By grouping these features with a traditional graph partitioning
method [57, 68, 81], impressive results can be achieved compared to earlier approaches [76, 77].
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Recent work, CutLER [80], extends this approach to segment multiple objects with series of normal-
ized cuts. The performance of these methods without any additional training shows the power of
self-supervised DINO features for segmentation and motivates us to build on it in this work.

Video Object Segmentation: Video object segmentation (VOS) [86, 4, 22, 23, 42, 38, 44, 45, 56, 59,
61, 72, 78, 79, 88] aims to identify the most salient object in a video without relying on annotations
during evaluation in unsupervised setting [73, 21, 47, 53] and only annotation of the first frame in
semi-supervised setting [6]. Even if the inference is unsupervised, ground-truth annotations can
be used during training in VOS [11, 16, 63, 54, 6]. Relying on labelled data during training might
introduce a bias towards the labelled set of classes that is available during training. In this paper, we
follow a completely unsupervised approach without using any annotations during training or testing.

Motion information is commonly used in unsupervised VOS to match object regions across
time [36, 9, 51, 66]. Motion cues particularly come in handy when separating multiple instances of
objects in object-centric approaches. Motion grouping [86] learns an object-centric representation
to segment moving objects by grouping patterns in flow. Recent work resorts to sequential models
while incorporating additional information [70, 40, 17, 1]. In this work, we learn temporal slot
representations from multiple frames but we do not use any explicit motion information. This way,
we can avoid the degradation in performance when flow cannot be estimated reliably.

3 Methodology

In this section, we start by introducing the considered problem scenario, then we detail the proposed
object-centric architecture, that is trained with self-supervised learning.

3.1 Problem Scenario

Given an RGB video clip as input, i,.e., Vt =
{
vt−n, . . . ,vt, . . .vt+n

}
∈ R(2n+1)×H×W×3, our

goal is to train an object-centric model that processes the clip, and outputs all object instances in the
form of segmentation masks, i.e., discover and track the instances in the video, via self-supervised
learning, we can formulate the problem as :

mt = Φ(Vt; Θ) = Φvis-dec ◦ Φst-bind ◦ Φvis-enc (Vt) (1)

where mt ∈ RKt×H×W refers to the output segmentation mask for the middle frame with Kt

discovered objects. After segmenting each frame, we perform Hungarian matching to track the
objects across frames in the video. Φ (·; Θ) refers to the proposed segmentation model that will be
detailed in the following section. Specifically, it consists of three core components (see Fig. 2), namely,
visual encoder that extracts frame-wise visual features (Section 3.2.1), spatial-temporal axial binding
that first groups pixels into slots within frames, then followed by joining the slots across temporal
frames (Section 3.2.2), and visual decoder that decodes the spatial-temporal slots to reconstruct the
dense visual features, with the segmentation masks of objects as by-products (Section 3.2.3).

3.2 Architecture

Generally speaking, our proposed architecture is a variant of Transformer, that can be trained with
simple masked autoencoder, i.e., reconstructing the full signals given partial input observation.
However, unlike standard MAE [30] that recovers the image in pixel space, we adopt an information
bottleneck design, that first assigns spatial-temporal features into slots, then reconstructs the dense
visual features from latent slots. As a result, each slot is attached to one semantically meaningful
object, and the segmentation masks can be obtained as by-products from reconstruction, i.e., without
relying on manual annotations.

3.2.1 Visual Encoder

Given the RGB video clip, we divide each image into regular non-overlapping patches. Following the
notation introduced in Section 3.1, i.e., Vt =

{
vt−n, . . . ,vt, . . .vt+n

}
∈ R(2n+1)×N×(3P 2), where

N = HW/P 2 is the number of tokens extracted from each frame with patches of size P . The visual
encoder consists of token drop and feature extraction, as detailed below.
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Figure 2: Overview. In this study, we introduce SOLV, an autoencoder-based model designed for
object-centric learning in videos. Our model consists of three components: (i) Visual Encoder for
extracting features for each frame using ϕDINO; (ii) Spatial-temporal Binding module for generating
temporally-aware object-centric representations by binding them spatially and temporally using
ψs-bind and ψt-bind, respectively; (iii) Visual Decoder for estimating segmentation masks and feature
reconstructions for the central frame with ψdec, after merging similar slots using ψmerge

.

Token Drop: As input to the encoder, we only sample a subset of patches. Our sampling strategy is
straightforward: we randomly drop the input patches with some ratio for each frame,

V ′
t =

{
v′
t−n, . . . ,v

′
t+n

}
=

{
drop (vt−n) , . . . ,drop (vt+n)

}
∈ R(2n+1)×N ′×(3P 2), N ′ < N

(2)
where N ′ denotes the number of tokens after random sampling.

Feature Extraction: We use a frozen Vision Transformer (ViT) [14] with parameters initialized
from DINOv2 [62], a self-supervised model that has been pretrained on a large number of images:

F =
{
ft−n, . . . , ft+n

}
=

{
ϕDINO

(
v′
t−n

)
, . . . , ϕDINO

(
v′
t+n

)}
∈ R(2n+1)×N ′×D (3)

where D refers to the dimension of output features from the last block of DINOv2, right before the
final layer normalization.

Discussion: Our design of token drop serves two purposes: Firstly, masked autoencoding has
been widely used in natural language processing and computer vision, acting as a proxy task for
self-supervised learning, our token drop can effectively encourage the model to acquire high-quality
visual representation; Secondly, for video processing, the extra temporal axis brings a few orders of
magnitude of more data, processing sparsely sampled visual tokens can substantially reduce memory
budget, enabling computation-efficient learning, as will be validated in our experiments.

3.2.2 Spatial-temporal Binding

After extracting visual features for each frame, we first spatially group the image regions into slots,
with each specifying a semantic object, i.e., discover objects within single image; then, we establish
the temporal bindings between slots with a Transformer, i.e., associate objects within video clips.

Φst-bind (F) = ψt-bind
(
ψs-bind (ft−n) , . . . , ψs-bind (ft+n)

)
∈ RK×Dslot (4)

Spatial Binding (ψs-bind): The process of spatial binding is applied to each frame independently.
We adopt the invariant slot attention proposed by Biza et al. [3], with one difference, that is, we use a
shared initialization Zτ at each time step τ ∈ {t− n, . . . , t+ n}. Specifically, given features after
token drop at a time step τ as input, we learn a set of initialization vectors to translate and scale the
input position encoding for each slot separately with K slot vectors zj ∈ RDslot , K scale vectors
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Sj
s ∈ R2, K position vectors Sj

p ∈ R2, and one absolute positional embedding grid Gabs ∈ RN×2.
We mask out the patches corresponding to the tokens dropped in feature encoding (Section 3.2.1) and
obtain absolute positional embedding for each frame τ as Gabs,τ = drop (Gabs) ∈ RN ′×2. Please
refer to the original paper [3] or the Supplementary Material for details of invariant slot attention on a
single frame. This results in the following set of learnable vectors for each frame:

Zτ =
{(

zj ,Sj
s,S

j
p,Gabs,τ

)}K

j=1
(5)

Note that these learnable parameters are shared for all frames and updated with respect to the dense
visual features of the corresponding frame. In other words, slots of different frames start from the
same representation but differ after binding operation due to interactions with frame features. The
output of ψs-bind is the updated slots corresponding to independent object representations at frame τ :

{zjτ}Kj=1 = ψs-bind (fτ ) ∈ RK×Dslot , τ ∈ {t− n, . . . , t+ n} (6)

In essence, given that consecutive frames typically share a similar visual context, the use of learned
slots inherently promotes temporal binding, whereby slots with the same index can potentially bind
to the same object region across frames. Our experiments demonstrate that incorporating invariant
slot attention aids in learning slot representations that are based on the instance itself, rather than
variable properties like size and location.

Temporal Binding (ψt-bind): Up until this point, the model is only capable of discovering objects
by leveraging information from individual frames. This section focuses on how to incorporate
temporal context to enhance the slot representation. Specifically, given the output slots from the
spatial binding module, denoted as

{
{zjt−n}Kj=1, . . . , {z

j
t+n}Kj=1

}
∈ R(2n+1)×K×Dslot , we apply a

transformer encoder to the output slots with same index across different frames. In other words, the
self-attention mechanism only computes a (2n+ 1)× (2n+ 1) affinity matrix across 2n+ 1 time
steps. This approach helps to concentrate on the specific region of the image through time. Intuitively,
each slot learns about its future and past in the temporal window by attending to each other, which
helps the model to create a more robust representation by considering representations of the same
object at different times.

To distinguish between time stamps, we incorporate learnable temporal positional encoding onto
the slots, i.e., all slots from a single frame receive the same encoding. As the result of temporal
transformer, we obtain the updated slots c at the target time step t:

c = Φst-bind (F) ∈ RK×Dslot (7)

3.2.3 Visual Decoder

The spatial-temporal binding process yields a set of slot vectors c ∈ RK×Dslot at target frame t that
are aware of temporal context. However, in natural videos, the number of objects within a frame can
vary significantly, leading to over-clustering when a fixed number of slots is used, i.e., as we can
always initialize slots in an over-complete manner.

To overcome this challenge, we propose a simple solution for slot merging through Agglomerative
Clustering. Additionally, we outline the procedure for slot decoding to reconstruct video features,
which resembles a masked auto-encoder in feature space.

Φvis-dec (c) = ψdec ◦ ψmerge (c) (8)

Slot Merging (ψmerge): As expected, the problem of object segmentation is often a poorly defined
problem statement in the self-supervised scenario, as there can be multiple interpretations of visual
regions. For instance, in an image of a person, it is reasonable to group all person pixels together
or group the person’s face, arms, body, and legs separately. However, it is empirically desirable for
pixel embeddings from the same object to be closer than those of different objects. To address this
challenge, we propose to merge slots using Agglomerative Clustering (AC), which does not require a
predefined number of clusters. As shown in Fig. 3, we first compute the affinity matrix between all
slots based on cosine similarity, then use this affinity matrix to cluster slots into groups, and compute
the mean slot for each resulting cluster:

c′ = ψmerge (c) ∈ RKt×Dslot , Kt ≤ K (9)
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Figure 3: Assignments of slots to the input
frame (left) and the pairwise similarity ma-
trix of slots (right) where lighter colors in-
dicate higher similarity. Slots corresponding
to the parts of the same object (0 and 1) are
highly similar to each other while being dif-
ferent from background slots (2, 3, 4, and 5).

Figure 4: Results without (left) and with (right) slot
merging.

By merging semantically similar slots that correspond to the same object, we can dynamically
determine the optimal number of slots. Our slot merging strategy, as shown in Fig. 4, effectively
combines regions of the same object using solely learned visual features. Note that slot merging is
not a post-processing step, but rather an integral part of our training process.

Decoder (ψdec): We decode the merged slots c′ with decoder ψdec to obtain the corresponding
segmentation mask m and the full reconstruction y:

y, m = ψdec (c
′) , y ∈ RN×D, m ∈ RKt×N (10)

We reshape and upsample the masks m to the original input size to obtain the final segmentation.
Similar to the MLP decoder design introduced in DINOSAUR [67], we use a spatial broadcast
decoder [82] to reconstruct the full feature map, i.e., ŷj ∈ RN×D of each slot j with their alpha
weights αj ∈ RN . These alpha weights are converted to segmentation masks with a softmax. As per
standard procedure, we add learned positional encodings to identify spatial locations during decoding.
Each slot c′j , broadcasted to the shape of the input feature map, is decoded by a series of linear
layers, ψmapper, with shared weights across all slots. The reconstruction is ultimately achieved through
a weighted sum of the decoded slots:

y =

Kt∑
j=1

ŷj ⊙mj , mj = softmax
(
αj

)
, αj , ŷj = ψmapper

(
broadcast

(
c′

j
))

(11)

At training time, we optimise the model by minimising the difference between the feature map
computed from original unmasked tokens of the frame at time t and the reconstructed tokens y:

L = ∥ϕDINO (vt)− y∥2 (12)

4 Experiments

4.1 Experimental Setup

Datasets: Our proposed method is evaluated on one synthetic and two real-world video datasets. For
the synthetic dataset, we select MOVi [25], a widely-used benchmark for evaluating object-centric
methods, particularly for multi-object segmentation in videos. To ensure a rigorous evaluation, we use
the challenging MOVi-E dataset with up to 20 moving and static objects and random camera motion,
as suggested by Bao et al. [2]. For the real-world datasets, we use the validation split of DAVIS17 [65].
In addition, we evaluate our method on a subset of the Youtube-VIS 2019 (YTVIS19) [87] train set,
because there is no official validation or test set provided with ground-truth masks. Specifically, the
first evaluation set consists of 30 videos out of 90 videos on DAVIS17, and the second evaluation set
consists of 300 videos out of 2,883 high-resolution videos on YTVIS19. We perform all the ablations
on the YTVIS19 dataset.

Metrics: For our synthetic dataset evaluation, we use the foreground adjusted rand index (FG-ARI)
to measure the quality of clustering into multiple foreground objects. To maintain consistency with
prior studies, we calculate the per-frame FG-ARI and report the mean across all frames, as done in
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recent works such as Karazija et al. [36], Bao et al. [2], and Seitzer et al. [67]. This approach also
allows us to compare to state-of-the-art image-based segmentation methods, such as DINOSAUR [67].
For real-world datasets, we use the mean Intersection-over-Union (mIoU) metric, which is widely
accepted in segmentation, by considering only foreground objects. To ensure temporal consistency of
assignments between frames, we apply Hungarian Matching between the predicted and ground-truth
masks of foreground objects in the video, following the standard practice [65].

4.2 Results on Synthetic Data: MOVi-E

The results on the MOVi-E dataset are presented in Table 1, with methods divided based on whether
they use an additional modality. For example, the sequential extensions of slot attention, such as
SAVi [40] and SAVi++ [17], reconstruct different modalities like flow and sparse depth, respectively,
their performance falls behind other approaches despite additional supervision. On the other hand,
STEVE [69] improves results with a transformer-based decoder for reconstruction. PPMP [36]
significantly improves performance by predicting probable motion patterns from an image with
flow supervision during training. MoTok [2] outperforms other methods, but relies on motion
segmentation masks to guide the attention maps of slots during training, with a significant drop
in performance without motion segmentation. The impressive performance of DINOSAUR [67]
highlights the importance of self-supervised training for segmentation. Our method stands out by
using the spatial-temporal slot binding, and autoencoder training in the feature space, resulting in
significantly better results than all previous work (see Fig. 5).

Table 1: Quantitative Results on MOVi-E.
This table shows results in comparison to the
previous work in terms of FG-ARI on MOVi-E.

Model +Modality FG-ARI ↑
SAVi [40] Flow 39.2
SAVi++ [17] Sparse Depth 41.3
PPMP [36] Flow 63.1
MoTok [2] Motion Seg. 66.7

MoTok [2]

-

52.4
STEVE [70] 54.1
DINOSAUR [67] 65.1
Ours 80.8
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Figure 5: Qualitative Results on MOVi-E.

4.3 Results on Real Data: DAVIS17 and Youtube-VIS 2019

Due to a lack of multi-object segmentation methods evaluated on real-world data, we present a baseline
approach that utilizes spectral clustering on the DINOv2 features [62]. To define the number of
clusters, we conduct an oracle test by using the ground-truth number of objects. After obtaining masks
independently for each frame, we ensure temporal consistency by applying Hungarian Matching
between frames based on the similarity of the mean feature of each mask. However, as shown in
Table 2, directly clustering the DINOv2 features produces poor results despite the availability of
privileged information on the number of objects.

Table 2: Quantitative Results on Real-World Data. These results show the video multi-object
evaluation results on the validation split of DAVIS17 and a subset of the YTVIS19 train split.

Model Supervision
DAVIS17 YTVIS19

mIoU ↑ FG-ARI ↑ mIoU ↑ FG-ARI ↑
DINOv2 [62] + Clustering #Objects 14.34 24.19 28.17 16.19
OCLR [83] Flow 34.60 14.67 32.49 15.88
Ours - 30.16 32.15 45.32 29.11
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Figure 6: Qualitative Results of Multi-Object Video Segmentation on YTVIS19. We provide
the first, middle, and last frames along with their corresponding segmentation after the Hungarian
Matching step. Our model is proficient in accurately identifying objects in their entirety, irrespective
of their deformability or lack of motion. This capability is highlighted in contrast to OCLR [83],
whose results are displayed in the third row for comparison.

We also compare our method to the state-of-the-art approach OCLR [83], which is trained using a
supervised objective on synthetic data with ground-truth optical flow. OCLR [83] slightly outperforms
our method on DAVIS17, where the optical flow can often be estimated accurately, that greatly
benefits the segmentation by allowing it to align with the real boundaries, resulting in better mIoU
performance. However, our method excels at detecting and clustering multiple objects, even when
the exact boundaries are only roughly located, as evidenced by the higher FG-ARI. The quality of
optical flow deteriorates with increased complexity in YTVIS videos, causing OCLR [83] to fall
significantly behind in all metrics. The qualitative comparison in Fig. 6 demonstrates that our method
can successfully segment multiple objects in a variety of videos. Additional qualitative results can be
found in the Supplementary Material.

4.4 Ablation Study

On the Effectiveness of Architecture: We conducted an experiment to examine the impact of each
proposed component on the performance. Firstly, we replaced the spatial binding module, ψs-bind,
with the original formulation in Slot Attention [52]. Secondly, we removed the temporal binding
module, ψt-bind, which prevents information sharing between frames at different time steps. Finally,
we eliminated the slot merging module, ψmerge.

We can make the following observations from the results in Table 3: (i) as shown by the results of
Model-A, a simple extension of DINOSAUR [67] to videos, by training with DINOv2 features and
matching mask indices across frames, results in poor performance; (ii) only adding slot merging
(Model-B) does not significantly improve performance, indicating that over-clustering is not the
primary issue; (iii) significant mIoU gains can be achieved with temporal binding (Model-C) or

Table 3: Components. The effect of changing our
spatial binding module (ψs-bind) to the original slot
attention, removing the temporal binding module
(ψt-bind) or the slot merging module (ψmerge).

Model ψmerge ψs-bind ψt-bind mIoU ↑ FG-ARI ↑
A ✗ ✗ ✗ 37.75 27.05
B ✓ ✗ ✗ 38.23 29.09
C ✓ ✗ ✓ 44.95 28.42
D ✓ ✓ ✗ 44.94 27.38
E ✓ ✓ ✓ 45.32 29.11

Table 4: Number of Slots. The effect of varying
the number of slots with/without slot merging.

#Slots Merging mIoU ↑ FG-ARI ↑

6 ✗ 43.29 27.73
✓ 44.90 28.52

8 ✗ 39.90 22.55
✓ 45.32 29.11

12 ✗ 36.04 20.20
✓ 43.19 27.94
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Table 5: Visual Encoder. The effect of differ-
ent types of self-supervised pretraining methods
and architectures for feature extraction.

Model mIoU ↑ FG-ARI ↑
Supervised ViT-B/16 37.58 19.94
DINO ViT-B/8 39.53 24.70
DINO ViT-B/16 41.91 24.01
DINOv2 ViT-B/14 45.32 29.11

14 16 18 20 22 24 26 28
Memory Consumption (GB)

36
38
40
42
44

m
Io

U

0.30
0.50
0.75
0.90

Figure 7: Token Drop Ratio. The effect of
varying token drop ratio on performance (mIoU)
and memory consumption.

spatial binding (Model-D), which shows the importance of spatially grouping pixels within each
frame as well as temporally relating slots in the video. Finally, the best performance is obtained with
Model-E in the last row by combining all components.

Number of Slots: We perform an experiment by varying the number of slots with and without slot
merging in Table 4. Consistent with the findings in previous work [67], the performance is highly
dependent on the number of slots, especially when slot merging is not applied. For example, without
slot merging, increasing the number of slots leads to inferior results in terms of both metrics, due
to the over-segmentation issue in some videos. While using slot merging, we can better utilize a
larger number of slots as can be seen from the significantly improved results of 8 or 12 slots with slot
merging. This is also reflected in FG-ARI, pointing to a better performance in terms of clustering. We
set the number of slots to 8 and use slot merging in our experiments. We provide a visual comparison
of the resulting segmentation of an image with and without slot merging in Fig. 4. Our method can
successfully merge parts of the same object although each part is initially assigned to a different slot.

Token Drop Ratio: We ablated the ratio of tokens to drop in Fig. 7. As our motivation for the
token drop is two-fold (Section 3.2.1), we show the effect of varying the token drop ratio on both
performance and memory usage. Specifically, we plot mIoU on the vertical axis versus the memory
consumption on the horizontal axis. We report the memory footprint as the peak in the GPU memory
usage throughout a single pass with constant batch size. Fig. 7 confirms the trade-off between memory
usage and performance. As the token drop ratio decreases, mIoU increases due to less information
loss from tokens dropped. However, this comes at the cost of significantly more memory usage.
We cannot report results by using all tokens, i.e. token drop ratio of 0, due to memory constraints.
Interestingly, beyond a certain threshold, i.e. at 0.5, the token drop starts to act as regularization,
resulting in worse performance despite increasing the number of tokens kept. We use 0.5 in our
experiments, which reaches the best mIoU with a reasonable memory requirement. In summary, the
token drop provides not only efficiency but also better performance due to the regularization effect.

Visual Encoder: We conducted experiments to investigate the effect of different visual encoders in
Table 5. We adjust the resize values to maintain a consistent token count of 864 for different architec-
tures. These findings underscore the critical role of pretraining methods. Please see Supplementary
for a qualitative comparison. Notably, the DINOv2 model [62] outperforms its predecessor, DINO [7],
in terms of clustering efficiency. On the other hand, models pretrained using supervised methods
results in the weakest performance, with a substantial gap in the FG-ARI metric when compared to
self-supervised pretraining methods. Furthermore, no specific patch size offers a clear advantage
within the same pretraining type. For instance, DINO pretraining with ViT-B/8 exhibits superior
performance in the FG-ARI metric but lags behind its 16-patch-sized counterpart in the mIoU metric.

5 Discussion

We presented the first fully unsupervised object-centric learning method for scaling multi-object
segmentation to in-the-wild videos. Our method advances the state-of-the-art significantly on
commonly used simulated data but more importantly, it is the first fully unsupervised method to
report state-of-the-art performance on unconstrained videos of the Youtube-VIS dataset.

This work takes a first step towards the goal of decomposing the world into semantic entities from
in-the-wild videos without any supervision. The performance can always be improved with better
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features from self-supervised pretraining as shown in the comparison of different DINO versions.
While we obtain significant performance boosts from self-supervised pretraining, it also comes
with some limitations. For example, our method can locate objects roughly, but it fails to obtain
pixel-accurate boundaries due to features extracted at patch level. Furthermore, nearby objects might
fall into the same patch and cause them to be assigned to the same slot. Our slot merging strategy,
although has been proved effective as a simple fix for the issue of over-segmentation, remains not
differentiable. Future work needs to go beyond that assumption and develop methods that can adapt
to a varying number of objects in a differentiable manner.

6 Acknowledgements

Weidi Xie would like to acknowledge the National Key R&D Program of China (No.
2022ZD0161400).

References
[1] Zhipeng Bao, Pavel Tokmakov, Allan Jabri, Yu-Xiong Wang, Adrien Gaidon, and Martial Hebert. Discov-

ering objects that can move. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2022. 2, 3

[2] Zhipeng Bao, Pavel Tokmakov, Yu-Xiong Wang, Adrien Gaidon, and Martial Hebert. Object discovery
from motion-guided tokens. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2023. 2, 6, 7

[3] Ondrej Biza, Sjoerd van Steenkiste, Mehdi S. M. Sajjadi, Gamaleldin F. Elsayed, Aravindh Mahendran,
and Thomas Kipf. Invariant slot attention: Object discovery with slot-centric reference frames. In Proc. of
the International Conf. on Machine learning (ICML), 2023. 4, 5, 16

[4] Thomas Brox and Jitendra Malik. Object segmentation by long term analysis of point trajectories. In Proc.
of the European Conf. on Computer Vision (ECCV), 2010. 3

[5] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick, and
Alexander Lerchner. Monet: Unsupervised scene decomposition and representation. arXiv.org, 2019. 2

[6] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Laura Leal-Taixe, Daniel Cremers, and Luc
Van Gool. One-shot video object segmentation. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017. 3

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), 2021. 2, 9, 18

[8] Chang Chen, Fei Deng, and Sungjin Ahn. Roots: Object-centric representation and rendering of 3d scenes.
In Journal of Machine Learning Research (JMLR), 2021. 2

[9] Subhabrata Choudhury, Laurynas Karazija, Iro Laina, Andrea Vedaldi, and Christian Rupprecht. A simple
and powerful global optimization for unsupervised video object segmentation. In Proc. of the British
Machine Vision Conf. (BMVC), 2022. 3

[10] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convolutional
neural networks. In Proc. of the Conf. on Artificial Intelligence (AAAI), 2019. 2

[11] Achal Dave, Pavel Tokmakov, and Deva Ramanan. Towards segmenting anything that moves. In Proc. of
the IEEE International Conf. on Computer Vision (ICCV) Workshops, 2019. 3

[12] Fei Deng, Zhuo Zhi, Donghun Lee, and Sungjin Ahn. Generative scene graph networks. In Proc. of the
International Conf. on Learning Representations (ICLR), 2021. 2

[13] Andrea Dittadi, Samuele Papa, Michele De Vita, Bernhard Schölkopf, Ole Winther, and Francesco Lo-
catello. Generalization and robustness implications in object-centric learning. In Proc. of the International
Conf. on Machine learning (ICML), 2022. 1

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In Proc. of
the International Conf. on Learning Representations (ICLR), 2021. 2, 4

[15] Yilun Du, Shuang Li, Yash Sharma, Josh Tenenbaum, and Igor Mordatch. Unsupervised learning of
compositional energy concepts. In Advances in Neural Information Processing Systems (NeurIPS), 2021. 2

[16] Suyog Dutt Jain, Bo Xiong, and Kristen Grauman. Fusionseg: Learning to combine motion and appearance
for fully automatic segmentation of generic objects in videos. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2017. 3

[17] Gamaleldin Elsayed, Aravindh Mahendran, Sjoerd van Steenkiste, Klaus Greff, Michael C Mozer, and
Thomas Kipf. Savi++: Towards end-to-end object-centric learning from real-world videos. In Advances in
Neural Information Processing Systems (NeurIPS), 2022. 1, 2, 3, 7

10



[18] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Generative scene
inference and sampling with object-centric latent representations. In Proc. of the International Conf. on
Learning Representations (ICLR), 2020. 2

[19] SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton, et al.
Attend, infer, repeat: Fast scene understanding with generative models. In Advances in Neural Information
Processing Systems (NeurIPS), 2016. 2

[20] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. In International Journal of Computer Vision (IJCV), 2010. 1

[21] Alon Faktor and Michal Irani. Video segmentation by non-local consensus voting. In Proc. of the British
Machine Vision Conf. (BMVC), 2014. 3

[22] Deng-Ping Fan, Wenguan Wang, Ming-Ming Cheng, and Jianbing Shen. Shifting more attention to video
salient object detection. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.
3

[23] Katerina Fragkiadaki, Geng Zhang, and Jianbo Shi. Video segmentation by tracing discontinuities in a
trajectory embedding. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012. 3

[24] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Journal of Machine Learning Research (JMLR), 2010. 15

[25] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J Fleet,
Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable dataset generator. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2022. 2, 6

[26] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel Zoran,
Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation learning with
iterative variational inference. In Proc. of the International Conf. on Machine learning (ICML), 2019. 1, 2

[27] Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Jürgen Schmidhuber. Tagger:
Deep unsupervised perceptual grouping. In Advances in Neural Information Processing Systems (NeurIPS),
2016. 2

[28] Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In
Advances in Neural Information Processing Systems (NeurIPS), 2017. 2

[29] Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial neural
networks. In arXiv.org, 2020. 1

[30] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2022. 3

[31] Hénaff, Olivier J and Koppula, Skanda and Shelhamer, Evan and Zoran, Daniel and Jaegle, Andrew and
Zisserman, Andrew and Carreira, João and Arandjelović, Relja. Object discovery and representation
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Appendices
In this supplementary material, we discuss the broader impact (Section A), report experiment details
including dataset, model, and training details (Section B), provide more details of Invariant Slot
Attention, as mentioned in the main paper (Section C), perform extra ablation studies on input
resolution and generalization performance of our model (Section D), compare the performance to
supervised models (Section E), provide an analysis of failure cases (Section F), and finally present
extra visualizations (Section G). In the last section, we provide a visual comparison between models
in our ablation studies as well as previous work.

A Broader Impact

We proposed an object-oriented approach that can be applied to videos of real-world environments.
We trained our model on the Youtube-VIS 2019 dataset that includes videos of humans. The proposed
work can be used to locate and segment multiple instances of a wide variety of objects including all
kinds of animals and humans from videos. While progress in this area can be used to improve not
only human life but also, for example, wildlife, we acknowledge that it could also inadvertently assist
in the creation of computer vision applications that could potentially harm society.

B Experiment Details

B.1 Dataset Details

We eliminated the black borders for all videos in YTVIS19 dataset. Since we propose a self-supervised
model, we merge the available splits on datasets for training. For all datasets except YTVIS, we
use the available validation splits for evaluation. The annotations for the validation split are missing
on the YTVIS, therefore, we use a subset of 300 videos from the train split for evaluation. We will
share the indices of selected videos for future comparisons together with the code. For evaluation,
we upsample the segmentation masks to match the resolution of the original input frames by using
bilinear interpolation.

B.2 Model Details

Feature Extractor (ϕDINO): We use the ViT-B/14 architecture with DINOv2 pretraining [62] as our
default feature extractor. Our feature vector is the output of the last block without the CLS token. We
add positional embeddings to the patches and then drop the tokens.

Spatial Binding(ψs-bind): We project the feature tokens from ϕDINO to slot dimension Dslot = 128,
with a 2-layer-MLP, followed by layer normalization. Then the slots and the projected tokens are
passed to the Invariant Slot Attention (ISA) (as detailed in Section C) as input. After slot attention,
slots are updated with a GRU cell. Following the sequential update, slots are passed to a residual
MLP with a hidden size of 4×Dslot. All projection layers (p, q, k, v, g) have the same size as slots,
i.e. Dslot. We repeat the binding operation 3 times. We multiply the scale parameter Ss by δ = 5 to
prevent relative grid Grel from containing large numbers.

We use the following initializations for the learnable parameters: Gabs, a coordinate grid in the range
[−1, 1]; slots z, Xavier initialization [24]; slot scale Ss and slot position Sp, a normal distribution.

Temporal Binding (ψt-bind): We use a transformer encoder with 3 layers and 8 heads [74] for
temporal binding. The hidden dimension of encoder layers is set to 4 × Dslot. We initialize the
temporal positional embedding with a normal distribution. We masked the slots of not available
frames, i.e. frames with indices that are either less than 0 or exceed the frame number, in transformer
layers.

Slot Merging (ψmerge): We use the implementation of Agglomerative Clustering in the sklearn
library [64] with complete linkage. For each cluster, we compute the mean slot and the sum of
attention matrices, i.e. matrix A in (13), for the associated slots. We determine the scale Ss and
position Sp parameters for the merged attention values to calculate the relative grid Grel of the new
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slots. Then, Grel is projected onto Dslot using a linear layer h and added to the broadcasted slots
before decoding.

Decoder Mapper (ψmapper): The mapper ψmapper consists of 5 linear layers with ReLU activations
and a hidden size of 1024. The final layer maps the activations to the dimension of ViT-B tokens with
an extra alpha value i.e. 768 + 1.

B.3 Training Details

In all our experiments, unless otherwise specified, we employ DINOv2 [62] with the ViT-B/14
architecture. We set the number of consecutive frame range n to 2 and drop half of the tokens
before the slot attention step. We train our models on 2×V100 GPUs using the Adam [39] optimizer
with a batch size of 48. We clip the gradient norms at 1 to stabilize the training. We match mask
indices of consecutive frames by applying Hungarian Matching on slot similarity to provide temporal
consistency. To prevent immature slots in slot merging, we apply merging with a probability that is
logarithmically increasing through epochs.

MOVi-E: We train our model from scratch for a total of 60 epochs, which is equivalent to approx-
imately 300K iterations. We use a maximum learning rate of 4 × 10−4 and an exponential decay
schedule with linear warmup steps constituting 5% of the overall training period. The model is trained
using 18 slots and the input frames are adjusted to a size of 336× 336, leading to 576 feature tokens
for each frame. The slot merge coefficient in ψmerge is configured to 0.12.

YTVIS19: Similar to MOVi-E, we train the model from scratch for 180 epochs, corresponding to
approximately 300K iterations with a peak learning rate of 4× 10−4 and decay it with an exponential
schedule. Linear warmup steps are introduced for 5% of the training timeline. The model training
involves 8 slots, and the input frames are resized to dimensions of 336× 504, resulting in 864 feature
tokens for each frame. The slot merge coefficient in ψmerge is set to be 0.12.

DAVIS17: Due to the small size of DAVIS17, we fine-tune the model pretrained on the YTVIS19
dataset explained above. We finetune on DAVIS17 for 300 epochs, corresponding to approximately
40K iterations with a reduced learning rate of 1× 10−4. We use the same learning rate scheduling
strategy as in YTVIS19. During the fine-tuning process, we achieve the best result without slot
merging, likely due to the fewer number of objects, typically one object at the center, on DAVIS17
compared to YTVIS19.

C Invariant Slot Attention

In this section, we provide the details of invariant slot attention (ISA), initially proposed by Biza
et al. [3]. We use ISA in our Spatial Binding module ψs-bind with shared initialization as explained
in the main paper. Given the shared initialization Zτ =

{(
zj ,Sj

s,S
j
p,Gabs,τ

)}K

j=1
, our goal is to

update the K slots: {zj}Kj=1. For clarification, in the following, we focus on the computation of
single-step slot attention for time step τ :

Aj := softmax
K

(
Mj

)
∈ RN ′

, Mj :=
1√
Dslot

p

(
k (fτ ) + g

(
Gj

rel,τ

))
q
(
zj
)T ∈ RN ′

(13)

where p, g, k, and q are linear projections while the relative grid of each slot is defined as:

Gj
rel,τ :=

Gabs,τ − Sj
p

Sj
s

∈ RN ′×2 (14)

The slot attention matrix A from (13) is used to compute the scale Ss and the positions Sp of slots
following Biza et al. [3]:

Sj
s :=

√√√√ sum
(
A⊙

(
Gabs,τ − Sj

p

)2)
sum (Aj)

∈ R2, Sj
p :=

sum
(
Aj ⊙Gabs,τ

)
sum (Aj)

∈ R2 (15)

After this step, following the original slot attention, input features are aggregated to slots using the
weighted mean with another linear projection v:

U := WT p

(
v (fτ ) + g

(
Gj

rel,τ

))
∈ RK×Dslot , Wj :=

Aj

sum (Aj)
∈ RN ′

(16)
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Then, U from (16) is used to update slots {zj}Kj=1 with GRU followed by an additional MLP as
residual connection as shown in (17). This operation is repeated 3 times.

z := z+MLP ((norm(z)) , z := GRU (z,U) ∈ RK×Dslot (17)

D Additional Ablation Studies

In this section, we provide additional experiments to show the effect of resolution on the segmentation
quality. We also report the results by varying the evaluation split on the YTVIS to confirm the
generalization capability of our model.

Effect of Resolution: We conducted experiments to investigate the effect of the input frame
resolution, i.e. the number of input tokens, in Fig. 8. Specifically, we experimented with resolutions
of 168× 252, 224× 336, and our default resolution 336× 506, corresponding to 216, 384, and 864
input feature tokens, respectively. These experiments show that the input resolution is crucial for
segmentation performance.

Varying The Evaluation Split: As stated before, we cannot use the validation split of YTVIS19
due to manual annotations that are not publicly available. For evaluation, we only choose a subset of
300 videos. Here, we perform an experiment to examine the effect of varying the set of evaluation
videos on performance.

We repeat the experiment in Table 3 by choosing mutually exclusive subsets of 300 videos, 3 times.
We report mean and standard deviation (µ±σ) of experiments for each model in Table 6. These results
are coherent with the reported result on the fixed subset, showing that segmentation performance
peaks when all of our components are combined, i.e. model E. Similarly, removing our components
ψt-bind (model D) and ψs-bind (model C) one at a time leads to a performance drop, as shown in Table 3.
Removing both (model B), results in the worst performance, even falling behind its counterpart
without slot merging (model A). Overall, the results of varying the evaluation set agree with the
reported performance on the selected subset in the main paper. This shows that the performance of
our model generalizes over different evaluation subsets.

Table 6: Varying evaluation splits. The effect
of changing evaluation sets for models in the
component ablation.

Model mIoU ↑ FG-ARI ↑
A 37.72 ± 0.82 29.06 ± 2.24
B 37.20 ± 1.53 30.15 ± 1.90
C 42.76 ± 2.09 30.03 ± 1.67
D 42.98 ± 2.01 29.69 ± 2.02
E 43.28 ± 2.57 31.33 ± 1.51
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Figure 8: Input resolution. The effect of input
resolution, i.e. the number of tokens, on perfor-
mance (mIoU).

E Additional Comparisons

Table 7: Comparison to supervised models. These results show the video multi-object evaluation
results on the validation split of DAVIS17 between our model and supervised models.

Model Unsupervised mIoU ↑
UnOVOST [55] ✗ 66.4
Propose-Reduce [48] ✗ 67.0
Ours ✓ 30.2

We compare the performance of our model to available supervised models, exploiting pre-trained
object detectors on large data in a supervised manner, for unsupervised video object segmentation
on DAVIS17 in Table 7. The results underscore a notable gap between supervised and unsupervised
approaches.
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F Failure Analysis

Although our model can detect in-the-wild objects in different scales, segmentation boundaries are
not perfectly aligned with the object due to patch-wise segmentation, as has been pointed out in
the Discussion (Section 5). In addition to these observations, we identify three types of commonly
occurring failure cases: (i) The over-clustering issue that remains unresolved in some cases even with
slot merging. (ii) The tendency to cluster nearby instances of the same class into a single slot. (iii)
Failure to detect small objects, particularly when they are situated near large objects. We provide
visual examples of these cases in Fig. 9.
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(a) Failure cases due to over-clustering.
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(b) Failure cases due to grouping nearby instances of the same class into one cluster.
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(c) Failure cases due to missing relatively small objects.

Figure 9: Failure cases of our model with potential reasons, grouped into three.

G Additional Visualizations

We provide additional qualitative results in Fig. 10. Our model can recognize not only the most
salient object in the middle but also small, subtle objects in the background. Furthermore, it can
handle a varying number of objects in the scene with slot merging.

Feature Extractor: In Fig. 11, we provide visualizations of different feature extractors, correspond-
ing to the quantitative evaluation in Table 5, including DINOv2 [62], DINO [7], and Supervised.
Self-supervised models performs better than the supervised one, also qualitatively. In particular,
DINOv2 stands out for its exceptional capability to learn object representations across a diverse range
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Figure 10: Qualitative results of multi-object video segmentation on YTVIS19

of categories. It also effectively identifies and segments intricate details that are missed by other
feature extractors such as tree branches on the left and the bag on the table on the right.

Components: In Fig. 12, we visually compare the segmentation results of the models corresponding
to the component ablation study in the main paper (Table 3 ). First of all, model A, which corresponds
to the temporally consistent DINOSAUR [67], struggles to cluster the instances as a whole and also
fails to track all objects, for instance, the human on the right, due to discrepancies in mask index
across three frames. With the help of slot merging, model B effectively addresses the over-clustering
issue, as observed in the mask of the calf on the left. Integrating our binding modules ψt-bind and
ψs-bind, resulting in model C and D, respectively, leads to a marked improvement in both segmentation
and tracking quality. On the other hand, both models C and D have shortcomings in detecting the
human in certain frames of the right video. Finally, combining them, our full model, i.e. model E,
excels at segmenting and tracking not only labeled objects but also other objects, such as the car
visible in the first frame of the second video.

Comparison: We provide a visual comparison between OCLR [83] and our model in Fig. 13 after
matching the ground-truth and predictions. OCLR fails to detect static objects (top-left, middle-left,
bottom-left) and deformable objects (middle-right) due to failures of optical flow in these cases.
Moreover, it considers moving regions as different objects such as the water waves (top-right). On
the other hand, SOLV can accurately detect all objects as a whole.
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Figure 11: Qualitative comparison of different pretraining methods for visual encoder.
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Figure 12: Qualitative results of different models in the component ablation study (Table 3).
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Figure 13: Qualitative results of multi-object video segmentation on YTVIS19 after Hungarian
Matching is applied. Segmentation results of OCLR [83] are provided in third row.
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