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ABSTRACT

Offline-to-online RL can make full use of pre-collected offline datasets to initialize
policies, resulting in higher sample efficiency and better performance compared
to only using online algorithms alone for policy training. However, direct fine-
tuning of the pre-trained policy tends to result in sub-optimal performance. A
primary reason is that conservative offline RL methods diminish the agent’s capa-
bility of exploration, thereby impacting online fine-tuning performance. In order
to encourage agent’s exploration during online fine-tuning and enhance the over-
all online fine-tuning performance, we propose a generalized reward augmenta-
tion method called Sample Efficient Reward Augmentation (SERA). Specifically,
SERA encourages agent to explore by computing Q conditioned entropy as intrin-
sic reward. The advantage of SERA is that it can extensively utilize offline pre-
trained Q to encourage agent uniformly coverage of state space while considering
the imbalance between the distributions of high-value and low-value states. Addi-
tionally, SERA can be effortlessly plugged into various RL algorithms to improve
online fine-tuning and ensure sustained asymptotic improvement. Moreover, we
conducted extensive experiments using SERA and found that SERA significantly
improves CQL (21%) and Cal-QL (11.2%). Simultaneously, we further extended
the experimental tests to other model-free algorithms, and the results demonstrate
the generality of SERA.

1 INTRODUCTION
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Figure 1: Demonstration of SERA.

Offline reinforcement learning (RL) holds a natu-
ral advantage over online RL in that it can be com-
pletely trained using pre-existing static datasets, ob-
viating the necessity to interact with the environ-
ment for the collection of new trajectories (Levine
et al., 2020). Nevertheless, offline RL faces limita-
tions due to it tends to learn the sub-optimal perfor-
mance if the action support can’t be well estimated,
and also risk of overestimating out-of-distribution
(OOD) state actions. Consequently, it becomes im-
perative to address these limitations by enhancing
the performance of the offline policy through the process of online fine-tuning (Fujimoto & Gu,
2021; Kostrikov et al., 2021; Wu et al., 2022; Mark et al., 2023).

Drawing inspiration from fine-tuned based modern machine learning, which leverages pre-training
followed by fine-tuning on downstream tasks (Brown et al., 2020; Touvron et al., 2023), it seems
plausible to elevate the performance of offline policies through the process of online fine-tuning.
However, previous studies demonstrate that offline pre-trained policy tends to exhibit worse fine-
tuning performance. In particular, the offline initialized policy especially suffer from performance
drop during the early online stage, which is caused by distribution shift and overestimation of OOD
state actions (Nakamoto et al., 2023) or the problem of misaligned value estimation in online and
offline training stage (Nair et al., 2021).

To address above limitations, an effective method is to firstly pre-train on offline dataset with offline
algorithm and following by utilizing exploratory policy (Approach 1) to conduct online fine-tuning,
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or aligning the value estimation in online and offline thereby enabling online fine-tuning without
performance decreasing (Approach 2). Specifically, Approach 1 utilize pessimistic offline RL meth-
ods for pre-training while incorporating exploration into online fine-tuning (Lee et al., 2021a; Mark
et al., 2023; Wu et al., 2022). However, when directly fine-tuning the offline pre-trained policy, there
exhibit performance drop at the early fine-tuning stage. Approach 2 aims to address the limitation
of Approach 1 by calibrated method (Nakamoto et al., 2023) that is learning a better initialization
thus enabling standard online fine-tuning by aligning the value estimation in offline and online stage.
Nonetheless, Approach 2 still is cooperated with exploratory policy 1. Thus, both Approach 1 and
Approach 2 use policy or methods that are exploratory in nature, and therefore, keeping the agent
exploratory seems to be the key to ensure offline-to-online performance. Therefore, can we improve
offline-to-online by only enhancing exploration?

We hypothesis that it’s feasible to improve offline-to-online by only enhancing exploration, because
as long as an agent can quickly and uniformly explore the observation space, it can collect more
diverse dataset, the collected dataset helps to mitigate the shortcomings of the conservative pol-
icy (Luo et al., 2023). Meanwhile, collected dataset also helps to alleviate the overestimation of
OOD state actions and recover the real value estimation thereby achieving better fine-tuning perfor-
mance. Based on such insight, we propose a generalized offline-to-online framework called Sample
Efficient Reward Augmentation (SERA), which encouraging offline pre-trained policy to explore
by computing Q conditioned state entropy as intrinsic reward. Specifically, as shown in Figure 1,
our SERA mainly has two phages, which firstly pre-trained policy with model-free algorithm and
followed by online fine-tuing with reward augmentation. In particular, we utilize offline pre-trained
Q network to compute value conditioned entropy as intrinsic reward, which benefits from both high
sample efficiency and fine-tuned performance by encouraging the agent to explore the observation
space uniformly across different values. Compared with previous offline-to-online methods, SERA
has various advantages: 1) Adaptability. Different from regularized-based or supported constraint
methods adding term to constraint policy, SERA can be seamlessly plugged into various model-
free offline algorithms to conduct offline-to-online RL, thereby getting ridding of the limitations 2

of supported or regularized based method. 2) Pluggable and Flexibility. Different from most of
offline-to-online methods, our SERA can be paired with most of existing offline RL methods and
improving their fine-tuning performance.

To summarize, our contribution can be summarized as follows:

• Firstly, we propose a generalized reward augmentation framework that can be plugged into
various offline algorithms to conduct offline-to-online setting and improve their online fine-
tuning performance.

• Secondly, compared with previous state entropy maximization methods, we utilize Q con-
ditional state entropy as intrinsic reward, thus can decrease the biased exploration by con-
sidering the imbalance distribution of value space of decision makings.

• Lastly, we also provided mathematics analysis to prove that SERA can provide guaran-
tees to monotonic policy improvement of soft Q optimization (Haarnoja et al., 2018), and
conservative policy improvement (theorem 4.2).

2 RELATED WORK

Offline RL. The notorious challenge within offline RL pertains to the mitigation of out-of-
distribution (OOD) predictions, which are a consequence of the distributional shift between the
behavior policy and the training policy (Fujimoto et al., 2019b). To effectively address this issue,
1) conservative policy-based model-free methods adopt the following approaches: Adding policy
regularization (Fujimoto et al., 2019a; Kumar et al., 2019; Wu et al., 2019; Liu et al., 2023b), or
implicit policy constraints (Peng et al., 2019; Siegel et al., 2020; Zhou et al., 2020; Chen et al.,
2022; Wu et al., 2022; Liu et al., 2023b;a; Zhuang et al., 2023). 2) And, conservative critic-based
model-free methods penalize the value estimation of OOD state-actions via conducting pessimistic

1CQL has two variants, which including CQL-DQN and CQL-SAC. In particular, CQL-SAC is based on
SAC (Haarnoja et al., 2018), which is maximum entropy policy with highly exploratory.

2Regularized or support constraint method have to estimate action support, thus policy learning will be
affected if the action support can’t be well estimated.
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Q function (Kumar et al., 2020a) or uncertainty estimation (An et al., 2021; Bai et al., 2022; Reza-
eifar et al., 2022; Wu et al., 2021) or implicitly regularizing the bellman equation (Kumar et al.,
2020b; Liu et al., 2022). In terms of the model-base offline RL, it similarly train agent with distri-
bution regularization (Hishinuma & Senda, 2021; Yang et al., 2022; Zhang et al., 2022), uncertainty
estimation (Yu et al., 2020; Kidambi et al., 2020; Lu et al., 2022), and value conservation (Yu et al.,
2021). In our research, due to the remarkable sampling efficiency and outstanding performance of
model-free algorithms in both offline and online RL settings, and we prove that SERA satisfy the
guarantee of Soft-Q optimization (theorem 4.1), thus we select Conservative Q-Learning (CQL)
and Calibrated Q-Learning (Cal-QL) as our primary baseline methods. Additionally, to conduct a
thorough assessment of the effectiveness of our proposed approaches, we have also expanded our
evaluation to encompass a diverse set of other model-free algorithms, including Soft-Actor-Critic
(SAC) (Haarnoja et al., 2018), Implicit Q-learning (IQL) (Kostrikov et al., 2021), TD3+BC (Fuji-
moto & Gu, 2021), and AWAC (Nair et al., 2021).

Offline-to-Online RL. Previous researches have demonstrated that offline RL methods offer the
potential to expedite online training, a process that involves incorporating offline datasets into online
replay buffers (Nair et al., 2021; Vecerik et al., 2018; Todd Hester & et al., 2017) or initializing
the pre-trained policy to conduct online fine-tuning (Kostrikov et al., 2021; Beeson & Montana,
2022). However, there exhibits worse performance when directly fine-tuning the offline pre-trained
policy (Nakamoto et al., 2023; Lee et al., 2021b), and such an issue can be solved by adapting a
balanced replay scheme aggregated with pessimistic pre-training (Lee et al., 2021b), or pre-training
with pessimistic Q function and fine-tuning with exploratory methods (Wu et al., 2022; Mark et al.,
2023; Nakamoto et al., 2023). In particular, our approach SERA differs from these methods in that
it enhances online fine-tuning solely by augmenting online exploration.

Online Exploration. Recent advances in the studies of exploration can obviously improve the
online RL sample efficiency, among that, remarkable researches include injecting noise into state
actions(Lillicrap et al., 2019) or designing intrinsic reward by counting visitation or errors from
predictive models (Badia et al., 2020; Sekar et al., 2020; Whitney et al., 2021; Burda et al., 2018).
In particular, the approaches most related to our study are to utilize state entropy as an intrinsic
reward (Kim et al., 2023; Seo et al., 2021).

3 PRELIMINARY

We formulate RL as Markov Decision Process (MDP) tuple i.e.,M = (S,A, r, T, p0, γ). Specifi-
cally, p0 denotes the initial state distribution, S denotes the observation space,A denotes the actions
space, r : S×A 7→ R denotes the reward function, T : S×A×S denotes the transition function (dy-
namics), and γ ∈ [0, 1] denotes discount factor. The goal of RL is to find or obtain an optimal policy
π∗ : S 7→ A to maximize the accumulated discounted return i.e., π∗ = argmaxπ Eτ∼π(τ)[R(τ)],
where Eτ∼π(τ)[R

π(τ)] = E[
∑∞

t=0 γ
tr(st,at)|s0 ∼ p0,at ∼ π(·|st), st+1 ∼ T (·|st,at)], and

τ = {s0,a0, r0, · · · , sN ,aN , rN} is the rollout trajectory. We also define Q function by Qπ(s,a) =

Eτ∼π(τ)[
∑T

t=0 γ
tr(st,at)|s0 = s,a0 = a], and value function by V π(s) = Ea∼π(a|s)[Q

π(s,a)].
Furthermore, in offline-to-online RL problem setting, the agent has to access the static datasets
Doffline for pre-training, followed by conducting online fine-tuning. In this research, we mainly
focusing on improving model-free algorithms to conduct offline-to-online RL setting.

Model-free Offline RL. Typically, model-free RL algorithms alternately optimize policy with
Q-network i.e., π := argmaxπ Es∼D,a∼π(·|s)[Q

π(s,a)], and conduct policy evaluation by the
Bellman equation iteration i.e., Qπ ← argminQ E(s,a,s′)∼D[(Q

π(s,a) − BMQπ(s,a))2], where
BπMQ(s,a) = r(s,a) + γEs∼D[Q(s′, π(·|s′))]. In particular, model-free offline RL aims to learn
from the static RL datasets Doffline collected by behavior policy πβ without access to the environ-
ment for collecting new trajectories, therefore, it always suffer from the out-of-distribution (OOD)
issues. Specifically, model-free algorithms train the Q function by one step bellman equation
i.e., J (Q) = E(s,a,s′)∼D[(Q

π(s,a) − BMQπ(s,a))2] which requires computing BπMQ(s,a) =
r(s,a) + γQ(s′, π(·|s′)), but if (s′, π(·|s′)) /∈ Doffline then the overestimation of OOD state ac-
tions will cause extrapolation error and learned biased Q further affect π. Previous studies have
extensively studied such a problem, Kumar et al. (2020a) proposed penalizing OOD state actions
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by conservative term, and IQL (Kostrikov et al., 2021) implicitly learns Q function with expected
regression without explicitly access to the value estimation of OOD state-actions.

Before formally proposing SERA, we firstly define various fundamental concepts:

Definition 1 (Marginal State distribution) Given the trajectory of current empirical policy:
τ ∼ π(τ), We define state marginal distribution of current empirical policy as: ρπ(s) =

Es0∼p0,at∼πθ(·|st),st+1∼T (·|st,at)[
1
N

∑N
t=1 1(st = s)].

Definition 2 (Conditional Entropy) Given two discrete random variables X and Y with a joint
probability mass function denoted as P(X, Y), the marginal distribution of Y is characterized by
P (Y ) =

∑
X P (X,Y ) and the conditional probability is expressed as P (X|Y ) = P (X,Y )

P (Y ) . Conse-

quently, the definition of conditional entropy is represented as H(X|Y ) ≜ E[− log p(X|Y )] which
can be further derived asH(X|Y ) = E[− logP (X,Y )] + E[logP (Y )] = H(X,Y )−H(Y ).

Definition 3 (Critic Conditioned State Entropy) Given empirical policy π ∈ Π and its corre-
sponded critic network Qπ : S × A → R, and given state density of current empirical policy:
ρπ(s). We define the critic conditioned entropy asHπ(s|Qπ) = Es∼ρπ(s)[− log p(s|Qπ(s, π(s)))].

Definition 4 (State Marginal Matching) Given the target state density p∗(s) and the offline ini-
tialized empirical state marginal distribution ρπ(s). We define State Marginal Matching (SMM) as:
obtain the optimal policy to minimize DKL(ρπ(s)||p∗(s)), i.e., π := argminπ DKL(ρπ(s)||p∗(s)).

4 SAMPLE EFFICIENCY REWARD AUGMENTATION (SERA)

Furthermore, we define Approximate State Marginal Matching (ASMM), i.e., Definition 5, and then
demonstrating its functionality, and then we propose SERA.

Definition 5 (Approximate State Marginal Matching) Given a target state density p∗(s) and
the offline initialized empirical state marginal distribution ρπ(s). We define Approximate State
Marginal Matching (Approximate SMM) as penalizing visitation {s} when ρπ(s) > p∗(s) while
encouraging state visitation {s′} when ρπ(s

′) < p∗(s′) by maximizing state entropy, i.e., π :=
argmaxπ Es∼ρπ(s)[Hπ[s]].

Analysis of Definition 5 Approximate SMM can provide an approximate implementation of SMM
(State Marginal Matching). proof see Appendix B.1. The advantage of this method lies in that it can
encourage angets visiting areas where state distribution below the density,i.e., {s|ρπ(s) < p∗(s), s ∈
S} by maximizing entropy, while reducing exploration in areas of the state distribution above the
density,i.e., {s|ρπ(s) > p∗(s), s ∈ S}, thereby approximately realizing SMM. Continuing from
Definition 5, we introduce SERA which can approximately realize State Marginal Matching by
computing Q conditioned state entropy (the advantage of Q conditioned intrinsic reward has been
detailed in Section 4.3).

4.1 METHODOLOGY

Reward Augmentation by SERA. The mathematical formulation of SERA, as shown in Equa-
tion 1, involves calculating the Q-conditioned state entropy as an intrinsic reward to encourage the
agent to explore the environment uniformly.

rmod(s,a) = λ · Tanh(H(s|min(Qϕ1
(s,a), Qϕ2

(s,a))))︸ ︷︷ ︸
raug

+r(s,a), (s,a) ∼ Donline, (1)

where ϕ1 and ϕ2 are separately the params of double Q Networks. However, we cannot directly
obtain the state density ρπ(s), therefore, we cannot directly calculate state entropy. In order to
approximate ρπ(s), we refer to Kim et al. (2023), and use the KSG estimator to approximate state
entropy as augmented reward, i.e., Equation 2.

raug(s,a) =
1

ds
ϕ(nv(i) + 1) + log 2 ·max(||si − sknn

i ||, ||Q̂(s,a)− Q̂(s,a)knn||), (s,a) ∼ Donline, (2)
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where Q̂(s,a) = min(Qϕ1
(s,a), Qϕ2

(s,a)), and given variable list {xi}, xknn
i is the nx(i)-th

nearest neighbor of xi. Additionally, the alternate implementation (VAE-based) of SERA has been
appended into Appendix D.3.

Training Objective. Since SERA satisfy the guarantee of soft Q optimization, we primarily val-
idate our method on CQL and Cal-QL, regarding the training objective of Cal-QL and CQL, we
update Cal-QL’s Q Network using Equation 3, and we update CQL’s Q Network using Equation 4:

L(Q) = E(s,a,s′)∼D[(Q
π(s,a)−BπMQ(s,a))2]+Es∼D,a∼π[max(Qπ(s,a), V µ(s))]−E(s,a)∼D[Q

π(s,a)].
(3)

L(Q) = E(s,a,s′)∼D[(Q
π(s,a)− BπMQ(s,a))2] + E(s,a,s′)∼D[−Qπ(s,a) +Qπ(s′, π(s′))], (4)

where D is the batch training data. Meanwhile, updating their policies by Equation 5:

J (πθ) = Es∼D[−Qπ(s, πθ(s)) + α log(πθ(s))]. (5)

It’s worth noting that we not only tested SERA on CQL and Cal-QL but also further extended our
validation to a range of additional model-free algorithms, demonstrating the generality of SERA.
These algorithms include AWAC, TD3+BC, IQL, and SAC.

4.2 IMPLEMENTATION OF SERA

Implementation. We follow the standard offline-to-online RL process to test SERA. Specifically,
we first pretrain the policy with the selected algorithm on a specific offline dataset. Then, we fur-
ther fine-tune the pretrained policy online using SERA. Finally, we test using the policy fine-tuned
online. In terms of the real implementation, SERA augments the reward of online dataset by calcu-
lating the Q conditional state entropy (via Equation 2) which is highly compatible with Q-ensemble
or double-Q RL algorithms. For algorithms that do not employ Q-ensemble or double Q, it is
still possible to use SERA; however, they may not benefit from the advantages associated with Q-
ensemble, as clarified in the following section (theorem 4.2). When it comes to the hyper-parameters
of SERA, setting λ in Equation 1 to 1 is generally sufficient to improve the performance of various
baselines on most tasks. However, it is important to note that SERA’s effectiveness is influenced
by the number of k-nearest neighbor (knn) clusters, as we have demonstrated in our ablation study.
Additionally, for parameters unrelated to SERA, such as those of other algorithms used in conjunc-
tion with SERA, it is not necessary to adjust the original parameters of these algorithms (see more
details in Appendix D.6). In the following section we will answer the following qusetions: 1) Can
SERA guarantee policy improvement? 2) What’s the advantage of Q condition over V condition?

4.3 ANALYSIS OF SERA

Can SERA guarantee policy improvement? In this section, we will provide the mathematical
analysis to prove that SERA guarantee soft policy improvement. To begin with this section, we first
define Soft Bellman Operator τπ as Equation 6, and extend lemma 1 and lemma 2 of (Haarnoja et al.,
2018) to lemma B.1 and lemma B.2 in our research and obtain our Theorem 4.1 and Theorem 4.2.

τπQ(st,at) ≜ E(s,a)∼D[Q(s,a)− log πβ(·|s)], (6)

Theorem 4.1 (Converged SERA Soft Policy is Optimal) Repetitive using lemma B.1 and
lemma B.2 to any π ∈ Π leads to convergence towards a policy π∗. And it can be proved that
Qπ∗

(st,at) ≥ Qπ (st,at) for all policies π ∈ Π and all state-action pairs (st,at) ∈ S × A,
provided that |A| <∞.

Theorem 4.2 (Conservative Soft Q values with SERA) By employing a double Q network, we en-
sure that in i-th iteration, the Q-value from the single Q network, denoted as Qπi

single Q (st,at),
is greater than or equal to the Q-value obtained from the double Q network, represented as
Qπi

double Q (st,at), for all (st,at) ∈ S ×A, where the action space is finite.

See Appendix B.2 for the proof of Theorem 4.1 and Theorem 4.2.

Specifically, Theorem 4.1 demonstrate that when soft Q bellman operator is equipped with SERA
can guarantee its monotonic policy improvement, and Theorem 4.2 demonstrate that when comput-
ing intrinsic reward with double Q network can guarantee conservative policy improvement.
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Advantages of Q Condition over V Condition. A method similar to SERA is VCSE (Kim et al.,
2023). The difference lies in VCSE using V (s) calculate conditioned entropy as intrinsic rewards,
and VCSE mainly focuses on pure online scenarios. The advantage of SERA is that it use pre-trained
Q as condition thus encouraging the agent to consider the distinctions between decisions and states
while increasing exploration. (Experimental comparison has been appended top Appendix F.3)

5 EXPERIMENTS AND EVALUATION

The primary objectives of our experimental evaluation are as follows: 1) We aim to investigate
whether and how well SERA can facilitate offline-to-online RL. 2) We also study the scalability
of SERA on various model-free algorithms to improve their sample efficiency. 3) Additionally,
we conduct various experiments to demonstrate the performance difference or relationship between
SERA and various exploration methods including SE (Seo et al., 2021), VCSE, RND (Burda et al.,
2018) and SAC. 4) Finally, we perform ablation studies to understand the feasibility of SERA. To
begin with the presentation of our main results, we will first introduce our tasks and baselines.

Task and Datasets We experiment with 12 tasks from mujoco (Brockman et al., 2016) and
Antmaze in D4RL (Fu et al., 2021). The selected tasks cover various aspects of RL challenges,
including reward delay and high-dimensional continuous control. Specifically: (1) In the Antmaze
tasks, the goal is to control a quadruped robot to reach the final goal. Notably, this agent does not
receive an immediate reward for its current decision but instead only receives a reward of +1 upon
successfully reaching the goal or terminating. This setup presents a form of reward delay, mak-
ing these tasks adapt to evaluate the long horizontal decision-making capability of algorithms. (2)
In Gym-locomotion tasks, the aim is to increase the agent’s locomotion, which is different from
Antmaze domain in that tasks of Gym-mujoco involve high-dimensional decision-making spaces.
Also, the agent in Gym-mujoco has the potential to obtain rewards in real time.

Baselines for Comparison. For convenience, we name any algorithm Alg paired with SERA as
Alg-SERA. Now we introduce our baselines. We primarily compare CQL-SERA and Cal-QL-SERA
to CQL (Kumar et al., 2020a) and Cal-QL (Nakamoto et al., 2023). We also verify that SERA
can be broadly plugged into various model-free algorithms including SAC (Haarnoja et al., 2018),
IQL (Kostrikov et al., 2021), TD3+BC (Fujimoto & Gu, 2021), and AWAC (Nair et al., 2021), thus
improving their online fine-tuning performance. In particular, Cal-QL is the recent state-of-the-art
(SOTA) offline-to-online RL algorithm that has been adequately compared to multiple offline-to-
online methods (O3F (Mark et al., 2023), ODT (Zheng et al., 2022), and mentioned baselines), and
demonstrated obvious advantages.

5.1 MAIN RESULTS

We first present the results of the comparison between CQL-SERA, Cal-QL-SERA, CQL, and Cal-
QL, including the online fine-tuning training curves shown in Figure 2, as well as the results after
online fine-tuning displayed in Table 2. We then extend our comparison to more Alg-SERA and Alg
in Figure 4. Finally, we analyze the performance differences and relationships between SERA and
other exploration methods, as illustrated in Figure 5.

Can SERA improve offline-to-online RL? As shown in Figure. 2, SERA can improve the online
fine-tuning sample efficiency, characterized by faster convergence rates. We can also observe from
Table 1 that SERA maintains the online fine-tuning asymptotic performance for both CQL and Cal-
QL with CQL-SERA and Cal-QL-SERA achieving the best fine-tuning results on all selected tasks).
Specifically, when considering the performance after online fine-tuning, SERA yields an average
improvement of 8.9% for CQL and 11.8% for Cal-QL (If we consider medium-replay, SERA can
bring a 21% improvement for CQL and a 11.2% improvement for Cal-QL.), thus improving the
online fine-tuning performance, additionally, we also provide statistical analysis to prove that the
enhancements brought about by our approach are significant (Figure 3). It’s worth noting that,
CQL-SERA performs better than Cal-QL-SERA and Cal-QL on average on all tasks, which not only
reflects the advantages of SERA in offline-to-online RL but also supports our view that offline-to-
online performance can be improved solely from the perspective of encouraging agent’s exploration.
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Figure 2: Online fine-tuning curve on 16 selected tasks. We tested SERA by comparing Cal-QL-
SERA, CQL-SERA to Cal-QL, CQL on selected tasks in the Gym-mujoco and Antmaze domains,
and then reported the average return curves of multi-time evaluation. As shown in this Figure,
SERA can improve Cal-QL and CQL’s offline fine-tuning sample efficiency and achieves better
performance than baseline (CQL and Cal-QL without SERA) over all selected tasks.

Task IQL AWAC TD3+BC CQL CQL+SERA Cal-QL Cal-QL+SERA

antmaze-large-diverse 59 00 00 89.2 89.8±3.2 86.3±0.2 94.5±1.7
antmaze-large-play 51 00 00 91.7 92.6± 1.3 83.3±9.0 95.0±1.1
antmaze-medium-diverse 92 00 00 89.6 98.9±0.2 96.8±1.0 99.6±0.1
antmaze-medium-play 94 00 00 97.7 99.4±0.4 95.8±0.9 98.9±0.6

halfcheetah-medium 57 67 49 69.9 87.9±2.3 45.6±0.0 46.9±0.0
walker2d-meidum 93 91 82 123.1 130.0±0.0 80.3±0.4 90.0±3.6
hopper-medium 67 101 55 56.4 62.4± 1.3 55.8±0.7 61.7±2.6
ant-medium 113 121 43 123.8 136.9±1.6 96.4±0.3 104.2±3.0

Average Fine-tuned 78.2 47.5 28.6 92.7 94.7 78.8 86.4

Table 1: Normalized score after online fine-tuning. We report the online fine-tuned normalized
return. SERA obviously improves the performance of CQL and Cal-QL. In particular, CQL-SERA
(mean score of 94.7) is the best out of the 8 selected baselines. Notably, part of Antmaze’s baseline
results are quoted from existing studies. Among them, AWAC’s results are quoted from Kostrikov
et al. (2021) and CQL’s results are quoted from Nakamoto et al. (2023).

Can SERA be plugged into various model-free algorithms? To answer the second question,
we conduct comparative experiments to test our SERA on various model-free algorithms including
TD3+BC, AWAC, IQL, SAC. Importantly, since our SERA is a plugged reward augmentation algo-
rithm, it does not require any additional modifications (i.e., we simply incorporate SERA to modify
the reward when training on those algorithms). As shown in Figure.4, when SERA is plugged in, al-
most all algorithms gain performance improvements during online fine-tuning, showing that SERA
can be applied effectively to a wide range of RL algorithms beyond the scope of CQL or Cal-QL.

SERA and various Exploration methods in offline-to-online. In this section, we compare and
demonstrate the performance difference between SERA and several related exploration methods
including VCSE, SE and RND, and we also explored the changes in performance when SAC is
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normalized return
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Figure 3: Aggregate metrics with SERA. We refer to Agarwal et al. (2022) to conduct the statis-
tical analysis of SERA. Specifically, higher median, IQM, and mean scores are better, SERA can
significantly improve the performance of CQL and Cal-QL.
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Figure 4: Performance of Alg-SERA. We test SERA with AWAC, TD3+BC, and IQL on selected
Gym-mujoco tasks, SERA can obviously improve the performance of these algorithms on selected
Gym-mujoco tasks, showing SERA’s versility.

combined with SERA. As shown in Figure 5 (a), when SAC is combined with SERA, it can enhance
the performance of SAC on the selected gym-mujoco tasks. This experimental result is consistent
with Theorem 4.1, which states that SERA can ensure the monotonic soft Q optimization. As
shown in Figure 5 (b), we compared the experimental results of IQL and AWAC with different
reward augmentation methods (SEAR, RND, and SE), and we found that increasing exploration
can improve the performance of both IQL and AWAC. Moreover, algorithms combined with SERA
perform the best on all selected tasks and are overall more stable. This further proves that SERA
ensures the monotonic soft Q optimization and highlights the advantage of Q condition.
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Figure 5: Performance comparison for variety exploration Methods. (a) Online fine-tuning per-
formance difference between SAC and SAC-SERA. (b) Online fine-tuning performance difference
between SERA, VCSE and SE with IQL. SERA performs the best over selected algorithms.

5.2 ABLATIONS

Effect of Hyperparameter. We now focus on quantifying the impact of SERA on the performance
of online finetuning. Thus we mainly study the effect of Equation.19’s hyperparameter, as shown
in section 4. The state entropy is approximated via KSG estimator, where the number of state
clusters serves as a crucial hyperparameter. As shown in Figure.2, the performance can indeed be
influenced by the number of state clusters, and a trade-off exists among the sizes of these state
clusters. For instance, the optimal cluster settings of walker2d and hopper are saturated around
20 and 10, respectively. In contrast, a task like antmaze-large-diverse requires a larger number of
clusters (about 25). We consider the main reason is that different tasks require varying degrees of
exploration, and thus need different cluster settings. Therefore, our SERA proves to be valid.
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Figure 6: We evaluate the performance difference that arises when varying the number of state
clusters. We assess SERA by configuring different sizes of k-nearest neighbor (knn) clusters and
subsequently observe the impact of these parameter settings on online fine-tuning, and it can be
observed that the choice of knn cluster settings exerts a notable influence on SERA’s performance.

SERA vs. Various Efficient Algorithms In order to more intuitively demonstrate the ef-
fectiveness of SERA, we replaced SERA with a series of past efficient offline-to-online al-
gorithms and conducted comparisons. As shown in Figure 7, we select CQL as the base
algorithm and aggregate it with SERA, APL (Zheng et al., 2023), PEX (Zhang et al.,
2023) and BR (Lee et al., 2021a) to test on tasks of Antmaze and Gym-mujoco (medium,
medium-replay) domains, and CQL-SERA archives the best performance (83.8) over all
selected baselines, which demonstrating SERA has better performance than previous efficient
offline-to-online algorithms. (Experimental results of Figure 7 has been appended to Table 10)
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Figure 7: Performance Comparison.

Extended Ablations. We conduct additional ablation exper-
iments to validate the effectiveness of SERA, and we chose
AWAC as the test target. Specifically, we compared the effects
of using an offline pre-trained Q-network and a randomly ini-
tialized Q-network to compute rewards in Figure 8 (a). Offline
pre-training of the Q-network leads to improved algorithm per-
formance, while training the Q-network from scratch results in
the model’s performance falling below the baseline. In Figure 8
(b), we visualize the change in state entropy as training pro-
gresses. Specifically, we observe that the state entropy of AWAC combined with SERA eventually
surpasses the state entropy of the baseline, which demonstrates that SERA influences state entropy.

AWAC-baseline AWAC-SERA AWAC-SERA (scratch)

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.7

0.9

1.1

1.3

1.5

N
or

m
al

iz
ed

 D
4R

L 
Sc

or
e ant-medium-v2

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0.6

0.8

1.0

1.2

1.4
walker2d-medium-v2

1.0 1.2 1.4 1.6 1.8 2.0
Environment Steps 1e6

33

37

41

45

49

N
or

m
al

iz
ed

 D
4R

L 
Sc

or
e ant-medium-v2

1.0 1.2 1.4 1.6 1.8 2.0
Environment Steps 1e6

25

30

35

40

45
walker2d-medium-v2

Figure 8: (a) Ablation experiments to validate the impact of pre-trained Q network. (b) Quantitative
results on the agent’s state entropy. From Figure (a), we can deduce that SERA . According to the
results from Figure (b), we can deduce that SERA increases the agent’s state entropy, which aligns
with theoretical expectations.

6 CONCLUSIONS
In this study, we proposed a general offline-to-online framework called SERA. On a theoretical
level, we demonstrated that SERA ensures the optimization of algorithms based on soft Q. On an
experimental level, SERA led to improvements for both CQL and Cal-QL, validating our theoretical
claims. We also extend the test of SERA to other model-free algorithms, and experimental results
showed that SERA performs well when combined with other model-free algorithms, demonstrating
its generality. Additionally, we conduct extensive ablations and compared SERA with a series of
previous efficient offline-to-online algorithms (APL, PEX, etc.) in terms of performance, and we
found that SERA outperforms the majority of these efficient offline-to-online algorithms.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G. Bellemare.
Deep reinforcement learning at the edge of the statistical precipice, 2022.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based of-
fline reinforcement learning with diversified q-ensemble. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
7436–7447, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
3d3d286a8d153a4a58156d0e02d8570c-Abstract.html.
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A ETHICAL CLAIM

Despite the potential of offline RL to learn from the static datasets without the necessity to access the
online environment, the offline method does not guarantee the optimal policy. Therefore, online fine-
tuning is essential for policy improvement. In this study, we propose a novel and versatile reward
augmentation framework, named Sample Efficient Reward Augmentation (SERA) which can be
seamlessly plugged into various model-free algorithms. We believe our approach is constructive
and will enhance the sample efficiency of offline-to-online RL. Additionally, given that SERA is an
integrated algorithm, we also believe it can broadly and readily benefit existing algorithms.

B THEORETICAL ANALYSIS

In this section, we provide the supplementary mathematical analysis for SERA.

B.1 ANALYSIS OF APPROXIMATE STATE MARGINAL MATCHING.

Approximate Marginal Matching (ASMM). Given the empirical state distribution ρπ(s) under
current empirical policy π and target density p∗(s), the optimization of minDKL(ρπ(s)||p∗(s)) is
equivalent to Equation 7.

minDKL(ρπ(s)||p∗(s)) ≜ maxEs∼ρπ(s)[log p
∗(s) +Hπ[s]]. (7)

ASMM. In section 3.2, due to the absence of an explicit definition for p∗, we propose the concept
of implicit SMM, i.e., minDKL(ρπ(s)||p∗(s)) ≈ maxEs∼ρπ(s)[Hπ[s]]. Here we will provide a
complementary analysis to assess the feasibility of this method.

Why does ASMM encourage covering the target density? We commence our analysis by ex-
pressing maxEs∼ρπ(s)[Hπ(s)] in an alternative form:

maxEs∼ρπ(s)[Hπ(s)] = maxEs∼ρπ(s)[− log ρπ(s)]

= max

∫
s∼dom(ρπ)

−ρπ(s) log ρπ(s)ds

= max

∫
s∼dom(ρπ)

−ρπ(s) log(
ρπ(s)

p∗(s)
× p∗(s))ds

= max

∫
s∼dom(ρπ)

−ρπ(s)(log p∗(s) + log
ρπ(s)

p∗(s)
)ds

= min

∫
s∼dom(ρπ)

ρπ(s) log p
∗(s) + ρπ(s) log

ρπ(s)

p∗(s)
ds

where dom(ρπ) donates the domain of state space under function ρπ . Subsequently, we employ a
logarithmic inequality, i.e. 1− 1

x ≤ log x ≤ x− 1, to further derive the aforementioned expression:

min

∫
s∼dom(ρπ)

ρπ(s) log p
∗(s) + ρπ(s) log

ρπ(s)

p∗(s)
ds ≥ min

∫
s∼dom(ρπ)

ρπ(s)−
ρπ(s)

p∗(s)
+ ρπ(s)− p∗(s)ds

= 2−max

∫
s∼dom(ρπ(s))

ρπ(s)

p∗(s)
+ p∗(s)ds

≥ 2−max

∫
s∼dom(ρπ(s))

1

p∗(s)
+ p∗(s)ds

It is worth noting that, given that p∗(s) is the fixed target state density and p∗(s) ∈ [0, 1] for all
s ∈ dom(p∗), we have ( 1

p∗(s) + p∗(s)) > 0. Therefore, the process of maximising Es∼ρπ(s)[H[s]]
is equivalent to maximizing

∫
s∼dom(ρπ(s))

1
p∗(s) + p∗(s)ds. This leads the domain of ρπ(s)(which

is initially smaller than the domain of p∗(s) due to limited state exploration at the beginning of state
entropy maximization) to cover the domain of p∗(s).
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Trade off between ρπ and p∗ when maximizing entropy. We further derivate Equation B.1 and
obtained :
maxEs∼ρπ(s)[Hπ(s)] = maxEs∼ρπ(s)[− log ρπ(s)]

= max

∫
s∼dom(ρπ)

−ρπ(s) log ρπ(s)ds

= max

∫
s∼dom(ρπ)

−ρπ(s) log(
ρπ(s)

p∗(s)
× p∗(s))ds

= max

∫
s∼dom(ρπ)

−ρπ(s) log p∗(s)− ρπ(s) log
ρπ(s)

p∗(s)
ds

= min

∫
s∼dom(ρπ)

ρπ(s) log p
∗(s)︸ ︷︷ ︸

term.1

ds+max

∫
s∼dom(ρπ)

−ρπ(s) log
ρπ(s)

p∗(s)︸ ︷︷ ︸
term.2

ds

Analysis term.1: We further derive term1:

At first,

Jterm1 = max

∫
s∼dom(ρπ)

ρπ(s) log
1

p∗(s)
ds

≥
∫
s∼dom(ρπ)

ρπ(s) log
ρπ(s)

p∗(s)
ds

= DKL(ρπ(s)||p∗(s))

(8)

meanwhile, we study Jterm1 −DKL(ρπ(s)||p∗(s)).
Jterm1 −DKL(ρπ(s)||p∗(s))

=

∫
s∼dom(ρπ)

ρπ(s) log
1

p∗(s)
− ρπ log

ρπ(s)

p∗(s)
ds

=

∫
s∼dom(ρπ)

ρπ(s) log
1

ρπ(s)
ds

≤
∫
s∼dom(ρπ)

ρπ(s)[
1

ρπ(s)
− 1]ds

=

∫
s∼dom(ρπ)

(1− ρπ(s))ds

≤
∫
s∼dom(ρπ)

ds

(9)

Therefore, Jterm1
≤ (DKL(ρπ(s)||p∗(s)) +

∫
s∼dom(ρπ)

ds) and minimizing term1 is equivalent to
maximizing the KL divergence between ρπ(s) and p∗(s), then push ρπ(s) away from p∗(s).

Analysis term.2: We can observe that term.2 is a form of KL deivergence:

Jterm2
= max

∫
s∼dom(ρπ)

−ρπ(s) log
ρπ(s)

p∗(s)

= minDKL(ρπ(s)||p∗(s)),
(10)

Thus, optimizeing term.2 is equiv to minimize the KL divergence between p∗(s) and ρπ(s), thereby
driving ρπ approaching p∗(s).

Analysis Summary: In conclusion, based on the Analysis term.1 and Analysis term.2, it can be
deduced that the optimization of term 1 makes ρπ(s) away from p∗(s), whereas the optimization of
Term 2 facilitates the convergence of ρπ(s) towards p∗(s). Therefore, these two objectives represent
a trade-off, offering the advantage of encouraging the agent to approach the target distribution while
maintaining its capacity for exploration.
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B.2 MATHEMATICS ANALYSIS OF SERA ALGORITHM

In this section, we examine the mathematical viability of the SERA framework, focusing on two key
aspects: 1) Guarantee of Soft policy optimization 2) Prevention of OOD state actions.

We first introduce the modified soft Q Bellman backup operator, denoted as Equation 11,

T π
seraQ (st,at) ≜ r (st,at) + raug (st,at) + γEst+1∼p [V (st+1)] (11)

In this equation, the term V (st) = Eat∼π [Q (st,at)− log π (at | st)] is defined.

Lemma B.1 (Soft Policy Evaluation with SERA.) Given the modified soft bellman backup opera-
tor T π

sera in Equation 11, along with a mapping Q0 : S × A → R where |A| < ∞. We define an
iterative sequence as Qk+1 = T πQk. It can be shown that when index k tends towards infinity, the
sequence Qk converges to a soft Q-value of π.

proof. Let us define the SERA reward as follows

rπsera (st,at) ≜ r (st,at)+λTanh (H (st | min (Qϕ1
(st,at), Qϕ2

(st,at))))+Est+1∼p [H (π (· | st+1))]
(12)

and rewrite the update rule as

Q (st,at)← rπsera (st,at) + γEst+1∼p,at+1∼π [Q (st+1,at+1)] . (13)

Then we can apply mathematical analysis of convergence for policy evaluation as outlined in Sutton
& Barto (1998) to prove the result. It is essential to note that the assumption |A| < ∞ is necessary
to ensure the boundedness of the SERA reward.”

Lemma B.2 (Soft Policy Improvement with SERA) Let πold ∈ Π, and let πnew be the solution to
the minimization problem defined as:

πnew = arg min
π′∈Π

DKL

(
π′ (· | st) ∥

exp (Qπold (st, ·))
Zπold (st)

)
. (14)

Then, it follows that Qπnew (st,at) ≥ Qπold (st,at) for all (st,at) ∈ S ×A provided that |A| <∞.

proof. Starting from Equation 15, which has been established in the work by (Haarnoja et al., 2018),
as:

Eat∼πnew [Qπold (st,at)− log πnew (at | st)] ≥ V πold (st) , (15)
we proceed to consider the soft Bellman equation, which can be expressed as:

Qπold (st,at) = r (st,at) + raug (st,at) + γEst+1∼p [V
πold (st+1)]

≤ r (st,at) + raug (st,at) + γEst+1∼p

[
Eat+1∼πnew [Qπold (st+1,at+1)− log πnew (at+1 | st+1)]

]
...
≤ Qπnew (st,at)

(16)
Here, we have iteratively expanded Qπold on the right-hand side by applying both the soft Bellman
equation and the inequality from Equation 15.

Theorem B.3 (Converged SERA Soft Policy is Optimal) Repetitive using Lemma 1 and Lemma
2 to any π ∈ Π leads to convergence towards a policy π∗. And it can be proved that Qπ∗

(st,at) ≥
Qπ (st,at) for all policies π ∈ Π and all state-action pairs (st,at) ∈ S×A, provided that |A| <∞.

proof.

Let πi represent the policy at iteration i. According to Lemma 2, the sequence Qπi exhibits a
monotonic increase. Given that rewards and entropy and thus Qπ are bounded from above for
policies within the set Π, the sequence converges to a certain policy π∗. It is essential to demonstrate
that π∗ is indeed an optimal policy. Utilizing a similar iterative argument as employed in the proof
of Lemma 2, we can establish that Qπ∗

(st,at) > Qπ (st,at) holds for all (st,at) ∈ S × A. In
other words, the soft value associated with any other policy in Π is lower than that of the converged
policy. Consequently, π∗ is confirmed as the optimal policy within the set Π.
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Theorem B.4 (Conservative Soft Q values with SERA) By employing a double Q network, we
ensure that in each iteration, the Q-value from the single Q network, denoted as Qπi

single Q (st,at),
is greater than or equal to the Q-value obtained from the double Q network, represented as
Qπi

double Q (st,at), for all (st,at) ∈ S ×A, where the action space is finite.

proof. Let’s begin by defining Q̂ (st,at) = min (Qϕ1
(st,at) , Qϕ2

(st,at)) . We then proceed to
examine the difference between the augmented rewards in the context of SERA for the single Q and
double Q networks:

raug(st,at|Q̂ (st,at))− raug(st,at|Q (st,at))

=

N∑
i=0

log 2max(||si − sknni ||, ||Q̂ (st,at)− Q̂knn (st,at) ||)−

N∑
i=0

log 2max(||si − sknni ||, ||Q (st,at)−Qknn (st,at) ||)

= log

∏N
i=0 max(||si − sknni ||, ||Q̂ (st,at)− Q̂knn (st,at) ||)∏N
i=0 max(||si − sknni ||, ||Q (st,at)−Qknn (st,at))||

≈ log

∏N
i=0 max(||si − sknni ||,H(Q̂))∏N
i=0 max(||si − sknni ||,H(Q)||)

≤ log

∏N
i=0 max(||si − sknni ||,H(Q))∏N
i=0 max(||si − sknni ||,H(Q))

= 0

(17)

Consequently, we establish that raug(st,at|Q̂(st,at)) ≤ raug(st,at|Q(st,at)). Now we consider
the modified soft Bellman equation

Qπi

doubleQ (st,at)

=r (st,at) + raug(st,at|Q̂(st,at)) + γ · Est+1∼p[V̂ (st+1)]

=r (st,at) + raug(st,at|Q̂(st,at)) + γ · Est+1∼p,at+1∼π

[
Q̂ (st+1,at+1)− log π (at+1 | st+1)

]
...

=r (st,at) + raug(st,at|Q̂(st,at)) + γ · Est+1∼p,at+1∼π[r
mod(st+1,at+1|Q̂(st+1,at+1))] · · ·+

γn · Est+n∼p,at+n∼π[r
mod(st+n,at+n|Q̂(st+n,at+n))] + · · ·+ entropy terms

≤r (st,at) + raug(st,at|Q(st,at)) + γ · Est+1∼p,at+1∼π[r
mod(st+1,at+1|Q(st+1,at+1))] · · ·+

γn · Est+n∼p,at+n∼π[r
mod(st+n,at+n|Q(st+n,at+n))] + · · ·+ entropy terms

=Qπi

singleQ (st,at)
(18)

where we have repeatedly expanded Q̂ in terms of SERA rewards to obtain the final inequality
Qπi

singleQ ≥ Qπi

double Q.
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C EXPERIMENTAL SETUP

In this section, we introduce the benchmarks and dataset we utilized, specifically, we mainly utilize
gym-mujoco and antmaze to test our algorithm.

C.1 GYM MUJOCO

Our benchmars from gym-mujoco domain mainly includes halfcheetah, ant, hopper and
walker2d, and concrete information of these benchmarks can be referred to table 2. In paticular,
the action and observation space of these locomotion benchmarks are continuous and any decision
making will receive an immediate reward.

Environment Task Name Samples Observation Dim Action Dim

halfcheetah medium 106 6 17
walker2d medium 106 6 17
hopper medium 106 3 11
ant medium 106 8 111

halfcheetah medium-replay 2.02×105 6 17
walker2d medium-replay 3.02×105 6 17
hopper medium-replay 4.02×105 3 11
ant medium-replay 3.02×105 8 111

Table 2: Introduction of D4RL tasks (Gym-Mujoco).
C.2 ANTMAZE

Our benchmars from antmaze mainly includes antmaze-large-diverse,
antmaze-medium-diverse, antmaze-large-play and antmaze-medium-play,
concrete information of our benchmarks can be referred to table 3.

Environment Task Name Samples Observation Dim Action Dim

antmaze large-diverse 106 29 8
antmaze large-play 106 29 8
antmaze medium-diverse 106 29 8
antmaze medium-play 106 29 8

Table 3: Introduction of D4RL tasks (Antmaze).

D IMPLANTATION DETAILS

D.1 OFFLINE-TO-ONLINE IMPLANTATION

The workflow of our method is similar to the most of offline-to-online algorithms that we firstly
pre-train on offline datasets, followed by online fine-tuning (Interacting with online environment to
collect online dataset and followed by fine-tuning on offline and online datasets).

D.2 EVALUATION DETAILS

Our evaluation method can be refered to Fu et al. (2021). That is for each evaluation, we freeze
the parameter of trained model, and then conducting evaluation 10∼50 times and then computing
the normalized score via scoreevaluation−scoreexpert

scoreexpert−scorerandom
, and then averaging these normalized evaluation

scores.

D.3 SERA IMPLANTATION

In SERA framework, we modify our reward as :
rmod(s,a) = λ · Tanh(H(s|min(Qϕ1

(s,a), Qϕ2
(s,a))))︸ ︷︷ ︸

raug

+r(s,a), (s,a) ∼ Donline (19)
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To calculate the intrinsic reward raug for the online replay buffer Donline, we use the KSG estimator,
as defined in Equation 20, to estimate the conditional state density of the empirical dataset Donline

raug(s,a) =
1

ds
ϕ(nv(i)+1)+log 2 ·max(||si−sknni ||, ||Q̂(s,a)−Q̂(s,a)knn||), (s,a) ∼ Donline.

(20)
Given that the majority of our selected baselines are implemented using the double Q({Qϕ1 , Qϕ2}),
the offline pre-trained double Q can be readily utilized for the computation of intrinsic rewards, and
we found that the performance of SERA is sutured when λ is set to 1. We also provide a (Variance
Auto Encoder) VAE implantation (Equation 21) of SERA, this realization is computing efficiency,
but require extraly training a VAE model, due to Equation 2 won’t require training thus we mainly
test Equation 2.

raug(s,a) = − log pϕ̂(s|Q̂(s,a)) = − logEz∼qϕ(z|s,Q̂(s,a))[
pϕ̂(s|Q̂(s,a))

qϕ(z|s, Q̂(s,a))
], (s,a) ∼ Donline. (21)

We will test and compare the performance difference and computing efficiency between Equation 21
and Equation 20 in the future.

D.4 CODEBASE

Our implementation is based on Cal-QL:https://github.com/nakamotoo/Cal-QL,
VCSE:https://sites.google.com/view/rl-vcse. Additionally, we have included our
source code in the supplementary material for reference. Readers can refer to our pseudocode (see
Algorithm 1) for a comprehensive understanding of the implementation details. Q̂ see 3.

Algorithm 1 Training SERA
Require: Pre-collected data Doffline.
1: Initialize πθ , and Qϕ1 , Qϕ2 .

// Offline Pre-training Stage.
2: for k = 1, · · · ,K do
3: Learn Qϕ on Doffline by Equation 4 or 3 //We compute target Q value via Qtarget, learning Qtarget by

Empirical Momentum Average (EMA),i.e., Qtarget = (1− α)Qϕ + αQtarget.
4: Learn πθ on Doffline with Equation 5.
5: end for

// Online Fine-tuning Stage.
6: for k = 1, · · · ,K do
7: Interacting πθ to obtain Donline.
8: Augmenting Reward in Donline by Equation 1.
9: Sample a batch offline data Doffline, and build training batch,i.e., Dmix = Doffline ∪ Donline //mixture of

offline and online is not necessary required, it depends on the quality of offline dataset.
10: Learn πθ , Qϕ1 , and Qϕ2 on Dmix with the same objective in offline stage.
11: end for

D.5 COMPUTING RESOURCES

Our experiments were run on a computer cluster with 4×32GB RAM, AMD EPYC 7742 64-Core
CPU, and NVIDIA-A100 GPU, Linux. Most of our code base (The implantation of Cal-QL, CQL,
TD3+BC, SAC) are based on JAX 4, part of our implantation (IQL, AWAC) are based on Pytorch5

(We use different deep learning frameworks mainly to preliminary validate that our algorithm can
work in various of deep learning frameworks).

D.6 OUR HYPER-PARAMETER

Hyper-parameter of SERA. The K-nearest neighbors (knn) for SERA are configured as follows:
[0, 10, 15, 25, 50, 85, 100, 110], and the parameter λ in Equation 19 is set to 1.

3where ϕ1 and ϕ2 are the params of double Q Networks and Q̂(s,a) = min(Qϕ1(s,a), Qϕ2(s,a)), and
xknn
i is the nx(i)-th nearest neighbor of xi.

4https://github.com/google/jax.git
5https://pytorch.org/
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Hyper-parameter of Baselines In the context of these algorithms, we conducted tests related
to AWAC and IQL using the repository available at https://github.com/tinkoff-ai/
CORL, while tests related to Cal-QL and CQL were performed using the repository accessible at
https://github.com/nakamotoo/Cal-QL. The following five tables present fundamental
but critical hyperparameter settings for five baseline algorithms.

Table 4: Hyper-parameters of AWAC.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

Buffer size 20000000
Batch size 256
learning rate 3e−4

γ 0.99
awac τ 5e-3
awac λ 1.0

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

Table 5: Hyper-parameters of IQL.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

Batch size 256
learning rate of π 3e−4

learning rate of V 3e−4

learning rate of Q 3e−4

γ 0.99
IQL τ 0.7 # Coefficient for asymmetric loss
β (Inverse Temperature) 3.0# small beta → BC, big beta → maximizing Q

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

Table 6: Hyper-parameters of TD3+BC.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

learning rate of π 1e−4

learning rate of Q 3e−4

γ 0.99
Batch size 256
TD3 alpha 2.5

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)
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Table 7: Hyper-parameters of Cal-QL. We only provide the basic setting, for more detail setting,
please directly refer to https://nakamotoo.github.io/projects/Cal-QL

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

learning rate of π 1e−4

learning rate of Q 3e−4

γ 0.99
Batch size 256

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

Table 8: Hyper-parameters of CQL. CQL uses Cal-QL’s code-base, and we only need to remove
Cal-QL’s calibration loss when deploying CQL.

Hyperparameter Value

0ffline pre-train iterations 1e6

0nline fine-tuning iterations 1e6

learning rate of π 1e−4

learning rate of Q 3e−4

γ 0.99
Batch size 256

Actor Architecture 4× Layers MLP (hidden dim 256)
Critic Architecture 4× Layers MLP (hidden dim 256)

E APPENDED EXPERIMENTAL RESULTS

In Table 9, we have provided completed offline-to-online results, including the ant-maze domain
and the medium and medium-replay scenarios in the gym-mujoco environment, which is matched
Figure 2. From Table 9, it can be observed that CQL paired with SERA exhibits the best average
performance on the selected tasks. In Table 10, we compare a series of different efficient offline-to-

Task IQL AWAC TD3+BC CQL CQL+SERA Cal-QL Cal-QL+SERA

antmaze-large-diverse 59 00 00 89.2 89.8 86.3 94.5
antmaze-large-play 51 00 00 91.7 92.6 83.3 95.0
antmaze-medium-diverse 92 00 00 89.6 98.9 96.8 99.6
antmaze-medium-play 94 00 00 97.7 99.4 95.8 98.9

halfcheetah-medium 57 67 49 69.9 87.9 45.6 46.9
walker2d-meidum 93 91 82 123.1 130.0 80.3 90.0
hopper-medium 67 101 55 56.4 62.4 55.8 61.7
ant-medium 113 121 43 123.8 136.9 96.4 104.2

halfcheetah-medium-replay 54 44 49 39.5 53.73 25.7 26.7
walker2d-medium-replay 90 73 90 87.6 107.65 7.4 29.7
hopper-medium-replay 91 56 88 4 15.0 3.5 1.8
ant-medium-replay 123 127 127 30 116.6 55.1 68.0

Average Fine-tuned 82.2 56.7 48.6 75.1 90.9 61.3 68.1

Table 9: Normalized score after online fine-tuning. We report the online fine-tuned normalized
return. SERA obviously improves the performance of CQL and Cal-QL. In particular, CQL-SERA
(mean score of 90.9) is the best out of the 12 selected baselines. Notably, part of Antmaze’s baseline
results are quoted from existing studies. Among them, AWAC’s results are quoted from Kostrikov
et al. (2021) and CQL’s results are quoted from Nakamoto et al. (2023).

online methods, including APL, PEX, and BR. Specifically, we tested these methods on the ant-maze
domain and the medium and medium-replay tasks in the gym-mujoco environment. We found
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that SERA shows the best overall performance, indicating that SERA, when paired with CQL, can
achieve superior results.

Task CQL+APL CQL+PEX CQL+BR CQL+SUNG CQL+SERA

antmaze-large-diverse 0 0 0.1 44.1 89.8
antmaze-large-play 0 0 0 52.7 92.6
antmaze-medium-diverse 36.8 0.3 13.6 85.6 98.9
antmaze-medium-play 22.8 0.3 22.2 86.3 99.4

halfcheetah-medium 44.7 43.5 56.7 79.7 87.9
walker2d-meidum 75.3 34.0 81.7 86.0 130.0
hopper-medium 102.7 46.3 97.7 104.1 62.4

halfcheetah-medium-replay 78.6 45.5 64.9 75.6 53.7
walker2d-medium-replay 103.2 40.1 88.5 108.2 107.7
hopper-medium-replay 97.4 66.5 78.8 101.9 15.2

Average Fine-tuned 56.2 27.6 50.4 82.4 83.8

Table 10: Comparison of various efficient offline-to-online methods.

F EXTENDED EXPERIMENTS

F.1 TREND OF STATE ENTROPY CHANGING

State Entropy as Intrinsic Reward. If the state density ρ(s) is unknown, we can instead using
non-parametric entropy estimator to approximate the state entropy (Seo et al., 2021). Specifically,
given N i.i.d. samples {si}, the k-nearest neighbors (knn) entropy estimator can be defined as6:

Ĥk
N (S) =

1

N

N∑
i=1

log
N · ||si − sknni ||ds

2 · n̂
ds
2

π̂

k · Γ(ds

2 + 1)
∝ 1

N

N∑
i=1

log ||si − sknni ||. (22)

Visualization of State Entropy Changing. In this experiment, for each training step, we select
the buffer and randomly sample 5000 instances to approximate the entropy using Equation 10. and
then plot the trend of approximated state entropy. For the majority of the tasks, the state entropy
of AWAC-SERA was either progressively greater than or consistently exceeded that of AWAC-base.
This indicates that SERA effectively enhances the agent’s exploratory tendencies, enabling them
cover much more observation region.

Figure 9: The Changing of Approximated Entropy along with increasing training steps. We found
that the approximated state entropy in the buffer collected by AWAC using SERA was greater in the
later stages of online finetuning.
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F.2 PRETRAINED Q VS. RANDOM Q

Pre-trained Q condition versus un-pre trained Q condition. To validate the statement in our
main paper that intrinsic reward computation is influenced by the initialization of Q, we conducted
experiments comparing the effects of pre-trained initialized Q and from-scratch7 trained Q during

6ds is the dimension of state and Γ is the gamma function, n̂π̂ ∝ 3.14.
7We use from-scratch Q to compute intrinsic reward, while continuing to utilize the offline-initialized Q for

conducting online fine-tuning.
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intrinsic reward calculation. Our findings indicate that intrinsic rewards based on offline-initialized
Q generally outperform those derived from a from-scratch trained Q across most tasks.

Figure 10: Offline Pre-trained Q condition vs. Randomly initialized Q condition. In the majority
of our selected Gym-Mujoco tasks, the use of offline-initialized intrinsic reward conditions yielded
better performance and higher sample efficiency. To provide clarity, AWAC-base means AWAC
algorithm without any modification, AWAC-SERA signifies AWAC with SERA augmentation, and
AWAC-SERA (scratch) denotes AWAC with SERA where the computation of reward conditions sat-
isfying note 7
.
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F.3 Q CONDITION VS. V CONDITION

Differing from Kim et al. (2023), SERA conditions its intrinsic reward on
min(Qϕ1

(s,a), Qϕ2
(s,a)) rather than V (s). In comparison to VCSE, SERA’s advantage lies

in its consideration of transitions. For example, assuming that there exist two transitions
T1 = (s,a1, s1) and T2 = (s,a2, s2), since T1 and T2 have the same current observation, they will
yield the same value conditioned intrinsic reward − log(s|V (s)). This can introduce bias in the
value learning process especially when current observation corresponds to a substantial number
of valuable decisions and a limited number of low-value decisions. This is because low-value
decisions can still receive relatively high intrinsic rewards based on the higher value expectations
V (s) for the current state, subsequently influencing the agent’s decision-making. However, if we
condition intrinsic reward on Q(s,a), it can take into account the decision-making simultaneously.

To further validate our claims, we chose AWAC as baseline and used both Q-network and V-network
to compute the intrinsic reward’s condition. We conducted tests on halfcheetah-medium,
walekr2d-medium, hopper-medium and ant-medium. As shown in Figure 11, using the
Q-network to compute condition has better performance compared to using V-network to compute
condition.

Figure 11: Q condition vs. V condition. In this experiment, we selected AWAC as the base algorithm
and compared using V network and Q network to calculate the intrinsic reward’s condition. The
experimental results indicate that using the Q-network to compute the condition leads to overall
better performance for AWAC.
.
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G EXTENDED RELATED WORK

In this section, we systematically introduce recent developments in offline-to-online learning and
summarize the corresponding methods,
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The first perspective involves adopting a conservative policy optimization during online fine-tuning,
typically achieved through the incorporation of policy constraints. Specifically, there are three main
approaches within this category. The first approach constrains the predictions of the fine-tuning
policy within the scope of offline support during online fine-tuning (Liu et al., 2023b). While this
method contributes to achieving stable online fine-tuning performance, it tends to lead to overly
conservative policy learning, and the accuracy of the estimation of offline support also influences
the effectiveness of online fine-tuning. The second approach utilizes an offline dataset to constrain
policy learning (Nair et al., 2021; Kostrikov et al., 2021; Xiao et al., 2023; Mark et al., 2023).
However, the effectiveness of fine-tuning cannot be guaranteed if the dataset quality is poor. This
method is sensitive to the quality of the dataset. The third approach employs pre-trained policies
to constrain online fine-tuning, but this paradigm is influenced by the quality of the pre-trained
policy (Zhang et al., 2023; Yu & Zhang, 2023).

The second perspective involves adopting a conservative approach during offline training, specifi-
cally using pessimistic constraints to learn Q to avoid OOD (Out-of-Distribution) issues. Research
in this category primarily includes: Learning a conservative Q during offline pretraining and em-
ploying an appropriate experience replay method during online learning or using Q ensemble during
offline pre-training to avoid OOD issues (Lee et al., 2021b; Lyu et al., 2022; Hong et al., 2023).
However, as this approach introduces conservative constraints during critic updates, the value esti-
mates between offline and online are not aligned, leading to a decrease in performance during early
online fine-tuning. Therefore, Cal-QL introduces a calibrated conservative term to ensure standard
online fine-tuning (Nakamoto et al., 2023).

Addtionally, there are also some other methods, such that ODT (Zheng et al., 2022) combined
sequence modeling with Goal conditioned RL to conduct offline-to-online RL.
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