
Workshop track - ICLR 2016

LOOKAHEAD CONVOLUTION LAYER FOR UNIDIREC-
TIONAL RECURRENT NEURAL NETWORKS

Chong Wang∗, Dani Yogatama∗, Adam Coates, Tony Han, Awni Hannun, Bo Xiao
Baidu Research, Silicon Valley Artificial Intelligence Lab
Sunnyvale, CA 94089, USA
Contact: dyogatama@baidu.com

ABSTRACT

Recurrent neural networks (RNNs) have been shown to be very effective for many
sequential prediction problems such as speech recognition, machine translation,
part-of-speech tagging, and others. The best variant is typically a bidirectional
RNN that learns representation for a sequence by performing a forward and a
backward pass through the entire sequence. However, unlike unidirectional RNNs,
bidirectional RNNs are challenging to deploy in an online and low-latency setting
(e.g., in a speech recognition system), because they need to see an entire sequence
before making a prediction. We introduce a lookahead convolution layer that
incorporates information from future subsequences in a computationally efficient
manner to improve unidirectional recurrent neural networks. We evaluate our
method on speech recognition tasks for two languages—English and Chinese. Our
experiments show that the proposed method outperforms vanilla unidirectional
RNNs and is competitive with bidirectional RNNs in terms of character and word
error rates.

1 INTRODUCTION

We are interested in sequential prediction problems, where given an input x1:T = {x1,x2, . . . ,xT },
the goal is to make a prediction y1:T = {y1, y2, . . . , yT }.1 In this paper, we will refer to t = 1, . . . , T
as timesteps. Many real-world tasks can be formulated as sequential prediction problems. For
example, in speech recognition (language modeling), we are given a spectrogram of power normalized
audio clips (a word) at every timestep and predict the character or phoneme (the next word) associated
with this input.

Recurrent neural networks (RNNs) are a powerful class of models for sequential prediction problems
(Mikolov et al., 2010; Sutskever et al., 2014; Amodei et al., 2015; inter alia). There are two general
types of RNNs: unidirectional and bidirectional RNNs. Bidirectional RNNs tend to perform better
since they incorporate information from future timesteps when making a prediction at timestep
t. For bidirectional RNNs, in the forward pass we compute pt = f(bp + Uppt−1 + Vpxt),
where bp, Up, and Vp are model parameters. Similarly, in the backward pass, we compute qt =
f(bq + Uqqt+1 + Vqxt). The output at timestep t is then computed as yt = g(W[pt,qt]), where
[·] denotes the vector concatenation operator. For unidirectional RNNs, only the forward pass is
performed, so the output at timestep t is yt = g(Wpt). We only consider vanilla recurrent layers in
this work, but our technique is compatible with more sophisticated recurrent layers such as LSTMs
(Hochreiter & Schmidhuber, 1997) and GRUs (Cho et al., 2014) as well.

Bidirectional RNNs generally achieve better performance since they can incorporate future context,
but they come with additional computational costs, both for training and decoding. While an increase
in training time is not always an issue (since the training procedure can be carried out offline), an
increase in decoding time is a significant issue for a production system that needs to operate in an
online, low-latency setting, As can be seen from the equations above, bidirectional RNNs need to wait

∗Equal contribution.
1 We use lower case letters to denote variables, bold lower case letters to denote vectors, and bold upper case

letters to denote matrices.
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for an entire sequence to be seen before making a prediction for timestep t. Unidirectional RNNs, on
the other hand, allow decoding in a streaming fashion since they only incorporate previous context.

In this paper, we investigate a computationally efficient way to incorporate information from future
timesteps (context) using a new convolution layer. Our goal is to design a method that achieves
comparable performance to bidirectional RNNs and still supports online decoding. We show how we
can modify a convolutional layer to achieve this purpose in the followings. Our experiments show that
our proposed method outperforms vanilla unidirectional RNNs and is competitive with bidirectional
RNNs in terms of character and word error rates. This work incorporates new comparisons and
discussion not reported in Amodei et al. (2015).
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Figure 1: Lookahead convolution architecture with future context size τ = 2.

2 LOOKAHEAD CONVOLUTION

We propose a convolution layer which we call lookahead convolution, shown in Figure 1. The
intuition behind this layer is that we only need a small portion of future information to make an
accurate prediction at the current timestep. Suppose at timestep t, we use a future context of τ steps.
We now have a feature matrix Xt:t+τ = [xt,xt+1, ...,xt+τ ] ∈ Rd×(τ+1). We define a parameter
matrix W ∈ Rd×(τ+1). The activations ht for the new layer at time-step t are

ht =
τ+1∑
j=1

wj � xt+j−1,

where � denotes an element-wise product. The output at timestep t is then computed as g(ht), for a
non-linear function g. We note that the convolution-like operation is row oriented for both W and
Xt:t+τ .

3 EXPERIMENTS

We evaluate our method on speech recognition tasks for two languages: English and Chinese.

Model Our speech recognition system is based on the DeepSpeech system (Amodei et al., 2015).
It is a character-level deep recurrent neural network model that takes speech spectrograms as an
input and predicts characters at every timestep. Our neural network architecture in these experiments
consists of eight layers. The first layer is a regular convolution layer. The next five layers are either all
unidirectional (forward) or all bidirectional recurrent layers. The second-to-last layer is the lookahead
convolution layer. We also compare with two baselines constructed by replacing the second-to-last
layer with either a unidirectional recurrent layer or a bidirectional recurrent layer. The last layer is a
softmax layer over character outputs. We train the model using the CTC loss function (Graves et al.,
2006). See Amodei et al. (2015) for details of the architecture and training procedure.

Datasets We use the Wall Street Journal corpus2 for our English experiment and an internal Baidu
speech corpus for our Chinese experiment. The WSJ (Baidu) speech corpus consists of approximately
80 (800) hours of training data and 503 (2000) test utterances.

2https://catalog.ldc.upenn.edu/LDC93S6A
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Table 1: Word error rates (English) and character error rates (Chinese) for competing models. We
use future context size τ = 20 in all our experiments.

Model English Chinese
No LM Small LM No LM Small LM

Forward RNN 23.13 18.79 25.86 15.71
Forward RNN + lookahead-conv 22.66 16.77 21.32 13.45
Bidirectional RNN 19.47 15.42 20.46 12.76

Results Table 1 shows the results for English and Chinese speech recognition. Since our focus
is on evaluating the performance of the lookahead convolution layer, we report results without any
language model and with a small language model. We note that much better performance can be
obtained for both datasets by using a more powerful language model or more training data. We have
observed that in both cases the improvements from the lookahead convolution layer are consistent
with the smaller scale experiments shown here.

4 DISCUSSION

We showed that the lookahead convolution layer improves unidirectional RNNs for speech recognition
on English and Chinese in terms of word and character error rates. We place the lookahead convolution
layer above all (unidirectional) recurrent layers. The advantages are twofold. First, this allows us
to stream all computations below the lookahead convolution layer. For the lookahead convolution
layer, to get an output at timestep t, we only need the input up to t+ τ . Second, this results in better
performance in our experiments. We conjecture that the recurrent layers have learned good feature
representations, so the lookahead convolution layer simply gathers the appropriate future information
to feed to the classifier.

We note that there is still a small performance gap between bidirectional RNNs and unidirectional
RNNs with lookahead convolution. In our preliminary experiments, we found that increasing future
context size did not close this gap. We also found that incorporating future context using a regular
convolution layer with multiple filters resulted in poor performance. We obeserved that the resulting
model overfit the training data, even after an extensive tuning of the layer hyperparameters. A
regular convolution layer also has higher computational complexity than the lookahead convolution
layer (although the latency is still lower than a bidirectional recurrent layer). We plan to run more
experiments with different future context size and for other sequential prediction tasks to evaluate the
effectiveness of the proposed method.
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