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Abstract

Vision Transformers (ViTs) have become a universal backbone for both image
recognition and image generation. Yet their Multi–Head Self–Attention (MHSA)
layer still performs a quadratic query–key interaction for every token pair, spending
the bulk of computation on visually weak or redundant correlations. We introduce
Visual–Contrast Attention (VCA), a drop-in replacement for MHSA that injects
an explicit notion of discrimination while reducing the theoretical complexity
from O(N2C) to O(NnC) with n ≪ N . VCA first distils each head’s dense
query field into a handful of spatially pooled visual–contrast tokens, then splits
them into a learnable positive and negative stream whose differential interaction
highlights what truly separates one region from another. The module adds fewer
than 0.3M parameters to a DeiT-Tiny backbone, requires no extra FLOPs, and is
wholly architecture-agnostic. Empirically, VCA lifts DeiT-Tiny top-1 accuracy on
ImageNet-1K from 72.2% to 75.6% (+3.4) and improves three strong hierarchical
ViTs by up to 3.1%, while in class-conditional ImageNet generation it lowers
FID-50K by 2.1 to 5.2 points across both diffusion (DiT) and flow (SiT) models.
Extensive ablations confirm that (i) spatial pooling supplies low-variance global
cues, (ii) dual positional embeddings are indispensable for contrastive reasoning,
and (iii) combining the two in both stages yields the strongest synergy. VCA
therefore offers a simple path towards faster and sharper Vision Transformers. The
source code is available at https://github.com/LeapLabTHU/LinearDiff.

1 Introduction

Since the Vision Transformer (ViT) demonstrated that the same machinery that revolutionised natural
language processing can match carefully designed CNNs on ImageNet [12], self attention has
become a central ingredient of modern computer vision architectures. It now underpins recognition
models (e.g., DeiT [65], Swin [43]), dense predictors, and even high-fidelity generators such as
DiT [56, 61, 62, 97, 96]. Yet the way self attention is executed in vision has changed little from its
language origin: for an image unfolded into N tokens every layer computes an N ×N similarity
matrix, leading to O(N2C) multiplications and activations (C is the hidden width). With dozens
of layers, quadratic self attention dominates both training and inference budgets, often forcing
practitioners to shrink the patch size or the backbone depth and thus give up accuracy.

A first family of methods reduces the matrix size by limiting the receptive field: sliding windows [43],
dilated blocks [30], stripes or criss–cross patterns [10] rely on the observation that many visual
interactions are local. While they cut cost, they also prune long-range cues a priori, so they must
juggle between speed and the ability to model global structures such as symmetry or repeated textures.
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A second family keeps the global field of view but approximates the attention map with low-rank
projections [72, 4] or fourier kernels [83]. These schemes are orthogonal to locality, yet they treat all
correlations as equally useful. The network still has to wade through a sea of weak, often redundant
similarities, which can drown signals and slow down convergence during training.

Inspired by recent progress in language modelling, differential attention [88] argues that the difference
between two attention maps carries more discriminative signal than either map alone. Duplicating
queries and keys and subtracting their softmaxes helps large language models focus on tokens that
set one sentence apart from another, but the technique remains quadratic and ignores the particular
redundancy structure of images. We start from a simple premise: it is better to compress the dense
query field first and postpone any expensive comparison. Natural images exhibit spatial smoothness,
which means neighbouring patches usually carry almost identical information. By leveraging this
property, we can shrink the query set to just a handful of prototypes before matching. This idea
materialises as Visual–Contrast Attention, a drop-in substitute for Multi-Head Self-Attention that
injects an explicit notion of contrast and lowers the computational burden to O(Nnd) where n ≪ N .

In the first stage, the model pools the scene for every attention head. Specifically, it average-pools
the H ×W query feature map to a coarse h × w grid (e.g., 8 × 8), flattens this grid into n = hw
visual-contrast tokens, and adds two distinct positional embeddings so that the tokens form a positive
stream and a negative stream. Each stream attends independently to all keys and values; the two
resulting outputs are subtracted and normalised, which produces a global contrast map that highlights
the differences between two pooled views of identical content.

In the second stage, the module refines information at the patch level. Every one of the original N
patch queries re-attends to the contrast map through a lightweight differential operation. Because the
contrast map contains only n tokens, the three matrix multiplications that follow (query ↔ contrast
and contrast ↔ value) scale with nN rather than N2. Consequently, the module preserves the global
receptive field characteristic of Vision Transformers, yet each attention weight now measures how
much a patch stands out instead of merely capturing raw similarity.

This redesign yields three practical pay-offs in a single stroke. (i) Replacing quadratic MHSA with
Visual Contrast Attention turns the per-layer complexity into a strictly linear form, shrinking both
runtime and memory by roughly the ratio N/n, e.g., a 2562 image patchified at 16×16 enjoys a 256×
cut, without touching residual paths, layer norms, or any training hyper-parameters. (ii) The added
machinery is tiny: each head only stores two n-dimensional positional embeddings, amounting to
less than 0.3 M parameters on DeiT-Tiny and introducing essentially no new FLOPs because the
contrast stage reuses existing key–value tensors. (iii) Because VCA dispenses with window masks,
dilations, or kernel tricks, any ViT-style backbone that processes a 2-D patch grid can adopt it by
swapping one block, leaving downstream decoders and pretrained heads entirely intact.

We validate these claims on two demanding tasks. For image classification, inserting VCA into a
vanilla DeiT backbone raises ImageNet-1K top-1 accuracy from 72.2 % to 75.6 % without adding
FLOPs, and integrating VCA into three hierarchical backbones (PVT [73], Swin [43], CSwin [10])
yields consistent gains of up to 3.1 percentage points. For image generation [18, 17, 54, 53, 53, 38,
45, 46], replacing the attention blocks in class-conditional generators lowers FID-50K on 256× 256
ImageNet by 2.1 to 5.2 points across diffusion models (e.g., DiT [56]) and flow-based models (e.g.,
SiT [52]), across both Small and Base scales, and across patch sizes of 8, 4, and 2—again without
extra compute.

Comprehensive ablation studies reinforce three crucial design choices. First, spatial pooling reli-
ably supplies low-variance global cues. Second, the dual embeddings are absolutely essential for
disentangling positive from negative evidence. Third, applying the pooled-plus-embedding recipe
symmetrically to both streams in both stages consistently unlocks the full benefit of the method.

Our contributions are fourfold. First, we introduce Visual–Contrast Attention, which is the first linear-
time attention module that embeds explicit contrast into Vision Transformers. Second, we provide
a detailed complexity analysis verifying its linear computation complexity. Third, we demonstrate
consistent accuracy and quality improvements in both image classification and image generation
while keeping training budgets unchanged. Fourth, we show that VCA is architecture-agnostic, so it
can serve as a drop-in upgrade for a wide range of Vision Transformer models.

In summary, Visual–Contrast Attention reconciles global reasoning with practical efficiency and
offers a principled route toward faster and more descriptive Vision Transformers.
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2 Related Work

Attention with Linear Complexity. A first group of studies attains linear time complexity by
limiting the receptive field, such as Shifted-window attention [44] and Neighborhood Attention [31].
By re-introducing locality into the ViT architecture, these methods lower cost but partially sacrifice
global context. A second research line tackles the problem directly with linear attention. The seminal
work of [39] eliminates the Softmax and applies a feature map ϕ to Q and K, reducing complexity to
O(N) at the cost of noticeable accuracy loss. Follow-ups proposed better approximations: Efficient
Attention [64] applies Softmax separately to Q and K; SOFT [50] and Nyströmformer [83] rely on
matrix decompositions; Castling-ViT [89] uses full Softmax only as an auxiliary during training;
FLatten Transformer [19] introduces a focus function and depth-wise convolutions to enrich features.
MLLA [21] incorporate the key design in Mamba into linear attention, while InLine [20] introduces
an injective linear attention mechanism. More recently, Agent Attention [22], Anchored Stripe
Attention [41], and Efficient DiT [61] insert an extra token set that mediates between queries and
keys, an equivalent linearization that attains strong results for recognition and low-level vision. Our
work is built on this architecture, interpreting the additional visual contrast tokens as a semantic
compression.

Vision Transformer. Since the arrival of the Vision Transformer (ViT) [11], self-attention has
flourished in computer vision, yet the quadratic cost of conventional Softmax attention [66] remains
a hurdle. Numerous remedies have been proposed. PVT [73] sparsifies global attention by down-
sampling K and V ; Swin [43] confines attention to local windows and shifts them to cover the whole
image; NAT [32] mimics convolution by attending within each feature’s neighborhood; DAT [80]
introduces deformable, data-dependent patterns; BiFormer [101] routes queries to salient regions via a
bi-level scheme; GRL [42] mixes stripe, window, and channel attentions for restoration. Nevertheless,
these strategies either cap the global receptive field or are tailored to specific patterns, which limits
their plug-and-play versatility.

Diffusion Transformer. State-of-the-art diffusion models [9, 1, 33, 47, 16, 86] are traditionally
built on U-Net [63], yet recent works explore ViT backbones [87, 56, 2]. U-ViT [2] tokenizes time,
conditions, and noisy patches, adding U-Net–style skip connections. DiT [56] shows ViT scales
favorably, outperforming U-Net on ImageNet; SiT [52] extends DiT to continuous time with more
general coefficients. MaskDiT [99] adopts masked training to cut cost, while MDT [14] and MDTv2
refine masked latent modeling for better FID and faster learning. HDiT [5] trains high resolutions
with cost linear in pixel count. FiT [99] treats images as variable-sized token sequences, enabling
flexible resolution and aspect ratios. These results verify that transformer backbones are both effective
and scalable for generative diffusion, yet their internal architectural choices remain under-explored.

Dynamic Neural Network. Unlike static networks with fixed graphs and weights, dynamic
neural networks [24, 75] adapt structure or parameters per input, gaining advantages in ac-
curacy, adaptability [85, 15, 95, 98], efficiency [84, 68, 77, 91], and representation capac-
ity [60]. They are commonly classified as sample-wise [13, 34, 76, 27, 23, 58, 69, 79], spatial-
wise [70, 35, 28, 26, 25, 81, 82, 55, 78], and temporal-wise [29, 74, 51]. Following DETR’s query
paradigm [3], a query-based dynamic branch has also emerged [59]. Our method could be classified
as a type of sample-wise dynamic network, since different sample generate different visual contrasts
token in the first stage.

3 Approach

3.1 Preliminaries

Standard Attention in Vision. We first revisit the attention mechanism [67] in Vision Transform-
ers 2 [12, 56, 52]. The Vision Transformer takes a visual token sequence zl−1 ∈RN×C from the
previous layer l − 1 as input (N is the token number and C is the hidden dimension), then projects it
into the query, key, and value token sequences with three different linear projection layers, denoted as

2Throughout the paper we use Vision Transformer (ViT) to collectively denote the original ViT [12] and its
diffusion variant Diffusion Transformer (DiT) [56]. A DiT block is identical to a ViT block except that each
LayerNorm is augmented with timestep-conditioned scale and shift parameters (AdaLN) generated from the
diffusion timestep embedding. This distinction is orthogonal to our contribution.
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Wq,Wk,Wv∈RC×C (we omit the bias term for simplicity):

q = zl−1W
q, k = zl−1W

k, v = zl−1W
v. (1)

Then q,k,v ∈RN×C are divided into M heads q(m),k(m),v(m) ∈RN×d in terms of channel C,
with head dimension of d=C/M (C is always divisible by M ). Within each head, the similarity of
each query q(m) and key k(m) is computed as:

A(m) = Softmax
(
q(m)k(m)⊤/

√
d
)
, (2)

where the attention map A(m) is an N×N matrix containing elements in the range [0, 1], and the sum
of each row is normalized to 1. The attention mechanism reweights the value sequence according
to the attention map, h(m) =A(m)v(m) ∈RN×d, to dynamically adjust the outputs based on the
dependency of each token in the inputs. In the end, each head of the reweighted representation is
concatenated together to produce the final output of this layer l, written as:

h = Concat
(
h(1), . . . ,h(M)

)
, zl = hWO. (3)

where h∈RN×C , WO∈RC×C (the bias term is also omitted for simplicity) is a linear projection
layer to promote interaction between different heads in the multi-head attention layer.

Differential Attention in Language. We further revisit the recent proposed differential attention
mechanism which is primarily used in language modeling [88]. Given the token squences from the
previous layer zl−1∈RN×C (N tokens, each with a hidden dimension C), differential attention first
produces two sets of queries and keys ({q1,k1} and {q2,k2}) with two sets of linear projections
({Wq

1 ,W
k
1} and {Wq

2 ,W
k
2}) and one set of values v with a linear projection Wv:[

q1; q2
]
= zl−1

[
Wq

1 ;W
q
2

]
,

[
k1;k2

]
= zl−1

[
Wk

1 ;W
k
2

]
, v = zl−1W

v, (4)

where Wq
1 ,W

q
2 ,W

k
1 ,W

k
2 ∈R(C/2)×C , q1, q2,k1,k2∈RN×(C/2),Wv∈RC×C ,v∈RN×C . Then

q1, q2,k1,k2,v are divided into M heads q(m)
1 , q

(m)
2 ,k

(m)
1 ,k

(m)
2 ∈RN×(d/2), v(m)∈RN×d, with

(double) head dimension of d=C/M . Within each head, we compute two attention maps

A
(m)
1 = Softmax

(
q
(m)
1 k

(m)⊤
1 /

√
d/2

)
, A

(m)
2 = Softmax

(
q
(m)
2 k

(m)⊤
2 /

√
d/2

)
, (5)

and take their difference as the final attention weight of each head:

A(m) = A
(m)
1 − λA

(m)
2 , λ = exp(λq1 ·λk1)− exp(λq2 ·λk2) + λinit. (6)

Here λ is a learnable scalar parameterized by a scalar λinit and vectors λq1
, λq2

, λk1
, λk2

∈Rd. The
attention map A(m) is an N×N matrix. The attention mechanism reweights the value sequence
according to the attention map followed by a RMSNorm Layer, and scaled by (1− λinit) to match
Transformer’s gradient flow:

ĥ(m)=A(m)v(m), h(m)=(1− λinit) RMSNorm(ĥ(m)), (7)

where h(m), ĥ(m)∈RN×d. In the end, each head of the reweighted representation is concatenated
together to produce the final output of this layer l, written as:

h = Concat
(
h(1), . . . ,h(M)

)
, zl = hWO. (8)

where h∈RN×C , WO∈RC×C (the bias term is also omitted for simplicity) is a linear projection
layer to promote interaction between different heads in the multi-head attention layer.

3.2 Our Approach

Visual Contrast Attention. To extend differential attention to vision and trim the quadratic
complexity, besides the query q(m), key k(m), and value v(m) tokens, we introduce a compact pair of
visual contrast tokens for each head: a set of positive visual contrast tokens t(m)

+ and a set of negative
visual contrast tokens t(m)

− . These pair of visual contrast tokens are both with a n× d shape, where
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n is the visual contrast token length and n ≪ N . Intuitively, the two sets act as the same mediator
token viewed through two coloured lenses. Stage I lets the two sets skim the whole image and return
a contrast map; Stage II lets the original patch queries exploit that map.

Stage I – global contrast. This pair of visual contrast tokens first each attends to all key tokens and
all value tokens individually to get the intermediate results v̂(m)

+ , v̂(m)
− :

v̂
(m)
+ = Softmax

(
t
(m)
+ k(m)⊤/

√
d
)
v(m), v̂

(m)
− = Softmax

(
t
(m)
− k(m)⊤/

√
d
)
v(m), (9)

where v̂
(m)
+ , v̂

(m)
− ∈ Rn×d. Then the visual contrast results is obtained by performing a differential

operation in the intermediate results, followed by a RMSNorm and a (1− λ
(1)
init ) scalar factor:

v̂(m) = (1−λ
(1)
init )RMSNorm

(
v̂
(m)
+ − λ(1)v̂

(m)
−

)
, λ(1) = exp(λ(1)

q1 ·λ
(1)
k1

)−exp(λ(1)
q2 ·λ

(1)
k2

)+λ
(1)
init .

(10)

Stage II – patch-wise differential attention. The pair of visual contrast tokens interact with the
query tokens and extracts the results from the intermediate result v̂(m) in a differential way. To be
specific, the query tokens q(m) derive its attention scores with both the positive visual contrast tokens
t
(m)
+ and the negative ones t(m)

− within each head:

A
(m)
1 = Softmax

(
q(m)t

(m)⊤
+ /

√
d
)
, A

(m)
2 = Softmax

(
q(m)t

(m)⊤
− /

√
d
)
, (11)

and take their difference as the final attention weight of each head:

A(m) = A
(m)
1 − λ(2) A

(m)
2 , λ(2) = exp(λ(2)

q1 ·λ(2)
k1

)− exp(λ(2)
q2 ·λ(2)

k2
) + λ

(2)
init , (12)

where λ(2) follows the same parameterisation as λ(1). The attention map A(m) is an N×n matrix.
The attention mechanism reweights the value sequence according to the attention map followed by a
RMSNorm Layer, and scaled by (1− λ

(2)
init ) to match Transformer’s gradient flow:

ĥ(m)=A(m)v̂(m), h(m)=(1− λ
(2)
init ) RMSNorm(ĥ(m)), (13)

where h(m), ĥ(m)∈RN×d. In the end, each head of the reweighted representation is concatenated
together to produce the final output of this layer l, written as:

h = Concat
(
h(1), . . . ,h(M)

)
, zl = hWO. (14)

where h∈RN×C , WO∈RC×C (the bias term is also omitted for simplicity) is a linear projection
layer to promote interaction between different heads in the multi-head attention layer.

Visual Contrast Token Generation The visual contrast tokens are distilled directly from the
query tokens through spatial average pooling. Since our attention module operates on visual latent
features, the query matrix q(m) ∈ RN×d can be rearranged back to its 2-D spatial layout, i.e.,
q(m) → q̃(m) ∈ RH×W×d with H×W = N . We then apply average pooling along the spatial
dimensions, with kernel size and stride chosen to reduce the resolution from H ×W to h× w:

t̃(m) = AvgPool
(
q̃(m)

)
∈ Rh×w×d. (15)

To further disentangle helpful and distracting correlations, we split the visual contrast branch into a
positive and a negative stream, inspired by the core idea of Differential Transformer. Specifically, we
add two distinct learnable positional embeddings, e+, e-∈Rh×w×d, to create two groups of visual
contrast tokens:

t̃
(m)
+ = t̃(m) + e+, t̃

(m)
− = t̃(m) + e−. (16)

Finally, we flatten the positive and negative tensors over the spatial axes to obtain the visual contrast
token matrices:
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t
(m)
+ , t

(m)
− = Flatten

(
t̃
(m)
+

)
,Flatten

(
t̃
(m)
−

)
∈ Rn×d, n = h · w ≪ N. (17)

Each visual contrast token thus represents the average feature of a non-overlapping image patch,
providing a compact summary. The target spatial size (h,w)—and thus the number of visual contrast
tokens n—is a tunable hyper-parameter that balances computational cost and representational fidelity.

3.3 Complexity Analysis

We retain the notations of Section 3.2: N visual tokens, n visual contrast tokens (n≪N ), d features
per head, M heads and C = Md channels in total.

Stage I – global contrast. For each head, the positive and negative contrast tokens execute the two
attention steps in Equation (9):

Softmax
(
t
(m)
± k(m)⊤/

√
d
)︸ ︷︷ ︸

Rn×N

v(m)︸︷︷︸
RN×d

−→ v̂
(m)
± ∈ Rn×d. (18)

Each of the two matrix products (n× d by d×N , then n×N by N × d) costs O(Nnd); performing
them for both “+” and “−” streams therefore costs at most

Stage I: 4Nnd = O(Nnd). (19)

The subsequent subtraction, normalisation, and scalar modulation are all O(nd) and thus negligible
in the big-O sense.

Stage II – patch-wise differential attention. In each differential stream, we calculate the two
attention map in Equation (11):

Softmax
(
q(m) t

(m)⊤
± /

√
d
)

∈ RN×n. (20)

Each map requires one N × d by d× n multiply, i.e. O(Nnd). Both maps together give a cost of
2O(Nnd). The differential combination A(m) = A

(m)
1 − λ(2)A

(m)
2 is only O(Nn).

Finally, value aggregation in Equation (13) multiplies an N × n matrix by an n× d matrix, adding
another O(Nnd). Hence

Stage II: 3Nnd = O(Nnd). (21)

Per-head and per-layer complexity. Both stages are linear in N , n, and d. For one head

Chead = O(Nnd), (22)

and for the whole layer
Clayer = M Chead = O(NnC). (23)

Comparison with vanilla self-attention. Standard self-attention forms an N × N attention
map, incurring O(N2C) time. Replacing the quadratic query–key interaction by the two linear
query–contrast and contrast–key interactions reduces the cost by a factor of N/n:

O(N2C)

O(NnC)
=

N

n
≫ 1. (24)

Because n ≪ N , the proposed visual-contrast attention substantially lowers computation while
preserving global context. Overheads from RMS normalisation and the learnable scalars are at most
O(Nd) or O(nd) and are therefore non-dominant.
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Table 1: Image classification results on ImageNet-1K

Method #Params FLOPs Top-1 Acc.
DeiT-T 5.7M 1.2G 72.2
+Ours 6.0M 1.2G 75.6(↑3.4)

DeiT-S 22.1M 4.6G 79.8
+Ours 22.6M 4.6G 80.7(↑0.9)

PVT-T 13.2M 1.9G 75.1
+Ours 11.6M 2.0G 78.2(↑3.1)

PVT-S 24.5M 3.8G 79.8
+Ours 20.6M 4.1G 82.3(↑2.5)

PVT-M 35.9M 7.0G 81.2
+Ours 35.8M 7.2G 83.2(↑2.0)

Method #Params FLOPs Top-1 Acc.
Swin-T 28.9M 4.5G 81.3
+Ours 28.5M 4.6G 82.3(↑1.0)

Swin-S 49.7M 8.7G 83.0
+Ours 49.6M 8.7G 83.7(↑0.7)

Swin-B 88.1M 15.4G 83.5
+Ours 87.9M 15.5G 83.9(↑0.4)

CSwin-T 20.5M 4.3G 82.7
+Ours 20.4M 4.3G 83.3(↑0.6)

CSwin-S 32.8M 6.8G 83.6
+Ours 32.7M 6.8G 84.0(↑0.4)

4 Experiments

In section, we empirically evaluate our visual contrasts attention method on both image recognition
and generation tasks. We first introduce the detailed experiment setup in Section 4.1, including
datasets and training configurations. Then the main results of our method with various backbone
architectures on different tasks are presented in Section 4.2 and Section 4.3. Finally, the ablation
study in Section 4.4 further validate the effectiveness of the proposed method.

4.1 Experiment settings

Datasets The ImageNet-1K [7] recognition dataset contains 1.28M training images and 50K
validation images with a total of 1,000 classes. For image recognition experiments, images are trained
and evaluated in 224× 224 size. The top-1 accuracy on the validation set is adopted as the evaluation
metric. For image generation tasks, we train and evaluate the images in 256× 256 size, following the
commonly used practice in class-condition generation. We use FID-50K as the evaluation metric,
which measures the Fréchet distance between the Inception-V3 features of 50 000 generated images
and 50 000 real validation images.

Training Configuration For image recognition experiments, we use the same training setup as
the baseline models to ensure fair comparison. All models are trained from scratch using the
AdamW [48] optimizer for 300 epochs. We apply cosine learning rate decay, starting with 20 epochs
of linear warm-up, and set the initial learning rate to 1× 10−3 with a weight decay of 0.05. The data
augmentation and regularization methods include RandAugment [6], Mixup [93], CutMix [92], and
random erasing [100]. We also follow CSwin [10] and use EMA [57] during training. For image
generation tasks, we follow DiT [56] and SiT [52] to train class-conditional diffusion transformer
models on the ImageNet-1K [8] dataset. All models are trained with the AdamW [40, 49] optimizer
and no weight decay. For 256 × 256 resolution, we train from scratch with a global batch size of
256 for 400,000 iterations. The learning rate is kept constant at 1 × 10−4. We use only random
horizontal flip for data augmentation during training. Additionally, we apply exponential moving
average (EMA) to the model weights with a decay rate of 0.9999.

4.2 Image recognition

The image recognition experiments are conducted on ImageNet-1K [7] dataset. We conduct Ima-
geNet classification on both plain vision transformer architectures (e.g., DeiT [65]) and hierarchical
counterparts (e.g., PVT [65], Swin [43], CSwin [10]). On the plain Vision Transformer line, as is
illustrated in Table 1, our method consistently enlarges the accuracy–efficiency Pareto front: DeiT-
Tiny takes a +3.3 accuracy gain (from 72.2 % to 75.6 %) with only 0.3 M additional parameters
and no extra computational cost, while DeiT-Small still enjoys a +0.9 performance improvement
under the same computational budget. For hierarchical vision transformer architectures, which
include the multi-stage PVT, the shifted-window Swin, and the cross-shaped CSwin architectures,
the proposed block remains universally beneficial. PVT experiences the largest margins, up to +3.1
percentage point on PVT-Tiny and +2.5/+2.0 on PVT-Small/PVT-Medium, respectively. On more
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Table 2: Class-conditional image generation results on ImageNet-1K with 256× 256 resolution.

Method #Params FLOPs FID-50K(↓)
DiT-S/8 33.0M 0.4G 151.9
+Ours 33.8M 0.4G 148.3(↓3.6)

DiT-S/4 32.9M 1.4G 97.9
+Ours 33.6M 1.5G 92.7(↓5.2)

DiT-S/2 33.0M 6.1G 67.2
+Ours 33.6M 6.0G 62.3(↓4.9)

DiT-B/8 130.7M 1.4G 118.4
+Ours 132.1M 1.5G 114.4(↓4.0)

DiT-B/4 130.4M 5.6G 68.3
+Ours 131.8M 5.8G 66.0(↓2.3)

DiT-B/2 130.5M 23.0G 42.9
+Ours 131.8M 22.9G 38.9(↓4.0)

Method #Params FLOPs FID-50K(↓)
SiT-S/8 33.0M 0.4G 149.5
+Ours 33.0M 0.4G 147.4(↓2.1)

SiT-S/4 32.9M 1.4G 84.0
+Ours 33.6M 1.5G 80.9(↓3.1)

SiT-S/2 33.0M 6.1G 57.3
+Ours 33.6M 6.0G 53.0(↓4.3)

SiT-B/8 130.7M 1.4G 106.0
+Ours 132.1M 1.5G 102.1(↓3.9)

SiT-B/4 130.4M 5.6G 55.9
+Ours 131.8M 5.8G 53.6(↓2.3)

SiT-B/2 130.5M 23.0G 35.3
+Ours 131.8M 22.9G 32.7(↓2.6)

strong baselines like Swin and CSwin, our method still receive steady gains between +0.4 and +1.0
with negligible (< 5%) overhead. These results demonstrate that the proposed visual contracts
attention is architecture-agnostic: it complements both global self-attention in plain ViTs and the
localized or cross-shaped attention patterns employed by state-of-the-art hierarchical designs.

4.3 Image generation

We evaluate our approach on class–conditional ImageNet-1K image generation at 256×256 resolution,
taking the diffusion–based DiT [56] family and the flow–based SiT [52] family as baselines. For each
backbone we consider two model sizes, Small (∼33 M parameters) and Base (∼131 M), and three
different patch size (8, 4 and 2), which together sweep a wide range of computation budgets from
0.4 G to 23.0 GFLOPs. All networks are trained under the original recipes released by the authors:
DiT models follow the DDPM [33] schedule with 1 000 denoising steps, while SiT counterparts are
optimized with the latent flow objective; the only change is that we replace the original attention
with the proposed visual contrast attention, adding fewer than 1.3 M parameters and at most 0.1
GFLOPs. Following standard protocol we report Fréchet Inception Distance on 50 000 validation
samples (FID-50K), computed with the same code base as DiT [56] paper.

As summarized in Table 2, our method consistently lowers FID across various configuration. Along
the model-size axis, the absolute gains on Small backbones reach 3.6 to 5.2 points for DiT and 2.1 to
4.3 points for SiT, whereas Base models still benefit by 2.3 to 4.0 and 2.3 to 3.9 points respectively,
indicating diminishing but non-negligible returns as capacity grows. Along the patch-resolution axis,
the most fine-grained patches (e.g., /2) exhibit the largest relative improvement (up to 4.9 gain in
FID in DiT-S/2), yet even the largest variants (e.g., /8) obtain solid reductions in FID-50K of 2.1 to
4.0. Finally, comparing the two training paradigms (e.g., diffusion-based, flow-based), we observe
that the proposed module is agnostic to the underlying generative mechanism: it offers similar FID
reductions for the DDPM pipeline of DiT and the rectified flow pipeline of SiT, thereby confirming
its general applicability to both diffusion and flow-based training configurations.

4.4 Ablation Studies

Ablation on Detailed Model Architectures. We first investigates where the standard Multi-Head
Self-Attention(MHSA) are replaced by our modified counterparts, incluing the first attention operation
in Stage I (global contrast) and that in Stage II (patch-wise differential attention) in all the attention
blocks. We also ablate the result by using the original differential attention [88] in both stages. We
conduct the ablation studies both on image classification with DeiT-Tiny and image generation task
with DiT-S/2 model. The quantitative results in Table 3 reveal three clear tendencies. First, the
two components of our Visual-Contrast Attention contribute additively. Activating only the Stage-I
global-contrast branch raises DeiT-Tiny accuracy from the implicit vanilla baseline to 75.4 % and
reduces the DiT-S/2 FID to 64.6, while switching on only the Stage-II patch-wise differential
branch is slightly more effective (75.5 % / 64.3). When the two branches are combined, their effects
accumulate almost linearly, pushing the score to 75.6 % and 62.3 FID without introducing any extra
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Table 3: Ablation on detailed model architectures across image classification and generation tasks.

Attention Type Image Classification on DeiT-Tiny Image Generation on DiT-S/2
Stage I Stage II Params FLOPs Top-1 Acc.(↑) Params FLOPs FID-50K(↓)
Ours Vani. 6.0M 1.2G 75.5 33.6M 5.9G 64.3
Vani. Ours 6.0M 1.2G 75.4 33.6M 5.9G 64.6
Diff. Diff. 5.7M 1.2G 75.1 33.0M 5.8G 63.9
Ours Ours 6.0M 1.2G 75.6 33.6M 6.0G 62.3

Table 4: Ablation on visual contrast token generation across image classification and generation tasks.

Token Type Image Classification on DeiT-Tiny Image Generation on DiT-S/2
Pos. Str. Neg. Str. Params FLOPs Top-1 Acc. Params FLOPs FID-50K

Emb. Emb. 6.0M 1.2G 75.1 33.6M 6.0G 63.7
Pool Pool+Emb. 5.9M 1.2G 75.5 33.3M 6.0G 64.1

Pool+Emb. Pool 5.9M 1.2G 75.3 33.3M 6.0G 63.5
Pool+Emb. Pool+Emb. 6.0M 1.2G 75.6 33.6M 6.0G 62.3

FLOPs and with only ∼0.3 M additional parameters. Second, we compare VCA with the language-
oriented differential attention (Diff) [88] applied to both stages. Although Diff already improves over
the single-branch variants (75.1 % / 63.9), replacing it with our vision-tailored VCA brings a further
relative gain of +0.5 percentage points in classification accuracy and a −1.8 improvement in FID.
This superiority indicates that (i) summarising the scene with a small set of learnable visual-contrast
tokens in Stage I and (ii) letting Stage II queries interact with those tokens in a differential manner
are both crucial for vision, and that the proposed formulation exploits their synergy more effectively
than simply duplicating the original differential attention design.

Ablation on Visual–Contrast Token Generation. Table 4 investigates how the two visual–contrast
streams that feed the subsequent differential operation should be formed. Each stream can be a pure
learnable embedding (EMB.), a query representation obtained by spatial average pooling (POOL),
or the pooled query features augmented with an independent positional embedding (POOL+EMB.)
that is adopted in our final model. Using embeddings for both the positive and negative streams
already gives a noticeable improvement over the vanilla backbone (75.1 % Top-1 Accuracy / 63.7
FID-50K), confirming that explicit differencing is helpful even with the same randomly initialised
tokens for different input images. Replacing the positive stream by pooled queries while leaving
the negative one unchanged (POOL / POOL+EMB.) yields a marginal additional gain (75.5 % /
64.1), whereas performing the opposite substitution (POOL+EMB. / POOL) produces a larger jump
to 75.3 % and 62.3, suggesting that injecting real image statistics into the positive branch is more
influential. When both streams adopt the full POOL+EMB. recipe, performance peaks at 75.6 %
and 62.3, outperforming the embedding-only variant by +0.5 percentage points and –1.4 FID with
no additional parameters and identical FLOPs. These results demonstrate that (i) spatial pooling
supplies informative, low-variance global cues, (ii) separate positional embeddings remain essential
for disentangling complementary correlations, and (iii) combining the two ingredients for both
streams yields the strongest synergy across classification and generation tasks.

5 Conclusion

We have presented Visual–Contrast Attention, a plug-and-play replacement for MHSA that couples
linear complexity with an explicit notion of discrimination. By first summarising the image into a
handful of pooled tokens and then splitting these tokens into antagonistic positive/negative streams,
VCA highlights genuinely informative relationships while discarding redundant ones. The module is
parameter-light, budget-neutral in FLOPs, and universally beneficial: it boosts classification accuracy
across plain and hierarchical ViTs, and further sharpens generative quality in both diffusion- and
flow-based models. We hope our findings encourage the community to rethink attention not only as a
similarity measure but also as a stage for explicit contrast.
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Limitations

VCA reduces the quadratic burden of self-attention but is not a cure-all: (i) task-agnostic average
pooling may miss edge-rich details; (ii) the added micro-attention may shrinks speed gains on small
images; (iii) extensions to video [38], 3-D [36, 37], or more efficient language [90, 94, 71] tasks are
still unexplored.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper fully discloses all the information needed to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We use public data to conduct experiments. However, in the submission and
the reviewing period, we do not provide open source data to prevent disclosure of author
information.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the training and testing details in the submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We provide information on the computer resources in the first part of the
experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics,
in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work focuses on attention mechanism and has no direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks as it is a foundational research focusing on
attention paradigm.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use all assets properly according to their licenses, and give credits to the
creators in Section 4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is only used during polishing the writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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