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Abstract
Vision–language models typically process vi-001
sual inputs through a pretrained vision en-002
coder followed by projection into the language003
model’s embedding space. While crucial for004
modality fusion, this projection step induces005
under-characterized information loss that di-006
rectly impacts model capabilities. We propose007
two novel approaches to quantify visual infor-008
mation loss introduced at this projection step.009
First, we evaluate the preservation of semantic010
information and structural relationships by an-011
alyzing changes in nearest-neighbor rankings012
between representations. Second, to locate in-013
formation loss for the image representation at014
a patch level, we directly measure information015
loss through visual embedding reconstruction.016
Focusing on connector-based VLMs, our exper-017
iments reveal projection layers fundamentally018
alter visual semantic relationships – nearest019
neighbor similarity rankings diverge by 40-60%020
post-projection, directly explaining observed021
retrieval performance drops. Our embedding022
reconstruction approach provides interpretable023
insights for model behavior on visual question-024
answering tasks, finding that areas of high in-025
formation loss reliably predict instances where026
models struggle.027

1 Introduction028

Vision–language models (VLMs) have demon-029

strated remarkable capabilities in visual question030

answering tasks by leveraging pretrained vision031

encoders. A series of models employ connector032

modules to bridge the semantic gap between visual033

and textual modalities, projecting visual represen-034

tations into embedding sequences that language035

models can process (Chen et al., 2024a; Liu et al.,036

2023; Deitke et al., 2024; Laurençon et al., 2024;037

Chen et al., 2024b; Zhang et al., 2025; Sun et al.,038

2024). Common connector architectures include039

multi-layer perceptrons (MLPs), as implemented040

in LLaVA (Liu et al., 2023), or more sophisti-041

cated transformer-based perceiver sampler used in042

Idefics (Laurençon et al., 2024) that convert image 043

patches to a fixed-length sequence of visual tokens. 044

While these connector modules enable efficient 045

cross-modal integration (Li and Tang, 2024), their 046

impact on information fidelity remains poorly un- 047

derstood. The transformation of rich visual features 048

into a format compatible with language models in- 049

evitably involves dimensional conversion and rep- 050

resentation restructuring. This raises fundamental 051

questions about the nature and extent of potential 052

information loss during this critical projection step. 053

As highlighted in Figure 1, such information loss 054

could impose inherent limitations on the model’s 055

reasoning capabilities, as the language model’s per- 056

formance is bounded by the quality and complete- 057

ness of the visual information it receives. Despite 058

the growing body of research on VLM connector ar- 059

chitectures and their downstream performance (Lin 060

et al., 2024), there has been limited systematic in- 061

vestigation into how different connector designs 062

correlate visual information loss in the latent space. 063

To bridge this gap in the literature, we present a 064

comprehensive evaluation framework to quantify 065

information loss in VLM connector modules. We 066

first measure information loss through careful ex- 067

amination of the geometric structure of latent visual 068

representations. Then, through patch-level visual 069

feature reconstruction, we are able to pinpoint the 070

high-loss regions in the image — areas where vi- 071

sual features are hard to recover after projection. 072

This two-step approach provides both quantitative 073

metrics and interpretable visualizations, offering in- 074

sights into the nature of information transformation 075

during vision-text integration. 076

The main findings of this paper are: 077

• We propose a novel evaluation framework 078

comprising two approaches to quantify the 079

information loss at the connector component 080

for vision-language models. 081

• Our neighborhood overlap analysis shows sig- 082

nificant degradation of 40%–60% of geomet- 083
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Figure 1: Example of visualization of patch-wise information loss in the embeddings explains the incorrect predicted
answer in VizWiz Grounding VQA. For the question “What is the fifth number?", LLaVA incorrectly predicted
“18". The signed differences is difference between the L2 norm of the original and reconstructed patch embeddings.
The yellow squares highlight the top ten high loss patches that contribute to the wrong prediction.

ric relationships during the projection process084

across all tested models, and the preservation085

of local structure varies across different model086

and datasets.087

• Our embedding reconstruction identifies088

patch-level information loss and provides in-089

terpretable visualizations for error analysis in090

VLMs, directly linking local information loss091

to model performance.092

2 Related Work093

VLMs and Connectors Integrating visual and094

textual inputs is fundamental for vision–language095

models (VLMs) to effectively process multimodal096

information. Existing VLMs typically employ two097

main approaches (Li and Tang, 2024): models098

like LLama3.2 (gra, 2024) and BLIP (Li et al.,099

2023b) leverage cross-modal attention mechanisms,100

while others such as LLaVA (Liu et al., 2023) and101

Qwen-2-VL (Wang et al., 2024) adopt connectors102

to project visual representations into latent vectors103

compatible with large language models (LLMs).104

Lin et al. (2024) categorize connectors into two105

types: feature preserving and feature compressing106

connectors. Feature preserving connector includ-107

ing MLPs that preserves the patch numbers and108

embedding dimensions, such as the two-layer MLP109

connector in LLaVA. While feature compressing110

connectors project vision embeddings to a reduced111

number of patch embeddings, which often involves112

transformer-based or convolution architecture, and113

pooling over the original vision embedding. The114

feature compressing category includes connectors115

such as the perceiver sampler in Idefics2 (Lau-116

rençon et al., 2024) and the patch merger in Qwen-117

2-VL (Wang et al., 2024). In this paper, we es- 118

timate information loss considering both type of 119

connectors. 120

Limitations & Analysis of VLMs A series of 121

analyses has been conducted to investigate the 122

modality gap and representation limitations of 123

contrastive-based VLMs (Schrodi et al., 2024; 124

Liang et al., 2022; Tong et al., 2024). These stud- 125

ies reveal that the representational shortcomings 126

in CLIP embeddings subsequently impacts the vi- 127

sual perception capabilities of VLMs relying on 128

such vision encoders. For connector-based VLMs, 129

Zhang et al. (2024) demonstrates that the latent 130

space sufficiently retains the information necessary 131

for classification through probing across different 132

layers, and Lin et al. (2024) demonstrate the impact 133

of different connectors on VLMs’ downstream per- 134

formance. However, there remains a significant gap 135

in understanding whether fine-grained visual infor- 136

mation, crucial for tasks such as visual grounding 137

and visual question answering, is lost in the pro- 138

cess. In this paper, we focus on the connector-based 139

models to understand the information transforma- 140

tion. To the best of our knowledge, our paper is 141

the first to directly quantify information loss of the 142

connectors from the representation perspective, of- 143

fering deeper insights into where and what specific 144

information is lost from the visual features. 145

3 Preliminaries 146

In this paper, we consider vision-language mod- 147

els that consist of a vision encoder, a text en- 148

coder, and a connector module for modality fu- 149

sion. Specifically, for an input image x ∈ Rw×h×c 150

(width w, height h, channels c), the visual encoder 151
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Figure 2: For an image, we can calculate the overlap of
its neighbors before and after projection. For example,
the overlap ratio for the given image in this figure is
0.67 as two of its three nearest neighbors are the same
in both representation space.

ϕv : Rh×w×c → Rnv×dv produces a sequence of152

patch embeddings X = ϕv(x), where nv is the153

number of patches and dv is the embedding di-154

mension. We write Σ∗ to denote the set of text155

sequences over an alphabet of characters Σ. The156

text encoder ϕℓ : Σ
∗ → Rnℓ×dℓ converts the text157

sequence y ∈ Σ∗ to text embeddings Y = ϕℓ(y),158

with nℓ the sequence length and dℓ the text embed-159

ding dimension.160

After the image embeddings are obtained, the161

connector CONN : Rnv×dv → Rnℓ×dℓ projects the162

visual embeddings X into the language model’s163

space, producing the projected representations164

Ỹ = CONN(X). The projected image representa-165

tions are then concatenated with the text represen-166

tations as a combined input sequence [Ỹ;Y]. The167

language model further processes this sequence168

and predicts probability distribution over the next169

tokens. Please see formal definition in Appendix A.170

4 Quantifying Information Loss171

We propose two methods for quantifying informa-172

tion loss during the critical projection step in VLMs173

— where the connector projects visual features of174

an image into the shared semantic space used for175

language understanding. The first method, as illus-176

trated in Figure 4, quantifies structural persevera-177

tion of semantic embeddings by measuring the over-178

lap between each image representation’s k-Nearest179

Neighbors (k-NN, Cover and Hart (1967)) before180

and after projection. The second method evaluates181

patch-level representation distortion by training an182

ad hoc neural network to reconstruct the original183

image embedding from its projected representation184

(Figure 3). 185

4.1 k-Nearest Neighbors Overlap Ratio 186

To quantify geometric information loss during pro- 187

jection in visual representation spaces, we propose 188

the k-nearest neighbors overlap ratio, a metric 189

grounded in the preservation of the k-NN relation- 190

ship (Cover and Hart, 1967) between data points. 191

Specifically, consider a set of unique images D = 192

{x1, . . . ,xN}. For each image xi, i = 1, . . . , N , 193

let Xi = ϕv(xi) ∈ Rnv×dv be its original vision 194

embedding, and Ỹi = CONN(Xi) ∈ Rnv×dv be its 195

projected embedding through the connector. We 196

define the k-NN overlap ratio for image xi as 197

R(i, k) =

∣∣N[X](Xi, k) ∩N
[Ỹ]

(Ỹi, k)
∣∣

k
(1) 198

199

Where N[X](Xi, k) is the set of k-nearest neigh- 200

bors of Xi among the pre-projection embeddings 201

of all other images [X] = {X1, . . . ,XN}. Like- 202

wise, N
[Ỹ]

(Ỹi, k) is the set of k-nearest neighbors 203

of Ỹi among the projected embeddings of all the 204

other images [Ỹ] = {Ỹ1, . . . , ỸN}. As a global 205

measure, the average overlap ratio is calculated as 206

R(k) =
1

N

N∑
i=1

R(i, k) (2) 207

208

An ideal projection would preserve the local ge- 209

ometric structure, ensuring that the k-NN sets for 210

Xi and Ỹi remain identical for each image xi. De- 211

viations in these neighborhoods—measured by the 212

overlap ratio (Equation 1)—reflect information loss 213

introduced during projection. Lower overlap indi- 214

cates greater distortion, while higher overlap sug- 215

gests faithful geometric retention. 216

4.2 Embedding Reconstruction 217

While neighborhood overlap ratios reveal structural 218

information loss during projection—indicating how 219

well geometric relationships between embeddings 220

are preserved—they do not identify patch-level vi- 221

sual feature loss during the connector projection. 222

To address this, we further quantify and local- 223

ize patch-level information loss in the embedding 224

space by attempting to reconstruct the original vi- 225

sion encoder embeddings from their projected rep- 226

resentations. Specifically, given a dataset of images 227

D = {x1, . . . ,xN}, we train a reconstruction 228

3



Reconstruct Latent Representa.on

Reconstruction 
Model𝑌" X

Figure 3: We can also quantify the information loss
by reconstructing the visual representation from the
projected latent vectors of a given image.

model fθ : Rnℓ×dℓ → Rnv×dv to minimize the229

following reconstruction loss230

Lrecon(D) =

N∑
i=1

∥Xi − fθ(Ỹi)∥ (3)231

where ∥ · ∥ denotes the Euclidean distance, Xi ∈232

Rnv×dv is the original embedding sequence for the233

image xi, and Ỹi ∈ Rnℓ×dℓ is the connector pro-234

jected embedding. For each image xi, the recon-235

struction loss ∥Xi − fθ(Ỹi)∥ yields a loss matrix236

of the same size as the original embedding, which237

enables patch-level visualization.238

5 Experimental Setup239

We test our information loss hypothesis by ex-240

perimenting with three open-weights connector-241

based vision-language models across five evalua-242

tion datasets, including visual question answering243

and image retrieval tasks.244

5.1 Evaluation Datasets and VLMs245

We evaluate on five diverse evaluation datasets,246

each probes different aspects of visual understand-247

ing.248

• SEED-Bench (Li et al., 2023a) provides cate-249

goriezed multiple-choice questions spanning250

cognitive tasks from basic scene understand-251

ing to complex visual reasoning.252

• FoodieQA (Li et al., 2024) focuses on more253

fine-grained feature understanding in the food254

domain through multiple-choice questions.255

• VizWiz Grounding VQA (Chen et al., 2022)256

includes real-world visual assistance scenarios257

with grounding-based question answering.258

• VQAv2 (Antol et al., 2015) covers open-259

ended questions that test general visual com-260

prehension.261

• CUB-200-2011 (Wah et al., 2011) is a com- 262

monly used dataset for fine-grained image re- 263

trieval that covers 200 species of birds. 264

Together, these datasets offer complementary per- 265

spectives on how different types of visual informa- 266

tion are preserved during projection. 267

We consider three open-weights connector-based 268

vision-language models including LLaVA (Liu 269

et al., 2023), Idefics2 (Laurençon et al., 2024), and 270

Qwen2.5-VL (Wang et al., 2024). LLaVA uses a 271

two-layer MLP as the connector, preserving total 272

number of patches for each image. In contrast, 273

Idefics2 uses a attention-based perceiver resampler 274

(Jaegle et al., 2021) that projects image embeddings 275

to a fixed-length embeddings. Qwen2.5-VL uses a 276

MLP-based patch merger which merges every four 277

neighboring patch representations into one. We 278

use the 7B-instruct model variants for LLaVA and 279

Qwen2.5-VL, and the Idefics2-8B-instruct model. 280

5.2 Embedding Reconstruction Models 281

We build models to reconstruct image patch em- 282

beddings from connector outputs. These recon- 283

struction models are intentionally designed with 284

larger capacity than the original connectors, includ- 285

ing expanded hidden dimensions and additional 286

hidden layers. This controlled setup ensures our 287

models are trained to recover the original visual 288

representations without creating new bottlenecks 289

in the reconstruction process. 290

Architecture As the connector in the LLaVA 291

model preserves the number of image patches be- 292

fore and after the projection of the visual embed- 293

dings, we use a simple 3-layer MLP with a hidden 294

dimension of 2048. For Idefics2 and Qwen2.5-VL, 295

whose connector reduces the sequence length of the 296

embeddings from nv to nl, we first project the con- 297

nector outputs to hidden embeddings, combined 298

with learnable positional encodings, and then pro- 299

cess it through a 16-layer transformer encoder with 300

16 attention heads. The hidden vector dimension is 301

2048. The parameters of the reconstruction models 302

and their input and output dimensions are reported 303

in Table 1. 304

Training We train each of the embedding recon- 305

struction models on the COCO 2017 train set im- 306

ages (Lin et al., 2014) for 30 epochs with early 307

stopping. We apply a learning rate of 1e − 4 and 308

dropout of 0.1, and a total batch size of 128. 309
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Figure 4: Neighborhood overlap ratios across three datasets: SeedBench validation set, a 10,000-sample subset of
VQAv2 validation, and Vizwiz grounding VQA validation. Analysis using 10, 50, and 100 nearest neighbors shows
overlap ratios below 0.62 for all models, suggesting connectors poorly preserve distance relationships and neighbor
rankings for the visual representations.

Model |MC| EPre EPost |MR|

LLaVA 21M 576× 1024 576× 4096 27M
Idefics2 743M 576× 1152 64× 4096 844M
Qwen2.5-VL 45M 576× 1280 144× 3584 843M

Table 1: Model parameters and embedding dimensions.
|MC| denotes number of parameters in the connector
and |MR| represents number of parameters of the re-
construction model. EPre and EPost refer to pre- and
post-projection embedding dimensions, respectively.

6 Neighbor Rankings and Semantic310

Information are Not Preserved311

We evaluate the neighborhood overlap ratio (Sec-312

tion 4.1) using images in the SeedBench valida-313

tion set, a subset of the VQAv2 validation set with314

10, 000 elements, and the validation set of Vizwiz315

grounding VQA dataset. It is intuitive that higher316

neighborhood overlap ratios suggest that the pro-317

jection better preserves the relationships between318

visual embeddings. As the neighborhood rankings319

directly relates to the image retrieval task, we also320

evaluate retrieval performance using both pre- and321

post-connector visual embeddings.322

6.1 Low Overlap Ratio for All Models323

In Figure 4, we show the neighborhood overlap324

ratio across k = 10, 50, and 100 nearest neigh-325

bors, averaging through all unique images in the326

evaluation datasets.1 We can observe that the neigh-327

borhood overlap ratios are around 50% for all three328

1Visual embeddings pre- and post-connector projection
have a 1-1 mapping to the input image, and these visual em-
beddings are not impacted by the language model prompts.

models, with LLaVA achieving 61.6% overlap as 329

the maximum when considering 100 nearest neigh- 330

bors. This suggests a significant reordering of near- 331

est neighbors post-projection across all models. 332

Specifically, LLaVA maintains higher structural 333

preservation compared to Qwen2.5-VL and Idefics- 334

2, whereas Qwen2.5-VL lost almost 90% of the 335

neighborhood ranking information. However, even 336

LLaVA shows notable neighbor reshuffling, espe- 337

cially at smaller neighborhood sizes (k=10). 338

In Figure 5, we visualize the nearest neighbors 339

of a given query image, revealing significant neigh- 340

bor reordering across all models. However, for 341

Qwen2.5-VL, the neighbors obtained with post- 342

projection embeddings are more semantically sim- 343

ilar to the query image. We suspect that this phe- 344

nomenon could stem from its continuous training 345

of the image encoder in the pretraining stage and 346

the patch merging, which yields more semantically 347

meaningful post-projection embeddings. Other 348

VLMs such as LLaVA use a frozen vision encoder, 349

where the connector is updated to inherit features 350

from the pretrained encoder. However, in Qwen2.5- 351

VL, continued pretraining with an unfrozen vision 352

encoder produces fundamentally different learned 353

visual embeddings. This indicates that the pre- and 354

post-projection visual representations are not equiv- 355

alent, but this does not necessarily lead to worse 356

semantic representations of the image. 357

6.2 Image Retrieval Evaluation 358

To verify if neighborhood reordering correlates 359

with a degradation in the semantic representation 360

of images, we evaluate on the CUB-200-2011 im- 361

5
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(c) Five nearest neighbors of Qwen2.5-VL image embeddings

Figure 5: Comparison of five nearest neighbors searched
with pre-projection (top) and post-projection (bottom)
embeddings using different models. The first image in
each row is the query image, followed by its nearest
neighbors. For Qwen2.5-VL, despite a low neighbor-
hood overlap ratio, post-projection embeddings retrieve
more semantically similar images.

age retrieval test set (Wah et al., 2011). We per-362

form zero-shot image retrieval with pre- and post-363

connector embeddings for each query image, ex-364

cluding the query image itself from the gallery. The365

pre-and post-projection embeddings are indexed366

with FAISS (Douze et al., 2024), and we experi-367

ment with retrieving similar images based on both368

the L2 distance and the inner product similarity of369

the image representations.370

We report the recall scores at rank 1 (R@1) and371

rank 5 (R@5) in Table 2. Consistent with our obser-372

vations from the neighborhood overlap visualiza-373

tion (Figure 5), we observe semantic degradation374

of 41.4% and 18.8% of R@5 for for LLaVA and375

Idefics model, respectively. In contrast, for the376

Qwen2.5-VL model, the improved image retrieval377

performance with post-projection embeddings sug-378

gests that the low overlap ratio stems from the sub-379

stantial differences between the two sets of visual380

Model L2 IP

R@1 R@5 R@1 R@5

Pre-projection
LLaVA 8.34 21.82 9.46 24.78
Idefics2 13.10 30.81 13.38 30.98
Qwen-2.5-VL 4.23 11.74 6.83 24.23

Post-projection
LLaVA 6.16 ↓ 17.22 ↓ 5.54 ↓ 20.49 ↓
Idefics2 10.87 ↓ 25.28 ↓ 10.99 ↓ 25.15 ↓
Qwen-2.5-VL 10.65 ↑ 26.44 ↑ 8.26 ↑ 26.70 ↑

Table 2: Zero-shot retrieval performance on CUB test
set using L2 distance and inner product for similarity
measure. R@k denotes Recall at rank k. Arrows indi-
cate performance change direction after projection.

Dataset MSE LLaVA Idefics2 Qwen2.5-VL

VizWiz
Avg 0.115 0.907 1.069
Std 0.086 0.298 0.684

SeedBench
Avg 0.106 0.872 1.069
Std 0.071 0.307 0.610

FoodieQA
Avg 0.113 0.918 1.069
Std 0.057 0.283 0.673

Table 3: MSE loss for embedding reconstruction of im-
ages in the VizWiz, SeedBench, and FoodieQA datasets.
We report both average loss (avg) and standard devia-
tion (std). LLaVA’s visual embeddings exhibit lowest
reconstruction error among all test representations.

embeddings, with the post-projection embeddings 381

capturing more semantic features. This suggests 382

that post-projection image representations can be 383

used for image retrieval tasks for Qwen2.5-VL, 384

while the original image representations work bet- 385

ter for the other two models. 386

7 Reconstruction Loss and Model 387

Behavior 388

While the neighborhood overlap ratio reflects infor- 389

mation loss in semantic representations and latent 390

space geometry, we further examine the informa- 391

tion loss at the image patch level. Specifically, 392

we reconstruct patch-level visual representation 393

X of an image from its projected counterpart Ỹ 394

(Figure 3). Higher reconstruction loss indicates 395

greater difficulty in recovering the features that 396

was captured in the original visual embeddings. 397

This patch-level comparison between original and 398

reconstructed embeddings enables us to precisely 399

quantify and locate the visual information that is 400

lost during connector projection. 401
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Figure 6: Correlation between reconstruction loss and question-answering accuracy. For LLaVA and Idefics2, all
correlations have a p-value < 5e-5, indicating statistically significant relationships, whereas no clear correlation is
observed for Qwen2.5-VL. The reconstruction loss occurs in both answer-relevant and irrelevant patches. Loss in
relevant patches has negatively affects performance of LLaVA and Idefics2. “Norm" represents differences between
the L2 norm of the embeddings. “Combine" represents the norm difference weighted by cosine similarities.

7.1 Reconstruction Loss402

Our embedding reconstruction evaluation follows403

two steps: 1) We first train a reconstruction model404

for each VLM, using pre- and post-projection em-405

bedding pairs of the images in the COCO 2017 train406

set; 2) Then we use the reconstruction models to407

predict image representations from their projected408

counterparts.409

For training stability, we apply normalization to410

both pre- and post-projection embeddings using411

mean and standard deviation of the dataset. We412

measure the reconstruction loss for images in the413

validation set of VizWiz grounding VQA, Seed-414

Bench, and FoodieQA.415

Table 3 presents overall reconstruction loss.416

Among all tested models, LLaVA’s projected em-417

beddings maintain the highest reconstruction fi-418

delity. The overall reconstruction loss reflects419

the overall difficulty of recovering information en-420

coded in the visual representations. We further421

visualize the patch-level loss to test whether the422

transformation through the connector projection423

acts as a selective filter of visual features or results424

in genuine information loss. This distinction helps425

clarify if the projection merely prioritizes certain vi-426

sual aspects while preserving them, or if it actually427

degrades the encoded visual information.428

7.2 Loss at Patch-level Visual Features429

Explains Question Answering Behaviors430

To distinguish whether the reconstruction loss431

stems from selective feature preservation or ac-432

tual information loss, we visualize the patch-level433

loss for images in the VizWiz grounding VQA val- 434

idation dataset. This dataset is particularly suit- 435

able for our analysis as it provides answer ground- 436

ing—binary masks indicating image regions rele- 437

vant to each question. By examining the relation- 438

ship between the reconstruction loss for the answer- 439

relevant image patches and question-answering ac- 440

curacy, we can assess whether the projection pre- 441

serves task-relevant visual information. 442

We report the Spearman correlation between the 443

reconstruction loss and the question answering ac- 444

curacy in Figure 6. For LLaVA, we observe a 445

negative correlation between prediction accuracy 446

and reconstruction loss in answer-relevant patches, 447

while a positive correlation is found in irrelevant 448

patches. This indicates that information loss in 449

answer-relevant patches negatively impacts model 450

performance, whereas loss in irrelevant patches has 451

a less significant effect. 452

As shown in Figure 1, identifying distorted fea- 453

tures allows us to pinpoint visual information that 454

becomes inaccessible or less reliable for the lan- 455

guage model. For instance, reconstruction loss in 456

the patches of the fifth number "8" rank among 457

the top ten of all image patches, suggesting that 458

the model may have struggled to answer the ques- 459

tion due to lost details necessary for identifying 460

the number. This analysis introduces a new visu- 461

alization approach to examine VLM limitations, 462

particularly in scenarios requiring reasoning or rec- 463

ognizing fine-grained viusal features. Please see 464

more visualization examples in Appendix C. 465
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Model Mean Std Min Max

LLaVA 16.62 3.16 8.76 23.65
Idefics2 4.93 0.08 4.78 5.70
Qwen2.5-VL 4.41 0.09 4.24 5.05

Table 4: Procrustes analysis results. We report the align-
ment error on SeedBench image representations before
and after connector projection.

8 Analysis466

Procrustes analysis We performed Procrustes467

analysis (Gower, 1975) on mean-pooled image468

embeddings from LLaVA, Idefics2, and Qwen2.5-469

VL. As the pre- and post-projection embeddings470

have different embedding dimensions and se-471

quence lengths, our analysis follows three steps472

to complete the embedding alignment. We first473

take the mean-pooled image representation by474

averaging over the sequence length, producing475

fixed-size vectors of size nv and nl. We then476

use PCA (Maćkiewicz and Ratajczak, 1993) on477

the mean-pooled post-projection embeddings to478

project them to the same dimension of the mean-479

pooled pre-projection embeddings.480

Orthogonal transformation matrix R was de-481

rived through singular value decomposition of the482

cross-covariance matrix X̄⊤T̄ , where X̄ ∈ Rnv483

represents mean-pooled pre-projection embeddings484

and T̄ ∈ Rnv the PCA-transformed post-projection485

embeddings. Then the orthogonal transformation486

matrix is learned to best align these two sets of487

embeddings by minimizing the Euclidean distance.488

The reconstruction error are reported in Table 4.489

We visualize the LLaVA embedding alignment with490

PCA in Figure 7.491

Our Procrustes analysis reveals fundamental lim-492

itations in linear alignment of the image embed-493

dings, with high alignment errors of 16.62 for494

LLaVA and 4.41 for Qwen2.5-VL demonstrating495

the inherent difficulty of preserving geometric rela-496

tionships through rigid transformations. While this497

method establishes a critical baseline for structural498

fidelity assessment, its constrained linear formu-499

lation explains why our non-linear reconstruction500

approaches achieve significantly lower errors.501

Ablation on Reconstruction Model Size and502

Structure We build three reconstruction mod-503

els of different size for LLaVA: a 27M three layers504

MLP, a 39M five-layer MLP, and a 40M Trans-505

former. In Table 5, we can observed that the 27M506

10 0 10 20 30
Component 1

4

2

0

2

4

6

Co
m

po
ne

nt
 2

Procrustes Analysis Visualization (PCA)
Original
Transformed
Target

Figure 7: Alignment visualization for LLaVA pre- and
post-projection embeddings through PCA.

model is sufficient for reconstructing LLaVA vi- 507

sual embeddings and a larger model does not yield 508

better validation loss.

Model Size VizWiz SeedBench FoodieQA

MLP 27M
Avg 0.050 0.056 0.051
Std 0.013 0.011 0.007

MLP 39M
Avg 0.064 0.070 0.065
Std 0.015 0.013 0.0075

Transformer 40M
Avg 0.237 0.231 0.228
Std 0.019 0.025 0.014

Table 5: Evaluation of MSE across VizWiz, SeedBench,
and FoodieQA datasets. Reported values include aver-
age loss (Avg) and standard deviation (Std).

509

9 Conclusion and Future Work 510

Our study provides a systematic evaluation of 511

how connectors in vision-language models (VLMs) 512

induce information loss when projecting visual 513

embeddings into the language embedding space. 514

Through neighborhood overlap ratios and embed- 515

ding reconstruction, we establish a quantitative 516

framework that captures two critical aspects of the 517

information loss: 1) structural shift of global se- 518

mantic relationships shown by the 40-60% diver- 519

gence in nearest-neighbor rankings and, 2) patch- 520

level reconstruction loss correlating with model 521

failures in fine-grained visually grounded question 522

answering. The patch-level reconstruction also en- 523

ables visualization of local information loss, offer- 524

ing interpretable explanations for model behaviors. 525

In the future, we will investigate information 526

loss quantification through image reconstruction to 527

quantify information loss at a pixel-level. We hope 528

to further explore approaches to mitigate the impact 529

of information loss in VLMs, such as incorporating 530

better feature selection mechanisms. 531
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Ethics Statement532

We foresee no ethical concerns with our research533

project. In particular, ours is merely a scientific534

study of VLMs and provides no artifacts that can535

be used in a real-world scenario.536

Limitations537

In this study, we evaluate the information loss intro-538

duced by connectors in VLMs. However, several539

limitations should be noted. First, due to variations540

in model architectures and pretraining strategies,541

our findings may be specific to the connector-based542

VLMs analyzed and may not generalize to archi-543

tectures that employ cross-attention for modality544

fusion. Second, our experiments focus on connec-545

tors in VLMs within the 7B–8B parameter range.546

Expanding the analysis to models of different sizes547

could provide deeper insights into the relation-548

ship between model scale and information loss.549

Third, our pixel-level reconstruction experiments550

(Appendix D) yielded inconclusive results in quan-551

tifying information loss, possibly due to limitations552

in our chosen image generation model and training553

dataset size. Additionally, while we empirically554

validate our k-NN overlap ratio and embedding555

reconstruction metrics, a formal theoretical char-556

acterization would further strengthen their reliabil-557

ity. Finally, our reconstruction experiments cannot558

conclusively determine whether the observed infor-559

mation loss stems from the connector layer itself560

or from potential learning limitations of the trained561

reconstruction network.562
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A Autoregressive Vision-Language 702

Models 703

A string y is a sequence of characters from an 704

alphabet Σ, we denote with Σ∗ the set of possible 705

strings over Σ. We define an image x as an array 706

in Rw×h×c, where w denotes the image’s width, h 707

its height, and c the number of color channels. 708

A vision-language model over strings in Σ∗, 709

and images in Rw×h×c is a probability distribution 710

pθ : Σ∗ × Rh×w×c → [0, 1] where θ is a set of 711

learnable parameters. In this paper, we are mostly 712

interested in autoregressive vision–language mod- 713

els, i.e. language models that are defined through a 714

conditional next token distribution ℓθ: 715

pθ(y,x) = ℓθ(EOS | y,x)
|y|∏
t=1

ℓθ(yt | y<t,x)

(4)

716

Where EOS is a distinguished end-of-sequence 717

symbol, and we write Σ = Σ ∪ {EOS} to denote 718

the alphabet augmented with EOS. 719

We assume the following general structure on 720

the vision-language model. The input string y<t 721

is mapped by the language encoder ϕℓ : Σ∗ → 722

Rdℓ×nℓ to a vector representation Y = ϕℓ(y<t) 723

of the string, where dℓ and nℓ are respectively the 724

context window size and the embedding dimension 725

of the language encoder. 2 726

B Ablation on Index Method for k-NN 727

We evaluated k-NN overlap ratio using three dif- 728

ferent embedding types as search indices: original 729

embeddings, mean-pooled image embeddings, and 730

normalized embeddings (Table 6). Since the per- 731

formance differences were minimal, we selected 732

mean-pooled embeddings for both pre- and post- 733

projection image representations in calculating k- 734

NN overlap ratios. 735

2In practice, we assume that the context window is fixed,
this means that sequences longer than nℓ will be truncated,
and shorter sequences will be padded.
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Overlap Ratio
Index Type

IndexFlatL2 IndexFlatL2
(mean pooling)

IndexFlatIP
(normalized vectors)

mean std mean std mean std

top100 0.466 0.122 0.563 0.107 0.504 0.129
top50 0.488 0.128 0.556 0.120 0.425 0.142
top10 0.490 0.149 0.551 0.160 0.377 0.161

Vector Size
Before projection 576×1024 1×1024 576×1024
After projection 576×4096 1×4096 576×4096

Table 6: Ablation on KNN results when using original embeddings, mean pooled image embeddings, and normalized
embeddings. We chose to use the mean-pooled embeddings for efficiency due to large embeddings size.

Before Projection After ProjectionOriginal

Figure 8: Image reconstruction with LLaVA model on
in-distribution and out-of-distribution examples.

C Visualization736

C.1 Patch-level Loss Visualization for Vizwiz737

Grounding VQA738

In Figure 9, we visualize examples of high recon-739

struction loss patches that contributes to model’s740

failure on answering questions that requires rec-741

ognizing text in the objects (red regions are the742

answer grounding masks).743

C.2 Visualization of Neighborhood744

Reordering745

In Figure 12, we present more kNN examples on746

comparison of searching with pre-projection (top)747

v.s. post-projection (bottom) embeddings.748

D Image Reconstruction with Different749

Embeddings750

Beyond neighbor-overlapping and embedding re-751

construction, we aim to investigate how informa-752

tion loss manifests in the reconstructed images753

themselves. To explore this, we project different754

representations of visual features onto the input755

embedding space of a powerful image decoder to756

assess their reconstruction quality. However, im- 757

age reconstruction performance depends on various 758

factors, including the expressiveness of the image 759

decoder. As such, this section serves as a prelimi- 760

nary exploration, and we encourage future work in 761

this direction. 762

For our experiments, we use a fine-tuned VAE 763

decoder3, trained on the original VAE checkpoint 764

from Stable Diffusion, trying to alleviate the in- 765

fluence of the decoder as a limiting factor in re- 766

construction quality. To align the sequence length 767

between the vision encoder in the VLM and the 768

expected input length of the VAE decoder, we em- 769

ploy a 6-layer Transformer encoder-decoder mod- 770

ule with 4 attention heads. We train the aligner 771

module on the COCO 2017 training set for 100 772

epochs with three objectives: 1) Embedding loss 773

minimizing the difference between the VAE en- 774

coder embeddings and the aligned embeddings 775

from the VLM’s visual encoder; 2) Reconstruc- 776

tion loss measuring the mean squared error (MSE) 777

between the original and reconstructed images; 3) 778

Latent loss quantifying the divergence between the 779

mean and variance of the Gaussian distribution for 780

diffusion. 781

For the VLM, we use the LLaVA model in our 782

experiments. We evaluate reconstruction perfor- 783

mance on both an in-distribution image from the 784

COCO 2017 dev split and an out-of-distribution im- 785

age, as shown in Figure 8. When using embeddings 786

before projection, the overall pixel-wise MSE re- 787

construction loss is 0.2128, compared to 0.2443 af- 788

ter projection. Figure 8 illustrates the reconstructed 789

images for both cases, where pre-projection em- 790

beddings yield similar contour preservation with 791

post-projection embeddings. We leave this for fur- 792

3https://huggingface.co/stabilityai/
sd-vae-ft-mse
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Figure 9: Visualization of high reconstruction loss patches that contributes to model’s failure on answering questions
that requires recognizing text in the objects (red regions are the answer grounding masks).

ther research in visualizing the nuanced difference793

between embeddings.794
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Query Image Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

Query Image Neighbor 1
Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

Figure 10: Idefics high kNN overlap ratio example, where we can observe the reordering among semantically
similar vision embeddings.

Query Image Neighbor 1 Neighbor 2 Neighbor 3

Neighbor 4

Neighbor 5

Query Image
Neighbor 1 Neighbor 2 Neighbor 3 Neighbor 4 Neighbor 5

Figure 11: Qwen kNN example where the post-projection embeddings are better at retrieving semantically similar
images (bottom row).

Query Image
Neighbor 1 Neighbor 2

Neighbor 3
Neighbor 4 Neighbor 5

Query Image
Neighbor 1

Neighbor 2 Neighbor 3
Neighbor 4

Neighbor 5

Figure 12: LLaVA low kNN overlap ratio example. We can observe the degradation in post-projection embedding.
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