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Abstract

Vision—language models typically process vi-
sual inputs through a pretrained vision en-
coder followed by projection into the language
model’s embedding space. While crucial for
modality fusion, this projection step induces
under-characterized information loss that di-
rectly impacts model capabilities. We propose
two novel approaches to quantify visual infor-
mation loss introduced at this projection step.
First, we evaluate the preservation of semantic
information and structural relationships by an-
alyzing changes in nearest-neighbor rankings
between representations. Second, to locate in-
formation loss for the image representation at
a patch level, we directly measure information
loss through visual embedding reconstruction.
Focusing on connector-based VLMs, our exper-
iments reveal projection layers fundamentally
alter visual semantic relationships — nearest
neighbor similarity rankings diverge by 40-60%
post-projection, directly explaining observed
retrieval performance drops. Our embedding
reconstruction approach provides interpretable
insights for model behavior on visual question-
answering tasks, finding that areas of high in-
formation loss reliably predict instances where
models struggle.

1 Introduction

Vision—language models (VLMs) have demon-
strated remarkable capabilities in visual question
answering tasks by leveraging pretrained vision
encoders. A series of models employ connector
modules to bridge the semantic gap between visual
and textual modalities, projecting visual represen-
tations into embedding sequences that language
models can process (Chen et al., 2024a; Liu et al.,
2023; Deitke et al., 2024; Laurencon et al., 2024;
Chen et al., 2024b; Zhang et al., 2025; Sun et al.,
2024). Common connector architectures include
multi-layer perceptrons (MLPs), as implemented
in LLaVA (Liu et al., 2023), or more sophisti-
cated transformer-based perceiver sampler used in

Idefics (Laurencon et al., 2024) that convert image
patches to a fixed-length sequence of visual tokens.

While these connector modules enable efficient
cross-modal integration (Li and Tang, 2024), their
impact on information fidelity remains poorly un-
derstood. The transformation of rich visual features
into a format compatible with language models in-
evitably involves dimensional conversion and rep-
resentation restructuring. This raises fundamental
questions about the nature and extent of potential
information loss during this critical projection step.
As highlighted in Figure 1, such information loss
could impose inherent limitations on the model’s
reasoning capabilities, as the language model’s per-
formance is bounded by the quality and complete-
ness of the visual information it receives. Despite
the growing body of research on VLM connector ar-
chitectures and their downstream performance (Lin
et al., 2024), there has been limited systematic in-
vestigation into how different connector designs
correlate visual information loss in the latent space.

To bridge this gap in the literature, we present a
comprehensive evaluation framework to quantify
information loss in VLM connector modules. We
first measure information loss through careful ex-
amination of the geometric structure of latent visual
representations. Then, through patch-level visual
feature reconstruction, we are able to pinpoint the
high-loss regions in the image — areas where vi-
sual features are hard to recover after projection.
This two-step approach provides both quantitative
metrics and interpretable visualizations, offering in-
sights into the nature of information transformation
during vision-text integration.

The main findings of this paper are:

* We propose a novel evaluation framework
comprising two approaches to quantify the
information loss at the connector component
for vision-language models.

* Our neighborhood overlap analysis shows sig-
nificant degradation of 40%—-60% of geomet-
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Figure 1: Example of visualization of patch-wise information loss in the embeddings explains the incorrect predicted
answer in VizWiz Grounding VQA. For the question “What is the fifth number?", LLaVA incorrectly predicted
“18". The signed differences is difference between the L? norm of the original and reconstructed patch embeddings.
The yellow squares highlight the top ten high loss patches that contribute to the wrong prediction.

ric relationships during the projection process
across all tested models, and the preservation
of local structure varies across different model
and datasets.

* Our embedding reconstruction identifies
patch-level information loss and provides in-
terpretable visualizations for error analysis in
VLMs, directly linking local information loss
to model performance.

2 Related Work

VLMs and Connectors Integrating visual and
textual inputs is fundamental for vision—language
models (VLMs) to effectively process multimodal
information. Existing VLMs typically employ two
main approaches (Li and Tang, 2024): models
like LLama3.2 (gra, 2024) and BLIP (Li et al.,
2023b) leverage cross-modal attention mechanisms,
while others such as LLaVA (Liu et al., 2023) and
Qwen-2-VL (Wang et al., 2024) adopt connectors
to project visual representations into latent vectors
compatible with large language models (LLMs).
Lin et al. (2024) categorize connectors into two
types: feature preserving and feature compressing
connectors. Feature preserving connector includ-
ing MLPs that preserves the patch numbers and
embedding dimensions, such as the two-layer MLP
connector in LLaVA. While feature compressing
connectors project vision embeddings to a reduced
number of patch embeddings, which often involves
transformer-based or convolution architecture, and
pooling over the original vision embedding. The
feature compressing category includes connectors
such as the perceiver sampler in Idefics2 (Lau-
rengon et al., 2024) and the patch merger in Qwen-

2-VL (Wang et al., 2024). In this paper, we es-
timate information loss considering both type of
connectors.

Limitations & Analysis of VLMs A series of
analyses has been conducted to investigate the
modality gap and representation limitations of
contrastive-based VLMs (Schrodi et al., 2024,
Liang et al., 2022; Tong et al., 2024). These stud-
ies reveal that the representational shortcomings
in CLIP embeddings subsequently impacts the vi-
sual perception capabilities of VLMs relying on
such vision encoders. For connector-based VLMs,
Zhang et al. (2024) demonstrates that the latent
space sufficiently retains the information necessary
for classification through probing across different
layers, and Lin et al. (2024) demonstrate the impact
of different connectors on VLMs’ downstream per-
formance. However, there remains a significant gap
in understanding whether fine-grained visual infor-
mation, crucial for tasks such as visual grounding
and visual question answering, is lost in the pro-
cess. In this paper, we focus on the connector-based
models to understand the information transforma-
tion. To the best of our knowledge, our paper is
the first to directly quantify information loss of the
connectors from the representation perspective, of-
fering deeper insights into where and what specific
information is lost from the visual features.

3 Preliminaries

In this paper, we consider vision-language mod-
els that consist of a vision encoder, a text en-
coder, and a connector module for modality fu-
sion. Specifically, for an input image & € R**/x¢
(width w, height h, channels c), the visual encoder
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Figure 2: For an image, we can calculate the overlap of
its neighbors before and after projection. For example,
the overlap ratio for the given image in this figure is
0.67 as two of its three nearest neighbors are the same
in both representation space.

¢y : RIXwxe _ Rroxdv produces a sequence of
patch embeddings X = ¢, (), where n, is the
number of patches and d, is the embedding di-
mension. We write >* to denote the set of text
sequences over an alphabet of characters 3. The
text encoder ¢, : ©* — R™*% converts the text
sequence y € 3* to text embeddings Y = ¢y (y),
with ny the sequence length and dy the text embed-
ding dimension.

After the image embeddings are obtained, the
connector CONN: R *d _ RmeXde projects the
visual embeddings X into the language model’s
space, producing the projected representations
Y = coNN(X). The projected image representa-
tions are then concatenated with the text represen-
tations as a combined input sequence [Y;Y]. The
language model further processes this sequence
and predicts probability distribution over the next
tokens. Please see formal definition in Appendix A.

4 Quantifying Information Loss

We propose two methods for quantifying informa-
tion loss during the critical projection step in VLMs
— where the connector projects visual features of
an image into the shared semantic space used for
language understanding. The first method, as illus-
trated in Figure 4, quantifies structural persevera-
tion of semantic embeddings by measuring the over-
lap between each image representation’s k-Nearest
Neighbors (k-NN, Cover and Hart (1967)) before
and after projection. The second method evaluates
patch-level representation distortion by training an
ad hoc neural network to reconstruct the original
image embedding from its projected representation

(Figure 3).

4.1 k-Nearest Neighbors Overlap Ratio

To quantify geometric information loss during pro-
jection in visual representation spaces, we propose
the k-nearest neighbors overlap ratio, a metric
grounded in the preservation of the £-NN relation-
ship (Cover and Hart, 1967) between data points.
Specifically, consider a set of unique images D =
{x1,...,xn}. For each image x;,i = 1,..., N,
let X; = ¢y(x;) € R™*dv be its original vision
embedding, and Y; = CONN(X;) € R™*% be its
projected embedding through the connector. We
define the £-NN overlap ratio for image x; as

N k

R(i, k) (1

Where NVix(X;, k) is the set of k-nearest neigh-
bors of X; among the pre-projection embeddings
of all other images [X] = {Xy,...,Xy}. Like-
wise, ¥ (Y5, k) is the set of k-nearest neighbors
of Y; among the projected embeddings of all the
other images [Y] = {Y1,...,Yn}. As a global
measure, the average overlap ratio is calculated as

_ 1 X
R(k) =+ > _R(. k) 2)
=1

An ideal projection would preserve the local ge-
ometric structure, ensuring that the k-NN sets for
X; and Y; remain identical for each image x;. De-
viations in these neighborhoods—measured by the
overlap ratio (Equation 1)—reflect information loss
introduced during projection. Lower overlap indi-
cates greater distortion, while higher overlap sug-
gests faithful geometric retention.

4.2 Embedding Reconstruction

While neighborhood overlap ratios reveal structural
information loss during projection—indicating how
well geometric relationships between embeddings
are preserved—they do not identify patch-level vi-
sual feature loss during the connector projection.
To address this, we further quantify and local-
ize patch-level information loss in the embedding
space by attempting to reconstruct the original vi-
sion encoder embeddings from their projected rep-
resentations. Specifically, given a dataset of images
D = {x1,...,xN}, we train a reconstruction
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Figure 3: We can also quantify the information loss
by reconstructing the visual representation from the
projected latent vectors of a given image.

model f; : R™*% — R™*d (o minimize the
following reconstruction loss

N
Erecon(D) = Z ||X1 - fG(?z)H (3)
=1

where || - || denotes the Euclidean distance, X; €
R™*v is the original embedding sequence for the
image x;, and Y, € R"*% js the connector pro-
jected embedding. For each image x;, the recon-
struction loss || X; — fp(Y;)]| yields a loss matrix
of the same size as the original embedding, which
enables patch-level visualization.

5 Experimental Setup

We test our information loss hypothesis by ex-
perimenting with three open-weights connector-
based vision-language models across five evalua-
tion datasets, including visual question answering
and image retrieval tasks.

5.1 Evaluation Datasets and VLMs

We evaluate on five diverse evaluation datasets,
each probes different aspects of visual understand-
ing.

* SEED-Bench (Li et al., 2023a) provides cate-
goriezed multiple-choice questions spanning
cognitive tasks from basic scene understand-
ing to complex visual reasoning.

* FoodieQA (Li et al., 2024) focuses on more
fine-grained feature understanding in the food
domain through multiple-choice questions.

* VizWiz Grounding VQA (Chen et al., 2022)
includes real-world visual assistance scenarios
with grounding-based question answering.

* VQAvV2 (Antol et al., 2015) covers open-
ended questions that test general visual com-
prehension.

* CUB-200-2011 (Wah et al., 2011) is a com-
monly used dataset for fine-grained image re-
trieval that covers 200 species of birds.

Together, these datasets offer complementary per-
spectives on how different types of visual informa-
tion are preserved during projection.

We consider three open-weights connector-based
vision-language models including LLaVA (Liu
et al., 2023), Idefics2 (Laurengon et al., 2024), and
Qwen2.5-VL (Wang et al., 2024). LLaVA uses a
two-layer MLP as the connector, preserving total
number of patches for each image. In contrast,
Idefics2 uses a attention-based perceiver resampler
(Jaegle et al., 2021) that projects image embeddings
to a fixed-length embeddings. Qwen2.5-VL uses a
MLP-based patch merger which merges every four
neighboring patch representations into one. We
use the 7B-instruct model variants for LLaVA and
Qwen2.5-VL, and the Idefics2-8B-instruct model.

5.2 Embedding Reconstruction Models

We build models to reconstruct image patch em-
beddings from connector outputs. These recon-
struction models are intentionally designed with
larger capacity than the original connectors, includ-
ing expanded hidden dimensions and additional
hidden layers. This controlled setup ensures our
models are trained to recover the original visual
representations without creating new bottlenecks
in the reconstruction process.

Architecture As the connector in the LLaVA
model preserves the number of image patches be-
fore and after the projection of the visual embed-
dings, we use a simple 3-layer MLP with a hidden
dimension of 2048. For Idefics2 and Qwen2.5-VL,
whose connector reduces the sequence length of the
embeddings from n, to n;, we first project the con-
nector outputs to hidden embeddings, combined
with learnable positional encodings, and then pro-
cess it through a 16-layer transformer encoder with
16 attention heads. The hidden vector dimension is
2048. The parameters of the reconstruction models
and their input and output dimensions are reported
in Table 1.

Training We train each of the embedding recon-
struction models on the COCO 2017 train set im-
ages (Lin et al., 2014) for 30 epochs with early
stopping. We apply a learning rate of 1le — 4 and
dropout of 0.1, and a total batch size of 128.
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Figure 4: Neighborhood overlap ratios across three datasets: SeedBench validation set, a 10,000-sample subset of
VQAV?2 validation, and Vizwiz grounding VQA validation. Analysis using 10, 50, and 100 nearest neighbors shows
overlap ratios below 0.62 for all models, suggesting connectors poorly preserve distance relationships and neighbor

rankings for the visual representations.

Model Mcl Epre Epost Mgl models, with LLaVA achieving 61.6% overlap as
LLaVA 21M 576 x 1024 576 x 4096 27M the maximum when considering 100 nearest neigh-
Idefics2 743M 576 x 1152 64 x 4096 844M bors. This suggests a significant reordering of near-
Qwen2.5-VL  45M 576 x 1280 144 x 3584 843M

Table 1: Model parameters and embedding dimensions.
| M| denotes number of parameters in the connector
and | M| represents number of parameters of the re-
construction model. Ep,. and Ep,s; refer to pre- and
post-projection embedding dimensions, respectively.

6 Neighbor Rankings and Semantic
Information are Not Preserved

We evaluate the neighborhood overlap ratio (Sec-
tion 4.1) using images in the SeedBench valida-
tion set, a subset of the VQAv?2 validation set with
10, 000 elements, and the validation set of Vizwiz
grounding VQA dataset. It is intuitive that higher
neighborhood overlap ratios suggest that the pro-
jection better preserves the relationships between
visual embeddings. As the neighborhood rankings
directly relates to the image retrieval task, we also
evaluate retrieval performance using both pre- and
post-connector visual embeddings.

6.1 Low Overlap Ratio for All Models

In Figure 4, we show the neighborhood overlap
ratio across k = 10, 50, and 100 nearest neigh-
bors, averaging through all unique images in the
evaluation datasets.! We can observe that the neigh-
borhood overlap ratios are around 50% for all three

Visual embeddings pre- and post-connector projection
have a 1-1 mapping to the input image, and these visual em-
beddings are not impacted by the language model prompts.

est neighbors post-projection across all models.
Specifically, LLaVA maintains higher structural
preservation compared to Qwen2.5-VL and Idefics-
2, whereas Qwen2.5-VL lost almost 90% of the
neighborhood ranking information. However, even
LLaVA shows notable neighbor reshuffling, espe-
cially at smaller neighborhood sizes (k=10).

In Figure 5, we visualize the nearest neighbors
of a given query image, revealing significant neigh-
bor reordering across all models. However, for
Qwen2.5-VL, the neighbors obtained with post-
projection embeddings are more semantically sim-
ilar to the query image. We suspect that this phe-
nomenon could stem from its continuous training
of the image encoder in the pretraining stage and
the patch merging, which yields more semantically
meaningful post-projection embeddings. Other
VLMs such as LLaVA use a frozen vision encoder,
where the connector is updated to inherit features
from the pretrained encoder. However, in Qwen?2.5-
VL, continued pretraining with an unfrozen vision
encoder produces fundamentally different learned
visual embeddings. This indicates that the pre- and
post-projection visual representations are not equiv-
alent, but this does not necessarily lead to worse
semantic representations of the image.

6.2 Image Retrieval Evaluation

To verify if neighborhood reordering correlates
with a degradation in the semantic representation
of images, we evaluate on the CUB-200-2011 im-
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Figure 5: Comparison of five nearest neighbors searched
with pre-projection (top) and post-projection (bottom)
embeddings using different models. The first image in
each row is the query image, followed by its nearest
neighbors. For Qwen2.5-VL, despite a low neighbor-
hood overlap ratio, post-projection embeddings retrieve
more semantically similar images.

age retrieval test set (Wah et al., 2011). We per-
form zero-shot image retrieval with pre- and post-
connector embeddings for each query image, ex-
cluding the query image itself from the gallery. The
pre-and post-projection embeddings are indexed
with FAISS (Douze et al., 2024), and we experi-
ment with retrieving similar images based on both
the L? distance and the inner product similarity of
the image representations.

We report the recall scores at rank 1 (R@1) and
rank 5 (R@5) in Table 2. Consistent with our obser-
vations from the neighborhood overlap visualiza-
tion (Figure 5), we observe semantic degradation
of 41.4% and 18.8% of R@5 for for LLaVA and
Idefics model, respectively. In contrast, for the
Qwen2.5-VL model, the improved image retrieval
performance with post-projection embeddings sug-
gests that the low overlap ratio stems from the sub-
stantial differences between the two sets of visual

Model L2 1P

R@1 R@5 R@1 R@5
Pre-projection
LLaVA 8.34 21.82 9.46 24.78
Idefics2 13.10 30.81 13.38 30.98
Qwen-2.5-VL  4.23 11.74 6.83 24.23
Post-projection
LLaVA 6.16 L 1722 554, 2049]
Idefics2 10.87 | 2528 | 1099 | 25.15]
Qwen-2.5-VL 10.657 26447 8267 26.70 1

Table 2: Zero-shot retrieval performance on CUB test
set using L? distance and inner product for similarity
measure. R@Fk denotes Recall at rank k. Arrows indi-
cate performance change direction after projection.

Dataset MSE LLaVA Idefics2 Qwen2.5-VL
o Q3w e
sedbench GE(on 037 oo
r 33 08B e

Table 3: MSE loss for embedding reconstruction of im-
ages in the VizWiz, SeedBench, and FoodieQA datasets.
We report both average loss (avg) and standard devia-
tion (std). LLaVA’s visual embeddings exhibit lowest
reconstruction error among all test representations.

embeddings, with the post-projection embeddings
capturing more semantic features. This suggests
that post-projection image representations can be
used for image retrieval tasks for Qwen2.5-VL,
while the original image representations work bet-
ter for the other two models.

7 Reconstruction Loss and Model
Behavior

While the neighborhood overlap ratio reflects infor-
mation loss in semantic representations and latent
space geometry, we further examine the informa-
tion loss at the image patch level. Specifically,
we reconstruct patch-level visual representation
X of an image from its projected counterpart Y
(Figure 3). Higher reconstruction loss indicates
greater difficulty in recovering the features that
was captured in the original visual embeddings.
This patch-level comparison between original and
reconstructed embeddings enables us to precisely
quantify and locate the visual information that is
lost during connector projection.
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Figure 6: Correlation between reconstruction loss and question-answering accuracy. For LLaVA and Idefics2, all
correlations have a p-value < 5e-5, indicating statistically significant relationships, whereas no clear correlation is
observed for Qwen2.5-VL. The reconstruction loss occurs in both answer-relevant and irrelevant patches. Loss in
relevant patches has negatively affects performance of LLaVA and Idefics2. “Norm" represents differences between
the L2 norm of the embeddings. “Combine" represents the norm difference weighted by cosine similarities.

7.1 Reconstruction Loss

Our embedding reconstruction evaluation follows
two steps: 1) We first train a reconstruction model
for each VLM, using pre- and post-projection em-
bedding pairs of the images in the COCO 2017 train
set; 2) Then we use the reconstruction models to
predict image representations from their projected
counterparts.

For training stability, we apply normalization to
both pre- and post-projection embeddings using
mean and standard deviation of the dataset. We
measure the reconstruction loss for images in the
validation set of VizWiz grounding VQA, Seed-
Bench, and FoodieQA.

Table 3 presents overall reconstruction loss.
Among all tested models, LLaVA’s projected em-
beddings maintain the highest reconstruction fi-
delity. The overall reconstruction loss reflects
the overall difficulty of recovering information en-
coded in the visual representations. We further
visualize the patch-level loss to test whether the
transformation through the connector projection
acts as a selective filter of visual features or results
in genuine information loss. This distinction helps
clarify if the projection merely prioritizes certain vi-
sual aspects while preserving them, or if it actually
degrades the encoded visual information.

7.2 Loss at Patch-level Visual Features
Explains Question Answering Behaviors

To distinguish whether the reconstruction loss
stems from selective feature preservation or ac-
tual information loss, we visualize the patch-level

loss for images in the VizWiz grounding VQA val-
idation dataset. This dataset is particularly suit-
able for our analysis as it provides answer ground-
ing—binary masks indicating image regions rele-
vant to each question. By examining the relation-
ship between the reconstruction loss for the answer-
relevant image patches and question-answering ac-
curacy, we can assess whether the projection pre-
serves task-relevant visual information.

We report the Spearman correlation between the
reconstruction loss and the question answering ac-
curacy in Figure 6. For LLaVA, we observe a
negative correlation between prediction accuracy
and reconstruction loss in answer-relevant patches,
while a positive correlation is found in irrelevant
patches. This indicates that information loss in
answer-relevant patches negatively impacts model
performance, whereas loss in irrelevant patches has
a less significant effect.

As shown in Figure 1, identifying distorted fea-
tures allows us to pinpoint visual information that
becomes inaccessible or less reliable for the lan-
guage model. For instance, reconstruction loss in
the patches of the fifth number "8" rank among
the top ten of all image patches, suggesting that
the model may have struggled to answer the ques-
tion due to lost details necessary for identifying
the number. This analysis introduces a new visu-
alization approach to examine VLM limitations,
particularly in scenarios requiring reasoning or rec-
ognizing fine-grained viusal features. Please see
more visualization examples in Appendix C.



Model Mean Std Min Max
LLaVA 16.62 3.16 8.76 23.65
Idefics2 493 0.08 478 570
Qwen2.5-VL 441 0.09 424 5.05

Table 4: Procrustes analysis results. We report the align-
ment error on SeedBench image representations before
and after connector projection.

8 Analysis

Procrustes analysis We performed Procrustes
analysis (Gower, 1975) on mean-pooled image
embeddings from LLaVA, Idefics2, and Qwen2.5-
VL. As the pre- and post-projection embeddings
have different embedding dimensions and se-
quence lengths, our analysis follows three steps
to complete the embedding alignment. We first
take the mean-pooled image representation by
averaging over the sequence length, producing
fixed-size vectors of size n, and n;. We then
use PCA (Mackiewicz and Ratajczak, 1993) on
the mean-pooled post-projection embeddings to
project them to the same dimension of the mean-
pooled pre-projection embeddings.

Orthogonal transformation matrix R was de-
rived through singular value decomposition of the
cross-covariance matrix X | 7, where X € R™
represents mean-pooled pre-projection embeddings
and T' € R™ the PCA-transformed post-projection
embeddings. Then the orthogonal transformation
matrix is learned to best align these two sets of
embeddings by minimizing the Euclidean distance.
The reconstruction error are reported in Table 4.
We visualize the LLaVA embedding alignment with
PCA in Figure 7.

Our Procrustes analysis reveals fundamental lim-
itations in linear alignment of the image embed-
dings, with high alignment errors of 16.62 for
LLaVA and 4.41 for Qwen2.5-VL demonstrating
the inherent difficulty of preserving geometric rela-
tionships through rigid transformations. While this
method establishes a critical baseline for structural
fidelity assessment, its constrained linear formu-
lation explains why our non-linear reconstruction
approaches achieve significantly lower errors.

Ablation on Reconstruction Model Size and
Structure We build three reconstruction mod-
els of different size for LLaVA: a 27M three layers
MLP, a 39M five-layer MLP, and a 40M Trans-
former. In Table 5, we can observed that the 27M

o Original
Transformed
A Target

Component 2

-10 0 10 20 30
Component 1

Figure 7: Alignment visualization for LLaVA pre- and
post-projection embeddings through PCA.

model is sufficient for reconstructing LLaVA vi-
sual embeddings and a larger model does not yield
better validation loss.

Model Size VizWiz SeedBench FoodieQA
ML M GO son oo
e M GRS s ooons
Tansformer 40M‘SE0C (s oo

Table 5: Evaluation of MSE across VizWiz, SeedBench,
and FoodieQA datasets. Reported values include aver-
age loss (Avg) and standard deviation (Std).

9 Conclusion and Future Work

Our study provides a systematic evaluation of
how connectors in vision-language models (VLMs)
induce information loss when projecting visual
embeddings into the language embedding space.
Through neighborhood overlap ratios and embed-
ding reconstruction, we establish a quantitative
framework that captures two critical aspects of the
information loss: 1) structural shift of global se-
mantic relationships shown by the 40-60% diver-
gence in nearest-neighbor rankings and, 2) patch-
level reconstruction loss correlating with model
failures in fine-grained visually grounded question
answering. The patch-level reconstruction also en-
ables visualization of local information loss, offer-
ing interpretable explanations for model behaviors.

In the future, we will investigate information
loss quantification through image reconstruction to
quantify information loss at a pixel-level. We hope
to further explore approaches to mitigate the impact
of information loss in VLMs, such as incorporating
better feature selection mechanisms.



Ethics Statement

‘We foresee no ethical concerns with our research
project. In particular, ours is merely a scientific
study of VLMs and provides no artifacts that can
be used in a real-world scenario.

Limitations

In this study, we evaluate the information loss intro-
duced by connectors in VLMs. However, several
limitations should be noted. First, due to variations
in model architectures and pretraining strategies,
our findings may be specific to the connector-based
VLMs analyzed and may not generalize to archi-
tectures that employ cross-attention for modality
fusion. Second, our experiments focus on connec-
tors in VLMs within the 7B—8B parameter range.
Expanding the analysis to models of different sizes
could provide deeper insights into the relation-
ship between model scale and information loss.
Third, our pixel-level reconstruction experiments
(Appendix D) yielded inconclusive results in quan-
tifying information loss, possibly due to limitations
in our chosen image generation model and training
dataset size. Additionally, while we empirically
validate our k-NN overlap ratio and embedding
reconstruction metrics, a formal theoretical char-
acterization would further strengthen their reliabil-
ity. Finally, our reconstruction experiments cannot
conclusively determine whether the observed infor-
mation loss stems from the connector layer itself
or from potential learning limitations of the trained
reconstruction network.
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A Autoregressive Vision-Language
Models

A string y is a sequence of characters from an
alphabet X, we denote with >* the set of possible
strings over . We define an image x as an array
in Rw*hxc where w denotes the image’s width, h
its height, and ¢ the number of color channels.
A vision-language model over strings in ¥*,
and images in R¥*"*¢ is a probability distribution
p @ X x Rxwxe 5 10 1] where 6 is a set of
learnable parameters. In this paper, we are mostly
interested in autoregressive vision—-language mod-
els, i.e. language models that are defined through a
conditional next token distribution Zg:

lyl

Hfﬁ yt | y<t7 )

“

Where EOS is a distinguished end-of-sequence
symbol, and we write ¥ = 3 U {EOS} to denote
the alphabet augmented with EOS.

We assume the following general structure on
the vision-language model. The input string y_,
is mapped by the language encoder ¢, : ¥X* —
R9eX7¢ 1o a vector representation Y = ¢y(y_,)
of the string, where d; and ny are respectively the
context window size and the embedding dimension
of the language encoder. 2

po(y,x) = Ly(EOS |y, x

B Ablation on Index Method for £-NN

We evaluated £-NN overlap ratio using three dif-
ferent embedding types as search indices: original
embeddings, mean-pooled image embeddings, and
normalized embeddings (Table 6). Since the per-
formance differences were minimal, we selected
mean-pooled embeddings for both pre- and post-
projection image representations in calculating k-
NN overlap ratios.

’In practice, we assume that the context window is fixed,

this means that sequences longer than n, will be truncated,
and shorter sequences will be padded.


https://doi.org/10.18653/v1/2024.emnlp-main.325
https://doi.org/10.18653/v1/2024.emnlp-main.325
https://doi.org/10.18653/v1/2024.emnlp-main.325
https://doi.org/10.18653/v1/2024.emnlp-main.325
https://doi.org/10.18653/v1/2024.emnlp-main.325
https://openreview.net/forum?id=7QwFMLzQHH
https://openreview.net/forum?id=7QwFMLzQHH
https://openreview.net/forum?id=7QwFMLzQHH
https://openreview.net/forum?id=7QwFMLzQHH
https://openreview.net/forum?id=7QwFMLzQHH
https://openreview.net/forum?id=7QwFMLzQHH
https://openreview.net/forum?id=7QwFMLzQHH
https://doi.org/10.1109/CVPR52733.2024.00914
https://doi.org/10.1109/CVPR52733.2024.00914
https://doi.org/10.1109/CVPR52733.2024.00914
https://openreview.net/forum?id=HVtu26XDAA
https://openreview.net/forum?id=HVtu26XDAA
https://openreview.net/forum?id=HVtu26XDAA

Index Type

Overlap Ratio IndexFlatL2 IndexFlatIP
IndexFlatL.2 . .
(mean pooling)  (normalized vectors)

mean std mean std mean std
top100 0.466 0.122 0.563 0.107 0.504 0.129
top50 0.488 0.128 0.556 0.120 0.425 0.142
top10 0.490 0.149 0.551 0.160 0.377 0.161
Vector Size
Before projection 576x1024 1x1024 576x1024
After projection 576 <4096 1x4096 576x4096

Table 6: Ablation on KNN results when using original embeddings, mean pooled image embeddings, and normalized
embeddings. We chose to use the mean-pooled embeddings for efficiency due to large embeddings size.

Original

Before Projection After Projection

Figure 8: Image reconstruction with LLaVA model on
in-distribution and out-of-distribution examples.

C Visualization

C.1 Patch-level Loss Visualization for Vizwiz
Grounding VQA

In Figure 9, we visualize examples of high recon-
struction loss patches that contributes to model’s
failure on answering questions that requires rec-
ognizing text in the objects (red regions are the
answer grounding masks).

C.2 Visualization of Neighborhood
Reordering

In Figure 12, we present more kNN examples on
comparison of searching with pre-projection (top)
v.S. post-projection (bottom) embeddings.

D Image Reconstruction with Different
Embeddings

Beyond neighbor-overlapping and embedding re-
construction, we aim to investigate how informa-
tion loss manifests in the reconstructed images
themselves. To explore this, we project different
representations of visual features onto the input
embedding space of a powerful image decoder to
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assess their reconstruction quality. However, im-
age reconstruction performance depends on various
factors, including the expressiveness of the image
decoder. As such, this section serves as a prelimi-
nary exploration, and we encourage future work in
this direction.

For our experiments, we use a fine-tuned VAE
decoder?, trained on the original VAE checkpoint
from Stable Diffusion, trying to alleviate the in-
fluence of the decoder as a limiting factor in re-
construction quality. To align the sequence length
between the vision encoder in the VLM and the
expected input length of the VAE decoder, we em-
ploy a 6-layer Transformer encoder-decoder mod-
ule with 4 attention heads. We train the aligner
module on the COCO 2017 training set for 100
epochs with three objectives: 1) Embedding loss
minimizing the difference between the VAE en-
coder embeddings and the aligned embeddings
from the VLM'’s visual encoder; 2) Reconstruc-
tion loss measuring the mean squared error (MSE)
between the original and reconstructed images; 3)
Latent loss quantifying the divergence between the
mean and variance of the Gaussian distribution for
diffusion.

For the VLM, we use the LLaVA model in our
experiments. We evaluate reconstruction perfor-
mance on both an in-distribution image from the
COCO 2017 dev split and an out-of-distribution im-
age, as shown in Figure 8. When using embeddings
before projection, the overall pixel-wise MSE re-
construction loss is 0.2128, compared to 0.2443 af-
ter projection. Figure 8 illustrates the reconstructed
images for both cases, where pre-projection em-
beddings yield similar contour preservation with
post-projection embeddings. We leave this for fur-

Shttps://huggingface.co/stabilityai/
sd-vae-ft-mse
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Figure 9: Visualization of high reconstruction loss patches that contributes to model’s failure on answering questions
that requires recognizing text in the objects (red regions are the answer grounding masks).

ther research in visualizing the nuanced difference
between embeddings.
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Figure 10: Idefics high kNN overlap ratio example, where we can observe the reordering among semantically
similar vision embeddings.

Neighbor 4

. . Neighbor 5
Query Image Neighbor 1 Neighbor 2 Neighbor 3 9

Query Image Neighbor 3 Neighbor 5

Figure 11: Qwen kNN example where the post-projection embeddings are better at retrieving semantically similar
images (bottom row).
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Query Image Neighbor 2 Neighbor 3

Figure 12: LLaVA low ENN overlap ratio example. We can observe the degradation in post-projection embedding.
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