
Symmetric Dense Inception Network for Simultaneous Cell
Detection and Classification in Multiplex

Immunohistochemistry Images

Anonymous Anonymous email

Anonymous organization

Editor: Editor’s name

Abstract

Deep-learning based automatic analysis of the multiplex immunohistochemistry (mIHC)
enables distinct cell populations to be localized on a large scale, providing insights into dis-
ease biology and therapeutic targets. However, standard deep-learning pipelines performed
cell detection and classification as two-stage tasks, which is computationally inefficient and
faces challenges to incorporate neighbouring tissue context for determining the cell identity.
To overcome these limitations and to obtain a more accurate mapping of cell phenotypes,
we presented a symmetric dense inception neural network for detecting and classifying cells
in mIHC slides simultaneously. The model was applied with a novel stop-gradient strategy
and a loss function accounted for class imbalance. When evaluated on an ovarian cancer
dataset containing 6 cell types, the model achieved an F1 score of 0.835 in cell detec-
tion, and a weighted F1-score of 0.867 in cell classification, which outperformed separate
models trained on individual tasks by 1.9% and 3.8% respectively. Taken together, the
proposed method boosts the learning efficiency and prediction accuracy of cell detection
and classification by jointly learning from both tasks.
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1. Introduction

Multiplex immunohistochemistry (mIHC) is an important technique to resolve the spatial
arrangement of multiple cell phenotypes within the tissue, which has been used to elucidate
biological processes and predict therapeutic outcomes (Zahir et al., 2020), (Lu et al., 2019).
A promising utility of mIHC is to locate the programmed cell death-1 (PD-1) and assess its
correlation with CD8+, CD4+ and FOXP3+ tumour-infiltrating lymphocytes, which are
of great interest to pathologists given the role of PD1 as an immune checkpoint protein and
an important target of immunotherapy (Diana et al., 2016), (Halse et al., 2018).

To automatically identify the expression of antigens, several deep learning models have
been developed to detect and classify cell types in mIHC images (Hagos et al., 2019, 2021;
Narayanan et al., 2021). However, these methods were designed to process the two tasks
separately, which has several limitations. Firstly, training and predicting with separate
models is costly in computing time and resources, which constrains the usage of models in
large scale datasets (Song et al., 2019). Moreover, classifying cells with limited local context
features might lead to a reduction in performance. For example, assembling predictions
from multiple neighbouring regions has been shown to produce more accurate results than
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classification performed on the central region alone (Sirinukunwattana et al., 2016). On the
other hand, the cell detection model without considering class-wise abundance was shown
to miss out on rare cell types in an unbalanced dataset (Hagos et al., 2021). As a result,
models combining features from cell detection and classification are desired.

Recently, several efforts have been made to simultaneously detect and classify cells on
H&E images. Song et al. (2019) proposed a synchronized asymmetric deep-learning frame-
work to parallelly detect and classify cells in bone marrow specimens. Graham et al. (2019)
constructed a three-branch network to simultaneously segment and classify nuclei on his-
tology images. However, both strategies required exhaustive manual annotations of nuclei
boundary. Such tedious and time-consuming annotations might not be essential for cell
classification in mIHC samples, where distinct types of cells were readily marked by chro-
mogenic staining. In fact, Fassler et al. (2020) has demonstrated that a cell segmentation
model trained on arbitrary cell masks generated using only annotations of cell centres could
achieve desired performance in mIHC images.

Despite that cells are distinguishable by the expression of markers, it is still nontrivial
to identify cell types on mIHC slides. Specifically, some cell types may express multiple
markers, and some exhibit high variability in staining intensities. One solution to overcome
the intermix of staining is to deconvolve colours into separate channels, then identify cells
based on the combined positive or negative signal in different channels (Fassler et al., 2020;
Blom et al., 2017; Chen and Srinivas, 2015; Duggal et al., 2017; Abousamra et al., 2020;
Lahiani et al., 2018). However, such a strategy requires prior knowledge about the color
range associated with each marker, which limits its application in cases where staining
colour spans a broad spectrum. Moreover, methods relying on colour deconvolution and
segmentation of homogeneous colours are insufficient to identify individual cells in close
proximity, which compromise the accuracy of spatial analysis involving distributions of
single cells (Fassler et al., 2020; Lahiani et al., 2018).

To overcome these shortcomings of previous methods, we proposed a neural network
to detect and classify cells simultaneously on mIHC slides. We compared the performance
of different network structures and evaluated the dependency between detection and clas-
sification tasks. The proposed method outperforms baseline models trained separately on
cell classification and detection. To the best of our knowledge, this is the first end-to-end
solution for detecting and classifying cells in mIHC images.

2. Material and Methods

2.1 Dataset and annotations

Our dataset contained 9 whole slide images of high-grade serious ovarian cancer stained for
CD8, CD4, FOXP3 and PD1. To train and validate the proposed method, a total of 3674
single cell annotations were collected from 9 slides with experts putting colourful dots at the
cell centre to label 6 dominant cell types distinguished by expressions of markers. For sake of
brevity, we denoted the 6 cell types as CD8+, CD4+FOXP3-, CD4+FOXP3+, PD1+CD4-
CD8-, PD1+CD4-CD8+, and PD1+CD4+CD8-. Antigens expressed by each cell type were
detailed in Table 1. Examples of the annotated cells were shown in Figure 1b. A total of
257 image patches containing annotations were extracted from 4 slides and randomly split
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Table 1: Number of cells in training, validation, and test datasets.
Antigen expression

Cell types Training Validation Test
PD1 CD8 CD4 FOXP3

- + - - CD8+ 110 33 344
- - + - CD4+FOXP3- 380 137 515
- - + + CD4+FOXP3+ 192 110 368
+ - - - PD1+CD4-CD8- 33 26 21
+ + - - PD1+CD4-CD8+ 453 183 612
+ - + - PD1+CD4+CD8- 50 33 74

with a 7:3 ratio into training (180) and validation (77) datasets. Cells from the other 5
slides were used for testing. The composition of each dataset was described in Table 1.

2.2 Training data preparation

Slides were scanned at 40x magnification and rescaled to 20x with a resolution of 0.44
µm/pixel. Regions with cell annotations were cropped into 224×224 patches I ∈ R224×224×1

with a stride of 120 pixels. For classification, we generated a binary mask per cell type
Mk ∈ R224×224×1 by marking a circle area with a radius r = 2 pixels centred at each
dot annotation. The distance threshold r was set empirically to cover a considerable cell
area while avoiding the overlap of adjacent annotations. Mk for a total of 6 cell classes
were stacked into a classification mask Mc ∈ R224×224×6. We generated the detection mask
Md ∈ R224×224×1 by taking the maximum values of Mc channel-wise, and a background
mask Mb ∈ R224×224×1 as the inversion of Md. The detection mask labelled locations of all
cells regardless of cell types, and the background mask represented tissue regions without
identified cells. We added the background mask to Mc as the 7th channel. The ith input in
the training dataset was represented as (Ii,M i

c,M
i
d). Data augmentation was performed by

randomly flipping the input horizontally and vertically.

2.3 Network architecture and training

We proposed a fully convolutional network Symmetric Distance Regularized Dense Inception
neural Network (S-DRDIN) to simultaneously detect and classify 6 immune cell types in
the mIHC images. The network structure was built on the original DRDIN (Narayanan
et al., 2021), with modifications to the decoder to enable parallel predictions for cell classes
and locations.

As shown in Figure 1, the network was constructed following a U-net structure (Ron-
neberger et al., 2015) with inception blocks (Szegedy et al., 2015) as the basic convolution
module. The encoder comprised 4 inception blocks linked by 2× 2 averaged pooling layers
to downsample features by a factor of 2 after each convolutional step. In comparison with
the original DRDIN which comprised a single-branch decoder, S-DRDIN has two decoders
to predict for class map and detection map simultaneously.

As suggested by Song et al. (2019), cell classification relied on less information than
detection. To reduce the potential deleterious impact on classification induced by redun-
dant information learnt from the detection task, we applied stop-gradient to all the skip
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connections between the encoder path and the detection branch (Figure 1). This operation
prohibited the direct gradient transfer from the detection branch to the encoder, thereby
disentangled the detection and classification information for low-level features and encour-
aged the network to optimize the feature map for the cell classification task. To compensate
for the potential loss of useful information caused by the stop-gradient operation, outputs
of the last inception blocks of the classification branch was incorporated into the detection
branch, followed by two convolution layers with 3× 3 kernels and a final convolution layer
with 1x1 kernels to generate the detection output. For the classification branch, the last
convolution layer was immediately added after the last inception block to produce an output
of size 224×224×7. Relu activation was applied to all the convolution layers except for the
last convolution layers of classification and detection branches, which were activated with
Softmax and Sigmoid respectively. The model was trained for 100 epochs with a batch size
of 4. Weights were initialized using uniform glorot (Glorot and Bengio, 2010) and optimized
using Adam (Kingma and Ba, 2015) with a learning rate of 10−3.

2.4 Loss function for cell classification and detection

We used cross-entropy to calculate loss between the classification branch output and class
map. To tackle the imbalance of class occurrences, the loss of each pixel was assigned with a
weight wc calculated as the inverse proportion of the number of pixels of the corresponding
class in the batch, as given by,

wc =
N ·Nc ·B∑N

i=1 x
c
i

(1)

where Nc and N denoted the number of channels and number of pixels in each channel
of the class map input. B is the batch size and xci is the pixel value in channel c. The
pixel-weighted cross-entropy loss function is defined as

Lclass = − 1

Nc ·N

Nc∑
c=1

N∑
i=1

wc · log(pc(xi)) (2)

where pc(xi) denotes the predicted probability from the classification branch after the
Softmax activation. We separately calculated the binary cross-entropy for the detection
branch. The overall model was trained in an end-to-end fashion with constraints from both
cell detection and classification. The total loss is defined as,

Ltotal = Lclass + Ldetect (3)

The model trained with Ltotal is referred to as the proposed S-DRDIN. To evaluate the
intra-influence between classification and detection tasks, we also tested models trained
on detection and classification separately and trained without the stop-gradient operation.
The three model variants are defined as follows,

1. DRDIN-detection: does not contain the classification branch

2. DRDIN-classification: does not contain the detection branch

3. S-DRDIN-gradient: allows back-propagation for all connections between encoder lay-
ers and the detection branch
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Figure 1: Framework of the proposed pipeline.

2.5 Post-processing and evaluation

To obtain the locations of detected cells on the slide, we applied a post-processing pipeline
to the probability map generated from the detection branch. Firstly, a threshold optimized
for the F1-score of each model was applied to binarize the predicted detection mask. Next,
connected components with an area smaller than 50 were discarded to remove noise in the
background. Then we calculated the distance transform and identify the local maxima with
a sliding window of size 15× 15. The local maxima were dilated by a disk with a radius of
2 pixels. Lastly, centres of the instances were recorded as detected cell locations.

For cell classification, predicted values from each of the 6 cell-type channels were aver-
aged for the 49× 49 square region surrounded each identified cell. The predicted cell class
k was determined by

k̂ = argmax
k

1

N

N∑
i=1

pkc (xi) (4)

where pkc (xi) represents the network output for pixel xi at the channel corresponding to
class k. N is the total number of pixels within the square region surrounding the detected
cell. For robust evaluation of model performance, we trained each model separately on 3
datasets with training and validation split at different randomized states. The average model
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Table 2: Cell detection performance evaluated for different models.
Methods Precision Recall F1-score True positives False positives

U-Net 0.848± 0.011 0.772± 0.016 0.808± 0.003 1493± 30 268± 28

CONCORDe-Net 0.921± 0.037 0.660± 0.017 0.768± 0.001 1276± 33 111± 58

DRDIN-detection 0.851± 0.017 0.783± 0.021 0.816± 0.004 1515± 41 266± 43

S-DRDIN-gradient 0.783± 0.098 0.809 ± 0.039 0.793± 0.032 1565± 76 456± 274

S-DRDIN 0.941 ± 0.016 0.750± 0.031 0.835 ± 0.013 1450± 61 92± 30

performance was reported for the 5 hold-out testing slides containing expert annotations
on every identifiable cell within a given region. A predicted cell inside the region was
considered as true positive if it fell within 10 pixels to an expert annotation, otherwise false
positive. The false negative was counted as the number of annotated cells missed out by
the model. The precision, recall and F1-score were reported for cell detection evaluation.
Performance of cell classification was assessed for all annotated cells detected by a model,
with precision, recall and F1-score weighted by the proportion of cell types computed for
model comparisons.

3. Results

3.1 Cell detection performance

We evaluate the detection performance for different variants of the proposed S-DRDIN,
and compared it against other states of the art U-Net (Ronneberger et al., 2015) and
CONCORDe-Net (Hagos et al., 2019). The proposed S-DRDIN obtained an F1 score of
0.835, which was 2.7% and 6.7% higher than the U-Net and the CONCORDe-Net respec-
tively. It also outperformed DRDIN-detection and S-DRDIN-gradient by 1.9% and 4.2%
(Table 2). The improvement was mainly attributed to the increase in precision and the
reduction in false positives, while S-DRDIN was less sensitive to true positive cells as com-
pared to U-Net, DRDIN-detection and S-DRDIN-gradient, as reflected by the lower recall
(Table 2). Specifically, the model tended to overlook CD4+FOXP3- and PD1+CD4+CD8-
cells, with both classes showing a detection recall lower than 0.6 (Table A.2). These results
were not fully explained by the data imbalance, as CD4+FOXP3- was the second most abun-
dant class, and the averaged recall obtained for PD1+CD4-CD8- cells was 0.833 despite it
being the rarest cell type Table 1. It is likely that the staining colour for CD4+FOXP3- and
PD1+CD4+CD8- makes them less distinguishable from the tissue background as compared
to other cell types (Figure A.1).

Interestingly, the S-DRDIN-gradient model, which jointly learned from classification
and detection without stopping backpropagation for the detection branch, achieved the
best recall but performed worse than the DRDIN-detection concerning the F1-score. This
observation was consistent with previous findings in Song et al. (2019) where the intra-
influence between detection and classification reduces performance for both tasks. Here
we demonstrated the stop-gradient operation as an effective approach to reduce conflicts
between the two tasks and restore the detection accuracy. A potential explanation was that
blocking the gradient flow from detection branch derived feature maps more representative
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Original image DRDIN-detection DRDIN-classification S-DRDIN
-gradient

S-DRDIN

Figure 2: A qualitative comparison of feature maps generated by the last layer of the en-
coder of different models. Yellow indicates high value.

for cell class identities, which limited the detection for cells with ambiguous class identity,
therefore generated a more precise cell map.

To better understand the contribution of stop-gradient operation for cell detection, we
qualitatively compared the feature maps produced by the last layer of the encoder of different
models. As shown in Figure 2, activation produced by S-DRDIN was more localized to
cell regions as compared to S-DRDIN-gradient and DRDIN-detection, which was consistent
with our hypothesis that stop-gradient functioned in suppressing the redundant information
introduced by the backpropagation of the detection branch. The activation map indicated
that these features might relate to the false positives in tissue background. Additionally,
both S-DRDIN and S-DRDIN-gradient showed activating signals for a larger number of
cells than the DRDIN-classification, suggesting the advantages of additional information
introduced by parallelly learning from detection and classification.

3.2 Cell classification evaluation

We compared performance for cell classification among different network and training strate-
gies. Both the U-Net and DRDIN-classification were trained on the 7-channel binary masks
described in Section 2.2, with U-Net trained without additional weights assigned to the
loss function. Classification for the CONCORDe-Net was performed using an SCCNN
classifier (Sirinukunwattana et al., 2016) trained on single-cell patches extracted from the
annotations. S-DRDIN achieved the highest score for weighted precision (0.870), weighted
recall (0.872) and weighted F1-score (0.867) among all the five models, including U-Net,
Concordent-Net and DRDIN-classification that were trained separately on detection and
classification (Table 3). The training time of S-DRDIN was shorter than models trained
on discrete tasks except for the U-Net, which was due to the difference in parameters
(Table A.1). Predictive accuracy of CD8+, PD1+CD4-CD8- and PD1+CD4+CD8- was
sub-optimal compared to that of the other cell type, which was likely due to the limitation
of sample size (Table A.2). On the other hand, S-DRDIN-gradient also outperforms the
models trained on separate tasks, suggesting that the incorporation of cell location infor-
mation into the training stage could improve cell classification performance. Additionally,
the employment of the pixel-weighted cross-entropy increased the weighted F1-score by at
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Table 3: Cell classification performance of different methods.
Methods Weighted Precision Weighted Recall Weighted F1-score

U-Net 0.768± 0.006 0.795± 0.002 0.761± 0.006

CONCORDe-Net 0.797± 0.004 0.816± 0.009 0.778± 0.011

DRDIN-classification 0.839± 0.011 0.834± 0.009 0.829± 0.018

S-DRDIN-gradient 0.860± 0.015 0.860± 0.018 0.857± 0.021

S-DRDIN 0.870 ± 0.011 0.872 ± 0.009 0.867 ± 0.015

least 5% than the baseline models, demonstrating the efficiency of pixel wighting strategy
for reducing the negative influence of data imbalance. Examples of cell detection and classi-
fication results were shown in Figure A.1. Noted that S-DRDIN was the only model which
successfully identified the rare PD1+CD4-CD8- cell in the region.

4. Discussion

Our study aims at designing a deep-learning method for detecting and classifying cells
simultaneously in mIHC samples. The proposed model exploited the mutual dependency of
the two highly relevant tasks, and introduced a novel stop-gradient approach to reduce the
conflict between detection and classification features. In comparison with the conventional
deep learning pipeline that processed the two tasks as separate steps, the proposed model
directly predicts locations of cells of different types on a given mIHC image, therefore
reduces the computation costs and speed up the analysis for large scale datasets. Moreover,
we demonstrated that the combination of stop-gradient operation, pixel-weighted cross-
entropy loss and parallel learning from detection and classification results in higher precision
for detection as well as better performance for classification.

This study was limited by the small dataset of 3674 single cell annotations with an
extreme class imbalance. In future work, we intend to evaluate the generalization of the
model on larger multiplex image datasets from different sources. Also, additional modifica-
tions can be applied to the model architecture to improve the detection recall. Once fully
developed, the method can accelerate the image analysis for large cohorts and promote
the understanding of the spatial relationship between diverse components of the tumour
immune microenvironment.

5. Conclusion

We presented a network S-DRDIN for simultaneous cell detection and classification in mIHC
images. With the aid of stop-gradient and a loss function accounted for class proportions,
the proposed model achieved an F1 score of 0.835 in cell detection, and a weighted F1
score of 0.867 in classification, which were 1.9% and 3.8% higher than the model trained
separately on individual tasks.
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Table A.1: Training time of different methods for 100 epochs.
Methods Training time

U-Net-detection+classification 0.09 hours

Concordenet-detection+classification 0.73 hours

DRDIN-detection+classification 0.16 hours

S-DRDIN 0.12 hours

Table A.2: Cell classification performance and detection recall of the proposed S-DRDIN
for different cell types. Bold values highlight scores lower than 0.8.

Cell types Precision Recall F1-score Detection Recall

CD8+ 0.833± 0.025 0.683 ± 0.069 0.749 ± 0.032 0.731 ± 0.113

CD4+FOXP3- 0.910± 0.059 0.954± 0.014 0.931± 0.024 0.525 ± 0.103

CD4+FOXP3+ 0.967± 0.002 0.974± 0.019 0.970± 0.009 0.865± 0.017

PD1+CD4-CD8- 0.675 ± 0.035 0.750 ± 0.039 0.711 ± 0.037 0.833± 0.034

PD1+CD4-CD8+ 0.848± 0.032 0.911± 0.018 0.877± 0.009 0.814± 0.062

PD1+CD4+CD8- 0.646 ± 0.065 0.468 ± 0.343 0.514 ± 0.264 0.527 ± 0.019

Appendix A.
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Figure A.1: Examples of cell detection and classification outputs from different methods.
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