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Abstract

The task of multi-hop link prediction within knowledge graphs (KGs) stands as a chal-
lenge in the field of knowledge graph analysis, as it requires the model to reason through
and understand all intermediate connections before making a prediction. In this paper,
we introduce the Knowledge Graph Large Language Model (KG-LLM), a novel frame-
work that leverages large language models (LLMs) for knowledge graph tasks. We first
convert structured knowledge graph data into natural language and then use these nat-
ural language prompts to fine-tune LLMs to enhance multi-hop link prediction in KGs.
By converting the KG to natural language prompts, our framework is designed to learn
the latent representations of entities and their interrelations. To show the efficacy of the
KG-LLM Framework, we fine-tune three leading LLMs within this framework, including
Flan-T5, LLaMa2 and Gemma. Further, we explore the framework’s potential to provide
LLMs with zero-shot capabilities for handling previously unseen prompts. Experimental
results show that KG-LLM significantly improves the models’ generalization capabilities,
leading to more accurate predictions in unfamiliar scenarios. Our code is available at
https://github.com/rutgerswiselab/KG-LLM.
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Figure 1: A visual overview of KG-LLM framework

1. Introduction

In the domain of data representation and organization, knowledge graphs (KGs) have
emerged as a structured and effective methodology, attracting substantial interest in re-
cent years. Although two-node link prediction in KGs has yielded promising results, the
multi-hop link prediction remains a difficult task. In real life, multi-hop link prediction
plays a crucial role because, often, we are more interested in the relationship between two
far-apart entities rather than direct connections. This requires models to reason through
intermediate entities and their relationships. A further challenge is the issue of debugging
KG model predictions, particularly in the context of discriminative prediction, where the
model’s lack of explanatory reasoning steps, obscures the origins of errors, diminishing ac-
curacy and performance. Consequently, the development of models capable of generatively
and precisely predicting multi-hop links in KGs is a critical challenge.

Historically, approaches to solving tasks related to KGs can trace their origins from
embedding-based methods to more recent advancements with LLMs (Wang et al., 2021).
Initially, embedding-based methods played a crucial role, utilizing techniques to represent
both entities and relations in a KG as low-dimensional vectors to address the link prediction
task by preserving the structural and semantic integrity of the graph (Fan et al., 2014; Lin
et al., 2015). As the field progressed, the integration of LLMs began to offer new paradigms,
leveraging large amounts of data and advanced architectures to further enhance prediction
capabilities and semantic understanding in KGs (Agarwal et al., 2020; Youn and Tagkopou-
los, 2022; Yu et al., 2022; Tang et al., 2020). This transition shows a significant improvement
from using purely mathematical representations to more context-aware methodologies that
better understand the knowledge representation.

Despite these successes, our research highlights three major challenges that prior method-
ologies have not fully addressed, which our approach aims to solve. First, the predominant
focus on discriminative, rather than generative, models and outcomes over reasoning pro-
cesses underscores a gap in the existing methodologies, highlighting the need for models
adept at leveraging reasoning to address multi-hop link prediction in KGs. Secondly, ex-
isting approaches predominantly focus on predicting links between two immediate nodes,
leaving the field of multi-hop link prediction largely unexplored. This limitation affects the
models’ ability to navigate and infer connections across extended node sequences. Lastly,
the traditional models generally lack generalization abilities, making them less effective
when faced with unseen tasks.
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To bridge these gaps, we propose the Knowledge Graph Large Language Model (KG-
LLM), a novel approach to multi-hop link prediction. As illustrated in Figure 1, nodes
in KGs are interconnected through specific relations. Initially, our framework takes input
from the original KG dataset. After preprocessing, all paths in the KG will transform into
chain-of-thought (CoT) prompts (Wei et al., 2022b; Jin et al., 2024), each includes a series
of relational statements, which can be represented as {Node 1 (has relation_x with) Node
2, Node 2 (has relation_y with) Node 3, etc.}. The complexity of the multi-hop problem is
determined by its path length and the number of nodes. Through instruction fine-tuning
(IFT) (Wei et al., 2021) of three Large Language Models (LLMs): Flan-T5 (Wei et al.,
2021), LlaMa2 (Touvron et al., 2023), and Gemma (Team et al., 2023), our framework is
ready to enhance multi-hop link prediction performance during the testing phase. Moreover,
by integrating in-context learning (ICL) (Xie et al., 2021), the model not only improves but
also has the capacity to tackle unseen prompts, showcasing our method’s innovativeness in
addressing multi-hop link prediction challenges.

Our study presents the KG-LLM framework as an innovative approach to the multi-hop
link prediction task. Our key contributions are:

e By converting knowledge graphs into CoT prompts, our framework allows LLMs to
better understand and learn the latent representations of entities and their relation-
ships within the knowledge graph.

e Our analysis of real-world datasets confirms that our framework improves generative
multi-hop link prediction in KGs, underscoring the benefits of incorporating CoT and
instruction fine-tuning during training.

e Our findings also indicate that our framework substantially improves the generaliz-
ability of LLMs in responding to unseen prompts.

2. Related Work

Recently, researchers have used Graph Neural Network (GNN) models to solve various
graph-related tasks, significantly advancing the field. Among different GNN models, Graph
Attention Networks (GATSs) have gained attention for their ability to weigh the importance
of neighboring nodes, with models like wsGAT (Grassia and Mangioni, 2022) demonstrating
effectiveness in link prediction tasks. Additionally, Graph Convolutional Network (GCN)-
based models have shown promising results; ConGLR (Lin et al., 2022) leverages context
graphs and logical reasoning for improved inductive relation prediction, while ConvRot (Le
et al., 2023) integrates relational rotation and convolutional techniques to enhance link
prediction performance in knowledge graphs (KGs). While the aforementioned approaches
have achieved significant success, multi-hop link prediction remains an unsolved challenge.

Other than GNN models, recent development of large language models (LLMs), such as
BERT (Devlin et al., 2018), GPT (Peng et al., 2023), LLaMA (Touvron et al., 2023), Gemini
(Team et al., 2023), and Flan-T5 (Wei et al., 2021) has also solved various KGs tasks,
including link prediction. The text-to-text training approach makes LLMs particularly
suitable for our generative multi-hop link prediction task. Recent studies, concurrent work
such as GraphEdit (Guo et al., 2024), MuseGraph (Tan et al., 2024), and InstructGraph
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KG-LLM (ablation) Knowledge Prompt KG-LLM Knowledge Prompt

Training Question:
### Instruction:
Below is the detail of a knowledge graph path. Is node_1 connected with node_3?

Training Question: Answer the question by reasoning step-by-step. Choose from the given options:
Node_1 has relation_1 with node_2, and 1. Yes
node_2 has relation_2 with node_3. Is 2. No
node_1 connected with node_3? ### Input:
Training Answer: Node_1 has relation_1 with node_2, and node_2 has relation_2 with node_3.
The answer is yes. Training Answer:

### Response:
Testing Question: Node_1 has relation_1 with node_2 means Jack bought Shampoo. Node 2
Node_6540 has relation_9 with node_765, has relation_2 with node_3 means Shampoo is related with Hair Conditioner.
and node_765 has relation_4 with So Jack will also buy Hair Conditioner. The answer is yes.
node_2148. Is node_6540 connected with
node_2148? Testing Question:

### Instruction: [...]
### Input: Node_6540 has relation_9 with node_765, and node_765 has relation_4
with node_2148.

. . Testing Answer: Node_6540 has relation_9 with node_765 means Nova share
Testing Answer: The answer is yes.

x similar interests ... The answer is no.

Figure 2: An Example of Prompt Used in the Multi-hop Link Prediction Train-
ing Process: Models processed through the ablation framework will be trained using the
ablation knowledge prompt (left), whereas models processed via the KG-LLM framework
will be trained on the KG-LLM knowledge prompt (right).

(Wang et al., 2024), have shown that natural language is effective for representing structural
data for LLMs. Besides, training on large-scale data makes it possible for LLMs to generalize
to unseen tasks or prompts that were not part of its training data (Wei et al., 2022a).

Another advantage of LLM-based generative modeling is the Chain-of-Thought (CoT)
reasoning ability (Wei et al., 2022¢). It provides the flexibility of modifying the instruc-
tion, options, and exemplars to allow structured generation and prediction. The Chain-of-
Thought reasoning process can be naturally integrated with KGs by translating a reasoning
path on a KG into natural language. This flexibility allows us to easily test the model’s
ability to follow instructions and make decisions based on the provided information. Simi-
larly, In-Context Learning (ICL) (Brown et al., 2020) helps LLMs learn from demonstrative
examples in the prompt to generate correct answers for the given question. This can also
be naturally integrated with KGs. As a result, CoT and ICL enable flexible KG reasoning
through natural language.

3. Methodology

In this section, we introduce the proposed KG-LLM framework.

3.1. Knowledge Graph Definition

Let KG = (F, R, L) denote a knowledge graph, where E is the set of entities, R is the set
of relationships, and L C E x R x FE is the set of triples that are edges in the KG. Each
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triple (e;, 7, e;41) € L denotes that there exists a directed edge from entity e; to entity €;41
via the relationship » (Wang et al., 2017).

3.1.1. MuLTI-HOP LINK PREDICTION

The task of multi-hop link prediction extends beyond simple link prediction between two
nodes. It aims to identify missing connections over multiple relational steps within a knowl-
edge graph. Specifically, given a sequence of observed triples that form a connected path
Pys = (e1,71,€32), (€2,72,€3), ..., (€n—1,Tn—1,€n) C L, where each triple (e;, r;, e;+1) denotes
an observed relation r; between entities e; and e;11. The objective is to predict whether a
missing link l,,;ss = (e1, 7, e,) exists by answering True or False (Ranganathan and Barbosa,
2022; Wan and Du, 2021).

3.1.2. MULTI-HOP RELATION PREDICTION

The task of multi-hop relation prediction closely aligns with the concept of multi-hop link
prediction, with a critical distinction in the question and output. Rather than determining
the existence of a missing link /,,;ss, this task predicts the relationship. This change shifts
the focus from a binary existence query to identifying the specific relationship that binds
the entities (Nathani et al., 2019).

3.2. Knowledge Prompt

The knowledge prompt is a specialized prompt designed for KGs that converts a given se-
quence of observed triples P, into natural language. By leveraging the knowledge prompt
in the training process, the model can more effectively understand the underlying relation-
ships and patterns present within KGs, thus improving overall performance in multi-hop
prediction tasks. In Figure 3, we define the two types of knowledge prompts, KG-LLM
knowledge prompt and KG-LLM (ablation) knowledge prompt for both multi-hop link pre-
diction and multi-hop relation prediction.

The two types of prompts demonstrate distinct approaches to enhancing model per-
formance in multi-hop prediction tasks. KG-LLM knowledge prompt adopts a structured
format that includes instructions and inputs. This approach involves textualizing node and
relation IDs into text based on the dataset and breaking down complex inputs into man-
ageable, concise processes. The KG-LLM instruction falls under the classification category.
By listing all possible options in the instructions, LLMs can follow and generate a response
based on the given choices. On the other hand, we remove the instruction and textualized
IDs in the ablation knowledge prompt and the CoT reasoning process from the expected
response. This approach stands out for its clarity and simplicity, providing a good compre-
hension of the KG and improving prediction accuracy. To illustrate our knowledge prompt
better, we provide an example for the multi-hop link prediction task in Figure 2.

In addition, we adopt the approach of utilizing one-shot ICL learning, specifically tai-
lored to the FLAN-T5-Large, which is our smallest model. This is because, for models of
this scale, the impact of utilizing one-shot ICL versus few-shot ICL on accuracy is minimal
(Brown et al., 2020). To maintain consistency across our experimental framework, we apply
the same one-shot ICL methodology to all LLMs. This uniform approach ensures that our
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Multi-hop Link Prediction
(KG-LLM)

( PROMPT \

### Instruction:

Below is the detail of a knowledge
graph path. Is node [node id1]
connected with node [last node id]?
Answer the question by reasoning
step-by-step. Choose from the given

Multi-hop Relation Prediction
(Ablation)

( PROMPT

### Input:

Node [node id1] has relation
[relation id] with node [node id2].
Node [node id2] has relation
[relation id] with node [node id3].
[...]

Multi-hop Relation Prediction
(KG-LLM)

( PROMPT

### Instruction:

Below is the detail of a knowledge
graph path. What is the relation
between [node id1] and [last node
id]? Answer the question by
reasoning step-by-step. Choose from

options: 1. Yes 2. No

### Input:

Node [node id1] has relation
[relation id] with node [node id2].
Node [node id2] has relation
[relation id] with node [node id3].

[...]

Expected Output

### Response:

Node [node id1] has relation
[relation id] with node [node id2]
means [node text1] [relation text]
[node text2]. [...]

So [node text1] [relation text] [last
node text].

The answer is yes.

the given options: 1. [relation text1]
2. [relation text2] [...]

#i## Input:

Node [node id1] has relation
[relation id] with node [node id2].
Node [node id2] has relation
[relation id] with node [node id3].
[.]

Expected Output

### Response:

Node [node id1] has relation
[relation id] with node [node id2]
means [node text1] [relation text]
[node text2]. [...]

So [node text1] [relation text] [last
node text].

The answer is [relation text].

Is node [node id1] connected with
node [last node id]?

What is the relation between [node
id1] and [last node id]?

Expected Output

### Response:
[Yes / No]

Expected Output

### Response:
[relation id]

Figure 3: Overview of our knowledge prompts in the ablation and KG-LLM
Frameworks: Ablation framework’s knowledge prompts are in the first and third columns.
KG-LLM framework’s knowledge prompts are in the second and fourth columns.

comparative analysis of the models’ performances is conducted under equivalent learning
conditions. We listed all ICL examples in Appendix A.1.

3.3. KG-LLM Framework

Our complete KG-LLM Framework is illustrated in Figure 1. Initially, the KG is taken as
input. Each node is iteratively assigned as the root, and depth-first search (DFS) is used
to extract all possible paths. Duplicate paths are then removed, retaining only those with
node counts ranging from 2 to 6. This range is based on the “six degrees of separation”
theory (Guare, 2016), which states that any two individuals are, on average, connected
through a chain of no more than six intermediaries. The node counts correspond to the
number of hops: a single-hop is between two nodes, a two-hop involves three nodes, and
so on. These paths are labeled as either positive (there is a connection between the first
and last node) and negative (there is no connection) instances. We observed that negative
instances outnumbered positive instances, so we randomly reduced the number of negative
instances to achieve a balanced dataset. Finally, these paths are converted into KG-LLM
and KG-LLM (ablation) knowledge prompts. During the fine-tuning phase, three distinct
LLMs are utilized: Flan-T5-Large, LlaMa2-7B, and Gemma-7B. We added all the node IDs
and relation IDs as special tokens to the vocabulary of these LLMs. Different fine-tuning
techniques are applied for each model within our framework. A global fine-tuning strategy is
employed on Flan-T5 to boost its performance. For LlaMa2 and Gemma, a 4-bit quantized
LoRA (Low-Rank Adaptation) modification (Hu et al., 2021) is implemented. During the

training process, we use the cross-entropy loss function L. It calculates the difference
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between the model’s predicted token probabilities and the actual token probabilities in the
expected output sequence. In the following equation, n represents the length of the expected
output sequence, x stands for the input instruction, and y; denotes the i-th token in the
expected output sequence.

n
L = —ZIOgP(yi|x7y17y2>'“)yi—l) (1>
i=1

To evaluate our KG-LLM Frameworks, we train each model twice. As illustrated in
Figure 2, the initial training session employs KG-LLM (ablation) knowledge prompt inputs
to establish a baseline. Subsequently, we use instruction finetuning to finetune the original
models using KG-LLM knowledge prompt inputs.

After the training phases, we subject each model to two inference task sets, each com-
prising two sub-tests: non-In-Context Learning (non-ICL) and In-Context Learning (ICL).
The primary set of inference tasks is centered around multi-hop link prediction. Conversely,
the secondary set probes the models’ generalization ability in multi-hop relation prediction,
particularly with previously unseen prompts. Through pre- and post-ICL evaluation within
each task set, we aim to evaluate the impact of ICL integration across both the KG-LLM
(ablation) and KG-LLM frameworks.

4. Experiments

In this section, we conduct experiments to evaluate the effectiveness of the proposed KG-
LLM frameworks to answer the following several key research questions:

e Q1: Which framework demonstrates superior efficacy in multi-hop link prediction
tasks in the absence of ICL?

e Q2: Does incorporating ICL enhance model performance on multi-hop link prediction
task?

e Q3: Is the KG-LLM framework capable of equipping models with the ability to
navigate unseen prompts during multi-hop relation prediction inferences?

e Q4: Can the application of ICL bolster the models’ generalization ability in multi-hop
relation prediction tasks?

4.1. Experimental Setup

Datasets. We conduct experiments over four real-world datasets, WN18RR, NELL-995,
FB15k-237 and YAGO3-10, which are constructed by the OpenKE library (Han et al.,
2018). All datasets are commonly used for evaluating knowledge graph models in the field
of knowledge representation learning. Statistics of the datasets are shown in Table 1.

Task splits. In the preprocessing stage of each dataset, we randomly selected 80% of the
nodes to construct the training set of KG. Following the steps in section 3.3, we constructed
the training knowledge prompts. For validation, we randomly split off 20% of the positive
and negative instances from training knowledge prompts. The same procedure was applied
to the remaining 20% of the nodes to create the test set.
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Table 1: Basic statistics of the experimental datasets.

Dataset #Entities #Triples # Relations

WNI18RR 40,943 86,835 11
NELL-995 75,492 149,678 200
FB15k-237 14,541 310,116 237
YAGO3-10 123,182 1,179,040 37
FB15K 14,951 592,213 1.345

Comparing Baselines. To assess the effectiveness of our KG-LLM frameworks, we com-
pare models’ performance across 4 experiments: non-ICL multi-hop link prediction, one-
shot ICL multi-hop link prediction, non-ICL multi-hop relation prediction, and one-shot
ICL multi-hop relation prediction. In the non-ICL multi-hop link prediction testing, we
compare our approach with several traditional methods:

e TransE (Bordes et al., 2013) is a traditional distance model that represents relation-
ships as translations in the embedding space.

e Analogy (Liu et al., 2017) can effectively capture knowledge graph structures to im-
prove link prediction.

e CompleX (Trouillon et al., 2016) uses complex embeddings to represent both entities
and relations, capturing asymmetric relationships.

e DistMult (Yang et al., 2014) represents relations as diagonal matrices for simplicity
and efficiency.

e RESCAL (Nickel et al., 2016) uses a tensor factorization method that captures rich
interactions between entities and relations.

e wsGAT (Grassia and Mangioni, 2022) is a graph attention network that uses weighted
self-attention mechanisms to perform various knowledge graph tasks.

e ConGLR (Lin et al., 2022) leverages context-aware graph representation learning to
enhance link prediction.

e ConvRot (Le et al., 2023) integrates convolutional networks and rotational embeddings
to perform a variety of knowledge graph tasks.

Implementation Details. We trained each model for 5 epochs on an A40 GPU, and
despite limited resources, models still showed promising results. As mentioned in section
3.3, we set the maximum complexity of five-hops. We also monitor the input token size
to optimize processing efficiency, noting that Flan-T5, with its 512-token capacity, had the
smallest token size. Consequently, we tailored our experiments to ensure that the maximum
length of input data did not exceed 512 tokens.
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Metrics for Multi-hop Link Prediction. In evaluating the performance of models in
multi-hop link prediction tasks, we utilized the Area Under the ROC Curve (AUC) metric
(Lobo et al., 2008) and the F1 score (Sai et al., 2022). AUC measures the area under the
Receiver Operating Characteristic (ROC) curve, which plots the true positive rate against
the false positive rate at varying classification thresholds. The threshold is set at a 50% true
positive rate and 50% false positive rate, as the number of positive and negative data points
are equal in the testing case. A higher AUC value indicates a better ability of the model to
differentiate between positive and negative examples. Similarly, the F1 score, ranging from
0 to 1, measures the balance between precision and recall, where higher values represent
better performance. For the performance tables presented below, the best performance is
indicated in bold, while the second-best performance is indicated with underline.

Metrics for Multi-hop Relation Prediction. We use accuracy as the performance
metric for the multi-hop relation prediction task, which provides an overall measure of the
model’s correctness, calculated as the percentage of test cases where the true relation is
predicted correctly.

Table 2: Multi-hop Link Prediction w/o In-Context Learning

Datasets WN18RR NELL-995 FB15k-237 YAGO3-10
Metrics F1 AUC F1 AUC F1 AUC F1 AUC
TransE 0.37 0.47 0.26 0.43 0.29 0.48 0.34 0.51
Analogy 0.61 0.52 0.29 0.47 0.35 054 0.39 0.56
CompleX 0.60 0.51 0.29 0.49 0.32 051 0.36 0.53
DistMult 0.56 048 0.25 0.44 0.30 0.50 0.35 0.52
Rescal 0.61 0.50 0.59 0.53 0.43 0.58 0.47 0.61
wsGAT 0.69 0.71 0.62 0.67 0.50 0.63 0.54 0.66
ConGLR 0.74 0.69 0.66 0.64 0.63 0.68 0.69 0.61
ConvRot 0.75 0.77 0.72 0.66 0.67 0.62 0.62 0.63

Flan-T5 (Ablation) 0.63 0.67 0.60 0.66 0.63 0.67 0.68 0.70
LLaMa2 (Ablation) 0.74 0.72 0.71 0.73 0.69 0.72 0.76 0.75
Gemma (Ablation) 0.76 0.73 0.72 0.71 0.65 0.73 0.78 0.76

(
Flan-T5 (KG-LLM) 0.73 0.71 0.70 0.72 0.66 0.70 0.74 0.75
LLaMa2 (KG-LLM) 0.82 0.83 0.81 0.80 0.73 0.76 0.85 0.86
Gemma (KG-LLM) 0.84 0.81 0.82 0.83 0.79 0.81 0.82 0.83

4.2. Multi-hop Link Prediction without In-Context Learning

This section analyzes the traditional approaches, ablation framework, and KG-LLM frame-
work in the context of non-In-Context Learning (non-ICL) Link Prediction, as shown in
Table 2. Traditional approaches are shown in the top section of the table, the ablation
framework is in the middle section, and the KG-LLM framework is in the bottom section.
Answer to Q1: Our analysis reveals that the traditional approach’s GNN model, espe-
cially ConvRot, exhibited relatively good performance, particularly surpassing the ablation
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Figure 4: Linear Relationship Between Complexity of Multi-Hop and Perfor-

mance Score

Table 3: Multi-hop Link Prediction with In-Context Learning

Datasets WN18RR NELL-995 FB15k-237 YAGO3-10

Metrics F1 AUC F1 AUC F1 AUC F1 AUC
Flan-T5 (Ablation) 0.70 0.74 0.61 0.63 0.55 0.63 0.57 0.63
LLaMa2 (Ablation) 0.83 0.85 0.81 0.80 0.76 0.78 0.84 0.83
Gemma (Ablation) 0.86 0.87 0.82 0.83 0.75 0.80 0.88 0.87
Flan-T5 (KG-LLM) 0.85 0.87 0.68 0.70 0.74 0.77 0.69 0.73
LLaMa2 (KG-LLM) 0.97 0.95 0.96 0.93 0.85 0.86 0.95 0.93
Gemma (KG-LLM) 0.98 0.94 0.95 0.95 0.94 0.92 091 0.94

models on the WN18RR dataset. This GNN model performance can be attributed to its
ability to effectively capture the structural information in graph data. However, the re-
sults demonstrate that across all models, the implementation of the KG-LLM framework
surpasses the traditional approaches and ablation framework across all datasets. This im-
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proved performance can be attributed to the KG-LLM framework’s knowledge prompts.
These prompts enable LLMs to take advantage of the relationships network between enti-
ties and their interconnections within the KG. Furthermore, these LLMs already possess
basic common sense knowledge from pre-training. When all nodes and relations are con-
verted to text, this inherent common sense enhances their understanding of the relations
and nodes, thereby improving link prediction accuracy. Instruction fine-tuning (IFT) also
contributed to this improvement by forcing models to focus on the limited options. The
evidence presented here underscores the efficacy of our KG-LLM framework, enriched with
CoT and IFT, indicating its potential to advance the domain of multi-hop link prediction
tasks in real-world applications.

We also evaluate GNN, ablation, and KG-LLM framework models’ performance at each
level of hop complexity in WN18RR and NELIL-995 datasets. As shown in Figure 4, the
performance of GNN and ablation models significantly declines as hop complexity increases.
Upon closer examination, it is evident that as hop complexity grows, these models frequently
respond with 'No’ for most questions, resulting in an F1 score close to 0 and an AUC
score around 0.5. This performance is due to the increased complexities of multi-hop link
prediction. Unlike the straightforward task of predicting a direct link between two nodes,
models must consider all intermediate nodes to conclude, adding significant complexity and
reducing their effectiveness. In contrast, the KG-LLM framework models effectively address
this challenge, maintaining fair performance even at five-hops, except for the Flan-T5 model.

4.3. Multi-hop Link Prediction with In-Context Learning

In this section, we evaluate the influence of In-Context Learning (ICL) on models subjected
to both ablation and KG-LLM frameworks, excluding the traditional approach as it lacks
ICL capability. We experimented using the same LLMs and testing inputs as in the previous
section. The key distinction in this evaluation was adding an ICL example at the beginning
of each original testing input. The ICL example shown in Appendix A.l, derived from
the training dataset, was restricted to the complexity of two-hops. This constraint aimed
to prevent providing additional knowledge through the ICL example while furnishing a
contextually relevant example.

Table 3 reveals a notable enhancement in the performance of models under the ablation
framework, with LLaMa2 and Gemma models achieving an F1 and AUC score exceeding
80% in WN18RR and NELL-995 datasets. Remarkably, the adoption of ICL within the KG-
LLM framework resulted in a significant performance uplift. Notably, the Gemma model
achieved a staggering 98% F1 score on the first dataset, while LlaMa2 recorded a 96% F1
score on the second dataset.

An interesting observation is that ICL has shown unstable improvements in the Flan-T5
model. For some datasets within the ablation and KG-LLM frameworks, the performance
slightly declined after implementing ICL. This phenomenon could be attributed to the
increased length and complexity of the testing prompts. While the inclusion of an ICL
example generally aids in model understanding, in certain cases, it might be perceived as
noise, potentially affecting the Flan-T5’s performance.
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Answer to Q2: The experimental results indicate that the deployment of ICL does not
uniformly improve performance across all models. However, for the LL.aMa2 and Gemma
models, the integration of ICL consistently facilitates performance improvements.

[ Ablation without ICL 1 Ablation with ICL [ KGLLM without ICL 1 KGLLM with ICL
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Figure 5: Multi-hop Relation Prediction Performance Comparison: The left graph
shows model performance under the ablation framework, while the right graph shows model
performance under the KGLLM framework. Blue bars represent testing without ICL, and
red bars represent testing with ICL.

4.4. Multi-hop Relation Prediction without In-Context Learning

In this analysis, we explore models’ ability to perform unseen multi-hop relation prediction
tasks on WN18RR and NELL-995 datasets, excluding the traditional approach as it lacks
generalization ability. We used the same testing dataset in the multi-hop link prediction
task to ensure comparability and fairness. As mentioned in section 3.2, the difference lies
in the instruction and prompt question presented to the model.

Our findings are presented in Table 5. We discovered that both frameworks showcased

limited performance in this task without ICL. Notably, the KG-LLM framework exhibited
marginally superior performance. Upon reviewing the predictive results, we observed that
the model continues to provide ‘yes’ and ‘no’ answers for most questions, similar to the
multi-hop link prediction task. For some questions, it outputs random responses.
Answer to Q3: The findings suggest that the KG-LLM framework marginally enhances
the models’ generalization abilities. However, it would be premature to assert that our
framework equips models with the ability to navigate unseen prompts. This could be
attributed to the complexity and difficulty of the new instructions and options. With options
no longer limited to a binary yes or no answer, the model may struggle to comprehend the
updated instruction and effectively utilize the provided options.

4.5. Multi-hop Relation Prediction with In-Context Learning

We further explore the impact of incorporating ICL into the multi-hop relation prediction
task. The ICL example is shown in the Appendix A.1. The results of red bars (with ICL)
in Table 5 reveal a significant improvement in the generalization abilities of the models
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under both ablation and KG-LLM frameworks, in contrast to the blue bars (without ICL).
In particular, the LlaMa2 and Gemma models under the KG-LLM framework with ICL,
achieved an accuracy exceeding 70% in the WN18RR datasets.

Answer to Q4: The integration of ICL has improved the models’ ability to excel in unseen
tasks. The KG-LLM framework, in particular, exhibits the ability to learn and utilize the
contextual example provided by ICL.

5. Conclusions and Future Work

Our study introduces the Knowledge Graph Large Language Model Framework (KG-LLM
Framework) as a promising solution for multi-hop generative prediction tasks in knowledge
graph analysis. By leveraging techniques such as Chain of Thought and Instruction Fine-
tuning, models processed by KG-LLM framework have greatly enhanced the accuracy of
predictions in KG-related tasks.

In our future work, we will consider accessing the model’s reasoning process in the eval-
uation stage. We are committed to further enhancing KG-related prediction tasks. One
key aspect we will focus on is refining the instruction process by limiting the option size.
Additionally, we plan to explore the utilization of prompt quality filters to effectively filter
out noisy options, improving the overall accuracy and reliability of the model’s predictions.
Through these ongoing improvements, we aim to advance the capabilities of KG-LLM mod-
els and contribute to the progress of knowledge graph analysis.
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