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Towards Fair In-Context Learning with Tabular Foundation Models
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Abstract

Tabular foundational models have shown promis-
ing in-context learning capabilities on structured
data by using training examples as context with-
out further parameter adjustments. This emerg-
ing approach positions itself as a competitive
alternative to traditional gradient-boosted tree
methods. However, while biases in conven-
tional machine learning models are well doc-
umented, it remains unclear how these biases
manifest in Tabular ICL. The paper investigates
the fairness implications of Tabular ICL and ex-
plores three preprocessing strategies—correlation
removal, group-balanced demonstration selec-
tion, and uncertainty-based demonstration selec-
tion—to address bias. Comprehensive exper-
iments indicate that uncertainty-based demon-
stration selection consistently enhances group
fairness in the predictions. The source code
for reproducing the results of this work can be
found at https://anonymous.4open.science/r/Fair-
TabICL-DD84.

1. Introduction
Tabular data, represented in rows and columns, is a data
modality widely used for prediction tasks in domains such as
finance and healthcare (Asuncion et al., 2007). Tree-based
models such as XGboost (Chen et al., 2015) and Gradient-
Boosted Trees (Ke et al., 2017) have shown the strongest
generalization performance on tabular data. Recently, with
the emergence of foundation models, Deep Learning (DL)
based models have challenged the dominance of tree-based
models (Hollmann et al., 2025). Foundation models are
transformer models (Vaswani et al., 2017) pretrained on
massive amounts of data, learning various complex struc-
tures that enable in-context learning (ICL) with a few la-
belled data (Brown et al., 2020). In-context learning has
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mainly been used with large language models (LLMs) for
natural language tasks, where for a given prediction task, the
labelled samples are formatted into textual demonstration
examples and provided as context information to a language
model such as GTP-3 (Radford et al., 2019). Given the
demonstrations as context, the language model can effec-
tively predict the label of a test example without any model
update or finetuning (Brown et al., 2020). Attempts have
been made to perform ICL using LLMs on tabular data,
where the rows of the table are serialized into text or sen-
tences (Hegselmann et al., 2023). However, LLMs are not
pretrained to fully capture the complex relations between
rows and columns of tabular data. LLMs fine-tuned on vast
amounts of tabular data are limited by their context win-
dow (up to 32 or 64 shots). To overcome this, Hollmann
et al. (2022) proposed TabPFN (short for Tabular Prior-Data
Few-Shot Network), a transformer-based tabular foundation
model fully pretrained on synthetic datasets. Followup ver-
sions of TabPFN—TabPFNv2 (Hollmann et al., 2025) and
TabICL (Qu et al., 2025)— demonstrated competitive or
better performance compared to the traditional tree-based
model on a variety of tasks under ICL (Hollmann et al.,
2025; Qu et al., 2025).

With their state-of-the-art performance and ICL capabilities,
transformer-based tabular foundation models will likely be
widely adopted for decision-making and trigger a shift in the
learning paradigm. However, using ICL-based models in
high-stakes decision-making scenarios requires a thorough
investigation of the negative social impact they might have.
It has been shown that traditional machine-learning mod-
els can perpetuate bias in the data (Mehrabi et al., 2022).
Recent studies have demonstrated that ICL can also pro-
vide biased predictions (Hu et al., 2024; Bhaila et al., 2024).
However, these works use serialized tabular datasets and
inherit the drawbacks of foundational language models on
tabular data (Hollmann et al., 2025).

This paper investigates the fairness of ICL prediction us-
ing transformer-based tabular foundation models. First, our
study reveals, perhaps unsurprisingly, that while these mod-
els focus on improving prediction accuracy, they can also
amplify bias. Motivated by recent studies on the sensitivity
of ICL performance—in terms of fairness and accuracy—
to demonstration selection, we aim to address the following
research question: What in-context selection/transformation
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method can improve the fairness of ICL predictions? In the
fairness literature, fairness-enhancing methods are generally
grouped into three categories: pre-processing, in-processing,
and post-processing (Mehrabi et al., 2022). Projecting these
categories into the ICL paradigm, pre-processing meth-
ods perform demonstration transformation or selection be-
fore predicting in context (Hu et al., 2024). In-processing
methods would fine-tune or retrain the foundation model
with fairness constraints (Robertson et al., 2024). Post-
processing methods would alter the ICL predictions to im-
prove a given fairness metric (Hardt et al., 2016). Pre- and
Post-processing methods are more computationally friendly
since they do not require model updates. This motivates our
choice to focus on the pre-processing techniques and leave
post-processing interventions for future exploration. More
specifically, we propose and investigate three pre-processing
fairness interventions: (i) Correlation Remover (Feldman
et al., 2015), a method that alters each input feature to re-
duce their correlation with the sensitive attribute; (ii) group-
balanced1 in-context selection, ensures that the in-context
set is group-balanced; (iii) Uncertainty-based in-context se-
lection, estimates the uncertainty of predicting the sensitive
attribute of in-context samples and only selects samples with
uncertain predictions. We performed intensive experiments
on eight fairness benchmark datasets to investigate the effec-
tiveness of each method in terms of fairness and accuracy.
Our results reveal that the uncertainty-based method can
provide better fairness performance across datasets, fairness
metrics, and foundational models, with marginal impact on
accuracy. Our contribution can be summarized as follows:

• While most existing studies focus on fair ICL with
serialized tabular data, we provide, to our knowledge,
the first investigation into preprocessing methods for
fair prediction in ICL using transformer-based tabular
foundation models.

• We propose and investigate three pre-processing inter-
vention methods to enforce fair ICL predictions. These
methods aim to reduce the information about the sensi-
tive attributes of in-context samples. We demonstrate
that uncertainty-based in-context sample selection can
significantly improve the fairness of ICL predictions
with a slight drop in accuracy.

• We perform extensive experiments on a broad range
of start-of-the-art fairness benchmarks and provide in-
sights into contexts where a given fairness intervention
performs best in terms of fairness accuracy tradeoff.

• We release the code to ease reproduction of the results
and help researchers and practitioners integrate the
proposed methods.

1Underlined represent the method’s name throughout the paper
and in the results.

2. Methodology
2.1. Problem Setup

We consider a classification task where giving the training
data D = {(xi, yi, si)}Ni=1 where xi is an input feature
vector, yi is the corresponding class label, and si the corre-
sponding demographic group. The goal is to learn a clas-
sifier f to accurately predict the target y given a sample x
while being fair w.r.t. demographic information s (e.g., gen-
der and race). This work focuses on group fairness metrics,
which measure performance disparity across demographic
groups (See Appendix C.1 for more details).

2.2. Preprocessing Fair-ICL interventions

Pre-processing fairness interventions often involve applying
a transformation to the training dataset to reduce the influ-
ence of the sensitive attribute. The intervention is model-
agnostic as the intervened data is fitted to any downstream
model with the hope of better fairness performance. We pro-
pose three interventions on in-context samples to improve
the fairness of ICL predictions.

Balanced Group-balanced in-context sample selection
where context examples are randomly drawn with equal
demographic group ratio. The majority group is uniformly
downsampled across k-fold evaluations and independent
runs.

Correlation Remover In-context transformation
with correlation remover (Feldman et al., 2015) where each
non-sensitive feature is transformed to reduce correlation
with the sensitive ones. We use the fairlearn toolkit (Bird
et al., 2020) implementation and fixed the parameter α
controlling the fairness-accuracy tradeoff to one, meaning
maximal fairness.

Uncertain Using the uncertainty of the sensitive at-
tribute prediction to select in-context examples. We use the
Mappie implementation of conformal prediction (Cordier
et al., 2023) to estimate the uncertainty of the training data.
We fix the coverage parameter ϵ, of conformal prediction to
0.05 and only select as in-context example samples with pre-
diction sets equal to two, i.e., samples with uncertain sensi-
tive attributes. We consider two variants of the method under
different model classes used to train the sensitive attribute
classifier for uncertainty estimation: a variant that uses the
traditional logistic regression model (Uncertain+LR) and a
variant that uses a foundation model (Uncertain+TabPFN).

3. Experiments
This section describes the experimental setup and provides
the results and discussion.
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Figure 1. Fairness-accuracy performance of different ICL methods. ↑ indicates higher is better (accuracy) and ↓ lower is better
(unfairness). Uncertainty-based instance selection tends to provide better fairness while preserving accuracy. Table 8 in the Appendix
supplements the figure with the actual values.

3.1. Experimental Setup

Datasets We experiment on tasks from the recently pro-
posed folktables (Ding et al., 2022), which contains data
extracted from the American Community Survey (ACS).
More details about each dataset, including the sensitive at-
tributes used for fairness evaluation, the number of samples,
and the number of features, can be found in the Appendix B.

Metrics In addition to the classic accuracy, we consider
three popular group fairness metrics, i.e., Demographic Par-
ity (∆DP), Equal Opportunity (∆EOP), and Equalized Odds
(∆EOD), more details can be found in C.1.

Evaluation For evaluation, we split each dataset into 80%-
20%, where the 20% is used for training the sensitive at-
tribute classifier for uncertainty quantification. For the re-
maining 80% we use 5-fold cross-validation with random
shuffle across ten independent runs. This ensures our evalu-
ation is robust and reliable since every data point is used in
the in-example or query example across k-fold evaluation.
We report the average and standard deviation of fairness
and accuracy performance across the k-fold test sets and the
ten random independent seeds. As aforementioned, we use
TabPFN and TabICL as foundation models for ICL predic-
tion.

Baselines In addition to fairness pre-processing methods
presented in section C.3, we consider as a baseline for
comparison the vanilla method, which performs ICL us-
ing randomly selected in-context examples data without any
fairness consideration.

3.2. Results

We evaluate several aspects of fairness in ICL prediction
with foundational tabular datasets. First, we compare the
different baselines considered in terms of fairness and ac-
curacy; For the methods with controllable tradeoff between
fairness and accuracy, we vary the hyperparameter control-
ling the fairness-accuracy tradeoff and compare their Pareto
fronts. We then compare the foundation model under the
best-performing fairness intervention method. Finally, we
provide an ablation study on the impact of the size of the
in-context examples on fairness and accuracy.

3.2.1. BASELINE COMPARISON

Figure 2 summarizes the accuracy & fairness of the different
baselines considered across the eight datasets with TabPFN
as the foundational model. The results show that uncertainty-
based methods significantly improve the fairness of the
ICL prediction compared to the vanilla method, the group
balanced methods, and Correlation Remover.

Surprisingly, Correlation Remover exacerbates un-
fairness in most datasets. For example, on the ACSIncome
dataset, demographic parity increases from 0.14 to 0.26.
To further investigate the failure case of Correlation
Remover, we measure and compare the reconstruction of
sensitive attributes by the foundation model before and af-
ter applying the preprocessing intervention. Specifically,
we perform ICL using the sensitive attribute as the target
variable and use the accuracy of the ICL prediction of the
sensitive attribute in the test set as a measure of how the
foundation model can reconstruct the sensitive attribute af-
ter the fairness intervention. We observe that TabPFN and
TabICL can fully reconstruct (up to 100% accuracy) the
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Figure 2. Accuracy and fairness performance for ICL prediction with TabPFN as foundation model. Comparing the fairness-accuracy
Pareto-front of different fairness interventions using TabPFN. Results with other datasets can be found in the Appendix (Figure 4) and
results using TabICL in Figure 6.

sensitive attribute based on the feature transformation ap-
plied by Correlation Remover (see Table 2 in Ap-
pendix). This demonstrates that transformer-based models
like TabPFN, pretrained on synthetic data with different
sample and feature interactions, can uncover the transfor-
mation applied to the non-sensitive features at test-time. By
transforming every non-sensitive feature based on the sensi-
tive one, Correlation Remover introduces a sensitive
information leakage that the foundational model uncovers
and relies upon for predicting the target variable, thereby
exacerbating unfairness. Further discussion and results can
be found in Appendix E, where we also demonstrate that
applying the feature transformation only to the training set
and leaving the test set unchanged yields better fairness out-
comes compared to the Vanilla approach. On the other
hand, Table 2 in the Appendix shows that Uncertain
methods yield the smallest accuracy of ICL predictions of
the sensitive attribute across datasets. This indicates that
the selected in-context samples do not encode sufficient
information about the sensitive attribute that the founda-
tion model can rely upon for inference, thereby reducing
unfairness.

3.2.2. FAIRNESS ACCURACY TRADEOFF

In the previous experiment, we fixed the parameters con-
trolling the tradeoff between fairness and accuracy for the
Correlation Remover and the Uncertain meth-
ods, α and ϵ respectively. For a better comparison of the
fairness accuracy performances, we consider a range of val-
ues between [0, 1] for parameters controlling the tradeoff
and plot the Pareto front. Figure 2 shows the Pareto front
of the two variants of the Uncertain, Correlation
Remover, and the Vanilla method. Each scatter point
in the figure represents a different value of α and ϵ for the
corresponding ICL method. As can be seen, both variants
of the Uncertain consistently have better Pareto domi-
nant points while Correlation Remover can perform

worse than the Vanilla in terms of fairness, even with
different values of α. This further provides evidence of bias
amplification of Correlation Remover when used
with foundation models. We also see that the Uncertain
method can consistently control the fairness accuracy trade-
off with higher values of ϵ enforcing better fairness at the
expense of accuracy. The slight decrease in accuracy when
the Uncertain is applied is mainly due to the reduced
size of in-context examples since more and more samples
with certain sensitive attributes are not included in the in-
context set. Comparing the fairness-accuracy tradeoffs of
TabICL and TabPFN, Figure 8 and 9 in the Appendix show
that both foundation models tend to have similar fairness
performances while TabPFN often provides better accuracy
across datasets.

4. Conclusion and future works
In this work, we studied the fairness of in-context learning
with tabular foundation models. We proposed and investi-
gated the effectiveness of three preprocessing methods for
improving the fairness of ICL prediction. Our empirical
results on eight fairness benchmarks posit the uncertainty-
based in-context selection method as a strong baseline for
improving the fairness of tabular ICL. The key advantages of
this method are twofold: (1) it does not require fine-tuning
or retraining the foundation model to enforce the desired
fairness metrics. (3) It can consistently improve three widely
used group fairness metrics. (3) It offers a parameter to con-
trol the fairness-accuracy tradeoff. To our knowledge, this is
the first work that explores pre-processing fairness interven-
tion on the tabular foundation models. We hope this work
will trigger more investigations into fair tabular ICL, since
in-context learning as a new learning paradigm is more in-
tegrated into decision-making tools. One interesting future
research direction is to investigate the effect of distribution
shift, between in-context and test examples, on fairness and
accuracy.
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Ethics Statement
This paper explores ways to reduce unfairness in tabular
foundation models, emphasizing fair treatment for various
groups. We recognize the significance of fairness in machine
learning, especially regarding sensitive attributes like race,
gender, and socio-economic status. Our research seeks to un-
cover and tackle potential biases in these models, thereby en-
hancing transparency, accountability, and inclusivity. While
the proposed method uses a sensitive attributes predictor,
which could be unlawful in some countries, we emphasized
that predicted sensitive values are not used either for train-
ing or measuring unfairness. We use the attribute classifier
only to quantify uncertainty, and emphasize that this method
should not be used for any purpose other than bias measur-
ing or mitigation.
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Appendix

A. Methodology
This section presents three pre-processing techniques proposed in this work to ensure fairer outcomes in in-context learning
on tabular data. In particular, we consider correlation remover (Feldman et al., 2015), group-balanced demonstration
selection, and uncertainty-based demonstration selection.

A.1. In-context Samples Transformation

Correlation remover (Feldman et al., 2015; Bird et al., 2020) is a preprocessing method that reduces the correlation between
the sensitive and non-sensitive attributes before fitting the model. More specifically, each non-sensitive feature vector is
transform to reduce its correlation with the sensitive feature. We apply the correlation remover as a preprocessing step over
the entire demonstration set before performing in-context prediction. Ultimately, transforming input features to reduce their
linear dependency on the sensitive feature can reduce the reliance on sensitive features in the downstream models. However,
nonlinear and complex downstream models can infer the nonlinear dependencies over the sensitive feature and provide
unfair results.

A.2. In-context Samples Selection

In this work, we posit that in-context sample selection can have a significant impact on the fairness of ICL prediction. We
analyze several demonstration selection methods that can improve the fairness of ICL predictions without any fairness
finetuning.

Group-balanced demonstration set selection. Representation bias is a common source of bias in machine learning
models (Mehrabi et al., 2022). It occurs when the collected training data does not reflect the demographic diversity of the
population. As a result, some demographic subgroups are under-represented, if not represented at all. Recent studies have
demonstrated the benefits of group-balanced training data on the fairness properties of the downstream model. Several
methods have been proposed to mitigate representation bias in the data, including subsampling the majority group or
reweighting the training data based on group proportions (Kamiran & Calders, 2012; Celis et al.). In this paper, we focus on
subsampling since current tabular foundation models do not handle sample weights (Hollmann et al., 2025; Qu et al., 2025).
Specifically, we perform ICL with a group-balanced demonstration set sampling from each group uniformly at random.
When the demonstration set size does allow equal group representation, we subsample the majority group at random. A
similar strategy is employed by (Hu et al., 2024) to select demonstrations for few-shot ICL prediction with LLMs. In this
paper, we focus on fair ICL with tabular foundation models instead of using LLMs on serialized tabular data.

Uncertainty-based demonstration set selection Kenfack et al. (2024) demonstrated that models trained without fairness
constraints can have better fairness properties when the training data consists of samples with uncertain sensitive attributes.
Building on this, we hypothesize that the uncertainty of the sensitive attribute prediction can be a good measure to select
demonstrations that improve the fairness in-context predictions. To validate this, we measure the uncertainty of predicting
the sensitive attribute in the demonstration examples set and use samples with high uncertainty for in-context learning. We
focus on conformal prediction (Shafer & Vovk, 2008; Vovk et al., 2005) as uncertainty measure since it provides strong
theoretical guarantees for the coverage. Instead of returning a single label, a conformal predictor returns a prediction set
containing the true label with a probability of at least 1− ϵ, with ϵ being a user-defined coverage parameter of the conformal
prediction (Angelopoulos et al., 2023). For example, setting ϵ = 0.1 ensures the prediction set contains the true sensitive
attribute value with at least 90% probability. Specifically, we consider samples with prediction set sizes containing more
than one value as uncertain. Intuitively, the coverage parameter ϵ controls the fairness-accuracy tradeoff, with ϵ ≈ 1 meaning
no fairness intervention where all the datapoints are used and ϵ ≈ 0 meaning maximal fairness intervention where only
uncertain samples are included in the in-context examples.

Since conformal prediction is model agnostic, we considered both classical methods, e.g., Logistic Regression (LR),
and foundation models, e.g., TabPFN for training the sensitive attribute classifier to measure the prediction uncertainties.
Note that the method could be applied using other uncertainty measures, such as Monte Carlo dropout and confidence
interval (Kenfack et al., 2024). We focus on conformal prediction due to its rigorous theoretical guarantees, and it does not
require a hyperparameter to threshold the level from which a prediction is considered uncertain (Angelopoulos et al., 2023).
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A.3. In-context prediction

After performing demonstration selection or transformation using the fairness intervention methods presented previously,
we pass them through the tabular foundation model as in-context examples for predicting class labels on the test set. In
this paper, we consider TabICL (Hollmann et al., 2025) and TabPFN (Qu et al., 2025) as tabular foundation models. These
models are transformers trained on extensive synthetic datasets to perform tabular predictions with a single forward pass
without parameter update.

B. Datasets

Table 1. Summary of datasets used in our experiments. For each dataset, we report the number of features (including the sensitive
attribute), the number of samples available, and the sensitive attribute used for fairness evaluation.

Dataset # Features # Samples Sensitive Feature Prediction Task

ACSIncome 10 22,268 Gender Income ≥ $50,000

ACSEmployment 16 47,777 Gender Employment status

ACSTravelTime 16 19,492 Gender Commute time over 20
minutes

ACSMobility 21 8,625 Gender Residential mobility

PublicCoverage 19 18,525 Gender Public health insurance
coverage

CelebA 39 202,599 Gender Attractiveness

Diabetes 183 38,575 Race Prior diabetes diagnose

German 58 990 Age Credit risk

We experiment on tasks from the recently proposed folktables (Ding et al., 2022), which contains data extracted from the
American Community Survey (ACS) Public Use Microdata Sample (PUMS) (Ding et al., 2022). More specifically, we
experiment with the following ACS PUMS tasks:

• ACSIncome: The task involves predicting whether an individual’s income exceeds $50,000. The dataset is filtered to
include only individuals over the age of 16 who reported working at least 1 hour per week during the past year and
earned a minimum of $100.

• ACSMobility: This task involves predicting whether an individual had the same residential address one year ago. The
dataset is filtered to include individuals aged between 18 and 35. This filtering increases the difficulty of the task, as
more than 90% of the general population tends to stay at the same address year-to-year.

• ACSTravelTime: This task predicts whether an individual has a commute longer than 20 minutes. The dataset is
filtered to include only employed individuals above the age of 16. The 20-minute threshold corresponds to the median
commute time in the US, according to the 2018 ACS PUMS data.

• ACSEmployment: The objective is to predict whether an individual is employed, using a dataset filtered to include
individuals aged between 16 and 90.

• ACSPublicCoverage: The goal is to predict whether an individual has public health insurance. The dataset is filtered to
include individuals under 65 years of age and those with an income below $30,000, focusing on low-income individuals
who are ineligible for Medicare.

These tasks were selected to reflect a range of real-world predictive challenges with fairness concerns. We use the data of the
year 2018 from the state of Alabama (AL), which is one of the states with the largest fairness violation (Ding et al., 2022)2.

2We also perform experiments on data from other states, and observed that the results presented in the paper remain consistent.
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A limitation of the ACS PUMS datasets is that they are US-centric; we diversify the experimental setup by including other
tasks and datasets. Specifically, we also experiment on the following tabular datasets and tasks:

• Diabetes (Gardner et al., 2023): The diabetes prediction task uses features related to physical health, lifestyle factors,
and chronic conditions, derived from the BRFSS questionnaires. Demographic attributes like race, sex, state, and
income are also included. The target is a binary indicator of whether the respondent has ever been diagnosed with
diabetes.

• German Credit (Frank, 2010): The German Credit dataset contains 20 attributes of 1,000 individuals. We create the
task of classifying people according to whether they have a good or bad credit risk using age (over or below 25 years
old) as the sensitive attribute.

• CelebA (Liu et al., 2018): The dataset contains 202,599 samples described with 40 facial attributes of human
annotated images, we create the task of predicting attractiveness with facial attributes using gender as the sensitive
attribute (Kenfack et al., 2024). Note that we do not train the model with images and consider this task to diversify the
experimental tasks.

C. Background
C.1. Fairness Metrics

In this work, we focus on group fairness notions measuring the performance disparity across different demographic groups.
More specifically, we consider the following three widely used group fairness metrics:

• Demographic parity (DP): DP enforces equal positive outcome rate for different groups (Dwork et al., 2012) and is
defined as follows:

P (f(X) = 1|S = s) = P (f(X) = 1) (1)

• Equalized Odds (EOD): EOdds is satisfied when the model makes correct and incorrect predictions at the same rate
for different demographic groups (Hardt et al., 2016). The metric enforces equal true positive and false positive rates
across groups and is measured as follows;

P (f(X) = 1|S = 0, Y = y) = P (f(X) = 1|S = 1, Y = y), ∀y ∈ {0, 1} (2)

• Equalized Opportunity (EOP): In some settings, one can care more about assessing unfairness when the model makes
correct predictions. EOP enforces equal true positive rates across groups, i.e., we only consider y = 1 in Eq. 2, i.e.,

P (f(X) = 1|S = 0, Y = 1) = P (f(X) = 1|S = 1, Y = 1) (3)

Empirically, we measure each fairness considered, i.e., Demographic Parity (∆DP), Equal Opportunity (∆EOP), and
Equalized Odds (∆EOD) as follows.

∆DP =

∣∣∣∣ E
x|A=0

[I{f(x) = 1}]− E
x|A=1

[I{f(x) = 1}]
∣∣∣∣ (4)

Where I(·) is the indicator function.

∆EOD = α0 + α1 (5)

∆EOP = α1 (6)

Where α0 and α1 measure the difference between the false positive and the true positive rates across groups, respectively,
and are empirically measured as follows.
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Where α0 and α1 measure the difference between the false positive and the true positive rates across groups, respectively,
and are empirically measured as follows.

αj =

∣∣∣∣ E
x|A=0,Y=j

[I{f(x) = 1}]− E
x|A=1,Y=j

[I{f(x) = 1}]
∣∣∣∣ j ∈ {0, 1} (7)

C.2. Correlation Remover

The Correlation Remover (Feldman et al., 2015) is a preprocessing technique designed to eliminate linear correlations
between sensitive attributes and non-sensitive features in a dataset. This method is particularly useful in mitigating biases
that may arise due to such correlations, especially when employing linear models.

Considering a classification task with the given training data D = {(xi, yi, si)}ni=1 where xi is an input feature vector, yi is
the corresponding class label, and si the corresponding demographic group.

To apply Correlation Remover, we assume the training data is formulated as follows:

• X ∈ Rn×d represents the training data matrix containing sensitive and non-sensitive features.

• S ∈ Rn×ms a matrix of the sensitive features. For simplicity, we assumed in this work ms = 1, which corresponds to
a single binary sensitive attribute.

• Z ∈ Rn×mz a matrix of non-senstive features such that X = [S Z]

The goal of Correlation Remover is to transform Z into Z∗ such that Z∗ is uncorrelated with S, while retaining as
much information from the original Z as possible.

For each non-sensitive feature vector zj ∈ Rn (the j-th column of Z), the algorithm solves the following least squares
problem:

min
wj

∥∥zj − (S− 1ns̄
⊤)wj

∥∥2
2

(8)

where:

• s̄ = 1
n

∑n
i=1 si is the mean vector of the sensitive features.

• 1n is an n-dimensional column vector of ones.

• wj ∈ Rmz is the weight vector that projects the centered sensitive features onto zj .

After computing the optimal weight vectors w∗
j for all j ∈ {1, . . . ,mz}, they are assembled into a weight matrix W∗ =

[w∗
1, . . . ,w

∗
mz

]. The transformed non-sensitive features are then obtained by:

Z∗ = Z− (S− 1ns̄
⊤)W∗ (9)

This operation effectively removes the linear correlations between S and Z, resulting in Z∗ that is uncorrelated with the
sensitive features.

Correlation Remover introduces a tunable parameter α ∈ [0, 1] that controls the extent of correlation removal,
i.e., (i) α = 1 corresponds to full removal of linear correlations, thus best possible fairness; (ii) α = 0 corresponds no
transformation, the original data is used; (iii) 0 < α < 1 corresponds to partial removal, balancing between the original
and transformed data, thus controlling the fairness accuracy tradeoff. More specifically, the final transformed dataset X′ is
computed as:

X′ = αZ∗ + (1− α)Z (10)

Note that X′ is derived using Z∗, since S is dropped after transformation. The convex combination 10 allows practitioners
to adjust the fairness accuracy tradeoff based on specific requirements of their application.

Equation 8 is optimized on the training dataset, and the optimal weight vectors w∗
j are used to apply the transformation 10

on the test dataset.
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C.3. Tabular Foundation Models

In-context learning with tabular foundation models presents a notable advantage over traditional machine learning approaches
by enabling models to adapt dynamically to new data without the need for retraining (Hollmann et al., 2022; Qu et al.,
2025; Hollmann et al., 2025). Conventional ML methods typically depend on predefined training datasets, meaning that any
alteration in the data or task necessitates a time-consuming and resource-intensive retraining process. In contrast, tabular
foundation models utilize in-context learning to execute tasks based on the specific context of the data provided at inference
time. This allows these models to interpret and process new tabular data with minimal prior preparation, facilitating more
flexible and efficient decision-making (Hollmann et al., 2022). The advantages of this approach are particularly apparent
in scenarios where data distributions change over time or when models must quickly adjust to various data tasks without
undergoing retraining. Thus, as in-context learning emerges as a powerful tool for real-time, adaptive predictions in complex
and dynamic environments, assessing and mitigating biases in the prediction can make its use more socially acceptable.
Most studies on fairness in ICL use large language models with tabular datasets serialized into text or sentences (Bhaila
et al., 2024). However, these large language models are not trained to handle tabular data, and their performance is generally
suboptimal compared to tree-based models. Robertson et al. (2024) proposed FairPFN, an in-processing method to improve
counterfactual fairness at inference time. The proposed approach generates a synthetic biased and fair dataset. During the
model pre-training, fairness is enforced by predicting the class label of the fair dataset using the biased data as context
information. However, this method is computationally expensive since it requires retraining the foundation model. In
contrast, we focus on pre-processing methods that do not require model update and aim to achieve group fairness metric
instead of counterfactual fairness.

D. Supplementary resutls
D.1. Ablation on impact in-context sample size

All the previous experiments used the entire training as in-context examples when possible. Note that the current version
of TabPFN cannot handle more than 10000 samples. As an ablation study, we vary the in-context sample size ([100, 300,
500, 700, 1500, 2000, 2500, 3000, 4000, 5000]) and measure fairness and accuracy using the same experimental setup as
in Section 3.2.1. Figure 6 shows that accuracy significantly increases when more samples are added to the in-context set.
Unfainness increases slightly before remaining almost constant when the in-context set size exceeds 700. On the other hand,
uncertain consistently has the lowest fairness violation across in-context sizes.

E. On the failure of Correlation Remover
In the main paper, we observed that the transformation 10 on both the training and the testing data can exacerbate unfairness
in ICL predictions. We hypothesized that the foundation model inferred the sensitive attribute from the linear transformation
applied to each non-sensitive feature, resulting in higher unfairness in the ICL predictions. To validate this hypothesis, we
perform ICL prediction of the sensitive attribute after the fairness interventions are applied. As can be seen in Table 2, ICL
prediction of the sensitive attribute results in 100% accuracy after Correlation Remover is applied. These results
suggest the foundation model still relies on the sensitive attribute after correlation removal is performed.

For further verification, we consider a variant of Correlation Remover where we apply the feature transformation
(Eq. 10) only to the training dataset, leaving the test data unchanged. Table 3 shows this variant (Eq. 10) significantly
reduces the accuracy of ICL predictions. This demonstrates that the foundation model uses the transformation applied to the
testing set as a proxy to fully reconstruct the sensitive attribute. (?) discuss several scenarios where one can apply a data
transformation to reduce correlation with the sensitive attribute. More specifically, they considered scenarios where the
transformation is applied (1) both to the training and testing dataset, (2) only to the training set, and (3) only to the test
set. We evaluated the fairness accuracy tradeoff of applying feature transformation only to the training set. The results in
Figure ?? show that this variant can improve fairness compared to applying the transformation to both the training and
testing datasets. This further illustrates the ability of the foundation models to reconstruct the sensitive attributes when the
transformation is applied to the test set.
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(a) ACSIncome dataset
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(b) ACSMobility dataset
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(c) ACSTravel dataset

Figure 3. Ablation on the in-context example set size. Analysing the impact of the in-context set size on the fairness and accuracy of
ICL prediction.
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Dataset ICL Method TabPFN TabICL

Accuracy ↓ F1 Score ↓ Accuracy ↓ F1 Score ↓

ACSIncome

Vanilla 77.2±0.5 78.4±0.3 75.0±0.5 76.2±0.3

Balanced 77.1±0.5 77.8±0.2 75.0±0.4 75.5±0.1

Correlation R. 100.0±0.0 100.0±0.0 99.9±0.0 99.9±0.0

Uncertain+LR 74.7±1.3 76.7±0.6 74.9±0.5 76.0±0.4

Uncertain+TabPFN 51.3±2.3 66.1±4.4 71.7±0.4 73.6±0.6

ACSTravelTime

Vanilla 75.9±0.4 77.5±0.5 72.8±0.4 73.8±0.5

Balanced 75.9±0.5 77.0±0.5 72.5±0.6 72.6±0.6

Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Uncertain+LR 75.9±0.6 77.8±0.5 72.8±0.5 74.3±0.5

Uncertain+TabPFN 74.6±1.1 75.7±1.7 67.4±1.6 66.2±2.4

ACSPublicCoverage

Vanilla 91.4±0.2 88.9±0.2 91.5±0.1 89.2±0.2

Balanced 91.1±0.4 89.0±0.3 90.9±0.3 88.9±0.4

Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Uncertain+LR 56.4±10.0 55.3±4.0 57.7±11.9 60.0±3.6

Uncertain+TabPFN 42.5±0.9 58.7±0.6 42.7±1.1 58.6±0.6

ACSEmployment

Vanilla 64.0±0.4 62.0±1.8 65.0±0.3 62.2±1.4

Balanced 64.0±0.5 65.0±1.0 64.8±0.4 65.3±1.1

Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Uncertain+LR 64.3±0.4 62.4±2.0 64.9±0.3 62.8±0.9

Uncertain+TabPFN 57.5±3.3 47.0±8.6 61.1±3.0 53.9±6.1

ACSMobility

Vanilla 68.3±0.8 67.8±1.0 67.6±1.0 67.4±1.2

Balanced 68.1±0.7 67.9±1.4 67.6±1.1 67.6±1.5

Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Uncertain+LR 68.1±0.9 67.8±0.9 67.4±0.8 66.9±0.8

Uncertain+TabPFN 68.1±0.8 67.7±1.0 67.2±0.8 66.8±0.9

German Credit

Vanilla 72.5±3.1 70.3±3.1 71.8±3.1 71.0±3.0

Balanced 72.7±2.3 70.7±2.3 71.9±3.0 71.2±2.6

Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Uncertain+LR 64.6±5.1 62.3±8.5 68.4±4.8 67.8±5.4

Uncertain+TabPFN 60.4±5.5 51.3±26.5 63.8±3.9 60.8±10.9

Diabetes

Vanilla 80.2±0.1 89.0±0.1 80.4±0.1 89.0±0.1

Balanced 66.2±0.9 75.9±0.8 65.1±0.4 74.6±0.4

Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Uncertain+LR 70.4±20.7 77.1±26.8 80.3±0.1 89.0±0.1

Uncertain+TabPFN 74.9±10.0 84.8±8.0 80.2±0.1 89.0±0.1

CelebA

Vanilla 84.7±0.2 83.2±0.3 85.0±0.2 83.2±0.3

Balanced 84.6±0.2 83.2±0.3 84.9±0.2 83.3±0.3

Correlation R. 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Uncertain+LR 72.4±11.7 61.2±21.7 84.9±0.2 83.1±0.3

Uncertain+TabPFN 74.5±8.4 70.8±10.1 81.2±7.2 77.2±11.9

Table 2. ICL prediction performance of sensitive attributes after applying different fairness interventions. Smaller accuracy is better
since it indicates how well the foundation model can reconstruct the sensitive attribute after the pre-processing fairness interventions.
Uncertain methods yield the smallest accuracy, which justifies the improved fairness performance.
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Dataset Correlation R. TabPFN TabICL

Accuracy ↓ F1 Score ↓ Accuracy ↓ F1 Score ↓

ACSIncome
None 77.2±0.5 78.4±0.3 75.0±0.5 76.18±0.3

Train & Test 100.0±0.0 100.0±0.0 99.9±0.0 99.93±0.0

Train 53.8±0.4 67.0±0.9 52.9±0.3 68.9±0.3

ACSTravelTime
None 75.9±0.4 77.5±0.5 72.8±0.4 73.75±0.5

Train & Test 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0

Train 53.6±1.4 54.2±14.5 51.8±1.4 66.4±3.4

ACSPublicCoverage
None 91.4±0.2 88.9±0.2 91.5±0.1 89.23±0.2

Train & Test 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0

Train 57.8±0.4 0.1±0.1 56.5±1.0 0.1±0.1

ACSEmployment
None 64.0±0.4 62.0±1.8 65.0±0.3 62.23±1.4

Train & Test 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0

Train 52.6±0.6 27.7±4.4 53.7±5.1 53.0±10.6

ACSMobility
None 68.3±0.8 67.8±1.0 67.6±1.0 67.40±1.2

Train & Test 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0

Train 49.2±1.5 49.2±13.2 49.2±0.8 40.2±31.2

Diabetes
None 80.2±0.1 89.0±0.1 80.4±0.1 89.04±0.1

Train & Test 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0

Train 67.8±13.8 78.9±12.2 79.3±0.9 88.4±0.6

German Credit
None 72.5±3.1 70.3±3.1 71.8±3.1 71.02±3.0

Train & Test 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0

Train 37.8±6.7 44.0±14.5 46.3±4.2 38.8±14.6

CelebA
None 84.7±0.2 83.2±0.3 85.0±0.2 83.16±0.3

Train & Test 100.0±0.0 100.0±0.0 100.0±0.0 100.00±0.0

Train 54.8±0.3 1.0±0.8 45.2±0.2 62.2±0.2

Table 3. Accuracy ICL prediction of sensitive attribute after applying Correlation Remover on the training and testing datasets or
only to test dataset. Applying the transformation only to the train dataset significantly reduces the accuracy of predicting the sensitive
attribute.
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Dataset ICL Method Accuracy ↑ ∆ DP ↓ ∆ EOP ↓ ∆ EOD ↓

ACSIncome

Vanilla 80.76±0.5 14.21±1.3 5.46±2.9 5.89±2.4

Balanced 80.99±0.4 14.08±1.8 5.36±3.6 5.79±3.3

Correlation R. 81.44±0.5 26.81±2.0 27.35±6.4 27.35±6.4

Uncertain+LR 80.94±0.4 13.13±1.6 3.91±2.4 4.17±2.1

Uncertain+TabPFN 80.13±0.8 8.90±1.7 3.33±3.9 3.56±3.7

ACSEmployment

Vanilla 82.18±0.3 1.11±0.7 1.01±1.1 8.17±0.8

Balanced 82.13±0.4 1.09±0.8 1.10±1.2 8.20±0.7

Correlation R. 82.41±0.4 3.90±1.0 5.05±1.2 5.49±1.0

Uncertain+LR 81.98±0.4 0.86±0.4 0.99±0.8 7.56±0.8

Uncertain+TabPFN 81.69±0.7 0.80±0.4 0.91±0.6 6.99±0.8

ACSPublicCoverage

Vanilla 84.71±0.5 1.75±1.2 5.13±3.5 5.23±3.4

Balanced 84.49±0.5 1.75±1.4 5.80±2.8 5.80±2.8

Correlation R. 84.57±0.6 1.64±1.2 4.89±3.7 4.94±3.6

Uncertain+LR 80.15±2.0 3.08±3.2 4.61±4.1 5.28±3.4

Uncertain+TabPFN 81.58±1.4 2.14±1.4 7.78±4.3 7.78±4.3

ACSTravelTime

Vanilla 70.52±0.6 9.79±0.9 8.09±2.4 8.79±1.9

Balanced 70.85±0.6 10.14±1.7 8.46±3.5 9.32±2.6

Correlation R. 70.42±0.5 9.82±1.8 8.43±3.0 8.70±2.5

Uncertain+LR 70.48±0.5 10.16±0.7 8.42±2.4 9.07±1.8

Uncertain+TabPFN 70.00±0.6 8.30±0.9 6.69±2.1 7.49±1.6

ACSMobility

Vanilla 76.86±0.8 2.25±1.3 1.91±0.6 6.49±2.8

Balanced 77.11±1.1 2.86±1.6 0.97±0.9 8.38±4.9

Correlation R. 76.86±0.6 6.27±1.6 3.33±1.7 12.28±3.3

Uncertain+LR 76.59±0.8 1.86±1.7 2.27±1.0 4.31±2.4

Uncertain+TabPFN 76.58±0.9 2.05±2.0 1.95±1.2 4.34±4.4

Diabetes

Vanilla 64.59±0.3 1.74±1.0 1.78±1.3 2.74±1.6

Balanced 64.70±0.5 1.62±1.2 2.37±1.3 3.08±1.4

Correlation R. 64.69±0.3 1.33±1.1 2.13±1.5 2.68±1.2

Uncertain+LR 64.39±0.6 0.77±0.5 2.52±1.1 2.52±1.1

Uncertain+TabPFN 64.24±0.6 1.20±0.9 3.21±2.1 3.59±2.0

German Credit

Vanilla 74.80±4.6 5.14±3.5 5.88±4.3 12.20±6.6

Balanced 74.43±3.0 5.92±5.5 5.47±5.0 15.85±10.3

Correlation R. 75.25±3.5 11.78±6.3 9.30±3.8 16.72±9.3

Uncertain+LR 74.36±3.4 7.72±3.8 6.01±4.1 11.98±5.9

Uncertain+TabPFN 73.98±4.0 4.65±3.0 5.21±4.3 11.91±9.6

CelebA

Vanilla 80.55±0.4 14.54±1.0 12.03±2.8 12.03±2.8

Balanced 80.45±0.5 15.06±0.8 13.18±1.7 13.18±1.7

Correlation R. 80.47±0.4 13.23±1.3 9.04±2.2 9.14±2.2

Uncertain+LR 80.16±0.5 8.92±0.9 2.28±2.0 4.42±1.3

Uncertain+TabPFN 79.86±0.7 10.01±1.4 3.54±1.9 5.46±1.1

Table 4. This table supplements Figure ?? in main paper. It shows the accuracy and fairness performance of ICL predictions with TabPFN
as foundation model under different preprocessing methods. The color range highlights the best ( ) to the worst-performing
method ( ) for fairness accuracy. ↑ indicates higher is better (accuracy) and ↓ lower is better (unfairness).
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Figure 4. Fairness-accuracy tradeoffs on ACS dataset. Comparing the fairness-accuracy Pareto-front of different fairness interventions
using TabPFN as foundation model. Results with TabICL can be found in Fig 6.
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Figure 5. Fairness-accuracy tradeoffs on Diabete and CelebA datasets. Comparing the fairness-accuracy Pareto-front of different
fairness interventions using TabPFN as foundation model. Results with TabICL can be found in Fig 6.
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Figure 6. Fairness-accuracy tradeoffs on the ACS datasets using TabICL as foundation model.
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Figure 7. Fairness-accuracy tradeoffs on the Diabete and CelebA datasets using TabICL as foundation model
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Figure 8. TabPFN vs. TabICL on ACS datasets. Comparing the fairness-accuracy tradeoffs of tabular foundation models under different
fairness interventions. TabPFN generally provides better fairness accuracy tradeoffs.
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Figure 9. TabPFN vs. TabICL on Diabetes and CelebA. Comparing the fairness-accuracy tradeoffs of tabular foundation models under
different fairness interventions. TabPFN generally provides better fairness accuracy tradeoffs.
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