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Abstract

Multi-span reading comprehension (MSRC)001
requires machines to extract multiple non-002
contiguous spans from a given context to an-003
swer a question. Existing MSRC methods ei-004
ther predict the positions of the start and end005
tokens of answer spans, or predict the BIO tag006
of each token. Such token-centric paradigms007
can hardly capture dependencies among spans008
which are critical to MSRC. In this paper, we009
propose a span-centric scheme where spans, as010
opposed to tokens, are directly represented and011
scored to qualify as answers. Thanks to the012
explicit representation of spans in the scheme,013
our implementation called SpanQualifier ben-014
eficially models intra-span and inter-span in-015
teractions. Our extensive experiments on three016
MSRC datasets demonstrate the effectiveness017
of our span-centric scheme and show that Span-018
Qualifier achieves state-of-the-art results.019

1 Introduction020

Machine reading comprehension (MRC) aims to021

automatically answer questions from a given con-022

text, which is a challenge task of natural language023

understanding and a basic module of many question024

answering systems (Chen et al., 2017; Liu et al.,025

2020). MRC was usually regarded as a single-026

span extraction task (Rajpurkar et al., 2016, 2018;027

Kwiatkowski et al., 2019); single-span MRC mod-028

els extract only one span as the answer (Seo et al.,029

2017; Wang and Jiang, 2017; Yu et al., 2018).030

Task: It may be unrealistic to assume a continu-031

ous single span as a good answer to all questions.032

A more general task is multi-span reading compre-033

hension (MSRC) (Zhu et al., 2020; Ju et al., 2022;034

Question: Who were the greek philosophers who
contributed the basic information about atoms? 

Context: Democritus was an Ancient Greek pre-Socratic
philosopher primarily remembered today for his
formulation of an atomic theory of the universe. His
exact contributions are difficult to disentangle from those
of his mentor Leucippus, as they are often mentioned
together in texts. ...

Answer spans:  { Democritus,  his mentor Leucippus }

Figure 1: An example of MSRC task. Answer spans in
the context are underlined.

Cui et al., 2021; Li et al., 2022). As shown in Fig- 035

ure 1, MSRC requires extracting an unspecified 036

number (two in this example) of non-contiguous 037

spans from a given context to answer a question. 038

Moreover, spans are not independently extracted, 039

for example, the second answer span “his mentor 040

Leucippus” is dependent on the first answer span 041

“Democritus”, which needs to be captured. 042

Challenges: Existing methods for MSRC either 043

predict the positions of the start and end tokens of 044

answer spans by adapting single-span MRC mod- 045

els to MSRC (Hu et al., 2019; Yang et al., 2021), 046

or treat MSRC as a sequence tagging task by pre- 047

dicting the Beginning-Inside-Outside (BIO) tag of 048

each token (Segal et al., 2020; Li et al., 2022). We 049

regard these methods as token-centric which define 050

features, train models, and predict answers from 051

the perspective of tokens. Their effectiveness is 052

limited in two aspects. Firstly, it is non-trivial and 053

often suboptimal to convert token-level predictions 054

to multiple spans as answers. Secondly, token-level 055
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representation and optimization are not conducive056

to capturing dependencies among spans.057

Our Work: To overcome the limitations, we pro-058

pose a span-centric scheme for MSRC and present059

an effective implementation called SpanQualifier.060

In response to the first limitation, our span-centric061

scheme generates representations for all spans in062

the context and predicts a qualification threshold.063

Spans are scored, and a span will qualify as an064

answer if its score exceeds the qualification thresh-065

old, thus avoiding the conversion from token-level066

predictions. For the second limitation, SpanQuali-067

fier interacts intra-span and inter-span representa-068

tions to capture their dependencies and, moreover,069

a global loss function is designed to jointly opti-070

mize over all spans and predict their scores.071

To summarize, our contributions include072

• a novel span-centric scheme for MSRC which073

more naturally fits the task and empirically074

outperforms existing token-centric methods,075

• an implementation of the scheme which mod-076

els intra/inter-span interactions and obtains077

state-of-the-art results on three datasets.078

Our code and data are in the supplementary ma-079

terial and will be open on GitHub after acceptance.080

2 Related Work081

2.1 Pointer Paradigm for MSRC082

The Pointer paradigm based on Pointer Net-083

work (Vinyals et al., 2015) is one of the most pop-084

ular schemes for single-span MRC, first proposed085

by Wang and Jiang (2017), and various succes-086

sors extend it with sophisticated matching mecha-087

nisms (Seo et al., 2017; Yu et al., 2018). As shown088

in Figure 2a, the predicted probabilities of being089

the start or end of an answer span are normalized090

over all tokens in the context, and a post-processing091

decoding strategy such as beam search is adopted092

to select a span as the answer. It is non-trivial to093

adapt this paradigm to MSRC due to the unspec-094

ified number of target spans. MTMSN (Hu et al.,095

2019) predicts the number of answer spans and ex-096

tracts non-overlapping spans based on an algorithm097

in computer vision (Rosenfeld and Thurston, 1971).098

MUSST (Yang et al., 2021) iteratively extracts and099

masks a span with the highest probability until100

meeting a stop symbol. Essentially, these methods101

predict token-level probabilities and convert them102

into multiple spans by non-differentiable decod-103

ing strategies, which may under-utilize the training104

Start Position

End Position
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PLM
Context Spans

(b) Tagger Paradigm

Figure 2: Two existing paradigms for MSRC.

data for MSRC. By contrast, RASOR (Lee et al., 105

2016) employs span representations to select a sin- 106

gle span, which is extended by Chen et al. (2020) 107

with span merging to extract at most two spans. 108

This is still not enough for MSRC where answers 109

are often more than two spans. 110

Unlike the above methods, in our proposed span- 111

centric scheme, all possible spans are scored and 112

may qualify as answers, and our end-to-end model 113

is differentiable to exploit training data. 114

2.2 Tagger Paradigm for MSRC 115

The Tagger paradigm based on sequence tagging 116

has been applied to many tasks, such as part-of- 117

speech tagging and information extraction, and first 118

applied to answer extraction by Yao et al. (2013). 119

As shown in Figure 2b, a BIO tag is predicted 120

for each token. This paradigm can be relatively 121

easily adapted to MSRC (Yoon et al., 2022; Li 122

et al., 2022). Further, TASE (Segal et al., 2020) em- 123

ploys a multi-head architecture to separately han- 124

dle single-span and multi-span questions. Li et al. 125

(2022) incorporates answer structure and answer 126

number prediction into a multi-task model. 127

Tagger is trained by local normalization on each 128

individual token, which suffers from label bias (An- 129

dor et al., 2016). It is less informative than global 130

normalization performed in our implementation 131

over all possible spans to consider their dependen- 132

cies when calculating our loss function. 133

2.3 Information Extraction 134

Span-centric models have shown their effectiveness 135

in information extraction tasks, including named 136

entity recognition (NER), relation extraction, and 137
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Figure 3: Overview of SpanQualifier. Dashed boxes represent extensions of the vanilla implementation.

event extraction (Luan et al., 2018, 2019; Wad-138

den et al., 2019). They are trained by calculat-139

ing a cross-entropy loss over all possible spans.140

However, this training objective is not suitable for141

MSRC due to the extremely unbalanced labels in142

its training data. Indeed, the context in a MSRC143

task typically contains tens of thousands of spans144

while only a few are answers.145

Recently, Su et al. (2022) propose a NER model146

with a universal loss function that extends the soft-147

max and cross-entropy loss for handling label im-148

balance, but their span representations obtained149

by interacting only between its start and end to-150

ken representations are not sufficient for MSRC.151

As pointed out by Ju et al. (2022), different from152

NER which requires extracting all the spans of153

each given type, MSRC is more difficult and re-154

lies on a thorough understanding of the context155

because some spans of a given type are not cor-156

rect answers. To enhance span representation, Tan157

et al. (2020) add a boundary detection task to pre-158

dict the start and end tokens of entities, and some159

works use computationally expensive bi-affine (Yu160

et al., 2020) or even tri-affine (Yuan et al., 2022)161

mechanisms. By contrast, our SpanQualifier inex-162

pensively obtains context-dependent span represen-163

tations by two successive interaction layers where164

the former uses a supervised attention mechanism165

to highlight intra-span tokens to be aggregated and166

the latter captures inter-span dependencies.167

3 Approach 168

Given a question Q and a context C = c0, . . . , cn 169

with n tokens, the goal of MSRC is to extract a set 170

of m answer indexes A = {[ps
1, p

e
1], . . . , [p

s
m, pe

m]} 171

from the context, where ps
i and pe

i are the start and 172

end positions of the i-th answer span. 173

Figure 3 shows an overview of our SpanQuali- 174

fier, which simultaneously extracts multiple spans 175

as answers by implementing a span-centric scheme 176

with four stacked modules (Section 3.1), two extra 177

interaction layers within and between spans (Sec- 178

tion 3.2), and a loss function combining global 179

normalization and maximum margin (Section 3.3). 180

3.1 (Vanilla) Span-Centric Scheme 181

The proposed scheme successively constructs to- 182

ken representations, boundary (i.e., start/end token) 183

representations, and span representations, and then 184

selects answers by predicting a qualification thresh- 185

old for span score. In the remainder of this section, 186

MLP(·) represents a two-layer perceptron. 187

Token Representation We firstly capture the 188

dependencies between the context C and the 189

question Q to generate token representations. 190

We feed Q and C into a pre-trained language 191

model (PLM) such as BERT (Devlin et al., 2019) 192

or ALBERT (Lan et al., 2020) in a standard way: 193

H = PLM([CLS] Q [SEP] C [SEP]) , (1) 194
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where H represents the hidden states of the last195

layer of PLM. From H we extract the global repre-196

sentation HCLS ∈ Rd1 and the context representa-197

tion HC ∈ Rn×d1 , where d1 denotes the dimension198

of representation and n is the length of C.199

Boundary Representation Then we aggregate200

the information about each possible span to its two201

boundary tokens. In our vanilla implementation,202

we take the context representation HC as input and203

use a boundary enumeration layer to obtain the start204

and end token representations:205

Bs,Be = BoundaryEnum(HC)

where Bs = MLP(HC) and Be = MLP(HC) ,
(2)206

where Bs,Be ∈ Rn×d1 . Note that an extra intra-207

span interaction layer can be inserted here to208

achieve more intensive information aggregation,209

which will be introduced in Section 3.2.210

Span Representation Next, we generate the rep-211

resentations for all possible spans. In our vanilla212

implementation, the start and end token representa-213

tions Bs,Be are fused by a span enumeration layer214

to obtain the representations of all possible spans:215

M = SpanEnum(Bs,Be)

= LayerNorm(N)

where Ni,j = Bs
iW

s
1 +Be

jW
e
1 +E|j−i| ,

(3)216

where M ∈ Rn×n×d2 , Mi,j denotes the represen-217

tation of the span starting at the i-th token and end-218

ing at the j-th token, and E|j−i| ∈ Rd2 is a learn-219

able embedding of span length. LayerNorm(·) is a220

layer normalization operator (Ba et al., 2016), and221

W s
1,W

e
1 ∈ Rd1×d2 are learnable parameters used222

to reduce the dimension from d1 to d2 to improve223

efficiency. We empirically set d2 = 64. Note that224

an extra interaction layer for capturing dependen-225

cies among spans can be inserted here, which will226

be introduced in Section 3.2.227

Span Selection Finally, we score all possible228

spans and select answer spans by predicting a qual-229

ification threshold. We feed both the span represen-230

tations M and the global representation HCLS into231

a scoring layer:232

S, qsext = Scoring(M,HCLS)

where S = MLP(M) and qsext = MLP(HCLS) ,
(4)233

where S ∈ Rn×n contains the scores of all possible234

spans and Si,j ∈ S denotes the score of the span235

starting at the i-th token and ending at the j-th236

token. The lower triangular portion of S and the 237

portion representing spans containing more than 238

k tokens are masked, where k is the longest length 239

of an answer in the training set. 240

At inference time, all the spans with score higher 241

than qsext will qualify as answers, where qsext ∈ R 242

represents a qualification threshold. If two spans 243

overlap, we will keep the higher scored one. 244

3.2 Span Interaction 245

To extend the vanilla implementation, two interac- 246

tion layers are added to enhance span representa- 247

tions and capture dependencies among spans. 248

Intra-Span Interaction Not only the start and 249

end tokens but also those inside a span are cru- 250

cial to its representation. Therefore, we insert an 251

intra-span interaction layer into the boundary repre- 252

sentation module after Equation (2) to incorporate 253

the attention weights of internal tokens: 254

B̂s, B̂e = BoundaryEnum(HC) ,

Bs,Be = IntraSpan(B̂s, B̂e) .
(5) 255

As for IntraSpan(·, ·), our implementation resem- 256

bles Equation (3) and Equation (4). Start token 257

representations are intensified as follows: 258

Ms = SpanEnum(B̂s, B̂e) ,

Gs, qss = Scoring(Ms,HCLS) ,

Bs = Softmax(Gs)(B̂sW s
2) ,

(6) 259

and end token representations are intensified by 260

Me = SpanEnum(B̂s, B̂e) ,

Ge, qse = Scoring(Me,HCLS) ,

Be = Softmax((Ge)⊺)(B̂eW e
2) ,

(7) 261

where Gs,Ge represent attention weights, and 262

W s
2,W

e
2 ∈ Rd1×d1 are learnable parameters. 263

Inter-Span Interaction To capture the depen- 264

dencies among spans which are useful in MSRC, 265

we insert an inter-span interaction layer into the 266

span representation module after Equation (3): 267

M̂ = SpanEnum(Bs,Be) ,

M = InterSpan(M̂) ,
(8) 268

where we implement InterSpan(·) by an one- 269

layer 2D convolutional neural network (CNN). 270

3.3 Training 271

Since answer spans in MSRC correlate with each 272

other, a global qualification loss function is intro- 273

duced for supervising span selection. It is also 274

adapted to supervise intra-span interaction. 275
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# Train # Dev # Test Distribution by answer number Average
answer number

Average
context length0 1 ≥ 2

MultiSpanQA 4,577 653 653 - - 100.00% 2.89 251
MultiSpanQA-E 13,731 1,959 1,959 33.43% 32.59% 33.98% 1.30 226
QUOREF 16,083 2,186 2,276 - 90.56% 9.44% 1.14 324

Table 1: Dataset statistics.

Global Qualification Loss The Global Qualifi-276

cation (GQ) loss consists of two parts: the Global277

Normalization (GN) loss and the Maximum Mar-278

gin (MM) loss. Considering the correlation be-279

tween positive spans, we use the GN loss to jointly280

optimize the scores of all positive spans. More-281

over, we use the MM loss to maximize the margin282

between positive and negative spans.283

Given a set of scores of positive spans Ω+ ⊆ S,284

a set of scores of negative spans Ω− ⊆ S, and a285

qualification threshold qsext, the GN loss is286

LGN(Ω
+,Ω−) = − log

∑
s∈Ω+

exp(s)∑
s∈Ω+

exp(s) +
∑

s∈Ω−
exp(s)

.

(9)

287

The objective is to maximize the sum of probabili-288

ties of all positive spans. The MM loss comprises289

L
+
MM(Ω

+, qsext) = Max(1− (Min(Ω+)− qsext), 0) ,

L
−
MM(Ω

−, qsext) = Max(1− (qsext − Max(Ω−)), 0) .
(10)290

The objective is to maximize the soft margin be-291

tween positive and negative spans. The GQ loss292

combines the GN loss and the MM loss:293

LGQ(Ω
+,Ω−, qsext)

= Mean(LGN(Ω
+,Ω−), L+MM(Ω

+, qsext), L−MM(Ω
−, qsext)) .

(11)

294

Supervised Extraction We employ the GQ loss295

as our main loss for supervising span extraction:296

Lext = LGQ(Ω
+,Ω−, qsext) . (12)297

Supervised Attention We also adapt the GQ loss298

to supervise the attention weights in the intra-span299

interaction layer. Let Ψs+ ⊆ Gs and Ψe+ ⊆ Ge be300

the sets of attention weights of tokens in positive301

spans. For each positive span [ps, pe], Ψs+ contains302

Gs
ps,ps ,Gs

ps,ps+1, . . . ,G
s
ps,pe ∈ Gs, and Ψe+ con-303

tains Gs
ps,pe ,Gs

ps+1,pe , . . . ,Gs
pe,pe ∈ Ge. Let Ψs−304

and Ψe− be the sets of the remaining attention305

weights in Gs and Ge, respectively. Given the306

thresholds qss and qse computed by Equation (6)307

and Equation (7), respectively, our attention loss is308

Latt = LGQ(Ψ
s+,Ψs−, qss) + LGQ(Ψ

e+,Ψe−, qse) . (13)309

Total Loss Finally, we sum the extraction loss 310

and the attention loss for joint training: 311

L = Lext + Latt . (14) 312

4 Experimental Setup 313

4.1 Datasets 314

We used three MSRC datasets. MultiSpanQA 315

and MultiSpanQA-Expanded (Li et al., 2022) are 316

the latest datasets for MSRC created from a ques- 317

tion answering dataset (Kwiatkowski et al., 2019). 318

MultiSpanQA only contains multi-span questions, 319

while MultiSpanQA-E also contains unanswerable 320

and single-span questions. QUOREF (Dasigi et al., 321

2019) containing questions requiring coreferential 322

reasoning has been widely used in MSRC research. 323

Since the official test sets of these datasets are 324

not public, we took their official dev set as our test 325

set and randomly held out an in-house dev set from 326

the official training set. Some statistics about the 327

datasets are shown in Table 1. 328

4.2 Participating Methods 329

We experimented with two variants of our method: 330

SpanQualifier representing the full version and 331

SpanQualifiervanilla representing the vanilla ver- 332

sion without span interaction in Section 3.2. 333

We compared with two pointer-based methods 334

for MSRC. MTMSN (Hu et al., 2019) predicts the 335

number of answer spans and repeatedly extracts 336

non-overlapping spans until reaching the predicted 337

number. MUSST (Yang et al., 2021) iteratively 338

extracts spans until meeting a special stop symbol. 339

We compared with four tagger-based methods 340

for MSRC. Taggervanilla (Li et al., 2022) uses a 341

standard BIO tagger. Taggermulti-task (Li et al., 342

2022) enhances Taggervanilla with answer structure 343

and answer number prediction. Taggercrf extends 344

Taggervanilla with a CRF layer (Lafferty et al., 2001) 345

to capture tag dependencies. TASE (Segal et al., 346

2020) employs a multi-head mechanism to sepa- 347

rately handle single-span and multi-span questions. 348

We further extended it to separately handle unan- 349

swerable questions in MultiSpanQA-E. 350
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MultiSpanQA MultiSpanQA-E QUOREF
EM PM EM PM EM PM

dev test dev test dev test dev test dev test dev test
BERT

MTMSN 46.67•▲ 43.55•▲ 72.17•▲ 70.44•▲ 49.96•▲ 50.60•▲ 70.61•▲ 70.92 ▲ 62.26◦▲ 62.23 ▲ 73.81 ▲ 73.62 ▲

MUSST 51.35•▲ 48.83•▲ 74.61•▲ 72.36•▲ 54.26•▲ 54.65•▲ 70.81•▲ 70.60•▲ 33.35•▲ 31.91•▲ 55.21•▲ 54.23•▲

Taggervanilla 60.36•▲ 57.89•▲ 73.76•▲ 72.60•▲ 60.39•▲ 59.81•▲ 72.38 △ 72.33 ▲ 56.33•▲ 55.67•▲ 68.32•▲ 67.47•▲

Taggermulti-task 51.63•▲ 51.72•▲ 67.97•▲ 69.06•▲ 54.93•▲ 56.53•▲ 68.54•▲ 70.36•▲ 39.55•▲ 39.00•▲ 51.30•▲ 49.75•▲

Taggercrf 61.28•▲ 58.94•▲ 74.55•▲ 73.43•▲ 57.00•▲ 57.23•▲ 66.94•▲ 67.18•▲ 56.73•▲ 55.09•▲ 68.24•▲ 66.89•▲

TASE 57.41•▲ 54.99•▲ 73.17•▲ 72.59•▲ 51.01•▲ 52.47•▲ 65.38•▲ 66.99•▲ 58.58•▲ 56.98•▲ 69.28•▲ 67.50•▲

SpanQualifiervanilla 66.38 64.92 78.61 77.69 63.25 64.24 73.19 73.80 63.92 62.31 73.33 71.69
SpanQualifier 69.94 68.41 81.26 80.61 65.47 66.08 74.09 75.11 67.19 65.65 75.70 74.11

ALBERT
MTMSN 40.85•▲ 38.12•▲ 63.17•▲ 61.14•▲ 41.74•▲ 43.90•▲ 56.28•▲ 58.58•▲ 45.78•▲ 44.35•▲ 57.91•▲ 56.64•▲

MUSST 54.13•▲ 51.69•▲ 77.45•▲ 75.56•▲ 57.27•▲ 57.34•▲ 73.95•▲ 74.52•▲ 41.73•▲ 39.27•▲ 65.13•▲ 63.48•▲

Taggervanilla 67.06•▲ 64.78•▲ 80.07•▲ 79.32•▲ 61.73•▲ 61.36•▲ 72.77•▲ 72.73•▲ 70.78•▲ 68.97•▲ 79.68•▲ 77.68•▲

Taggermulti-task 49.78•▲ 48.75•▲ 67.99•▲ 67.34•▲ 51.65•▲ 52.15•▲ 65.89•▲ 66.38•▲ 50.95•▲ 48.91•▲ 61.77•▲ 59.04•▲

Taggercrf 68.11•▲ 65.43•▲ 81.03•▲ 80.00•▲ 61.99•▲ 61.75•▲ 72.46•▲ 72.86•▲ 70.63•▲ 69.03•▲ 79.35•▲ 77.75•▲

TASE 65.55•▲ 62.06•▲ 80.85•▲ 79.34•▲ 57.52•▲ 56.95•▲ 70.95•▲ 71.11•▲ 71.90•▲ 70.31•▲ 81.39•▲ 79.90•▲

SpanQualifiervanilla 68.92 67.23 82.42 81.76 65.68 66.07 75.85 76.53 73.90 71.77 81.95 79.92
SpanQualifier 72.29 70.20 83.62 82.68 67.24 66.99 76.79 77.01 75.18 72.84 82.56 80.68

Table 2: Comparison with baselines. We mark the results of baselines that are significantly lower than the results of
SpanQualifiervanilla under p < 0.01 (•) or p < 0.05 (◦), and of SpanQualifier under p < 0.01 (▲) or p < 0.05 (△).

4.3 Evaluation Metrics351

We followed Li et al. (2022) to use two metrics. Ex-352

act Match F1 (EM) measures the percentage of pre-353

dicted spans that exactly match any gold-standard354

answer span. Partial Match F1 (PM) generalizes355

EM by using the length of the longest common356

substring to score each predicted span based on its357

nearest gold-standard answer span.358

4.4 Implementation Details359

We used two PLMs of different sizes: BERT-base-360

uncased (Devlin et al., 2019) and ALBERT-base-361

v2 (Lan et al., 2020). We implemented our mod-362

els with PyTorch 1.10 and HuggingFace Trans-363

formers 4.12.5. The dimension of the hidden364

layer of MLP was 768. We implemented CNN365

using kernel size = 5 × 5, stride = 1, and366

in-channels = out-channels = 64. We used the367

Adam optimizer and set warmup fraction = 0.1,368

weight decay = 0.01, maximum length = 512,369

and epoch = 30. For each model, we searched370

for the best learning rate from {1e − 5, 3e − 5},371

and batch size from {24, 32}. We used three seeds372

{0, 1, 2} and took the mean results. All the experi-373

ments were performed on RTX 3090 (24G).374

5 Experimental Results375

5.1 Comparison with Baselines376

In Table 2, SpanQualifer achieves the best results377

in all the settings. It significantly outperforms all378

the baselines under p < 0.01 except in one setting379

under p < 0.05. Satisfyingly, SpanQualifiervanilla380

MultiSpanQA-E QUOREF
EM PM EM PM

BERT
MTMSN 35.86 64.85 57.69 75.34
MUSST 47.20 67.23 29.79 57.15
Taggervanilla 59.61 73.52 61.66 74.43
Taggermulti-task 54.64 70.58 42.11 56.02
Taggercrf 56.99 68.51 60.85 73.81
TASE 49.41 65.43 61.47 74.17
SpanQualifiervanilla 63.53 74.35 64.57 74.75
SpanQualifier 65.59 75.98 68.82 77.98

ALBERT
MTMSN 27.58 47.48 36.48 54.20
MUSST 50.40 71.60 33.12 64.17
Taggervanilla 61.58 74.92 71.44 82.55
Taggermulti-task 48.23 65.59 49.99 65.16
Taggercrf 62.11 75.03 71.70 83.15
TASE 53.37 69.92 70.55 81.80
SpanQualifiervanilla 64.67 76.29 72.38 81.67
SpanQualifier 65.81 76.91 72.31 81.83

Table 3: Comparison with baselines on multi-span ques-
tions in the test sets of MultiSpanQA-E and QUOREF.

also exceeds most baselines, demonstrating the ef- 381

fectiveness of our vanilla span-centric scheme. 382

By excluding single-span and unanswerable 383

questions from MultiSpanQA-E and QUOREF, in 384

Table 3, the gap between SpanQualifier and pointer- 385

based methods becomes larger on multi-span ques- 386

tions. Indeed, by contrast with pointer-based 387

methods, SpanQualifier and tagger-based methods 388

achieve better results on multi-span questions than 389

on other questions, especially on QUOREF, indi- 390

cating their better suitability for the MSRC task. 391

5.2 Ablation Study: Span Representation 392

To analyze the effectiveness of our span-centric 393

scheme, we implemented TokenQualifier which is 394
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MultiSpanQA MultiSpanQA-E QUOREF
EM PM EM PM EM PM

BERT
SpanQualifiervanilla 64.92 77.69 64.24 73.80 62.31 71.69
TokenQualifier 61.35 75.52 59.81 72.33 60.79 70.25

ALBERT
SpanQualifiervanilla 67.23 81.76 66.07 76.53 71.77 79.92
TokenQualifier 66.28 80.88 63.52 75.67 70.58 78.89

Table 4: Ablation study of span representation on the
test sets of three datasets.

MultiSpanQA MultiSpanQA-E QUOREF
EM PM EM PM EM PM

BERT
SpanQualifier 68.41 80.61 66.08 75.11 65.65 74.11
w/o intra-span 68.20 79.84 65.00 73.69 65.49 74.01
w/o inter-span 64.76 77.65 65.61 75.10 62.94 72.27
w/o Latt 67.15 78.96 64.12 72.83 65.09 73.66
standard attention 67.89 79.86 65.88 75.16 65.15 73.97

ALBERT
SpanQualifier 70.20 82.68 66.99 77.01 72.84 80.68
w/o intra-span 69.14 81.73 67.11 76.81 72.60 80.30
w/o inter-span 68.28 81.88 65.30 76.14 71.51 79.74
w/o Latt 68.87 81.56 66.08 75.80 71.89 80.05
Standard Attention 68.12 81.13 65.75 76.72 72.12 80.01

Table 5: Ablation study of span interaction on the test
sets of three datasets.

a variant of SpanQualifiervanilla by removing bound-395

ary and span representations and directly using to-396

ken representations for prediction. In Table 4, EM397

and PM drop by 0.95–4.43 and 0.86–2.17, respec-398

tively, demonstrating the usefulness of our bound-399

ary and span representations.400

5.3 Ablation Study: Span Interaction401

Our span interaction consists of an intra-span layer402

with a supervised attention mechanism and an inter-403

span layer. To analyze their effectiveness, we con-404

ducted an ablation study by separately removing405

each component. We also replaced our attention406

mechanism for computing Gs and Ge in Equa-407

tion (6) and Equation (7), respectively, with a stan-408

dard attention mechanism where the key and value409

are MLP(B̂s) and MLP(B̂e), respectively.410

In Table 5, the full version of SpanQualifier411

outperforms its variants in almost all the set-412

tings, demonstrating the usefulness of the re-413

moved/replaced components. In particular, on Mul-414

tiSpanQA and QUOREF, inter-span interaction ap-415

pears more influential, while on MultiSpanQA-E,416

attention supervision is more helpful.417

5.4 Official Leaderboards418

We submitted the results predicted by Span-419

Qualifier on each official test set to the leader-420

board: to MultiSpanQA and MultiSpanQA-E1 on421

1https://multi-span.github.io/

MultiSpanQA MultiSpanQA-E
EM PM EM PM

SpanQualifier (RoBERTa Large) 72.75 85.41 70.85 81.64
Taggervanilla (RoBERTa Large) 69.19 83.86 69.05 78.97
Tagger+LIQUID (RoBERTa Base) 67.40 81.16 – –
SpanQualifier (BERT Base) 64.87 78.79 64.39 74.22
Taggermulti-task (BERT Base) 59.28 76.26 42.26 70.47
Taggervanilla (BERT Base) 56.45 75.22 41.38 70.10
Single-span (BERT Base) 14.41 67.56 12.26 67.73

Table 6: Official leaderboards of MultiSpanQA and
MultiSpanQA-E.

QUOREF
Global EM Global F1

SpanQualifier (CorefRoBERTa Large) 81.36 87.24
SpanQualifier (RoBERTa Large) 81.24 87.05
TASE (CorefRoBERTa Large) 80.61 86.70
TASECoNLL-joint-qgen 80.45 86.46
TASE (RoBERTa Large) 79.66 86.13
CorefAdditive 79.11 85.86
CorefRoBERTa Large 75.80 82.81

Table 7: Official leaderboard of QUOREF.

10/11/2022, and to QUOREF2 on 10/12/2022. For 422

a fair comparison, we used the same PLMs as 423

other methods on the leaderboard: BERT Base (De- 424

vlin et al., 2019) and RoBERTa Large (Liu et al., 425

2019) on MultiSpanQA and MultiSpanQA-E, and 426

RoBERTa Large and CorefRoBERTa Large (Ye 427

et al., 2020) on QUOREF. 428

Table 6 compares SpanQualifier with other top- 429

ranked single-model methods on the leaderboards 430

of MultiSpanQA and MultiSpanQA-E at the time 431

of our submission. SpanQualifier outperforms all 432

the methods using the same PLM, including Tag- 433

ger+LIQUID (Lee et al., 2023) whose implementa- 434

tion is not public, and Single-span (Li et al., 2022) 435

which is a pointer-based method selecting multiple 436

spans by tuning a threshold on the dev set. 437

Table 7 compares SpanQualifier with other top- 438

ranked single-model methods on the leaderboard 439

of QUOREF at the time of our submission. Note 440

that this leaderboard uses Global Exact Match 441

(Global EM) (Rajpurkar et al., 2016) and Global 442

F1 (Dua et al., 2019) as evaluation metrics. Span- 443

Qualifier outperforms all the methods, including 444

TASECoNLL-joint-qgen which jointly trains TASE on 445

QUOREF and CoNLL (Sang and Meulder, 2003), 446

CorefAdditive (Zhang and Zhao, 2022) and Core- 447

fRoBERTa Large (Ye et al., 2020) which are 448

pointer-based methods predicting the number of 449

answer spans as in MTMSN. 450

2https://leaderboard.allenai.org/
quoref/submissions/public
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Question Context Prediction
Which two hormones
are known for their
roles in the bluefight-
or-flight response?

His theory states that ... preparing the animal for fighting or fleeindull. More
specifically, the adrenal medulla produces a hormonal cascade that results in
the secretion of catecholamines, especially norepinephrine and epinephrine.
The hormones estrogen, testosterone, and cortisol, as well as ... also affect
how organisms react to stress ...

{norepinephrine,
epinephrine, estro-
gen, testosterone,
cortisol}

Where does the red
hair gene come from?

Red hair ... occurs more frequently in people of northern or western European
ancestry, and less frequently in other populations. Red hair appears most
commonly in people with two copies of a recessive allele on chromosome 16
which produces an altered version of the MC1R protein ...

{northern or western
European ancestry,
other populations}

Table 8: Answer spans predicted by SpanQualifier on MultiSpanQA. Gold-standard answer spans are underlined.

0 5 10

10. (or ... personifications
9. or ... personifications
8. either Sun and Moon

7. star
6. Morning Star
5. Moon ... personifications
4. the crescent

3. crescent
2. Moon and Morning Star
1. Sun and Moon11.10

9.35

6.83

6.02

4.73

4.65

4.18

4.16

4.05

3.88

8.27

Question: What is the meaning of the moon and the star in islam?

Context: … the crescent and a star, both of which constituent
elements have a long prior history in the iconography of the
Ancient Near East as representing either Sun and Moon, or
Moon and Morning Star (or their divine personifications) …

Top-scored spans：

Span Score

Moon and Morning Star

Qualification 

Threshold

Sun and Moon

Figure 4: Top spans scored by SpanQualifier on Multi-
SpanQA. Gold-standard answer spans are underlined.

5.5 Case Study451

Figure 4 illustrates the top-scored spans predicted452

by SpanQualifier for a question in MultiSpanQA.453

The top-two spans with scores higher than the454

predicted qualification threshold exactly match455

the gold standard. By contrast, the pointer-based456

MUSST predicted a long span containing 52 words,457

and Taggercrf predicted three single-word spans.458

While their spans partially match the gold standard,459

their inexactness reveals the limitation of token-460

centric methods in MSRC, particularly the subop-461

timality of converting token-level predictions to462

multiple answer spans, which has been addressed463

by our span-centric scheme.464

5.6 Error Analysis465

We manually analyzed errors made by SpanQuali-466

fier on MultiSpanQA and identified two common467

types of errors in MSRC: incorrect homogeneous468

answers and missing heterogeneous answers.469

For the first type of error, as illustrated in the470

upper part of Table 8, the gold-standard answer471

spans are surrounded by many other spans of the472

same type, which misled our model to pay attention473

BERT ALBERT
MTMSN 115M 17M
MUSST 109M 12M
Taggervanilla 109M 12M
Taggermulti-task 117M 20M
Taggercrf 109M 12M
TASE 111M 13M
SpanQualifiervanilla 112M 15M
SpanQualifier 115M 18M

Table 9: Model size (number of parameters).

to their dependencies and extract incorrect answers 474

such as “estrogen”, “testosterone”, and “cortisol”. 475

For the second type of error, as illustrated in the 476

lower part of Table 8, the question has multiple 477

heterogeneous answers of distinct types, including 478

population, chromosome, and protein. Their de- 479

pendencies are difficult to be captured so that our 480

model failed to find some of them. 481

5.7 Model Size and Inference Time 482

Table 9 compares model sizes. Despite its supe- 483

rior performance, SpanQualifier has a number of 484

parameters comparable to those of the baselines. 485

BERT-based SpanQualifiervanilla and SpanQual- 486

ifier use an average of 29.69ms and 33.72ms to 487

answer a question, respectively. ALBERT-based 488

SpanQualifiervanilla and SpanQualifier use an av- 489

erage of 36.87ms and 42.15ms, respectively. The 490

inference time of our models is reasonably fast. 491

6 Conclusion 492

In this paper, we explore the effectiveness of span- 493

centric scheme for MSRC and propose a novel 494

extraction model SpanQualifier. Experiments show 495

that our span-centric scheme outperforms existing 496

pointer-based and tagger-based methods which fol- 497

low a token-centric scheme and, furthermore, with 498

span interaction our model achieves state-of-the-art 499

results on three MSRC datasets. In the future, we 500

plan to add more expressive interaction methods to 501

the span representation module and to soft answer 502

labels to accommodate overlapping spans. 503
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Limitations504

Our model was specifically designed for MSRC.505

Some modules (e.g., inter-span interaction) may506

not be useful for conventional single-span reading507

comprehension. Moreover, considering the poten-508

tially different data distributions between single-509

span and multi-span questions, our model trained510

on a hybrid of single-span and multi-span ques-511

tions (e.g., on QUOREF in our experiments) may512

not outperform dedicatedly trained models.513
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