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Abstract

Multi-span reading comprehension (MSRC)
requires machines to extract multiple non-
contiguous spans from a given context to an-
swer a question. Existing MSRC methods ei-
ther predict the positions of the start and end
tokens of answer spans, or predict the BIO tag
of each token. Such token-centric paradigms
can hardly capture dependencies among spans
which are critical to MSRC. In this paper, we
propose a span-centric scheme where spans, as
opposed to tokens, are directly represented and
scored to qualify as answers. Thanks to the
explicit representation of spans in the scheme,
our implementation called SpanQualifier ben-
eficially models intra-span and inter-span in-
teractions. Our extensive experiments on three
MSRC datasets demonstrate the effectiveness
of our span-centric scheme and show that Span-
Qualifier achieves state-of-the-art results.

1 Introduction

Machine reading comprehension (MRC) aims to
automatically answer questions from a given con-
text, which is a challenge task of natural language
understanding and a basic module of many question
answering systems (Chen et al., 2017; Liu et al.,
2020). MRC was usually regarded as a single-
span extraction task (Rajpurkar et al., 2016, 2018;
Kwiatkowski et al., 2019); single-span MRC mod-
els extract only one span as the answer (Seo et al.,
2017; Wang and Jiang, 2017; Yu et al., 2018).
Task: It may be unrealistic to assume a continu-
ous single span as a good answer to all questions.
A more general task is multi-span reading compre-
hension (MSRC) (Zhu et al., 2020; Ju et al., 2022;

Question: Who were the greek philosophers who
contributed the basic information about atoms?

Context: Democritus was an Ancient Greek pre-Socratic
philosopher primarily remembered today for his
formulation of an atomic theory of the universe. His
exact contributions are difficult to disentangle from those
of his mentor Leucippus, as they are often mentioned
together in texts. ...

Answer spans: { Democritus, his mentor Leucippus }

Figure 1: An example of MSRC task. Answer spans in
the context are underlined.

Cui et al., 2021; Li et al., 2022). As shown in Fig-
ure 1, MSRC requires extracting an unspecified
number (two in this example) of non-contiguous
spans from a given context to answer a question.
Moreover, spans are not independently extracted,
for example, the second answer span “his mentor
Leucippus” is dependent on the first answer span
“Democritus”, which needs to be captured.
Challenges: Existing methods for MSRC either
predict the positions of the start and end tokens of
answer spans by adapting single-span MRC mod-
els to MSRC (Hu et al., 2019; Yang et al., 2021),
or treat MSRC as a sequence tagging task by pre-
dicting the Beginning-Inside-Outside (BIO) tag of
each token (Segal et al., 2020; Li et al., 2022). We
regard these methods as foken-centric which define
features, train models, and predict answers from
the perspective of tokens. Their effectiveness is
limited in two aspects. Firstly, it is non-trivial and
often suboptimal to convert token-level predictions
to multiple spans as answers. Secondly, token-level



representation and optimization are not conducive
to capturing dependencies among spans.

Our Work: To overcome the limitations, we pro-
pose a span-centric scheme for MSRC and present
an effective implementation called SpanQualifier.
In response to the first limitation, our span-centric
scheme generates representations for all spans in
the context and predicts a qualification threshold.
Spans are scored, and a span will qualify as an
answer if its score exceeds the qualification thresh-
old, thus avoiding the conversion from token-level
predictions. For the second limitation, SpanQuali-
fier interacts intra-span and inter-span representa-
tions to capture their dependencies and, moreover,
a global loss function is designed to jointly opti-
mize over all spans and predict their scores.

To summarize, our contributions include

* anovel span-centric scheme for MSRC which
more naturally fits the task and empirically
outperforms existing token-centric methods,

* an implementation of the scheme which mod-
els intra/inter-span interactions and obtains
state-of-the-art results on three datasets.

Our code and data are in the supplementary ma-
terial and will be open on GitHub after acceptance.

2 Related Work
2.1 Pointer Paradigm for MSRC

The Pointer paradigm based on Pointer Net-
work (Vinyals et al., 2015) is one of the most pop-
ular schemes for single-span MRC, first proposed
by Wang and Jiang (2017), and various succes-
sors extend it with sophisticated matching mecha-
nisms (Seo et al., 2017; Yu et al., 2018). As shown
in Figure 2a, the predicted probabilities of being
the start or end of an answer span are normalized
over all tokens in the context, and a post-processing
decoding strategy such as beam search is adopted
to select a span as the answer. It is non-trivial to
adapt this paradigm to MSRC due to the unspec-
ified number of target spans. MTMSN (Hu et al.,
2019) predicts the number of answer spans and ex-
tracts non-overlapping spans based on an algorithm
in computer vision (Rosenfeld and Thurston, 1971).
MUSST (Yang et al., 2021) iteratively extracts and
masks a span with the highest probability until
meeting a stop symbol. Essentially, these methods
predict token-level probabilities and convert them
into multiple spans by non-differentiable decod-
ing strategies, which may under-utilize the training
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Figure 2: Two existing paradigms for MSRC.

data for MSRC. By contrast, RASOR (Lee et al.,
2016) employs span representations to select a sin-
gle span, which is extended by Chen et al. (2020)
with span merging to extract at most two spans.
This is still not enough for MSRC where answers
are often more than two spans.

Unlike the above methods, in our proposed span-
centric scheme, all possible spans are scored and
may qualify as answers, and our end-to-end model
is differentiable to exploit training data.

2.2 Tagger Paradigm for MSRC

The Tagger paradigm based on sequence tagging
has been applied to many tasks, such as part-of-
speech tagging and information extraction, and first
applied to answer extraction by Yao et al. (2013).
As shown in Figure 2b, a BIO tag is predicted
for each token. This paradigm can be relatively
easily adapted to MSRC (Yoon et al., 2022; Li
et al., 2022). Further, TASE (Segal et al., 2020) em-
ploys a multi-head architecture to separately han-
dle single-span and multi-span questions. Li et al.
(2022) incorporates answer structure and answer
number prediction into a multi-task model.

Tagger is trained by local normalization on each
individual token, which suffers from label bias (An-
dor et al., 2016). It is less informative than global
normalization performed in our implementation
over all possible spans to consider their dependen-
cies when calculating our loss function.

2.3 Information Extraction

Span-centric models have shown their effectiveness
in information extraction tasks, including named
entity recognition (NER), relation extraction, and
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Figure 3: Overview of SpanQualifier. Dashed boxes represent extensions of the vanilla implementation.

event extraction (Luan et al., 2018, 2019; Wad-
den et al., 2019). They are trained by calculat-
ing a cross-entropy loss over all possible spans.
However, this training objective is not suitable for
MSRC due to the extremely unbalanced labels in
its training data. Indeed, the context in a MSRC
task typically contains tens of thousands of spans
while only a few are answers.

Recently, Su et al. (2022) propose a NER model
with a universal loss function that extends the soft-
max and cross-entropy loss for handling label im-
balance, but their span representations obtained
by interacting only between its start and end to-
ken representations are not sufficient for MSRC.
As pointed out by Ju et al. (2022), different from
NER which requires extracting all the spans of
each given type, MSRC is more difficult and re-
lies on a thorough understanding of the context
because some spans of a given type are not cor-
rect answers. To enhance span representation, Tan
et al. (2020) add a boundary detection task to pre-
dict the start and end tokens of entities, and some
works use computationally expensive bi-affine (Yu
et al., 2020) or even tri-affine (Yuan et al., 2022)
mechanisms. By contrast, our SpanQualifier inex-
pensively obtains context-dependent span represen-
tations by two successive interaction layers where
the former uses a supervised attention mechanism
to highlight intra-span tokens to be aggregated and
the latter captures inter-span dependencies.

3 Approach

Given a question () and a context C' = ¢g, ..., ¢y
with n tokens, the goal of MSRC is to extract a set
of m answer indexes A = {[p},p$], ..., [P}, 25}
from the context, where p; and p$ are the start and
end positions of the i-th answer span.

Figure 3 shows an overview of our SpanQuali-
fier, which simultaneously extracts multiple spans
as answers by implementing a span-centric scheme
with four stacked modules (Section 3.1), two extra
interaction layers within and between spans (Sec-
tion 3.2), and a loss function combining global
normalization and maximum margin (Section 3.3).

3.1 (Vanilla) Span-Centric Scheme

The proposed scheme successively constructs to-
ken representations, boundary (i.e., start/end token)
representations, and span representations, and then
selects answers by predicting a qualification thresh-
old for span score. In the remainder of this section,
MLP(-) represents a two-layer perceptron.

Token Representation We firstly capture the
dependencies between the context C' and the
question () to generate token representations.
We feed @@ and C into a pre-trained language
model (PLM) such as BERT (Devlin et al., 2019)
or ALBERT (Lan et al., 2020) in a standard way:

H = PLM([CLS] Q [SEP] C [SEP]), (1)



where H represents the hidden states of the last
layer of PLM. From H we extract the global repre-
sentation HCXS € R% and the context representa-
tion HE € R™"*%1 where d; denotes the dimension
of representation and 7 is the length of C'.

Boundary Representation Then we aggregate
the information about each possible span to its two
boundary tokens. In our vanilla implementation,
we take the context representation H as input and
use a boundary enumeration layer to obtain the start
and end token representations:

B’, B° = BoundaryEnum(H®)

2
where B® = MLP(H®) and B® = MLP(H"), @

where B*, B¢ € R"*%_ Note that an extra intra-
span interaction layer can be inserted here to
achieve more intensive information aggregation,
which will be introduced in Section 3.2.

Span Representation Next, we generate the rep-
resentations for all possible spans. In our vanilla
implementation, the start and end token representa-
tions B®, B€ are fused by a span enumeration layer
to obtain the representations of all possible spans:

M = SpanEnum(B’, B?)
= LayerNorm(IN) 3)
where Ni)j = Bins + B;Wle + E‘j_“ y

where ML € R?>mxd2 M, ;j denotes the represen-
tation of the span starting at the ¢-th token and end-
ing at the j-th token, and E;_; € R is a learn-
able embedding of span length. LayerNorm(-) is a
layer normalization operator (Ba et al., 2016), and
W3, We € R41*42 are learnable parameters used
to reduce the dimension from d; to dy to improve
efficiency. We empirically set do = 64. Note that
an extra interaction layer for capturing dependen-
cies among spans can be inserted here, which will
be introduced in Section 3.2.

Span Selection Finally, we score all possible
spans and select answer spans by predicting a qual-
ification threshold. We feed both the span represen-
tations M and the global representation H®S into
a scoring layer:

S, ¢s™ = Scoring(M, H™™)
where S = MLP(M) and ¢s™ = MLP(H"),

“)

where S € R™*" contains the scores of all possible
spans and S; ; € S denotes the score of the span
starting at the i-th token and ending at the j-th

token. The lower triangular portion of S and the
portion representing spans containing more than
k tokens are masked, where k is the longest length
of an answer in the training set.

At inference time, all the spans with score higher
than ¢s**' will qualify as answers, where ¢s**' € R
represents a qualification threshold. If two spans
overlap, we will keep the higher scored one.

3.2 Span Interaction

To extend the vanilla implementation, two interac-
tion layers are added to enhance span representa-
tions and capture dependencies among spans.

Intra-Span Interaction Not only the start and
end tokens but also those inside a span are cru-
cial to its representation. Therefore, we insert an
intra-span interaction layer into the boundary repre-
sentation module after Equation (2) to incorporate
the attention weights of internal tokens:

B*, B° = BoundaryEnum(H®),
B', B = IntraSpan(B’, B).

&)

As for IntraSpan(-, -), our implementation resem-
bles Equation (3) and Equation (4). Start token
representations are intensified as follows:

M’ = SpanEnum(BS, Be) ,
G*®, ¢s* = Scoring(M°, HCLS) , (6)
B® = Softmax(G")(B'W3),
and end token representations are intensified by

M° = SpanEnum(B°, B)
G®, ¢s° = Scoring(M®,H®) @)
B° = Softmax((G°)")(B°W3),

where G®, G® represent attention weights, and
Ws, W$ € R4>% are learnable parameters.

Inter-Span Interaction To capture the depen-
dencies among spans which are useful in MSRC,
we insert an inter-span interaction layer into the
span representation module after Equation (3):

M = SpanEnum(B°, BY), )

M = InterSpan(M),
where we implement InterSpan(-) by an one-
layer 2D convolutional neural network (CNN).

3.3 Training

Since answer spans in MSRC correlate with each
other, a global qualification loss function is intro-
duced for supervising span selection. It is also
adapted to supervise intra-span interaction.



. Distribution by answer number Average Average
#Train  #Dev  # Test 0 1 > 2 answer number context length
MultiSpanQA 4,577 653 653 - - 100.00% 2.89 251
MultiSpanQA-E 13,731 1,959 1,959 3343% 32.59% 33.98% 1.30 226
QUOREF 16,083 2,186 2,276 - 90.56% 9.44% 1.14 324
Table 1: Dataset statistics.
Global Qualification Loss The Global Qualifi- Total Loss Finally, we sum the extraction loss

cation (GQ) loss consists of two parts: the Global
Normalization (GN) loss and the Maximum Mar-
gin (MM) loss. Considering the correlation be-
tween positive spans, we use the GN loss to jointly
optimize the scores of all positive spans. More-
over, we use the MM loss to maximize the margin
between positive and negative spans.

Given a set of scores of positive spans Q" C S,
a set of scores of negative spans 2~ C S, and a
qualification threshold ¢s®*', the GN loss is

Z+ exp(s)
Lan(QF,0Q7) = —1 et :
GN( ’ ) og Z eXp(S)+ E eXp(S)
seQt sEQ™

(©))

The objective is to maximize the sum of probabili-
ties of all positive spans. The MM loss comprises

L (27,057 = Max(1 = (n(2) ~ 050,00,
Lun(2, gs) = Max(1 — (s — Max(Q2)),0).

The objective is to maximize the soft margin be-
tween positive and negative spans. The GQ loss
combines the GN loss and the MM loss:

Lao(Q7, 07, ¢s™)

= Mean(Lan (", Q7), Lim(2F, ¢5™), Lym (7, ¢5™)) -

1D

Supervised Extraction We employ the GQ loss
as our main loss for supervising span extraction:

Lew = Lao(QF,Q7,¢5™). (12)
Supervised Attention We also adapt the GQ loss
to supervise the attention weights in the intra-span
interaction layer. Let ¥*T C G® and ¥¢" C G* be
the sets of attention weights of tokens in positive
spans. For each positive span [p®, p¢], ¥** contains
G s, Gos psi1s -+ Gps e € G®, and U°F con-
tains G e, Gppq pes - -y Gpe e € G°. Let U°7
and U®~ be the sets of the remaining attention
weights in G* and G¢, respectively. Given the
thresholds ¢s® and ¢s® computed by Equation (6)
and Equation (7), respectively, our attention loss is

L"att - LGQ(W5+7 qIS77 qss) + LGQ(\IIE+7 \11677 qse) . (13)

and the attention loss for joint training:

[: == ﬁext + l:att . (14)

4 Experimental Setup

4.1 Datasets

We used three MSRC datasets. MultiSpanQA
and MultiSpanQA-Expanded (Li et al., 2022) are
the latest datasets for MSRC created from a ques-
tion answering dataset (Kwiatkowski et al., 2019).
MultiSpanQA only contains multi-span questions,
while MultiSpanQA-E also contains unanswerable
and single-span questions. QUOREF (Dasigi et al.,
2019) containing questions requiring coreferential
reasoning has been widely used in MSRC research.

Since the official test sets of these datasets are
not public, we took their official dev set as our test
set and randomly held out an in-house dev set from
the official training set. Some statistics about the
datasets are shown in Table 1.

4.2 Participating Methods

We experimented with two variants of our method:
SpanQualifier representing the full version and
SpanQualifiery,,iy, representing the vanilla ver-
sion without span interaction in Section 3.2.

We compared with two pointer-based methods
for MSRC. MTMSN (Hu et al., 2019) predicts the
number of answer spans and repeatedly extracts
non-overlapping spans until reaching the predicted
number. MUSST (Yang et al., 2021) iteratively
extracts spans until meeting a special stop symbol.

We compared with four tagger-based methods
for MSRC. Taggeryanina (Li et al., 2022) uses a
standard BIO tagger. Taggermuii-task (Li et al.,
2022) enhances Taggeryanina With answer structure
and answer number prediction. Tagger,¢ extends
Taggeryania With a CRF layer (Lafferty et al., 2001)
to capture tag dependencies. TASE (Segal et al.,
2020) employs a multi-head mechanism to sepa-
rately handle single-span and multi-span questions.
We further extended it to separately handle unan-
swerable questions in MultiSpanQA-E.



MultiSpanQA MultiSpanQA-E QUOREF
EM PM EM PM EM PM
dev test dev test dev test dev test dev test dev test
BERT
MTMSN 46.67°A  43.55°4  72.17°4  70.44°A | 49.96°A 50.60°4 70.61°4 7092 A | 62.26°4 62.23 4 7381 4 7362 4
MUSST 51.35°4  48.83°4 74.61°% 72.36°A | 54.26°4 54.65°4 70.81°4 70.60°4 | 33.35°4 31.91°4 55.21°4 54.23°4
Taggeryanilla 60.36°4 57.89°4 73.76°% 72.60°A | 60.39°4 59.81°4 7238 & 7233 4| 56.33°4 55.67°4 68.32°4 67.47°A
Taggermulti-task 51.63°4  51.72°4 67.97°% 69.06°* | 54.93°4 56.53°4 68.54°4 70.36°4 | 39.55°4 39.00°4 51.30°4 49.75°4
Taggercs 61.28°4 58.94°4 74.55°A 73.43°A | 57.00°4 57.23°A 66.94°4 67.18°4 | 56.73°4 55.09°4 68.24°%4 66.89°4
TASE 57.41°4  54.99°4 73.17°4 72.59°4 | 51.01°4 52.47°A 6538°4 66.99°4 | 58.58°4 56.98°4 69.28°4 67.50°4
SpanQualifierynin, | 66.38 64.92 78.61 77.69 63.25 64.24 73.19 73.80 63.92 62.31 73.33 71.69
SpanQualifier 69.94 68.41 81.26 80.61 65.47 66.08 74.09 75.11 67.19 65.65 75.70 74.11
ALBERT

MTMSN 40.85°4  38.12°4 63.17°4  61.14°A | 41.74°% 43.90°4 56.28°4 58.58°4 | 45.78°4 44.35°A 57.91°4 56.64°4
MUSST 54.13°A  51.69°4 77.45°A 75.56°A | 57.27°% 57.34°A 73.95°4 74.52°A | 41.73°A 39.27°4 65.13°A 63.48°4
Taggeryanilla 67.06°4 64.78°4 80.07°4 79.32°A | 61.73°A 61.36°4 72.77°A 72.73°A | 70.78°4 68.97°4 79.68°4 77.68°4
Taggermuli-task 49.78°4  48.75°% 67.99°4 67.34°4 | 51.65°4 52.15°4 65.89°4 66.38°4 | 50.95°4 48.91°4 61.77°4 59.04°4
Taggercs 68.11°4  65.43°4 81.03°4 80.00°4 | 61.99°4 61.75°4 72.46°4 72.86°4 | 70.63°4 69.03°4 79.35°4 77.75°A
TASE 65.55°4  62.06°4 80.85°4 79.34°4 | 57.52°4 56.95°4 70.95°4 71.11°4 | 71.90°* 70.31°4 81.39°4 79.90°4
SpanQualifieryin, | 68.92 67.23 82.42 81.76 65.68 66.07 75.85 76.53 73.90 71.77 81.95 79.92
SpanQualifier 72.29 70.20 83.62 82.68 67.24 66.99 76.79 77.01 75.18 72.84 82.56 80.68

Table 2: Comparison with baselines. We mark the results of baselines that are significantly lower than the results of
SpanQualifieryp, under p < 0.01 (*) or p < 0.05 (°), and of SpanQualifier under p < 0.01 (*) or p < 0.05 (4).

4.3 Evaluation Metrics

We followed Li et al. (2022) to use two metrics. Ex-
act Match F1 (EM) measures the percentage of pre-
dicted spans that exactly match any gold-standard
answer span. Partial Match F1 (PM) generalizes
EM by using the length of the longest common
substring to score each predicted span based on its
nearest gold-standard answer span.

4.4 Implementation Details

We used two PLMs of different sizes: BERT-base-
uncased (Devlin et al., 2019) and ALBERT-base-
v2 (Lan et al., 2020). We implemented our mod-
els with PyTorch 1.10 and HuggingFace Trans-
formers 4.12.5. The dimension of the hidden
layer of MLP was 768. We implemented CNN
using kernel size = 5 X 5, stride = 1, and
in-channels = out-channels = 64. We used the
Adam optimizer and set warmup fraction = 0.1,
weight decay = 0.01, maximum length = 512,
and epoch = 30. For each model, we searched
for the best learning rate from {le — 5,3e — 5},
and batch size from {24, 32}. We used three seeds
{0, 1,2} and took the mean results. All the experi-
ments were performed on RTX 3090 (24G).

5 Experimental Results

5.1 Comparison with Baselines

In Table 2, SpanQualifer achieves the best results
in all the settings. It significantly outperforms all
the baselines under p < 0.01 except in one setting
under p < 0.05. Satisfyingly, SpanQualifieryapiiia

MultiSpanQA-E QUOREF
EM PM EM PM
BERT
MTMSN 3586  64.85 57.69 75.34
MUSST 4720 67.23 29.79 57.15
Taggeryaniila 59.61 73.52 61.66 7443
Taggermuisi-task 54.64  70.58 42.11 56.02
Taggeres 56.99 68.51 60.85 73.81
TASE 49.41 65.43 61.47 7417
SpanQualifieryanina | 63.53 74.35 64.57 74.75
SpanQualifier 65.59  75.98 68.82 77.98
ALBERT
MTMSN 27.58 47.48 36.48 54.20
MUSST 5040  71.60 33.12  64.17
Taggeryanila 61.58 74.92 71.44  82.55
Taggermuiti-task 48.23 65.59 49.99 65.16
Taggercs 62.11 75.03 7170 83.15
TASE 53.37 69.92 70.55 81.80
SpanQualifieryania | 64.67 76.29 72.38 81.67
SpanQualifier 65.81 7691 72.31 81.83

Table 3: Comparison with baselines on multi-span ques-
tions in the test sets of MultiSpanQA-E and QUOREF.

also exceeds most baselines, demonstrating the ef-
fectiveness of our vanilla span-centric scheme.

By excluding single-span and unanswerable
questions from MultiSpanQA-E and QUOREEF, in
Table 3, the gap between SpanQualifier and pointer-
based methods becomes larger on multi-span ques-
tions. Indeed, by contrast with pointer-based
methods, SpanQualifier and tagger-based methods
achieve better results on multi-span questions than
on other questions, especially on QUOREEF, indi-
cating their better suitability for the MSRC task.

5.2 Ablation Study: Span Representation

To analyze the effectiveness of our span-centric
scheme, we implemented TokenQualifier which is



MultiSpanQA | MultiSpanQA-E QUOREF
EM PM EM PM EM PM
BERT
SpanQualifieryanina | 6492  77.69 | 64.24  73.80 | 62.31 71.69

TokenQualifier 61.35 7552|5981 7233 | 60.79 70.25
ALBERT
SpanQualifieryanina | 67.23 81.76 | 66.07  76.53 | 71.77
TokenQualifier 66.28 80.88 | 63.52  75.67 | 70.58

79.92
78.89

Table 4: Ablation study of span representation on the
test sets of three datasets.

MultiSpanQA | MultiSpanQA-E QUOREF
EM PM EM PM EM PM
BERT
SpanQualifier 68.41 80.61 | 66.08 75.11 | 65.65 74.11
w/o intra-span 68.20 79.84 | 65.00 73.69 | 6549 74.01
w/o inter-span 6476 77.65 | 65.61  75.10 | 62.94 72.27
w/0 Ly 67.15 7896 | 64.12 72.83 | 65.09 73.66

standard attention | 67.89 79.86 | 65.88  75.16 | 65.15 73.97
ALBERT
SpanQualifier

70.20 82.68 | 66.99 77.01 | 72.84 80.68
w/o intra-span 69.14 81.73 | 67.11 76.81 | 72.60 80.30
w/o inter-span 68.28 81.88 | 65.30 76.14 | 71.51 79.74
W/0 Loy 68.87 81.56 | 66.08 75.80 | 71.89 80.05
Standard Attention | 68.12 81.13 | 65.75  76.72 | 72.12 80.01

Table 5: Ablation study of span interaction on the test
sets of three datasets.

a variant of SpanQualifiery,pija by removing bound-
ary and span representations and directly using to-
ken representations for prediction. In Table 4, EM
and PM drop by 0.95-4.43 and 0.86-2.17, respec-
tively, demonstrating the usefulness of our bound-
ary and span representations.

5.3 Ablation Study: Span Interaction

Our span interaction consists of an intra-span layer
with a supervised attention mechanism and an inter-
span layer. To analyze their effectiveness, we con-
ducted an ablation study by separately removing
each component. We also replaced our attention
mechanism for computing G® and G° in Equa-
tion (6) and Equation (7), respectively, with a stan-
dard attention mechanism where the key and value
are MLP(B®) and MLP(B¢), respectively.

In Table 5, the full version of SpanQualifier
outperforms its variants in almost all the set-
tings, demonstrating the usefulness of the re-
moved/replaced components. In particular, on Mul-
tiSpanQA and QUORETF, inter-span interaction ap-
pears more influential, while on MultiSpanQA-E,
attention supervision is more helpful.

5.4 Official Leaderboards

We submitted the results predicted by Span-
Qualifier on each official test set to the leader-
board: to MultiSpanQA and MultiSpanQA-E! on

'https://multi-span.github.io/

MultiSpanQA | MultiSpanQA-E
EM PM EM PM

SpanQualifier (RoBERTa Large) 7275 85.41 | 70.85 81.64
Taggeryanina (ROBERTa Large) 69.19 83.86 | 69.05 78.97
Tagger+LIQUID (RoBERTa Base) | 67.40 81.16 - -

SpanQualifier (BERT Base) 64.87 78.79 | 6439 7422
Taggermuli-ask (BERT Base) 59.28 76.26 | 4226  70.47
Taggeryanina (BERT Base) 56.45 75.22 | 41.38 70.10
Single-span (BERT Base) 1441 67.56 | 1226  67.73

Table 6: Official leaderboards of MultiSpanQA and
MultiSpanQA-E.

QUOREF
Global EM  Global F1
SpanQualifier (CorefRoBERTa Large) 81.36 87.24
SpanQualifier (RoBERTa Large) 81.24 87.05
TASE (CorefRoBERTa Large) 80.61 86.70
TASECoNLL-joint-qgen 80.45 86.46
TASE (RoBERTa Large) 79.66 86.13
CorefAdditive 79.11 85.86
CorefRoBERTa Large 75.80 82.81

Table 7: Official leaderboard of QUOREF.

10/11/2022, and to QUOREF? on 10/12/2022. For
a fair comparison, we used the same PLMs as
other methods on the leaderboard: BERT Base (De-
vlin et al., 2019) and RoBERTa Large (Liu et al.,
2019) on MultiSpanQA and MultiSpanQA-E, and
RoBERTa Large and CorefRoBERTa Large (Ye
et al., 2020) on QUOREF.

Table 6 compares SpanQualifier with other top-
ranked single-model methods on the leaderboards
of MultiSpanQA and MultiSpanQA-E at the time
of our submission. SpanQualifier outperforms all
the methods using the same PLM, including Tag-
ger+LIQUID (Lee et al., 2023) whose implementa-
tion is not public, and Single-span (Li et al., 2022)
which is a pointer-based method selecting multiple
spans by tuning a threshold on the dev set.

Table 7 compares SpanQualifier with other top-
ranked single-model methods on the leaderboard
of QUOREEF at the time of our submission. Note
that this leaderboard uses Global Exact Match
(Global EM) (Rajpurkar et al., 2016) and Global
F1 (Dua et al., 2019) as evaluation metrics. Span-
Qualifier outperforms all the methods, including
TASE CoNLL-joint-ggen Which jointly trains TASE on
QUOREF and CoNLL (Sang and Meulder, 2003),
CorefAdditive (Zhang and Zhao, 2022) and Core-
fRoBERTa Large (Ye et al., 2020) which are
pointer-based methods predicting the number of
answer spans as in MTMSN.

https://leaderboard.allenai.org/
quoref/submissions/public


https://multi-span.github.io/
https://leaderboard.allenai.org/quoref/submissions/public
https://leaderboard.allenai.org/quoref/submissions/public

Question Context Prediction

Which two hormones His theory states that ... preparing the animal for fighting or fleeindull. More {norepinephrine,

are known for their specifically, the adrenal medulla produces a hormonal cascade that results in epinephrine, estro-
roles in the bluefight- the secretion of catecholamines, especially norepinephrine and epinephrine. gen, testosterone,

or-flight response?
how organisms react to stress ...

The hormones estrogen, testosterone, and cortisol, as well as ... also affect

cortisol }

Where does the red
hair gene come from?

Red hair ... occurs more frequently in people of northern or western European
ancestry, and less frequently in other populations. Red hair appears most
commonly in people with two copies of a recessive allele on chromosome 16

{northern or western
European ancestry,
other populations}

which produces an altered version of the MCIR protein ...

Table 8: Answer spans predicted by SpanQualifier on MultiSpanQA. Gold-standard answer spans are underlined.

Question: What is the meaning of the moon and the star in islam?
Context: ... the crescent and a star, both of which constituent
elements have a long prior history in the iconography of the
Ancient Near East as representing either Sun and Moon, or
Moon and Morning Star (or their divine personifications) ...

Top-scored spans:

1. Sun and Moon

2. Moon and Morning Star
— - 3. crescent

6.02 ! - 4. the crescent
| : - 5. Moon ... personifications
Y | ) - 6. Morning Star
E— ; - 7. star
T | ) - 8. either Sun and Moon
Z05] Qualificationy - 9. or ... personifications
[ _38g] lhreshold ! - 10. (or ... personifications
—r [ T

0 5 827 10 Span Score

Figure 4: Top spans scored by SpanQualifier on Multi-
SpanQA. Gold-standard answer spans are underlined.

5.5 Case Study

Figure 4 illustrates the top-scored spans predicted
by SpanQualifier for a question in MultiSpanQA.
The top-two spans with scores higher than the
predicted qualification threshold exactly match
the gold standard. By contrast, the pointer-based
MUSST predicted a long span containing 52 words,
and Tagger.s predicted three single-word spans.
While their spans partially match the gold standard,
their inexactness reveals the limitation of token-
centric methods in MSRC, particularly the subop-
timality of converting token-level predictions to
multiple answer spans, which has been addressed
by our span-centric scheme.

5.6 Error Analysis

We manually analyzed errors made by SpanQuali-
fier on MultiSpanQA and identified two common
types of errors in MSRC: incorrect homogeneous
answers and missing heterogeneous answers.

For the first type of error, as illustrated in the
upper part of Table 8, the gold-standard answer
spans are surrounded by many other spans of the
same type, which misled our model to pay attention

BERT ALBERT
MTMSN 115M 17M
MUSST 109M 12M
Taggervanilla 109M 12M
Taggermu]ti-msk 117M 20M
Taggerer 109M 12M
TASE 111M 13M
SpanQualifieryanina ~ 112M 15M
SpanQualifier 115M 18sM

Table 9: Model size (number of parameters).

to their dependencies and extract incorrect answers
such as “estrogen”, “testosterone”, and “cortisol”.

For the second type of error, as illustrated in the
lower part of Table 8, the question has multiple
heterogeneous answers of distinct types, including
population, chromosome, and protein. Their de-
pendencies are difficult to be captured so that our

model failed to find some of them.

5.7 Model Size and Inference Time

Table 9 compares model sizes. Despite its supe-
rior performance, SpanQualifier has a number of
parameters comparable to those of the baselines.
BERT-based SpanQualifiery,yij;, and SpanQual-
ifier use an average of 29.69ms and 33.72ms to
answer a question, respectively. ALBERT-based
SpanQualifieryin, and SpanQualifier use an av-
erage of 36.87ms and 42.15ms, respectively. The
inference time of our models is reasonably fast.

6 Conclusion

In this paper, we explore the effectiveness of span-
centric scheme for MSRC and propose a novel
extraction model SpanQualifier. Experiments show
that our span-centric scheme outperforms existing
pointer-based and tagger-based methods which fol-
low a token-centric scheme and, furthermore, with
span interaction our model achieves state-of-the-art
results on three MSRC datasets. In the future, we
plan to add more expressive interaction methods to
the span representation module and to soft answer
labels to accommodate overlapping spans.



Limitations

Our model was specifically designed for MSRC.
Some modules (e.g., inter-span interaction) may
not be useful for conventional single-span reading
comprehension. Moreover, considering the poten-
tially different data distributions between single-
span and multi-span questions, our model trained
on a hybrid of single-span and multi-span ques-
tions (e.g., on QUOREF in our experiments) may
not outperform dedicatedly trained models.
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