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ABSTRACT

Personalizing Large Language Models (LLMs) requires capturing user prefer-
ences without centralizing private data, prompting a multi-agent local fine-tuning
setup. While on-policy algorithms, as applied to RLHF, are well-suited for
preference modeling, their use remains fundamentally single-agent. We present
Peer-Referenced Policy Optimization (PRPO), an online policy-gradient method
that lets privacy-constrained clients cooperate while keeping trajectories local.
PRPO extends Proximal Policy Optimization (PPO) family and treats KL regular-
izer as a communication channel: each round, every client conditions its update
on a composite reference policy created by peer-to-peer averaging of action distri-
butions. This distribution-level exchange preserves trust-region stability and adds
only modest overhead compatible with LoRA adapters. We provide theoretical
support for PRPO through general observations and convergence guarantees under
limited conditions. We evaluate PRPO on the set of ATARI and Minigrid chal-
lenges and in the standard RLHF summarization setting, where it surpasses local
PPO — indicating that reference-policy sharing offers a practical path to scalable,
privacy-preserving LLM personalization.

1 INTRODUCTION

Reinforcement Learning (RL) algorithms — both online methods such as PPO (Schulman et al.|
2017b)), (Ziegler et al.;,|2020) and GRPO (Shao et al.| 2024), and offline approaches like DPO (Rafailov:
et al.,[2024) — have proven highly effective in fine-tuning Large Language Models (LLMs) (Stiennon
et al.| 2022 |Ouyang et al., |2022). These methods facilitate alignment with human preferences, safety
objectives (Dat et al.;2023)), and reasoning capabilities (DeepSeek-Al, 2025)), leading to widespread
use of LLM agents in a variety of downstream tasks.

Despite the success of general-purpose assistants like GPT-4 (OpenAl, 2024), the ability of LLMs to
adapt to user-specific contexts — crucial for natural and effective human-Al interaction — remains an
open challenge (Zhang et al., 2024b)). Personalization raises a number of critical issues, including data
privacy and fine-tuning efficiency (Li et al.,2024)), which are especially pronounced in personalized
adaptation settings (Liu et al.| 2025)). In these scenarios, each user is equipped with a lightweight,
user-specific PEFT module (He et al|2022)) that captures their individual preferences.

A central problem in this context is how to enable collaborative learning among users: leveraging
collective knowledge to improve model quality and learning efficiency, without incurring excessive
communication overhead or violating privacy constraints (Liu et al., [2025). While a few recent
works (Tan et al.| 2024} |Wagner et al.| 2024; QI et al., [2024) have explored collaboration through
LoRA (Hu et al}[2021) FedAvg-style (McMahan et al., [2023)) weight aggregation schemes, these
approaches operate outside the RL setting and focus on supervised fine-tuning for tasks such as
language modeling and text classification.

Contribution. In this work, we propose an alternative direction that bridges the gap between
personalized LLM methods and Reinforcement Learning with Human Feedback (RLHF). Specifically,

* we introduce PRPO (Peer-Referenced Policy Optimization), a cooperative extension to the Proxi-
mal Policy Optimization methods, which enables inter-agent communication during training;
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* to facilitate this cooperation, we repurpose the KL penalty not only as a trust-region constraint, but
also as a mechanism for coordination, conditioning each agent’s policy on a composite reference
that blends its own prior with aggregated peer policies;

* with this approach we introduce a new family of direct policy aggregation protocols that operate
on action distributions rather than model weights. This enables flexible and well-structured
communication design, ranging from fine-grained trust-aware gossip schemes to any operator that
meaningfully acts on the policy space;

* we show how the PRPO method instantiates with three concrete proximal policy algorithms,
yielding PR-TRPO, PR-PPO, and PR-GRPO, thereby demonstrating its applicability across
TRPO (Schulman et al.l [2017al), PPO (Schulman et al., 2017b)), and GRPO (Shao et al.| [2024);

» we provide theoretical motivation for PRPO through general observations proven under broad
assumptions and strong convergence guarantees established under more restricted conditions;

* to validate our approach and ensure reproducibility, we develop a lightweight cooperative on-policy
fine-tuning framework that would be available publicly;

* we evaluate PRPO as applied to PPO (PR-PPO) and GRPO (PR-GRPO) on RLHF text sum-
marization tasks, as well as on classical reinforcement learning benchmarks such as MiniGrid
(Chevalier-Boisvert et al.l 2023) and ATARI (Bellemare et al.,[2013)), demonstrating the effective-
ness of our approach for collaborative policy learning in both RLHF and pure RL domains.

2 RELATED WORK

Although this work is introduced through the lens of LLM personalization—narrowed down to Person-
alized Adaptation — the problem space spans multiple domains, including Federated Reinforcement
Learning (FRL), Multi-Agent Reinforcement Learning (MARL), Federated LLM fine-tuning, Feder-
ated RLHF, and MARLHEF. A complete survey would be required to outline the boundaries of this
intersection. Here, we provide a brief overview of the most relevant areas that contextualize and
motivate the proposed approach: a cooperative online policy gradient method designed for settings
with limited local data, strong privacy requirements, and low communication overhead.

Federated LLM Fine-Tuning. Federated fine-tuning of LLMs has gained traction with the rise
of frameworks such as OpenFedLLM (Ye et al.| 2024)) and Shepherd (Zhang et al.,|2024a)), which
integrate PEFT techniques into classical Federated Learning algorithms like FedAvg (McMahan et al.|
2023)). These works demonstrate that LoORA-based updates are highly effective in reducing commu-
nication costs while maintaining strong privacy guarantees (Zhang et al.,[2023). Novel techniques
PEFT tailored for federated setting have also been introduced, such as FFA-LoRA (Sun et al., 2024).
These approaches validate the feasibility of distributed PEFT-based training but remain focused on
supervised learning, leaving open the question of their applicability in personalization and RLHF.

Federated RLHF. Some recent work explores Federated RLHF, primarily via preference modeling
or offline RL. Approaches such as FedDPO (Ye et al.,2024), FedBis (Wu et al.| 2025)), and Plural-
LLM (Srewa et al., 2025) reduce RLHF to supervised preference optimization—aggregating either
local DPO-trained models or user-specific preference data into a centralized supervised training
pipeline. However, none of these works address online reinforcement learning in a federated setting,
or support policy learning beyond model centralization.

Multi-Agent Reinforcement Learning (MARL). Several classical MARL techniques offer rel-
evant insights. IPPO (de Witt et al., |2020) shows the viability of independently trained local PPO
agents, while MAPPO (Yu et al., [2022) leverages a centralized critic to coordinate agents. Most
relevant is CoPPO (Wu et al.[ [2021)), which introduces step-size coordination for communication
among agents—achieving strong results on benchmarks like StarCraft IT (Samvelyan et al.,[2019). In
contrast, PR-PPO enables communication through reference policy aggregation, which aligns more
naturally with the RLHF training paradigm and the probabilistic interpretation of policies.

Multi-Agent RLHF (MARLHF). This area is still in its early stages, with only a few works
focused on value-based RLHF, preference modeling in multi-agent games and Nash equilibrium
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learning in general-sum environments (Zhang et al.l 2025). As such, there remains a significant gap
in applying online policy-gradient methods to cooperative RLHF scenarios.

Personalized Adaptation. Personalization in LLMs is a rich and evolving research area. As
outlined in (L1u et al., 2025), personalization strategies span input-level (personalized prompting),
objective-level (personalized alignment), and model-level (personalized adaptation). This work
focuses on the latter, capturing the local characteristics with dedicated personalized model, rather
than distinct objective design, particularly in federated settings where clients maintain private PEFT
modules. Prior studies (Tan et al.|[2024; Wagner et al.| [2024; QI et al.,[2024) have explored supervised
fine-tuning of personalized LoRA weights, but none apply RLHF techniques—despite their clear
advantage for modeling user preferences.

Among them, the work of (Wagner et al.,|2024) is especially relevant and worth a closer look. It
addresses “fine-tuning of large language models with limited local data availability”, proposes
“decentralized LoRA training”, and focuses on “a peer-to-peer decentralized learning setting, where
the existence of a central server is not assumed”. It also “explores different ways of building a
trust-gossip aggregation graph across users” . These aspects make it structurally and ideologically
close to our setting.

However, key differences remain. First, (Wagner et al., [ 2024) restricts experiments to unsupervised
language modeling, while our work addresses Reinforcement Learning with Human Feedback —
a fundamentally different optimization regime. Second, (Wagner et al.| [2024)) aggregates LoORA
weights, whereas we introduce a communication protocol that performs policy (i.e., distributional)
averaging, more naturally aligned with the RLHF framework, particularly in the presence of KL
constraints used in policy regularization.

3 METHOD

3.1 PROBLEM SETUP

Within the scope of Personalized Adaptation, we consider a setting involving n agents, each with
individual policy m; € Il = {w : S — P(A)}, i = 1,...,n, that operate on the common state space
S and the action space A with transition probability distribution P : S x A — P(S), all pursuing
the same objective (see Personalized Adaptation in Section [2): the discounted cumulative reward
given the initial state sg

£(50,7) = Eag 5101, [Z vtr(st)] : (0
t=0

where r : S — R is the reward function, a; ~ 7(- | s;) is the policy decision at time step ¢ and
St41 ~ P(- | s¢,ay) is the state drawn from the system dynamics based on the decision a; taken in
the state s;.

Although confined to the same system dynamics P and aligned in goal f, the agents may differ
significantly in their experience through distinct initial state distributions ¢ € P(S), and thus, in
effect, aim different target

fi(m) :ESONC?f(So,ﬂ'), i1=1,...,n. 2)

Specifically, in the context of distributed LLM fine-tuning considered here — where the model’s task is
to predict the next token given a sequence of observed tokens — the action space is a finite vocabulary
V, and the state space is the set of all finite token sequences, denoted V* (the Kleene star of V).
Agent policies mg(- | -) belong to a parameterized policy class Ilg = {my : V* — P(V)|0 € 6},
where each policy maps a token sequence to a distribution over next tokens. This class is defined by
a shared LLM architecture with parameters 6. The environment dynamics reduce to deterministic
sequence extension: at time ¢ = 0, 1, ..., given state s; € V* and action a; € V), the next state is the
concatenated sequence s;+1 = S¢ay = SpQopaj - . . Ag.

This setting reflects our earlier assumption regarding the shared nature of the transition dynamics (T).
Yet, heterogeneity is preserved through variation in the initial state distribution ¢? across agents. This
characterizes precisely the scenario of LLM personalization where each policy is trained on a unique
local dataset {so}; = D; ~ (?, that includes sensitive user information subject to privacy constraints.
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However, this setup introduces several challenges. First, individual agents may lack sufficient local
data to fine-tune models that accurately reflect user preferences. Second, privacy requirements
prohibit direct aggregation or centralization of user data, necessitating that all training operations
remain confined within local environments. Third, strictly local optimization raises further concerns
regarding training efficiency and the ability to achieve high-quality models.

To address these challenges, prior work has explored parameter-efficient fine-tuning (PEFT), notably
LoRA modules, as a solution. LoRA modules serve both as efficient local training mechanisms
and compact, privacy-compliant units (Zhang et al., 2023) suitable for peer-to-peer communication
among agents, as elaborated by [Wagner et al.| (2024)).

From this prospective, the precise practical formulation of the problem is as follows:

Given a shared, pre-trained policy frozen weights 6, a set of trainable local LoRA
adapters 61, ..., 0,, local datasets Dy, ..., D,, acquired from the corresponding
distributions ¢, ..., (% and a common target f(sq, ) @), that defines a set of
personal objectives f;(8) = fi(mg,+0) (2) — optimize each personalized pol-
icy mg,+0, with respect to f;(6), through a local policy optimization procedure
interleaved with peer-to-peer communication rounds for LoRA adapters exchange.

Previous work by Wagner et al.| (2024) demonstrated the feasibility of this approach in an unsupervised
next-token prediction task, leveraging weighted LoRA aggregation protocols and highlighted its
superiority over local fine-tuning and classical federated averaging (McMahan et al.| [2023)).

In this work, we adopt this paradigm to the online reinforcement learning and propose a cooperative
algorithm that employs an alternative communication protocol. We evaluate this method in native
RLHEF task (see Section[d.2)) demonstrating its effectiveness in personalized adaptation, on par with
validation in classical RL domains (see Sectiond.I]), where it outperforms both local training and
existing federated baselines.

3.2 PEER-REFERENCED PPO

The PR-PPO is based on PPO (Schulman et al.,[2017b)) that updates policy through maximization of
KL-penalized surrogate objective: E]

~ arls —~
0kl = argmax E, MA(&, a) — BKL [moe (- |s¢) || mo (- |se)]] s 3)
0 o (ar|st)

where KL-penalty coefficient 3 > 0, E(, -) is an advantage estimator (e.g. GAE (Schulman et al.,
2018))) and E; denotes the empirical average over trajectory samples generated with old policy mgx.

The surrogate objective (3) constrains the model update to stay within a trust-region of the old
policy myr as justified in TRPO to bound potential decrease in policy performance at each step
(Schulman et al.,2017a)). A common practice in RLHF further leverages the KL penalty as a mecha-
nism to maintain a stable anchor — typically the pretrained SFT policy — throughout the optimization
process, with sparse or no updates to the reference policy under the KL term (Ouyang et al., 2022).

In this work, given a number of policies to optimize {my, }!_; C Ilg (see Section|3.1), we go one
step forward and condition a policy on its peers’ aggregated reference to employ community value

01 = argmax E, M;{(st,at) — BKL [Cimor (- |s¢) || mo (- |se)] |, i=1,...n, (4)
0 ok (atlst)

where C; : II"™ — Il is the i-th component of communication operator C' : II"™ — II"™ that is applied
to a vector of reference policies myr = (779;;, ceey Tk ).

The exact nature of communication operator C' : II" — II™ may be of different origin, whether it be
a constant matrix C' = {¢;; }, or a complex operator C' k_evolving through the learning process. We
would delve deeper the motivation behind its nature as well as the construction of a feasible class of
such operators further, alongside the discussion of PR-TRPO (see Section [3.4).

'Technical details (e.g., clipping) are omitted in the derivations for clarity.
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3.3 PEER-REFERENCED GRPO

In turn, GRPO (Shao et al., [2024) derives PPO objective (3)) but swaps the terms of KL-Penalty and
sets it in the reverse direction, resembling the approach of MDPO (Tomar et al.| 2021a) that takes
inspiration from the mirror-decent update rule. Furthermore, as the name suggests, GRPO exploits
grouped sampling for the expectation estimate, that implies sub-sampling a trajectory group

6* 1 = arg max IESON@IEHSO M

o ﬁek(atISt)ASO(rt) — BRL [mo (- [se) [| mor (- |s)] |, (5)

where the empirical average Et\SO reduces to averaging over a group of trajectories G(so) generated
with old policy 7y starting from a shared initial state sg.

This allows GRPO to adopt group relative advantage that estimates advantage through normalization
of rewards over the group in order to obviate the computation burden of value approximation

r(s¢) — mean(r(sy) : sy € G(s0))
std(r(s¢) : s¢ € G(s0))

Ay (re) o= Ay (r(se)) = ©)

We adapt GRPO to multi-agent setting, analogous to {) and introduce the PR-GRPO update rule

7T9(at|5t)

ok-‘rl
' Tor (atlst)

Ay, (1) — BKL [mg (- |se) || Compr (- |s0)]| i =1,...n.
@)

= arg max ]Esw(?EtISO
0

3.4 PEER-REFERENCED TRPO

Although we do not experiment with TRPO (Schulman et al.||2017a)) in practice, we find it important
to introduce PR-TRPO as it gives a clear prospective, viable for discussion of the method. In contrast
to PPO (Schulman et al.|[2017b), TRPO formulates policy updates as a hard-constrained optimization
problem:

gr+l = arg max Et {m(aﬁst)ﬁt] , (8a)
6 ok (ar | St)
subject to By [KL [mgr (- | s¢) || mo (- | 50)]] < 6 (8b)

which adapts naturally to our cooperative approach:

0f+1 = arg max Et Tolde [ 5¢) (e | 50) /L , (9a)
0 moi (ar | st)
subject to By [KL [Cimgr (- | s¢) || mo(- | s)]] <&, i=1,...,n. (9b)

The procedure - is motivated by the theory behind that guarantees monotonic policy
improvement through unconstrained policy iteration procedure with TV-penalty that is replaced with
KL-divergence provided that ||z — y||3,, < KL(x || y). Though KL-divergence is a good choice for
computational tractability, since the exact same theory originally allows the use of total variation we
find it appropriate to lead the following discussion in a metric space setting.

In a metric space of policies (I, p), a p-TRPO solves the problem subject to variational bound
p(r*, w1y <6, (10)

Whereas p-PR-TRPO constrains each actor (9a) with its’ local commuted variational bound
p(Cim*, mf ™) <& (11)

A natural question arises: may we attain the original bound (I0) with control of local commuted
bound (1) so as to preserve the TRPO trust-region while enabling communication? In this regard, we
propose to consider uniformly y-non-expansive communicators in ambient Banach space (2, || - ||) ]

>This is indeed the case for policies, since distributions lie in the ambient Banach space of signed measures ¥
with the total variation norm. We would develop a more rigorous discussion with proofs in Appendix@
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Definition 1. We would call an operator C' : ¥ — X" in Banach space (¥, || - ||) a uniform
~v-non-expansion (y < 1) aslong as for¢t = 1,...,nand forall z,y € X"

[Ciz — Ciyll < yllz = Ylloos

where |2 —y|| o i a £°° product norm induced on X". In other words, C'is y-Lipschitz in (X, ||| co)-

Equipped with this operator family, we may now state the following

Observation 1. Given a uniform ~y-non-expansion C : ¥ — X" in a Banach space (%, || - ||) and a
sequence of vectors in ¥": w0, ' 7%, . ., the local variation bound || 7% — 7| < § would hold

uniformly, given the local commuted variation bound ||C;m* — 75| < ¢ is satisfied uniformly at
the level
el A B

- 2

12)

And this suggests a path toward identifying ‘stable’ communication operators capable of maintaining
the TRPO trust-region.

3.5 COMMUNICATORS

To preserve the TRPO trust region via Observation|l} we require communicators satisfying uniform
non-expansiveness (Definition [I)). Appendix [B]introduces a general construction. Here, we describe
practical subclasses used in our experiments.

Example 1 (Right-stochastic matrices). A right-stochastic matrix S € R"*", with s;; > 0 and
> 8ij = 1, defines an operator S : II" — 11" via S;() := }_; s;;7;. Forall z,y € ™

IS:(x) = Si@W)llvv <Y sislles — yjllry < & = yllv,
5

showing that S is a uniform 1-non-expansion.

The following communicators follow the same construction pattern, using stochastic matrices that
may update at each communication round.

Example 2 (Self-preferred mean communicator). Given a preference level p € [0, 1], the matrix C(p)

has ¢;; = pand ¢;; = % for ¢ # j. This allows each agent to retain a fixed share of its own policy

while averaging the rest, balancing self-reliance and peer influence.
Example 3 (Similarity-based communicator). At round k, define:

cfj x Z (i (- | 8)77Tj(' | 5)),

SESret

where the dot product is taken for vectors of policy values on a shared reference trajectory subset

Sref and the resulting matrix C' k— (c’fc /) is row-normalized to ensure stochasticity.

Example 4 (Reward-based communiczﬁor). At round k, set:

ko )

v Dkt Tk

where r; is the average episodic return of agent j since the last communication round. This commu-
nicator biases aggregation toward higher-performing agents.

C

These operators are evaluated in Sections [d.T]and 4.2}

4 EXPERIMENTS

We evaluated the PRPO algorithms in two distinct domains: classical reinforcement learning environ-
ments and RLHF alignment. We began with relatively lightweight experiments in the ATARI and
MiniGrid environments to validate the effectiveness of our method and compare it against standard
federated learning baselines. We then conducted experiments in a more computationally intensive
RLHF setup to evaluate PRPO variants against centralized algorithms and assess the impact of peer
communication.



Under review as a conference paper at ICLR 2026

BeamRiderNoFrameskip-v4 FourRooms-v0

3500 PPO

—— FedAvg-PPO-ClassicAvg
3000 FedAvg-PPO-WeightedAvg M\ Lk UL R
—— PR-PPO-ClassicAvg [
2500{ —— PR-PPO-WeightedAvg

o
>

o
o

<
=

2000

1500

°
Y

Average Episodic Return
Average Episodic Return
o
w

1000

—— FedAvg-PPO-ClassicAvg
FedAvg-PPO-WeightedAvg

—— PR-PPO-ClassicAvg

—— PR-PPO-WeightedAvg

0.1

0.0 0.5 1.0 15 2.0 2.5 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step e Step i

Figure 1: Performance of PR-PPO, isolated PPO and FedAvg-PPO on the BeamRiderNoFrameskip-v4
(left) and FourRooms—vO0 (right). For PR-PPO and FedAvg-PPO the figure shows average performance within
the group.

4.1 CLASSICAL RL

In this section, we consider a series of experiments in discrete multi-agent reinforcement learning
environments, specifically focusing on Minigrid |(Chevalier-Boisvert et al|(2023) and Atari Bellemare
et al.[(2013). We investigate the adaptive choice of the communication matrix and consider more
complex baselines. E]

Experimental Setup. We consider FourRooms-v0, DoorKey-6x6-v0, and
DistShift2-v0 environments from Minigrid, and BeamRiderNoFrameskip-v4 and
AsterixNoFrameskip-v4 environments from Atari. Our evaluation compares the performance
of PR-PPO, isolated PPO |Schulman et al.|(2017b) and FedAvg McMahan et al.| (2023)-PPO.

In all non-isolated experimental setups, we consider groups comprising three agents. Within these
groups, agents communicate through a communication protocol. Partially similar to|Wagner et al.
(2024), we consider three different choices of the communication matrix (see the corresponding case
in Section . The first is classical averaging, where each agent contributes equally with ¢;; = 1/N.
The second is adaptive reward-based averaging from Exampled The third approach is also adaptive
but policy-based averaging from Example [3]

The configurations for all algorithms were carefully fine-tuned through a grid search over a com-
prehensive set of hyperparameters. Each figure depicts the performance of the best configurations,
averaged over ten random seeds. Additional details are provided in Appendix D}

Results. We use classical and policy-based averaging in Minigrid environments, and classical and
reward-based averaging in Atari environments. The results are presented in Figure [I|and Appendix [D]

From Figure|l] it is evident that our proposed PR-PPO outperforms both FedAvg-PPO and isolated
PPO baselines in all settings. This means that our approach is better than not only local training
but also the classical approach to federated learning. We also observe that both adaptive averaging
techniques consistently achieve higher rewards compared to classic averaging, suggesting that
dynamic weight-selection protocols might be favored in different practical scenarios.

4.2 RLHF

For our experiments with language models, we use the PR-PPO and PR-GRPO algorithms, as their
centralized counterparts (PPO and GRPO) have proven effective and are widely used in the RLHF
stage of language model alignment. Additional details are provided in Appendix

Data. In the RLHF setting, we focus on the summarization task, following early work in the field
(Ziegler et al., [2020; [Stiennon et al., [2022), as it is both computationally lightweight and widely
used in research. We utilize the TL;DR dataset (Volske et al.,[2017), which consists of Reddit posts

3The code of this experiment is publicly available in our FedRL|repository.


https://anonymous.4open.science/r/ForkedPPO-5CDF/README.md
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Figure 2: Expected validation win rate curves for PR-PPO and PR-GRPO in two data regimes at different levels
of self-preference.

paired with user-written summaries. || We evaluate two setups for the TL;DR task: homogeneous and
heterogeneous data distributions. In the homogeneous setup, agents receive identically distributed
data (i.e., each agent owns a randomly sampled subset of the TL;DR dataset). In the heterogeneous
setup, each agent is assigned a distinct, client-specific dataset. This is achieved by partitioning
the TL;DR dataset into subsets corresponding to subreddits. We have prepared and published this
thematic TL;DR dataset on our Hugging Face page.

Implementation. We implemented the PR-PPO and PR-GRPO algorithms using the Torchtune
framework (torchtune maintainers and contributors} |2024) as a base. The code is publicly available
in our repositories. | The training pipeline is distributed: each agent is assigned to a separate
GPU to emulate a realistic federated setup. Agents are trained using LoRA adapters and, during
communication rounds, emulate exchanging these adapters to construct locally aggregated reference
policies. Communication follows a fixed protocol (see Example [2]and Example ) and occurs at a
predefined frequency. For SFT and reward training, we use the standard Hugging Face TRL library
trainers (von Werra et al.}|[2020), following the guidelines from |Huang et al.[(2024).

Evaluation. Evaluating alignment quality in language models is non-trivial. A widely adopted
approach is the use of LLM-as-a-judge, explored in detail by |Zheng et al.|(2023). In our experiments,
we also employ a large LLM to serve as a judge. Since the TL;DR dataset includes human-written
reference summaries, we assess model outputs by comparing them against these references. Our
primary metric is the win rate — the proportion of model-generated summaries judged to be better
than the human-written ones on the validation set. Following|Dodge et al.|(2019; 2021)), we report
performance using the Expected Validation Performance (EVP) metric. EVP is computed by sampling
multiple subsets of training runs, calculating the maximum validation score in each, and averaging

*We use the open-source (trl-lib/tldr dataset for Supervised Fine-Tuning and PPO training, and trl-
lib/tldr-preference| for reward model training. The heterogeneous TL;DR dataset is available at anonymous-
organization/tldr-thematic,

>See our implementation of PR-PPO and PR-GRPO in the TunePPO repository. Dataset preparation and
reward model training are available in the PrePPO repository.


https://huggingface.co/datasets/trl-lib/tldr
https://huggingface.co/datasets/trl-lib/tldr-preference
https://huggingface.co/datasets/trl-lib/tldr-preference
https://huggingface.co/datasets/anonymous-organization/tldr-thematic
https://huggingface.co/datasets/anonymous-organization/tldr-thematic
https://anonymous.4open.science/r/TunePPO-1088/README.md
https://anonymous.4open.science/r/PrePPO-864F/README.md
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Figure 3: Expected validation win rate for isolated PPO and GRPO; FedAvg-PPO, FedAvg-GRPO; PR-PPO and
PR-GRPO at different levels of self-preference.

these maxima to reflect performance under realistic compute budgets. In our case, the validation
score is the win rate. This approach allows us to quantify how performance scales with the number
of hyperparameter trials — or, equivalently, with the computational resources invested. EVP thus
provides a more robust assessment of algorithm performance than reporting only the single best
result.

Experimental Setup. We train seven Mistral-7B agents (Jiang et al.| 2023) using the Self-Preferred
Mean Aggregation communication protocol (see Example [2). We use Qwen3-32B (Team, [2025) as
the LLM evaluator, as it is efficient enough to run on a single 80GB GPU while achieving performance
comparable to the widely used LLaMA3.3-70B-Instruct model (Meta-AlL [2024)). Additionally, it
supports a reasoning mode, which is beneficial for evaluation tasks. All experiments were run
on a cluster with eight NVIDIA H100 80GB GPUs: seven used for training and one reserved for
evaluation.

Results. We compute EVP while sweeping three hyperparameters: the KL coefficient (Section ),
the self-preference in Self-Preferred Mean Aggregation (Example [2]in Appendix and the update
interval (steps between reference-policy updates). EVP plots are grouped by self-preference; shaded
regions show the standard deviation. From Figure [2] for both PR-PPO and PR-GRPO, communi-
cating agents (self-preference < 1) consistently outperform isolated agents (self-preference = 1) in
homogeneous and heterogeneous setups. Overall, in the RLHF setting, cooperation between language
models yields substantial gains, underscoring the value of decentralized training and showing that
even lightweight communication protocols can deliver measurable alignment benefits.

We also adapted Federated Averaging (FedAvg) to PPO and GRPO and compared it to our method
and local fine-tuning. While FedAvg performs reasonably in simpler environments (e.g., Atari), it
consistently underperforms in LLM fine-tuning (Figure[3)), suggesting weight-level aggregation is too
coarse for aligning complex policies and motivating more expressive policy-level sharing. Below we
provide the full table summarizing experiments that reached a solid level of statistical reliability.

Method Data Isolated FedAvg PR (Ours) Win Rate Gain
vs Isolated vs FedAvg
(1.0) /7) 0.6 0.2 0.6 0.2 0.6 0.2

TLDR 0.734 - 0.782 0.758 +6.5% +3.3% - -
PTLDR  0.716 0589 0.755 0.759 +5.4% +6.0% +282% +28.9%

TLDR 0.636 - 0.641 0.677 +0.8% +6.4% - -
PTLDR  0.572 0.467 0587 0.628 +2.6% +9.8% +25.7% +34.4%

PPO

GRPO

Table 1: Expected validation win rate comparison for different approaches: isolated local fine-tuning, FedAvg
and ours Peer-Referenced optimization under different self-preference levels (0.2 and 0.6). In two data regimes:
homogeneous (TLDR) and heterogeneous (PTLDR).
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A LIMITATIONS AND FUTURE WORK

While our work makes several conceptual and empirical contributions across domains, it also presents
limitations stemming from the scope decisions necessary to keep the study tractable. First, we do not
directly analyze the scalability and privacy-preservation guarantees of PRPO, and instead refer to
prior work that coincides with our approach in subjects (e.g. LoORA exchange in general) unrelated
to our direct contribution such as (Zhang et al., [2023; [Wagner et al.| 2024). Second, although
our method allows for a range of communication strategies, in RLHF summarization domain we
focus on a simplified setting where agents apply a self-preferred mean aggregation and explore
performance-based adaptive averaging and similarity-based adaptive averaging in classical RL
domains. Third, although we outline how PRPO generalizes to multiple proximal policy algorithms,
our empirical evaluation is limited to PR-PPO and PR-GRPO, leaving systematic benchmarking of
PR-TRPO to future work. Fourth, the theoretical results we present offer foundational insight and
convergence intuition, but do not constitute a full theoretical framework; rigorous analysis under more
general conditions for locally non-optimizable objectives requiring cooperation — remains an open
problem situated within the broader field of multi-agent and multi-objective optimization. Finally,
our experiments focus on relatively lightweight tasks, such as summarization, and use modest model
sizes due to computational constraints. We leave validation on more demanding domains — including
question answering, instruction tuning, and reasoning with larger models — to future work.

B ON COMMUNICATORS AND TRUST-REGION

In Sections 3.4)and[3.5] we briefly introduced the conservation of the p-TRPO trust-region (T0) within
the p-PR-TRPO optimization (9a)—(TT), along with the role of communicators in maintaining this
conservation in order. In this section, we provide a more detailed analysis, presenting a rigorous
proof that the guarantees of TRPO are preserved under PR-TRPO and characterize the class of
communicators that ensure such stability.

B.1 GLOBAL SCOPE

Recall, in a metric space of policies (I, p), a p-TRPO algorithm solves the problem subject to
variational bound
p(a®, TF 1) <. (B.1)

Whereas in p-PR-TRPO each actor’s objective is constrained with local commuted variational
bound

p(Cir® 7ty <. (B.2)

More coarsely, in p-PR-TRPO, the ensemble of actors is subject to global commuted variational
bound

p(Cm® 7kl < ¢, (B.3)

A natural question arise, may we attain the original bound (B.T)) with control of commuted bound
in order to hold the TRPO trust-region while enabling communication? In this regard, we
propose to consider non-expansive communicators. Recall

Definition 0. An operator C' : II"™ — II"™ in a metric space (II, p)E]is a y-non-expansion if for all
z,y € 1"
p(Cz,Cy) < vp(z,y), (B.4)

where v < 1 is the non-expansiveness coefficient.

Indeed, in the global scope, given the communication operator C' : II"™ — II™ is a «y-non-expansion,
and the global commuted variation is controlled at a proper level € we may show that

P, 7k) < p(rtHh, k) + p(Ck, 7)< 6,

®From now on, we would assume that a metric (norm) on a product space X ™ is some product metric (norm)
induced by one on X.
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as since C' is a non-expansion,

p(Cr*,7%) < p(Cr*, Cat=h) 4 p(Cnh = 7h) < qp(a®, 78 71) +e, (B.5)

it gives
p(rt 1 wh) < 26 4 yp(r”, 7H ) <6,
as long as we set the global commuted variation bound ¢ as,
e w(z’“m’“).

Therefore, global TRPO variation bound holds for the ensemble of actors and at this point we
have proven simple, yet important for heuristic justification of Peer-Referenced methods,

Observation 0. Given a y-non-expansion C : 11" — II"™ in a metric space (I, p) and a sequence
in1I": 70 7t 7%, ..., the global variation bound p(r*, 7*+1) < § would hold, given the global
commuted variation bound p(Cr*, 7%*1) < ¢ is held at the level

< d— Pyp(ﬂ—k_lvﬂ-k) .

5 (B.6)

3

B.2 LOCAL SCOPE

However, this tells us nothing about the local behavior of each actor ;. Here, a careful choice of an
operator family is needed. In time, we would present such a family that, most notably, satisfies a key
property of uniform ~y-non-expansiveness. Recall

Definition 1. An operator C' : ¥ — X" in Banach space (%, || - ||) is a uniform y-non-expansion
(y<1aslongasfori=1,...,nand forall x,y € X"
[Ciz = Ciyll < 7llz = Ylloo, (B.7)

where ||z — y||oo = max ||z; — y;]| is a £°° product norm induced on X" by || - ||[| Or, in other words,
7
C is y-Lipschitz in (27, || - [|oo)-

Now, given the communication operator C' is a uniform ~y-non-expansion, the inequality may
be sharpened for the local scope:

ICin* — wf|| < ||Cim® — Com™* | + | Com™ ™ — ¥ < lla® — 7% oo + e
and with reiteration of proof for the global observation[0] we can easily make a local
Observation 1. Given a uniform ~y-non-expansion C : ¥ — X" in a Banach space (¥, || - ||) and a
sequence of vectors in ¥": w0, ' 72, . ., the local variation bound ||7* — 71| < § would hold

uniformly, given the local commuted variation bound ||C;7* — 7¥"!|| < ¢ is held uniformly at the
level
§—lmh Tt = o

B.8

< 5 (B.8)

Therefore, given the local TRPO variation bound (B.1)) is held uniformly at step &, i.e. fori = 1,...,n
|7F — 75| < 6, or, equivalently || 7% — 78|, <6,

the local TRPO variation bound would hold indeed at the same level § for the next step k + 1, given
the local PR-TRPO variation bound is controlled uniformly at the level e (12).

The bounds (B.6), (B.§) for the controlled parameter € seem feasible in practice, since the right-hand
side stays non-zero as long as C' is a contraction (v < 1) or the desired TRPO variation bound is
not reached in norm. However, even if such case takes place we rely upon practical techniques in
engineering the exact optimization procedure with use of e.g. scheduling of the parameter § or the
operator C itself, that, alongside with observations (0) and (T)) would provide controllable divergence
in TRPO variation. The precise formulation of such designs in theory, accompanied with consequent
results we leave out of the scope of this research for the future work as a subject of its own broad
field.

7 Although, the discussion may be held in any ¢? norm induced on X", provided £? ~y-non-expansiveness —
we would stick with uniform case for clarity.
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B.3 DECOMPOSABLE OPERATORS

Now, as long as we aim to preserve TRPO trust-region, with help of (Observation [I)), we need to find
the way to construct an appropriate communication operator, that is indeed a uniform non-expansion
(Definition [T). In this regard we would consider a class of decomposable non-expansions.
Definition 2. We would call an operator C' : ¥ — £™ in Banach space (%, || - ||) a decomposable
I'-non-expansion, if for all z,y € X",

ICi(z) = Ciw)l < >~ iillzs —will, (B.9)
j=1

where I' = (y;;) € R™*™ is a non-negative non-expansive matrix, i.e. has a spectral radius p(I') < 1.
Remark 1. Given the non-expansive matrix I" of a decomposable "non-expansion” C, has the spectral
radius p(T") < 1, there is a product norm induced on the X" in which C is indeed a non-expansion.
Remark 2. Obviously, a decomposable I'-non-expansion is a non-expansion in ¢? product norm
induced on the X" if and only if |T'||, < 1, and it follows that v = ||I'||,, is the non-expansiveness
coefficient. We would use these concepts interchangeably from now on.
Remark 3. A decomposable I'-non-expansion is a uniform y-non-expansion if and only if it is a
non-expansion in || - || i.€. [|[T']joc < 1and v = ||T||oc = max ) vi;.

v

From a constructive perspective, decomposable non-expansions can be derived using a simple yet
sufficiently general class of decomposable operators.

Definition 3. Given the Banach space (3, || - ||) we define a decomposable operator C' : ¥ — X"
component-wise as
Cim =Y cij(my), (B.10)
j=1

where ¢;; : ¥ — .

Remark 4. A decomposable operator C' : ¥ — X" with «y;;-non-expansive components c;; : 3 — 3
s.t. p(I') < 1, where I' = (v;5), is indeed a decomposable I'-non-expansion, and thus a non-
expansion.

This construction gives us a concrete recipe for building our communication operators: assemble them
from non-expansive component maps (Definition [3) whose row-sums remain uniformly bounded.
In practice, we often employ the simplest families of such decomposable non-expansions — e.g.
matrices C' = I' with constant row sums or sparse support — because they’re easy to implement and
tune.

To make this precise, we leave behind our original metric space II of probability-valued policies
and embed into the larger Banach space ¥ of signed-measure—valued policies, equipped with vector
addition and the total-variation norm. There, we require each component map c;; : 3 — 3 to be
non-expansive, with the sum C;(7) = Z;;l ¢i;(m;) mapping IT" back into II. Hence, the overall
operator C : II"™ — II" is a well-defined decomposable non-expansion in 3", yet its action never
leaves the simplex of valid policies.

Example 1 (Right-stochastic matrices). Let S € R™*™ be a right-stochastic matrix, i.e., s;; > 0 and
> iy sij = Lforalli.

It defines an operator S : ¥™ — X" with components
n
Sl(vL) = Z SijLj,
j=1

where addition and scalar multiplication are defined in the ambient Banach space (X, || - ||).

Since S, naturally defines a decomposable S = I'-non-expansion with ||T'||LV = 1, it is, indeed, a
uniform 1-non-expansion in the sense of Definition I}

It is easy to see that the following classes basically fall into the family of right-stochastic matrices,
though we restate them here due to their practical importance.
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Example 2 (Self-preferred mean aggregation). To explicitly control the influence each agent assigns
to its own learned reference policy versus those of its peers, we define the self-preferred mean
aggregation operator. Given a self-preference parameter p € [0, 1], the corresponding right-stochastic
matrix S(p) € R™*"™ is defined component-wise as follows:

{p7 ifi = j,
sijp)=9,
H, ifi # j.

This structure enables agents to interpolate continuously between isolated local training and fully
peer-focused collaboration:

» For p = 1.0, the operator reduces to the identity, representing fully isolated training (e.g.,
vanilla PPO).

* Intermediate values (e.g., p = 0.6) indicate self-focused collaborative training, wherein
agents prioritize their own policy but incorporate moderate peer influence.

* Lower values (e.g., p = 0.2) yield peer-focused collaborative training, emphasizing peer
policies significantly.

We extensively utilize these operators in our experiments on LLM fine-tuning, specifically at levels
p = 1.0 (isolated training), p = 0.6 (balanced collaborative training), and p = 0.2 (peer-emphasized
collaboration), as in Section4.2]

Apart from manually selected static weighting, more adaptive communication protocols can be
employed — particularly those based on policy similarity or performance signals. These strategies
enable agents to preferentially align with peers that are either behaviorally close or empirically
successful, as explored in works such as (Wagner et al.| 2024). In our experiments, we evaluate two
such approaches.

Example 3 (Dot-product similarity-based communication). To encourage communication between
behaviorally similar agents, we compute communication weights based on empirical dot products
between their action distributions. Specifically, for each agent 7, the similarity to agent j is defined as

S5 X Z (mi(- | S)aﬂ—j(' | ),

SESref

where S, is a fixed reference set of states used for comparison. The inner product (-, -) is computed
over discrete action distributions, which naturally applies to environments like MiniGrid and language
modeling, where the action (or token) space is finite.

The resulting matrix S = (s;;) is row-normalized to ensure stochasticity. We use this strategy
extensively in MiniGrid environments (Sections 4.1} [D-T).

Example 4 (Reward performance-based communication). Agents can assign communication weights
based on empirical reward performance. In our Atari experiments (Sections @1} [D.T)), where rewards
are non-negative and comparable across agents, we compute weights as:

Ty
Sij = n )
D k=1 T
where r; is the average episodic return of agent j since the last communication round.

This yields a right-stochastic communication matrix that prioritizes alignment with higher-performing
peers. While we employ simple linear weighting in our setup, other schemes — such as softmax
or rank-based normalization — can be used in environments where reward magnitudes vary more
widely or include negative values.

At this point, we have presented a set of simple yet effective communication operators that exemplify
the framework. While these constructions are intentionally minimal, our experiments show they
can already enhance learning dynamics in practice. More broadly, the space of possible operators is
vast — ranging from static heuristics to adaptive protocols based on similarity, reward, inference,
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or exploration strategies. This flexibility is where peer-referenced methods are particularly strong:
the framework imposes no structural constraints beyond non-expansiveness, ensuring that the TRPO
trust region is preserved or degrades controllably. Designing such operators remains an open and
promising avenue for both theoretical and applied research.

C CONVERGENCE

From the federated optimization perspective, the initial problem (3.1)) can be considered as a global
objective optimization that aligns with local goals:

J*:= min {f(”) = *Zfi(ﬂi) =- Z]E[fi(ﬁmfi)]} ) (11
el [ [
where (IT", || - ||) is a compact convex subspace of Euclidean space 3™ with a dual space (TII"™*, || - ||.).

The classical approach to solving problem is Mirror Descent (MD) (Nemirovsky et al., [ 1983)). It
has been investigated for policy optimization in reinforcement learning in many works (Geist et al.|
2019} |Shani et al., [2019; Neu et al., 2017; [Liu et al.| [2023)). The theory behind MD allows one to
create practical and robust RL algorithms; therefore, we propose to analyze the following Algorithm

b
i = argmin{y(V fi(w}, &), 7) + KL(m, Cim")} (12)

The update rule (T2) resembles the PR-GRPO objective (3)) if we consider the inexact solution of
argmin. The convergence analysis of Algorithm helps to better understand and explain the
rationale behind PR-GRPO and PR-PPO(Tomar et al.| 2021b)). To provide a careful theoretical
estimate, we require the following classical assumptions on the target function f.

Assumption 1. The functions f; are L-smooth, convex and have bounded gradients, i.e., for any
x,y € X the following inequalities hold: 1. ||V f;(x) — Vfi(y)|l« < Lllz —yl|, 2. fily) >
file) + (Vfily),y — ), 3. E[IVfi(z,OIF < M.

Now, under these assumptions, we are ready to provide the convergence guarantees for Algorithm[12]
in the case of uniform policy averaging through the C' = (¢;;) = (1/n) communicator.

Theorem C.1. Let Assumption[l|be satisfied. Let problem (I1)) be solved by Algorithm[I2] Assume
that v < min {i, ﬁ , D? := max, yent KL(z, y). Then, in order to achieve the e-approximate

solution in terms of E[f (3= > 7F) — f(7*)] < € it takes
ki

~ LD?> M?D?
K=0 (max{ ; 5 }) iterations of Algorithm (12).
3 5

The results of Theorem[C.I]align with the convergence rate of classical stochastic Mirror Descent
(Nemirovski et al., [2009).

C.1 CONVERGENCE PROOF

In this section, we provide a convergence proof for Theorem|[C.1] In the proof, we use the following

notation: 7 = C;rF = 1 3" 7F. Let also w(z) = — > p(z)logp(z), and thus KL(z,y) =
i=1 x

w(z) —w(y) = (Vwly),z —y).

The following Lemma (we provide the case of KL-divergence) will help us to prove the final result.

Lemma 1 (Lemma 3 form Juditsky et al.|(2011)). For all = € 11 we define the prox mapping P, ()
as

Py(m) := arg min {KL(y, z) + (m, )} .
Y
For every x € 1, the mapping w — P, () is Lipschitz continuous, specifically,
1Pe(n) = Pe(Oll < [ln = ¢l ¥V, € V.

Now we are ready to provide the proof.
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Proof. Let us first write the optimality condition for Algorithm T2}
k1 _ m) < 0.

m = argmin{y(Vfi(r}, &), m) + KL(m, 7")} & ¥r € L= (Vg (r ), )
TE

i

g(m)

Thus, one can obtain:
Vw(7 k) f“ —m) <0,

(YVfi(mF, €F) + Vew(rft!) —
YV filwl €8), 7w — ) < —(Ve(7¥) — Ve(al ), m -

Using three point identity, one can get:
k+1

YV fi(m z’gz)’ U —7) < -
Now, using straightforward algebra, one can obtain:
AUV il €8), 7 — m*) < KL(n*, &%) — KL(r*, wf ) —
+ UV il ), 7 — i),

— KL(aF " 7")
—wﬁ%+vWﬁWﬂ—Vﬁwﬂ$»#—ww

(KL(x", 75+1) + KLk, 7%) — KL(x*, 7).

KL(xl !, 7)

") SKL(x*, 7*) — KL(x", mf*1) — KL(x} ™+, 7%) + (Y fi(nf), 7 — 7*)
+ AV Filr] &) 7 =) A (Y filmd) = Vil €), 7 = ).
Let us define 0% = (V fi(nF) — V fi(nkF, &F), 7% — 7). Now, using Cauchy-Schwarz inequality with

o= "
YV fi(mk), 7k — %) < KL(7*, 7%) — KL(7*, 75T — KL(zF 7%) + A (V fi(nF), ok — 7F)

72 k ¢k 2

<v.fz( )77Ti -

1
§||7_Tk = P 4 6y
—KL(z,y) < l|z — y||, one can get:

Since from 1-strongly convexity of w it follows that
St =72 (Y i), mi = 7"

1
KL (7", nf 1) — 5

WV filwh), o - w*) <KL(n", %) -
T2 4 ok

2
v 1,

+ LIV A €912 + 517"
< KL(r", 7*) = KL(x*, m ) + (¥ fi(rl), 7t = 7%)

2
2l
+ S IV, €)%+ 67

Using Assumption [I] one has:
) = Fir*)) < KL, 7%) — KL, w2 (k) — fi(e) + 2 ek — 74P

2
+ LIV Ak, D)2 + 4%

2
V) — Fiw)) < KL, 74) = KL, b+ + 22 ek — 7802 4 SV 7 )2 440t

Averaging clients from ¢ = 1 to ¢ = n, one obtains:

,y(f(,]—rk) _ f('/T*)) < KL ﬂ_* —k - ZKL k+1 '72-[’% Z Hﬂf o 7—Tk||2
i=1

04
e (G TR g
=1 =1
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Knowing that KL(, -) is convex, one can get using Jensen’s inequality:

‘ x . L1 _
) = Fr) < KL, 7 - KL, 740 + L2 S ak 742 1)
i3
1 n
+ —fZHVfZ LN+ Dok
i=1
Consider the term 2 37" | ||7F — 7% 2. Usmg Jensen inequality and Lemma one can enroll the
sequence:
1 n n n
s il [ QZZHW |1
n n
=1 =1 j=1
1 n n
=5 DD NPV AET) = P (6 fi(w 7)1
i=1 j*l
<5 S IVAGE v
=1 j=1

Now, using Cauchy-Schwarz inequality'

=3k - ZZ IV il = Yl
i=1 i=1 j=1
%ZZ 195k = Vi) P

1
<L ZZ = = P+ 4P,

i=1j=1
where in the last inequality we used Assumptlonl Substituting v < 2 T, We get
n
k_ =k k=1 _ k=1
52“7(-1 ||2 = 2 QZZ||7T T, H2+4'72M27
i=1 =1 j=1

Continuing this process, one might obtain:

1 n 1 k 1 n n k—1 1 t 1 k—1
E_ =k)2 0 02 2 2 2 2772
Sl A< (5) X -y (3) < (5)  p2eara
i=1 i=1 j=1 t=0
where in the last inequality we used geometric progression. Now, substituting this into the inequality
(T3), one has:
~L

k—1
) = ) < KL ) - K )+ 3 (3) 0t

72 1 n 1 n
+ 5= D IVAESEDIE+— o
i=1 i=1

Summing this inequality from k£ = 0 to K, one gets:

K 2 K k—1
g (éZf(w’“%f(w*)) < —(KL( *,70) — KL(r*, 75t1)) + 7;‘5 > (;) +2v*M2L
k=0

k=0
2 K n K n
R Ly D IAGE DIt S ok
1= k=0 =1
D2 2yLD?
< Tt % + 293 ML
721 S Yk k
EEZEZHW% T EDNE v Z 25
k=0 i=1 =
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Taking the mathematical expectation from both sides, using unbiasedness of f(m, &) and dividing
both sides by v, one obtains:

K 2
Z f(@)] < L2 2y M?2.
=0 ’yK

Now, taking y as v < min { 21L, TR } in order to achieve the e-approximate solution one should

take: ) b s
~ LD® M-*D
K=0 (max{ ; 5 })
€ €

steps of Algorithm[I2] This completes the proof. O

D EXPERIMENT DETAILS AND ADDITIONAL RESULTS

D.1 CLASSICAL RL

In section {i.T| we briefly introduced our extensive experiments in Atari and Minigrid environments to
benchmark our PR-PPO algorithm against isolated PPO and federated baseline approaches. Here, we
provide experimental setup in more detail.

Environments. To evaluate the performance of our algorithms we selected a diverse set of environ-
ments that fall into these two domains:

e Atari: We used AsterixNoFrameskip-v4 and BeamRiderNoFrameskip-v4,
which represent complex control tasks with high-dimensional pixel observations.

e Minigrid: We used FourRooms-v0, DoorKey-6x6-v0, and DistShift2-v0,
which represent a variety of navigation and planning challenges.

Agent Communication. In collaborative setups, we considered systems of three agents. The
weights in the communication matrix of our collaborative algorithms (both PR-PPO and FedAvg-
PPO) are updated during each global communication round proportionally to weighted average of
individual agents since the last global communication. We explored three different approaches to
communication matrix design:

* Uniform averaging, where each agent contributes equally with ¢;; = 1/n, used in both Atari
and Minigrid environments (PR-PPO-ClassicAvg), (FedAvg-PPO-ClassicAvg).

* Performance-based (@) adaptive averaging, where weights are adjusted based on
agent rewards is used specifically in Atari environments (PR-PPO-WeightedAvg),
(FedAvg-PPO-WeightedAvq).

* Similarity-based adaptive averaging, where policy similarity influences the
weighting is used specifically in Minigrid environments (PR-PPO-WeightedAvyg),
(FedAvg-PPO-WeightedAvq).

Hyperparameter Search. For all algorithms, the configurations were carefully tuned through a grid
search over a comprehensive set of hyperparameters (Table[2). Each figure in our results represents
the performance of the best configurations, averaged across ten random seeds. It is important to
note that during our parameter search, we observed that varying the "Local updates" parameter
across different configurations did not result in significant differences in model quality. Therefore,
in all subsequent experiments, "Local updates" was fixed at 32 for Minigrid experiments and 16
for Atari experiments. For single-agent setups, we performed grid search over "Total timesteps,"
"Learning rate," and "KL penalty coeff." In collaborative setups, we focused our hyperparameter
search on "Learning rate," "Communication penalty coeff" (for PR-PPO), and "KL penalty coeff"
(for FedAvg-PPO). This approach allowed us to isolate the effects of the communication parameters
from other aspects of the algorithms.
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Figure 4: Performance of PR-PPO, isolated PPO and FedAvg-PPO on the DistShift2-vO,
DoorKey-6x6-v0 and AsterixNoFrameskip-v4. For PR-PPO and FedAvg-PPO the figure shows
average performance within the group.

AsterixNoFrameskip-v4

— PPO

Computational Resources. All experiments O R ot
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were conducted on a computing cluster with 15
NVIDIA RTX A4000 GPUs and 152 CPU cores.
For Minigrid environments, each experimental
run completed within 4-8 hours, while Atari ex-
periments required approximately 24-48 hours 2000
per run due to their higher computational de- oo
mands and longer training durations.

5000
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Average Episodic Return

Step

Additional Results In addition to ex-

periments presented in the main part Figure 5: Performance of PR-PPO, isolated PPO and
(Figure |I[) we deliver more results in FedAvg-PPO on the AsterixNoFrameskip-v4.
DistShift2-v0, DoorKey-6x6-v0, For PR-PPO and FedAvg-PPO the figure shows aver-
AsterixNoFrameskip-v4 environments age performance within the group.

below (Figures [ and [3) to compare PPO,

FedAvg-PPO and our PR-PPO algorithm [4]

Within considered domains, our algorithm

outperforms both FedAvg-PPO and isolated PPO baselines.

D.2 RLHF SUMMARIZATION

Dataset details. Following Huang et al.[(2024), we initialize the shared reward model from a super-
vised fine-tuned (SFT) model. To avoid data leakage, we hold out a subset of approximately 16k sam-
ples from the full TL;DR dataset for SFT training (referred to as t 1dr—sft) and use the remaining
data for PPO training (t 1dr—ppo). A separate preference-labeled dataset, t ldr-preference,
is used to train the reward model.

To construct the heterogeneous TL;DR dataset, we partition the full dataset based on the Reddit
subreddit associated with each post, which provides a natural topic label (e.g., relationships, legal
advice, personal finance). For experiments involving 7 agents, we assign each agent to the following
subreddits:

loseit

dating_advice

legaladvice

offmychest

personalfinance

relationship_advice

AN A A

tifu
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During PR-PPO and PR-GRPO training, all agents are evaluated on a shared validation split from the
t1dr—ppo dataset. See the size of train and validation subsets in the Table [5}

Training Parameters. We provide a detailed overview of the training parameters used in our
experimental pipelines. The configuration for supervised fine-tuning (SFT) is shown in Table 3] the
reward model training setup in Table ] and the main training pipeline for PR-PPO and PR-GRPO in
Table[5] Following [Huang et al|(2024), we initialize the reward model from the SFT checkpoint to
improve reward quality. However, models for PR-PPO and PR-GRPO fine-tuning start from the base
model checkpoint (without SFT) to isolate the effects of pure RLHF-based alignment introduced by
these algorithms.

Evaluation details. We compute the winrate by prompting Qwen3-32B [Team| (2025) with the
prompt presented in the Figure[6] This prompt is the analogue of one used in TRL[Judges] library
von Werra et al.|(2020). We host it on a separate 80GB GPU via vLLM (Kwon et al.| [2023)) and use
the inference parameters presented in Table [6]

Completion quality overview. In Figures[7] [§| we present sample model-generated summaries.
Across both examples, PR-PPO and PR-GRPO generate summaries that are faithful to the original
posts while improving on fluency and completeness compared to their single-agent counterparts.
In the breakup scenario, PR-PPO captures key emotional and temporal context (“ex of four years”,
“received another guitar from friend”, “before we stopped talking”), resulting in a more informative
and human-like summary. The single-agent PPO output, in contrast, omits relevant relational context
and compresses too aggressively, reducing clarity. Similarly, in the financial aid question, PR-GRPO
preserves specific numerical detail (“$2,5007), event structure, and the user’s uncertainty, whereas
the single GRPO summary is more terse and less readable. While the reference summaries provide
useful framing, the multi-agent completions often exhibit better structure, nuance, and alignment
with the original intent of the posts.
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Category Parameter Value
Environment type atari,minigrid
AsterixNoFrameskip-v4
Environment BeamRiderNoFrameskip-v4
Gym ID FourRooms-v0
DistShift2-v0
DoorKey—-6x6-v0
Total timesteps 5,000,000 (minigrid), 10,000,000 (atari)
Training Learning rate [5107°,1-1074,2.510~4,
g 5104, 1-10-3]
Value coeff 0.5
Entropy coeff 0.01
[0.5, 1.0, 2.0, 5.0,
Algorithms KL penalty coeff 10.0, 20.0, 50.0]
Clip coeff 0.1
PPO epochs 4
Minibatches 4
Anneal learning rate True
Optimization Normalize advantage True
Max gradient norm 0.5
Gamma 0.99
GAE Lambda 0.95
Number of envs 4
Parallelization Number of steps 512
Communication Number of agents [1, 3]
Local updates [16, 32, 64, 128]
c L. [0.5, 1.0, 2.0,
Communication penalty coeff 5.0, 10.0, 20.0]
Agent PR-PPO-WeightedAvg
Communication PR-PPO-ClassicAvg

Policy aggregation mode

FedAvg-PPO-WeightedAvg
FedAvg-PPO-ClassicAvg

Table 2: Hyperparameter configuration for classical RL tasks experiments. Parameters in bold represent values

used in grid search.
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Category Parameter

Value

Base model Mistral-7B-v0.2

Model Model type AutoModelForCausallM
Torch dtype bfloatlé
Rank / Alpha 16/32

LoRA Dropout 0.0 . . . .
Target layers q_proj,k_proj,v_proj,o_proj
Task type CAUSAL_LM
Dataset tldr-sft

Data Train / Eval size 16,722 /1,500
Max sequence length 1024
Epochs 2

Training Train / Eval batch size 474
Grad accumulation steps 4

Optimizer Optimizer AdamW

P Learning rate 1x107°

Table 3: Training configuration for supervised finetuning (SFT) of a Llama 3.2B model using SFTTrainer

from TRL.

Category Parameter Value
Base model Mistral-7B-v0.2-SFT

Model Model type AutoModelForSequenceClassification
Torch dtype bfloatl6
Rank / Alpha 16/32

LoRA Dropout 0.0 . . . .
Target layers g _proj,k_proj,v_proj, o_proj
Task type SEQ_CLS
Dataset tldr-preference

Data Train / Eval size 92,858 /2,000
Max input length 1024
Epochs 1

Trainin Train / Eval batch size 2/2

& Grad accumulation steps 8

Gradient checkpointing  False

Optimizer Optimizer AdamW

P Learning rate 1x107°

Table 4: Training configuration for reward model (RM) on TL;DR using RewardTrainer from TRL.
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Category Parameter Value
Model Mistral-7B-v0.2
Number of agents 7
Model Max response length 58
Data type bflé6
Temperature 0.7
LoRA rank / alpha 64/16
Dropout 0.0
LoRA (Policy) Target layers g_proj,k_proj,v_proj
Apply to MLP True
Apply to Output False
LoRA rank / alpha 16/32
Dropout 0.0
LoRA (Value Model) Target layers q_proj,k_proj, v_proj
Apply to MLP True
Apply to Output True
PPO epochs 2
PPO batch size 32
PPO Forward batch size 8
Grad accumulation steps 4
KL coeff [0.03, 0.1, 0.3]
Dataset tldr-ppo
Train batch / steps 64 /26 (1664 samples)
Data .
Train epochs 6
Eval batch / steps 8 /16 (128 samples)
Gamma 1.0
Lambda 0.95
GAE (PPO) Value coeff 0.1
Clip range 0.2
GRAE (GRPO) Group size 8
Reward Penalize no EOS True
Penalty value -3
Update every N steps [1,3,7]
Reference Model Self-preference [0.2, 0.6, 1.0]
. Type AdamW
Optimizer Learning rate 1x1074

Table 5: Training parameters used for PR-PPO and PR-GRPO finetuning of Mistral-7B on the TL;DR task.
Parameters marked in bold denote values used in grid search for Expected Validation Performance calculation.
The main difference between PR-PPO and PR-GRPO is in the advantage estimation method: GAE vs GRAE.

Parameter Value
temperature 0.6
top_p 0.95
extra_body
enable_thinking True
top_k 20
min_p 0.0

Table 6: Inference parameters for Qwen3 LLM judge.
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Prompt template for LLM judge.

rrr

You are evaluating the performance of different language
models on a summarization task. Each model is given a Reddit
post and tasked with generating a concise and accurate
summary. Your job is to compare the outputs and select the
model that produces the best summary from a human perspective.

## Post

{{
llpost": ""ll\{prompt\}" n "",
+}

## Model completions

The following are unordered completions with summaries
generated by different models. Each output is associated with
a unique model identifier.

{{
{{
"model_identifier": "0O",
"OU.tpU.t" . mn "{responseo}" mwn

"model_ identifier": "1",
"output" H mn "{responsel}" mwn

H}
+}
## Task
Select the model that generated the best summary. Reply with
the identifier of the best model. Our evaluation will only
consider the last character of your answer, so ensure your

response contains only one of the identifiers and nothing

else (no quotation marks, no spaces, no new lines, ...).
rrr

Figure 6: Prompt template for the LLM judge.
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Reddit post
SUBREDDIT: r/relationships

TITLE: Do I [21F] have a right to sell something that my ex [21M] of four years gave/sold
me upon our breakup?

POST: I had a breakup six months ago with my then-boyfriend of four years. Upon breaking
up, we did the old breakup ritual of giving stuff back. He said I could keep a Takamine guitar
he had been letting me use, and requested that I only send him a check for $25 for it. I did, T
kept the guitar, and that was that.

I thought we parted on good terms, but now we don’t talk anymore as he broke off contact
with me quite bitterly (he’s somewhat emotionally unstable). I do play the guitar on a near
daily basis. I don’t know how much it’s actually worth.

This week, I came home from college, and my best friend just out of the blue *gave* me—for
free—a black Ibanez guitar that I absolutely LOVE. More so than the Takamine. For this
reason, I’m thinking of selling the Tak—I really don’t need two guitars, I could use a little
extra money, and I think I have appropriate enough closure on the relationship that I could
leave this part of it behind.

My problem is I don’t know if it’s acceptable to sell something that someone who you no

longer have contact with gave you. If it’s not acceptable, then I apologize if my question (or
I) was rude in any way.

Reference summary from the dataset

Ex-boyfriend gave (sold) me a guitar, have recently acquired a better guitar and am thinking
of selling the one he gave (sold) to me. What do?

PR-PPO

Ex of four years gave me guitar upon breakup, now received another guitar from friend and
considering selling first guitar, unsure if it’s acceptable to sell something someone gave me
before we stopped talking.

Single PPO

After breakup ex gave me guitar now im considering selling it, question if its acceptable to
sell something given by someone no longer in contact.

Figure 7: Reference summarization sample for PPO.
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Reddit post
SUBREDDIT: r/college
TITLE: Are scholarships and grants awarded per semester or year?

POST: I am starting my third semester of college soon and do not quite understand how
grants/scholarships work.

My first was in the previous academic school year over the summer and I just completed my
second at the start of the current academic year.

From what I’ve read online it sounds like scholarships and grants are awarded one time a year,
but are split up into two parts and refunded to you in those parts at the start of each semester.

So I got $2,500 from just the Pell Grant last semester(which went straight into my bank
because scholarships pay for it all), does that mean ill get another check of $2,500 at the start

of this upcoming semester or was that first check all i get for the year? The wording on the
sites for these grants is a little strange.

Reference summary from the dataset

Are grants split into 2 parts and given to me at separate times throughout the academic year
or is all of it given at the start?

PR-GRPO

I got $2,500 refunded to me from grants at the start of last semester, wondering if ill get
another check of that amount at the start of upcoming semester or just got all for the year.

Single GRPO

Got grant money last semester, unsure if ill get check w same amount at start of upcoming
semester or was that all i get for year from grant.

Figure 8: Reference summarization sample for GRPO.

29



Under review as a conference paper at ICLR 2026

E REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. All experiments were
conducted using publicly available frameworks and datasets, including Hugging Face TRL library
(von Werra et al.l [2020), Torchtune (torchtune maintainers and contributors| [2024), and the trl-
lib/tldr, |trl-lib/tldr-preference| datasets. In addition, we release our handcrafted instruments —
PrePPO, TunePPO, FedRL, and the anonymous-organization/tldr-thematic dataset — as anonymous
supplementary repositories. A detailed description of the learning pipeline and algorithms is provided
in the main text, with complete hyperparameter tables (following Dodge et al.[ (2021)) included
in the appendix. Data preprocessing procedures, training configurations, and evaluation protocols
are described in detail in the main text and supplementary materials. Together, these resources are
intended to facilitate full replication of our results.

F LLM USAGE STATEMENT

Large Language Models (LLMs) were used as an assistive tool throughout the preparation of this
paper. Specifically, LLMs were employed for text formatting, grammar correction, rephrasing, and
improving the clarity and flow of the narrative. They were also used to accelerate literature review
by providing preliminary summaries of relevant work, which were subsequently cross-checked
against the original sources by the authors. LLMs were not used for research ideation, model design,
experimental execution, or analysis of results. The authors take full responsibility for the final content
of the paper.
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