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ABSTRACT

Personalizing Large Language Models (LLMs) requires capturing user prefer-
ences without centralizing private data, prompting a multi-agent local fine-tuning
setup. While on-policy algorithms, as applied to RLHF, are well-suited for
preference modeling, their use remains fundamentally single-agent. We present
Peer-Referenced Policy Optimization (PRPO), an online policy-gradient method
that lets privacy-constrained clients cooperate while keeping trajectories local.
PRPO extends Proximal Policy Optimization (PPO) family and treats KL regular-
izer as a communication channel: each round, every client conditions its update
on a composite reference policy created by peer-to-peer averaging of action distri-
butions. This distribution-level exchange preserves trust-region stability and adds
only modest overhead compatible with LoRA adapters. We provide theoretical
support for PRPO through general observations and convergence guarantees under
limited conditions. We evaluate PRPO on the set of ATARI and Minigrid chal-
lenges and in the standard RLHF summarization setting, where it surpasses local
PPO — indicating that reference-policy sharing offers a practical path to scalable,
privacy-preserving LLM personalization.

1 INTRODUCTION

Reinforcement Learning (RL) algorithms — both online methods such as PPO (Schulman et al.,
2017b), (Ziegler et al., 2020) and GRPO (Shao et al., 2024), and offline approaches like DPO (Rafailov
et al., 2024) — have proven highly effective in fine-tuning Large Language Models (LLMs) (Stiennon
et al., 2022; Ouyang et al., 2022). These methods facilitate alignment with human preferences, safety
objectives (Dai et al., 2023), and reasoning capabilities (DeepSeek-AI, 2025), leading to widespread
use of LLM agents in a variety of downstream tasks.

Despite the success of general-purpose assistants like GPT-4 (OpenAI, 2024), the ability of LLMs to
adapt to user-specific contexts — crucial for natural and effective human-AI interaction — remains an
open challenge (Zhang et al., 2024b). Personalization raises a number of critical issues, including data
privacy and fine-tuning efficiency (Li et al., 2024), which are especially pronounced in personalized
adaptation settings (Liu et al., 2025). In these scenarios, each user is equipped with a lightweight,
user-specific PEFT module (He et al., 2022) that captures their individual preferences.

A central problem in this context is how to enable collaborative learning among users: leveraging
collective knowledge to improve model quality and learning efficiency, without incurring excessive
communication overhead or violating privacy constraints (Liu et al., 2025). While a few recent
works (Tan et al., 2024; Wagner et al., 2024; QI et al., 2024) have explored collaboration through
LoRA (Hu et al., 2021) FedAvg-style (McMahan et al., 2023) weight aggregation schemes, these
approaches operate outside the RL setting and focus on supervised fine-tuning for tasks such as
language modeling and text classification.

Contribution. In this work, we propose an alternative direction that bridges the gap between
personalized LLM methods and Reinforcement Learning with Human Feedback (RLHF). Specifically,

• we introduce PRPO (Peer-Referenced Policy Optimization), a cooperative extension to the Proxi-
mal Policy Optimization methods, which enables inter-agent communication during training;
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• to facilitate this cooperation, we repurpose the KL penalty not only as a trust-region constraint, but
also as a mechanism for coordination, conditioning each agent’s policy on a composite reference
that blends its own prior with aggregated peer policies;

• with this approach we introduce a new family of direct policy aggregation protocols that operate
on action distributions rather than model weights. This enables flexible and well-structured
communication design, ranging from fine-grained trust-aware gossip schemes to any operator that
meaningfully acts on the policy space;

• we show how the PRPO method instantiates with three concrete proximal policy algorithms,
yielding PR-TRPO, PR-PPO, and PR-GRPO, thereby demonstrating its applicability across
TRPO (Schulman et al., 2017a), PPO (Schulman et al., 2017b), and GRPO (Shao et al., 2024);

• we provide theoretical motivation for PRPO through general observations proven under broad
assumptions and strong convergence guarantees established under more restricted conditions;

• to validate our approach and ensure reproducibility, we develop a lightweight cooperative on-policy
fine-tuning framework that would be available publicly;

• we evaluate PRPO as applied to PPO (PR-PPO) and GRPO (PR-GRPO) on RLHF text sum-
marization tasks, as well as on classical reinforcement learning benchmarks such as MiniGrid
(Chevalier-Boisvert et al., 2023) and ATARI (Bellemare et al., 2013), demonstrating the effective-
ness of our approach for collaborative policy learning in both RLHF and pure RL domains.

2 RELATED WORK

Although this work is introduced through the lens of LLM personalization—narrowed down to Person-
alized Adaptation — the problem space spans multiple domains, including Federated Reinforcement
Learning (FRL), Multi-Agent Reinforcement Learning (MARL), Federated LLM fine-tuning, Feder-
ated RLHF, and MARLHF. A complete survey would be required to outline the boundaries of this
intersection. Here, we provide a brief overview of the most relevant areas that contextualize and
motivate the proposed approach: a cooperative online policy gradient method designed for settings
with limited local data, strong privacy requirements, and low communication overhead.

Federated LLM Fine-Tuning. Federated fine-tuning of LLMs has gained traction with the rise
of frameworks such as OpenFedLLM (Ye et al., 2024) and Shepherd (Zhang et al., 2024a), which
integrate PEFT techniques into classical Federated Learning algorithms like FedAvg (McMahan et al.,
2023). These works demonstrate that LoRA-based updates are highly effective in reducing commu-
nication costs while maintaining strong privacy guarantees (Zhang et al., 2023). Novel techniques
PEFT tailored for federated setting have also been introduced, such as FFA-LoRA (Sun et al., 2024).
These approaches validate the feasibility of distributed PEFT-based training but remain focused on
supervised learning, leaving open the question of their applicability in personalization and RLHF.

Federated RLHF. Some recent work explores Federated RLHF, primarily via preference modeling
or offline RL. Approaches such as FedDPO (Ye et al., 2024), FedBis (Wu et al., 2025), and Plural-
LLM (Srewa et al., 2025) reduce RLHF to supervised preference optimization—aggregating either
local DPO-trained models or user-specific preference data into a centralized supervised training
pipeline. However, none of these works address online reinforcement learning in a federated setting,
or support policy learning beyond model centralization.

Multi-Agent Reinforcement Learning (MARL). Several classical MARL techniques offer rel-
evant insights. IPPO (de Witt et al., 2020) shows the viability of independently trained local PPO
agents, while MAPPO (Yu et al., 2022) leverages a centralized critic to coordinate agents. Most
relevant is CoPPO (Wu et al., 2021), which introduces step-size coordination for communication
among agents—achieving strong results on benchmarks like StarCraft II (Samvelyan et al., 2019). In
contrast, PR-PPO enables communication through reference policy aggregation, which aligns more
naturally with the RLHF training paradigm and the probabilistic interpretation of policies.

Multi-Agent RLHF (MARLHF). This area is still in its early stages, with only a few works
focused on value-based RLHF, preference modeling in multi-agent games and Nash equilibrium
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learning in general-sum environments (Zhang et al., 2025). As such, there remains a significant gap
in applying online policy-gradient methods to cooperative RLHF scenarios.

Personalized Adaptation. Personalization in LLMs is a rich and evolving research area. As
outlined in (Liu et al., 2025), personalization strategies span input-level (personalized prompting),
objective-level (personalized alignment), and model-level (personalized adaptation). This work
focuses on the latter, capturing the local characteristics with dedicated personalized model, rather
than distinct objective design, particularly in federated settings where clients maintain private PEFT
modules. Prior studies (Tan et al., 2024; Wagner et al., 2024; QI et al., 2024) have explored supervised
fine-tuning of personalized LoRA weights, but none apply RLHF techniques—despite their clear
advantage for modeling user preferences.

Among them, the work of (Wagner et al., 2024) is especially relevant and worth a closer look. It
addresses “fine-tuning of large language models with limited local data availability”, proposes

“decentralized LoRA training”, and focuses on “a peer-to-peer decentralized learning setting, where
the existence of a central server is not assumed”. It also “explores different ways of building a
trust-gossip aggregation graph across users”. These aspects make it structurally and ideologically
close to our setting.

However, key differences remain. First, (Wagner et al., 2024) restricts experiments to unsupervised
language modeling, while our work addresses Reinforcement Learning with Human Feedback —
a fundamentally different optimization regime. Second, (Wagner et al., 2024) aggregates LoRA
weights, whereas we introduce a communication protocol that performs policy (i.e., distributional)
averaging, more naturally aligned with the RLHF framework, particularly in the presence of KL
constraints used in policy regularization.

3 METHOD

3.1 PROBLEM SETUP

Within the scope of Personalized Adaptation, we consider a setting involving n agents, each with
individual policy πi ∈ Π = {π : S → P(A)}, i = 1, . . . , n, that operate on the common state space
S and the action space A with transition probability distribution P : S ×A → P(S), all pursuing
the same objective (see Personalized Adaptation in Section 2): the discounted cumulative reward
given the initial state s0

f(s0, π) = Ea0,s1,a1,...

[ ∞∑
t=0

γtr(st)

]
, (1)

where r : S → R is the reward function, at ∼ π( · | st) is the policy decision at time step t and
st+1 ∼ P ( · | st, at) is the state drawn from the system dynamics based on the decision at taken in
the state st.

Although confined to the same system dynamics P and aligned in goal f , the agents may differ
significantly in their experience through distinct initial state distributions ζ0i ∈ P(S), and thus, in
effect, aim different target

fi(π) = Es0∼ζ0
i
f(s0, π), i = 1, . . . , n. (2)

Specifically, in the context of distributed LLM fine-tuning considered here — where the model’s task is
to predict the next token given a sequence of observed tokens — the action space is a finite vocabulary
V , and the state space is the set of all finite token sequences, denoted V∗ (the Kleene star of V).
Agent policies πθ( · | · ) belong to a parameterized policy class ΠΘ = {πθ : V∗ → P(V) | θ ∈ Θ} ,
where each policy maps a token sequence to a distribution over next tokens. This class is defined by
a shared LLM architecture with parameters θ. The environment dynamics reduce to deterministic
sequence extension: at time t = 0, 1, . . ., given state st ∈ V∗ and action at ∈ V , the next state is the
concatenated sequence st+1 = stat = s0a0a1 . . . at.

This setting reflects our earlier assumption regarding the shared nature of the transition dynamics (1).
Yet, heterogeneity is preserved through variation in the initial state distribution ζ0i across agents. This
characterizes precisely the scenario of LLM personalization where each policy is trained on a unique
local dataset {s0}i = Di ∼ ζ0i , that includes sensitive user information subject to privacy constraints.

3
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However, this setup introduces several challenges. First, individual agents may lack sufficient local
data to fine-tune models that accurately reflect user preferences. Second, privacy requirements
prohibit direct aggregation or centralization of user data, necessitating that all training operations
remain confined within local environments. Third, strictly local optimization raises further concerns
regarding training efficiency and the ability to achieve high-quality models.

To address these challenges, prior work has explored parameter-efficient fine-tuning (PEFT), notably
LoRA modules, as a solution. LoRA modules serve both as efficient local training mechanisms
and compact, privacy-compliant units (Zhang et al., 2023) suitable for peer-to-peer communication
among agents, as elaborated by Wagner et al. (2024).

From this prospective, the precise practical formulation of the problem is as follows:

Given a shared, pre-trained policy frozen weights θ0, a set of trainable local LoRA
adapters θ1, . . . , θn, local datasets D1, . . . ,Dn acquired from the corresponding
distributions ζ01 , . . . , ζ

0
n and a common target f(s0, π) (1), that defines a set of

personal objectives fi(θ) = fi(πθ0+θ) (2) — optimize each personalized pol-
icy πθ0+θi with respect to fi(θ), through a local policy optimization procedure
interleaved with peer-to-peer communication rounds for LoRA adapters exchange.

Previous work by Wagner et al. (2024) demonstrated the feasibility of this approach in an unsupervised
next-token prediction task, leveraging weighted LoRA aggregation protocols and highlighted its
superiority over local fine-tuning and classical federated averaging (McMahan et al., 2023).

In this work, we adopt this paradigm to the online reinforcement learning and propose a cooperative
algorithm that employs an alternative communication protocol. We evaluate this method in native
RLHF task (see Section 4.2) demonstrating its effectiveness in personalized adaptation, on par with
validation in classical RL domains (see Section 4.1), where it outperforms both local training and
existing federated baselines.

3.2 PEER-REFERENCED PPO

The PR-PPO is based on PPO (Schulman et al., 2017b) that updates policy through maximization of
KL-penalized surrogate objective: 1

θk+1 = argmax
θ

Êt

[
πθ(at|st)
πθk(at|st)

Â(st, at)− βKL [πθk( · |st) ∥ πθ( · |st)]
]
, (3)

where KL-penalty coefficient β > 0, Â(·, ·) is an advantage estimator (e.g. GAE (Schulman et al.,
2018)) and Êt denotes the empirical average over trajectory samples generated with old policy πθk .

The surrogate objective (3) constrains the model update to stay within a trust-region of the old
policy πθk as justified in TRPO to bound potential decrease in policy performance at each step
(Schulman et al., 2017a). A common practice in RLHF further leverages the KL penalty as a mecha-
nism to maintain a stable anchor — typically the pretrained SFT policy — throughout the optimization
process, with sparse or no updates to the reference policy under the KL term (Ouyang et al., 2022).

In this work, given a number of policies to optimize {πθi}ni=1 ⊂ ΠΘ (see Section 3.1), we go one
step forward and condition a policy on its peers’ aggregated reference to employ community value

θk+1
i = argmax

θ
Êt

[
πθ(at|st)
πθk

i
(at|st)

Â(st, at)− βKL [Ciπθk( · |st) ∥ πθ( · |st)]

]
, i = 1, . . . n, (4)

where Ci : Π
n → Π is the i-th component of communication operator C : Πn → Πn that is applied

to a vector of reference policies πθk = (πθk
1
, . . . , πθk

n
).

The exact nature of communication operator C : Πn → Πn may be of different origin, whether it be
a constant matrix C = {cij}, or a complex operator Ck, evolving through the learning process. We
would delve deeper the motivation behind its nature as well as the construction of a feasible class of
such operators further, alongside the discussion of PR-TRPO (see Section 3.4).

1Technical details (e.g., clipping) are omitted in the derivations for clarity.
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3.3 PEER-REFERENCED GRPO

In turn, GRPO (Shao et al., 2024) derives PPO objective (3) but swaps the terms of KL-Penalty and
sets it in the reverse direction, resembling the approach of MDPO (Tomar et al., 2021a) that takes
inspiration from the mirror-decent update rule. Furthermore, as the name suggests, GRPO exploits
grouped sampling for the expectation estimate, that implies sub-sampling a trajectory group

θk+1 = argmax
θ

Ês0∼ζ0 Êt|s0

[
πθ(at|st)
πθk(at|st)

Âs0(rt)− βKL [πθ( · |st) ∥ πθk( · |st)]
]
, (5)

where the empirical average Êt|s0 reduces to averaging over a group of trajectories G(s0) generated
with old policy πθk starting from a shared initial state s0.

This allows GRPO to adopt group relative advantage that estimates advantage through normalization
of rewards over the group in order to obviate the computation burden of value approximation

Âs0(rt) := Âs0(r(st)) =
r(st)−mean(r(st) : st ∈ G(s0))

std(r(st) : st ∈ G(s0))
. (6)

We adapt GRPO to multi-agent setting, analogous to (4) and introduce the PR-GRPO update rule

θk+1
i = argmax

θ
Ês0∼ζ0

i
Êt|s0

[
πθ(at|st)
πθk

i
(at|st)

Âs0(rt)− βKL [πθ( · |st) ∥ Ciπθk( · |st)]

]
, i = 1, . . . n.

(7)

3.4 PEER-REFERENCED TRPO

Although we do not experiment with TRPO (Schulman et al., 2017a) in practice, we find it important
to introduce PR-TRPO as it gives a clear prospective, viable for discussion of the method. In contrast
to PPO (Schulman et al., 2017b), TRPO formulates policy updates as a hard-constrained optimization
problem:

θk+1 = argmax
θ

Êt

[
πθ(at | st)
πθk(at | st)

Ât

]
, (8a)

subject to Êt [KL [πθk( · | st) ∥πθ( · | st)]] ≤ δ; (8b)

which adapts naturally to our cooperative approach:

θk+1
i = argmax

θ
Êt

[
πθ(at | st)
πθk

i
(at | st)

Ât

]
, (9a)

subject to Êt [KL [Ciπθk( · | st) ∥πθ( · | st)]] ≤ ε, i = 1, . . . , n. (9b)

The procedure (8a) – (8b) is motivated by the theory behind that guarantees monotonic policy
improvement through unconstrained policy iteration procedure with TV-penalty that is replaced with
KL-divergence provided that ∥x− y∥2TV ≤ KL(x ∥ y). Though KL-divergence is a good choice for
computational tractability, since the exact same theory originally allows the use of total variation we
find it appropriate to lead the following discussion in a metric space setting.

In a metric space of policies (Π, ρ), a ρ-TRPO solves the problem (8a) subject to variational bound

ρ(πk, πk+1) ≤ δ. (10)

Whereas ρ-PR-TRPO constrains each actor (9a) with its’ local commuted variational bound

ρ(Ciπ
k, πk+1

i ) ≤ εi. (11)

A natural question arises: may we attain the original bound (10) with control of local commuted
bound (11) so as to preserve the TRPO trust-region while enabling communication? In this regard, we
propose to consider uniformly γ-non-expansive communicators in ambient Banach space (Σ, ∥ · ∥).2

2This is indeed the case for policies, since distributions lie in the ambient Banach space of signed measures Σ
with the total variation norm. We would develop a more rigorous discussion with proofs in Appendix B.
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Definition 1. We would call an operator C : Σn → Σn in Banach space (Σ, ∥ · ∥) a uniform
γ-non-expansion (γ ≤ 1) as long as for i = 1, . . . , n and for all x, y ∈ Σn

∥Cix− Ciy∥ ≤ γ∥x− y∥∞,

where ∥x−y∥∞ is a ℓ∞ product norm induced on Σn. In other words, C is γ-Lipschitz in (Σn, ∥·∥∞).

Equipped with this operator family, we may now state the following
Observation 1. Given a uniform γ-non-expansion C : Σn → Σn in a Banach space (Σ, ∥ · ∥) and a
sequence of vectors in Σn: π0, π1, π2, . . ., the local variation bound ∥πk

i − πk+1
i ∥ ≤ δ would hold

uniformly, given the local commuted variation bound ∥Ciπ
k − πk+1

i ∥ ≤ ε is satisfied uniformly at
the level

ε ≤ δ − γ∥πk−1 − πk∥∞
2

. (12)

And this suggests a path toward identifying ‘stable’ communication operators capable of maintaining
the TRPO trust-region.

3.5 COMMUNICATORS

To preserve the TRPO trust region via Observation 1, we require communicators satisfying uniform
non-expansiveness (Definition 1). Appendix B introduces a general construction. Here, we describe
practical subclasses used in our experiments.
Example 1 (Right-stochastic matrices). A right-stochastic matrix S ∈ Rn×n, with sij ≥ 0 and∑

j sij = 1, defines an operator S : Πn → Πn via Si(π) :=
∑

j sijπj . For all x, y ∈ Σn:

∥Si(x)− Si(y)∥TV ≤
∑
j

sij∥xj − yj∥TV ≤ ∥x− y∥TV,

showing that S is a uniform 1-non-expansion.

The following communicators follow the same construction pattern, using stochastic matrices that
may update at each communication round.
Example 2 (Self-preferred mean communicator). Given a preference level p ∈ [0, 1], the matrix C(p)
has cii = p and cij =

1−p
n−1 for i ̸= j. This allows each agent to retain a fixed share of its own policy

while averaging the rest, balancing self-reliance and peer influence.
Example 3 (Similarity-based communicator). At round k, define:

ckij ∝
∑

s∈Sref

⟨πi(· | s), πj(· | s)⟩,

where the dot product is taken for vectors of policy values on a shared reference trajectory subset
Sref and the resulting matrix Ck = (ckij) is row-normalized to ensure stochasticity.
Example 4 (Reward-based communicator). At round k, set:

ckij =
rj∑n
k=1 rk

,

where rj is the average episodic return of agent j since the last communication round. This commu-
nicator biases aggregation toward higher-performing agents.

These operators are evaluated in Sections 4.1 and 4.2.

4 EXPERIMENTS

We evaluated the PRPO algorithms in two distinct domains: classical reinforcement learning environ-
ments and RLHF alignment. We began with relatively lightweight experiments in the ATARI and
MiniGrid environments to validate the effectiveness of our method and compare it against standard
federated learning baselines. We then conducted experiments in a more computationally intensive
RLHF setup to evaluate PRPO variants against centralized algorithms and assess the impact of peer
communication.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5
Step 1e6

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e 

Ep
iso

di
c 

Re
tu

rn

BeamRiderNoFrameskip-v4
PPO
FedAvg-PPO-ClassicAvg
FedAvg-PPO-WeightedAvg
PR-PPO-ClassicAvg
PR-PPO-WeightedAvg

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Step 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e 

Ep
iso

di
c 

Re
tu

rn

FourRooms-v0

PPO
FedAvg-PPO-ClassicAvg
FedAvg-PPO-WeightedAvg
PR-PPO-ClassicAvg
PR-PPO-WeightedAvg

Figure 1: Performance of PR-PPO, isolated PPO and FedAvg-PPO on the BeamRiderNoFrameskip-v4
(left) and FourRooms-v0 (right). For PR-PPO and FedAvg-PPO the figure shows average performance within
the group.

4.1 CLASSICAL RL

In this section, we consider a series of experiments in discrete multi-agent reinforcement learning
environments, specifically focusing on Minigrid Chevalier-Boisvert et al. (2023) and Atari Bellemare
et al. (2013). We investigate the adaptive choice of the communication matrix and consider more
complex baselines. 3

Experimental Setup. We consider FourRooms-v0, DoorKey-6x6-v0, and
DistShift2-v0 environments from Minigrid, and BeamRiderNoFrameskip-v4 and
AsterixNoFrameskip-v4 environments from Atari. Our evaluation compares the performance
of PR-PPO, isolated PPO Schulman et al. (2017b) and FedAvg McMahan et al. (2023)-PPO.

In all non-isolated experimental setups, we consider groups comprising three agents. Within these
groups, agents communicate through a communication protocol. Partially similar to Wagner et al.
(2024), we consider three different choices of the communication matrix (see the corresponding case
in Section 3.5). The first is classical averaging, where each agent contributes equally with cij = 1/N .
The second is adaptive reward-based averaging from Example 4. The third approach is also adaptive
but policy-based averaging from Example 3.

The configurations for all algorithms were carefully fine-tuned through a grid search over a com-
prehensive set of hyperparameters. Each figure depicts the performance of the best configurations,
averaged over ten random seeds. Additional details are provided in Appendix D.

Results. We use classical and policy-based averaging in Minigrid environments, and classical and
reward-based averaging in Atari environments. The results are presented in Figure 1 and Appendix D.

From Figure 1, it is evident that our proposed PR-PPO outperforms both FedAvg-PPO and isolated
PPO baselines in all settings. This means that our approach is better than not only local training
but also the classical approach to federated learning. We also observe that both adaptive averaging
techniques consistently achieve higher rewards compared to classic averaging, suggesting that
dynamic weight-selection protocols might be favored in different practical scenarios.

4.2 RLHF

For our experiments with language models, we use the PR-PPO and PR-GRPO algorithms, as their
centralized counterparts (PPO and GRPO) have proven effective and are widely used in the RLHF
stage of language model alignment. Additional details are provided in Appendix D.

Data. In the RLHF setting, we focus on the summarization task, following early work in the field
(Ziegler et al., 2020; Stiennon et al., 2022), as it is both computationally lightweight and widely
used in research. We utilize the TL;DR dataset (Völske et al., 2017), which consists of Reddit posts

3The code of this experiment is publicly available in our FedRL repository.
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Figure 2: Expected validation win rate curves for PR-PPO and PR-GRPO in two data regimes at different levels
of self-preference.

paired with user-written summaries. 4 We evaluate two setups for the TL;DR task: homogeneous and
heterogeneous data distributions. In the homogeneous setup, agents receive identically distributed
data (i.e., each agent owns a randomly sampled subset of the TL;DR dataset). In the heterogeneous
setup, each agent is assigned a distinct, client-specific dataset. This is achieved by partitioning
the TL;DR dataset into subsets corresponding to subreddits. We have prepared and published this
thematic TL;DR dataset on our Hugging Face page.

Implementation. We implemented the PR-PPO and PR-GRPO algorithms using the Torchtune
framework (torchtune maintainers and contributors, 2024) as a base. The code is publicly available
in our repositories. 5 The training pipeline is distributed: each agent is assigned to a separate
GPU to emulate a realistic federated setup. Agents are trained using LoRA adapters and, during
communication rounds, emulate exchanging these adapters to construct locally aggregated reference
policies. Communication follows a fixed protocol (see Example 2 and Example 4) and occurs at a
predefined frequency. For SFT and reward training, we use the standard Hugging Face TRL library
trainers (von Werra et al., 2020), following the guidelines from Huang et al. (2024).

Evaluation. Evaluating alignment quality in language models is non-trivial. A widely adopted
approach is the use of LLM-as-a-judge, explored in detail by Zheng et al. (2023). In our experiments,
we also employ a large LLM to serve as a judge. Since the TL;DR dataset includes human-written
reference summaries, we assess model outputs by comparing them against these references. Our
primary metric is the win rate — the proportion of model-generated summaries judged to be better
than the human-written ones on the validation set. Following Dodge et al. (2019; 2021), we report
performance using the Expected Validation Performance (EVP) metric. EVP is computed by sampling
multiple subsets of training runs, calculating the maximum validation score in each, and averaging

4We use the open-source trl-lib/tldr dataset for Supervised Fine-Tuning and PPO training, and trl-
lib/tldr-preference for reward model training. The heterogeneous TL;DR dataset is available at anonymous-
organization/tldr-thematic.

5See our implementation of PR-PPO and PR-GRPO in the TunePPO repository. Dataset preparation and
reward model training are available in the PrePPO repository.
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Figure 3: Expected validation win rate for isolated PPO and GRPO; FedAvg-PPO, FedAvg-GRPO; PR-PPO and
PR-GRPO at different levels of self-preference.

these maxima to reflect performance under realistic compute budgets. In our case, the validation
score is the win rate. This approach allows us to quantify how performance scales with the number
of hyperparameter trials — or, equivalently, with the computational resources invested. EVP thus
provides a more robust assessment of algorithm performance than reporting only the single best
result.

Experimental Setup. We train seven Mistral-7B agents (Jiang et al., 2023) using the Self-Preferred
Mean Aggregation communication protocol (see Example 2). We use Qwen3-32B (Team, 2025) as
the LLM evaluator, as it is efficient enough to run on a single 80GB GPU while achieving performance
comparable to the widely used LLaMA3.3-70B-Instruct model (Meta-AI, 2024). Additionally, it
supports a reasoning mode, which is beneficial for evaluation tasks. All experiments were run
on a cluster with eight NVIDIA H100 80GB GPUs: seven used for training and one reserved for
evaluation.

Results. We compute EVP while sweeping three hyperparameters: the KL coefficient (Section 4),
the self-preference in Self-Preferred Mean Aggregation (Example 2 in Appendix B.3) and the update
interval (steps between reference-policy updates). EVP plots are grouped by self-preference; shaded
regions show the standard deviation. From Figure 2, for both PR-PPO and PR-GRPO, communi-
cating agents (self-preference < 1) consistently outperform isolated agents (self-preference = 1) in
homogeneous and heterogeneous setups. Overall, in the RLHF setting, cooperation between language
models yields substantial gains, underscoring the value of decentralized training and showing that
even lightweight communication protocols can deliver measurable alignment benefits.

We also adapted Federated Averaging (FedAvg) to PPO and GRPO and compared it to our method
and local fine-tuning. While FedAvg performs reasonably in simpler environments (e.g., Atari), it
consistently underperforms in LLM fine-tuning (Figure 3), suggesting weight-level aggregation is too
coarse for aligning complex policies and motivating more expressive policy-level sharing. Below we
provide the full table summarizing experiments that reached a solid level of statistical reliability.

Method Data Isolated FedAvg PR (Ours) Win Rate Gain
vs Isolated vs FedAvg

(1.0) (1/7) 0.6 0.2 0.6 0.2 0.6 0.2

PPO TLDR 0.734 - 0.782 0.758 +6.5% +3.3% - -
PTLDR 0.716 0.589 0.755 0.759 +5.4% +6.0% +28.2% +28.9%

GRPO TLDR 0.636 - 0.641 0.677 +0.8% +6.4% - -
PTLDR 0.572 0.467 0.587 0.628 +2.6% +9.8% +25.7% +34.4%

Table 1: Expected validation win rate comparison for different approaches: isolated local fine-tuning, FedAvg
and ours Peer-Referenced optimization under different self-preference levels (0.2 and 0.6). In two data regimes:
homogeneous (TLDR) and heterogeneous (PTLDR).
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A LIMITATIONS AND FUTURE WORK

While our work makes several conceptual and empirical contributions across domains, it also presents
limitations stemming from the scope decisions necessary to keep the study tractable. First, we do not
directly analyze the scalability and privacy-preservation guarantees of PRPO, and instead refer to
prior work that coincides with our approach in subjects (e.g. LoRA exchange in general) unrelated
to our direct contribution such as (Zhang et al., 2023; Wagner et al., 2024). Second, although
our method allows for a range of communication strategies, in RLHF summarization domain we
focus on a simplified setting where agents apply a self-preferred mean aggregation and explore
performance-based adaptive averaging and similarity-based adaptive averaging in classical RL
domains. Third, although we outline how PRPO generalizes to multiple proximal policy algorithms,
our empirical evaluation is limited to PR-PPO and PR-GRPO, leaving systematic benchmarking of
PR-TRPO to future work. Fourth, the theoretical results we present offer foundational insight and
convergence intuition, but do not constitute a full theoretical framework; rigorous analysis under more
general conditions for locally non-optimizable objectives requiring cooperation — remains an open
problem situated within the broader field of multi-agent and multi-objective optimization. Finally,
our experiments focus on relatively lightweight tasks, such as summarization, and use modest model
sizes due to computational constraints. We leave validation on more demanding domains — including
question answering, instruction tuning, and reasoning with larger models — to future work.

B ON COMMUNICATORS AND TRUST-REGION

In Sections 3.4 and 3.5, we briefly introduced the conservation of the ρ-TRPO trust-region (10) within
the ρ-PR-TRPO optimization (9a)–(11), along with the role of communicators in maintaining this
conservation in order. In this section, we provide a more detailed analysis, presenting a rigorous
proof that the guarantees of TRPO are preserved under PR-TRPO and characterize the class of
communicators that ensure such stability.

B.1 GLOBAL SCOPE

Recall, in a metric space of policies (Π, ρ), a ρ-TRPO algorithm solves the problem (8a) subject to
variational bound

ρ(πk, πk+1) ≤ δ. (B.1)

Whereas in ρ-PR-TRPO each actor’s objective (9a) is constrained with local commuted variational
bound

ρ(Ciπ
k, πk+1

i ) ≤ εi. (B.2)

More coarsely, in ρ-PR-TRPO, the ensemble of actors is subject to global commuted variational
bound

ρ(Cπk, πk+1) ≤ ε, (B.3)

A natural question arise, may we attain the original bound (B.1) with control of commuted bound
(B.2) in order to hold the TRPO trust-region while enabling communication? In this regard, we
propose to consider non-expansive communicators. Recall

Definition 0. An operator C : Πn → Πn in a metric space (Π, ρ)6 is a γ-non-expansion if for all
x, y ∈ Πn

ρ(Cx,Cy) ≤ γρ(x, y), (B.4)

where γ ≤ 1 is the non-expansiveness coefficient.

Indeed, in the global scope, given the communication operator C : Πn → Πn is a γ-non-expansion,
and the global commuted variation (B.3) is controlled at a proper level ε we may show that

ρ(πk+1, πk) ≤ ρ(πk+1, Cπk) + ρ(Cπk, πk) ≤ δ,

6From now on, we would assume that a metric (norm) on a product space Xn is some product metric (norm)
induced by one on X .
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as since C is a non-expansion,

ρ(Cπk, πk) ≤ ρ(Cπk, Cπk−1) + ρ(Cπk−1, πk) ≤ γρ(πk, πk−1) + ε, (B.5)

it gives
ρ(πk+1, πk) ≤ 2ε+ γρ(πk, πk−1) ≤ δ,

as long as we set the global commuted variation bound ε as,

ε ≤ δ − γρ(πk−1, πk)

2
.

Therefore, global TRPO variation bound (B.1) holds for the ensemble of actors and at this point we
have proven simple, yet important for heuristic justification of Peer-Referenced methods,
Observation 0. Given a γ-non-expansion C : Πn → Πn in a metric space (Π, ρ) and a sequence
in Πn: π0, π1, π2, . . ., the global variation bound ρ(πk, πk+1) ≤ δ would hold, given the global
commuted variation bound ρ(Cπk, πk+1) ≤ ε is held at the level

ε ≤ δ − γρ(πk−1, πk)

2
. (B.6)

B.2 LOCAL SCOPE

However, this tells us nothing about the local behavior of each actor πi. Here, a careful choice of an
operator family is needed. In time, we would present such a family that, most notably, satisfies a key
property of uniform γ-non-expansiveness. Recall
Definition 1. An operator C : Σn → Σn in Banach space (Σ, ∥ · ∥) is a uniform γ-non-expansion
(γ ≤ 1) as long as for i = 1, . . . , n and for all x, y ∈ Σn

∥Cix− Ciy∥ ≤ γ∥x− y∥∞, (B.7)

where ∥x− y∥∞ = max
i

∥xi − yi∥ is a ℓ∞ product norm induced on Σn by ∥ · ∥.7 Or, in other words,

C is γ-Lipschitz in (Σn, ∥ · ∥∞).

Now, given the communication operator C is a uniform γ-non-expansion, the inequality (B.5) may
be sharpened for the local scope:

∥Ciπ
k − πk

i ∥ ≤ ∥Ciπ
k − Ciπ

k−1∥+ ∥Ciπ
k−1 − πk∥ ≤ γ∥πk − πk−1∥∞ + ε.

and with reiteration of proof for the global observation 0 we can easily make a local
Observation 1. Given a uniform γ-non-expansion C : Σn → Σn in a Banach space (Σ, ∥ · ∥) and a
sequence of vectors in Σn: π0, π1, π2, . . ., the local variation bound ∥πk

i − πk+1
i ∥ ≤ δ would hold

uniformly, given the local commuted variation bound ∥Ciπ
k − πk+1

i ∥ ≤ ε is held uniformly at the
level

ε ≤ δ − γ∥πk−1 − πk∥∞
2

. (B.8)

Therefore, given the local TRPO variation bound (B.1) is held uniformly at step k, i.e. for i = 1, . . . , n

∥πk
i − πk+1

i ∥ ≤ δ, or, equivalently ∥πk − πk+1∥∞ ≤ δ,

the local TRPO variation bound would hold indeed at the same level δ for the next step k + 1, given
the local PR-TRPO variation bound is controlled uniformly at the level ε (12).

The bounds (B.6), (B.8) for the controlled parameter ε seem feasible in practice, since the right-hand
side stays non-zero as long as C is a contraction (γ < 1) or the desired TRPO variation bound is
not reached in norm. However, even if such case takes place we rely upon practical techniques in
engineering the exact optimization procedure with use of e.g. scheduling of the parameter δ or the
operator C itself, that, alongside with observations (0) and (1) would provide controllable divergence
in TRPO variation. The precise formulation of such designs in theory, accompanied with consequent
results we leave out of the scope of this research for the future work as a subject of its own broad
field.

7Although, the discussion may be held in any ℓp norm induced on Σn, provided ℓp γ-non-expansiveness —
we would stick with uniform case for clarity.
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B.3 DECOMPOSABLE OPERATORS

Now, as long as we aim to preserve TRPO trust-region, with help of (Observation 1), we need to find
the way to construct an appropriate communication operator, that is indeed a uniform non-expansion
(Definition 1). In this regard we would consider a class of decomposable non-expansions.
Definition 2. We would call an operator C : Σn → Σn in Banach space (Σ, ∥ · ∥) a decomposable
Γ-non-expansion, if for all x, y ∈ Σn,

∥Ci(x)− Ci(y)∥ ≤
n∑

j=1

γij∥xj − yj∥, (B.9)

where Γ = (γij) ∈ Rn×n is a non-negative non-expansive matrix, i.e. has a spectral radius ρ(Γ) ≤ 1.
Remark 1. Given the non-expansive matrix Γ of a decomposable "non-expansion" C, has the spectral
radius ρ(Γ) ≤ 1, there is a product norm induced on the Σn in which C is indeed a non-expansion.
Remark 2. Obviously, a decomposable Γ-non-expansion is a non-expansion in ℓp product norm
induced on the Σn if and only if ∥Γ∥p ≤ 1, and it follows that γ = ∥Γ∥p is the non-expansiveness
coefficient. We would use these concepts interchangeably from now on.
Remark 3. A decomposable Γ-non-expansion is a uniform γ-non-expansion if and only if it is a
non-expansion in ∥ · ∥∞ i.e. ∥Γ∥∞ ≤ 1 and γ = ∥Γ∥∞ = max

i

∑
j

γij .

From a constructive perspective, decomposable non-expansions can be derived using a simple yet
sufficiently general class of decomposable operators.
Definition 3. Given the Banach space (Σ, ∥ · ∥) we define a decomposable operator C : Σn → Σn

component-wise as

Ciπ =

n∑
j=1

cij(πj), (B.10)

where cij : Σ → Σ.
Remark 4. A decomposable operator C : Σn → Σn with γij-non-expansive components cij : Σ → Σ
s.t. ρ(Γ) ≤ 1, where Γ = (γij), is indeed a decomposable Γ-non-expansion, and thus a non-
expansion.

This construction gives us a concrete recipe for building our communication operators: assemble them
from non-expansive component maps (Definition 3) whose row-sums remain uniformly bounded.
In practice, we often employ the simplest families of such decomposable non-expansions — e.g.
matrices C = Γ with constant row sums or sparse support — because they’re easy to implement and
tune.

To make this precise, we leave behind our original metric space Π of probability-valued policies
and embed into the larger Banach space Σ of signed-measure–valued policies, equipped with vector
addition and the total-variation norm. There, we require each component map cij : Σ → Σ to be
non-expansive, with the sum Ci(π) =

∑n
j=1 cij(πj) mapping Πn back into Π. Hence, the overall

operator C : Πn → Πn is a well-defined decomposable non-expansion in Σn, yet its action never
leaves the simplex of valid policies.

Example 1 (Right-stochastic matrices). Let S ∈ Rn×n be a right-stochastic matrix, i.e., sij ≥ 0 and∑n
j=1 sij = 1 for all i.

It defines an operator S : Σn → Σn with components

Si(x) :=

n∑
j=1

sijxj ,

where addition and scalar multiplication are defined in the ambient Banach space (Σ, ∥ · ∥).
Since S, naturally defines a decomposable S = Γ-non-expansion with ∥Γ∥TV

∞ = 1, it is, indeed, a
uniform 1-non-expansion in the sense of Definition 1.

It is easy to see that the following classes basically fall into the family of right-stochastic matrices,
though we restate them here due to their practical importance.
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Example 2 (Self-preferred mean aggregation). To explicitly control the influence each agent assigns
to its own learned reference policy versus those of its peers, we define the self-preferred mean
aggregation operator. Given a self-preference parameter p ∈ [0, 1], the corresponding right-stochastic
matrix S(p) ∈ Rn×n is defined component-wise as follows:

sij(p) =

{
p, if i = j,

1−p
n−1 , if i ̸= j.

This structure enables agents to interpolate continuously between isolated local training and fully
peer-focused collaboration:

• For p = 1.0, the operator reduces to the identity, representing fully isolated training (e.g.,
vanilla PPO).

• Intermediate values (e.g., p = 0.6) indicate self-focused collaborative training, wherein
agents prioritize their own policy but incorporate moderate peer influence.

• Lower values (e.g., p = 0.2) yield peer-focused collaborative training, emphasizing peer
policies significantly.

We extensively utilize these operators in our experiments on LLM fine-tuning, specifically at levels
p = 1.0 (isolated training), p = 0.6 (balanced collaborative training), and p = 0.2 (peer-emphasized
collaboration), as in Section 4.2.

Apart from manually selected static weighting, more adaptive communication protocols can be
employed — particularly those based on policy similarity or performance signals. These strategies
enable agents to preferentially align with peers that are either behaviorally close or empirically
successful, as explored in works such as (Wagner et al., 2024). In our experiments, we evaluate two
such approaches.

Example 3 (Dot-product similarity-based communication). To encourage communication between
behaviorally similar agents, we compute communication weights based on empirical dot products
between their action distributions. Specifically, for each agent i, the similarity to agent j is defined as

sij ∝
∑

s∈Sref

⟨πi(· | s), πj(· | s)⟩,

where Sref is a fixed reference set of states used for comparison. The inner product ⟨·, ·⟩ is computed
over discrete action distributions, which naturally applies to environments like MiniGrid and language
modeling, where the action (or token) space is finite.

The resulting matrix S = (sij) is row-normalized to ensure stochasticity. We use this strategy
extensively in MiniGrid environments (Sections 4.1, D.1).

Example 4 (Reward performance-based communication). Agents can assign communication weights
based on empirical reward performance. In our Atari experiments (Sections 4.1, D.1), where rewards
are non-negative and comparable across agents, we compute weights as:

sij =
rj∑n
k=1 rk

,

where rj is the average episodic return of agent j since the last communication round.

This yields a right-stochastic communication matrix that prioritizes alignment with higher-performing
peers. While we employ simple linear weighting in our setup, other schemes — such as softmax
or rank-based normalization — can be used in environments where reward magnitudes vary more
widely or include negative values.

At this point, we have presented a set of simple yet effective communication operators that exemplify
the framework. While these constructions are intentionally minimal, our experiments show they
can already enhance learning dynamics in practice. More broadly, the space of possible operators is
vast — ranging from static heuristics to adaptive protocols based on similarity, reward, inference,
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or exploration strategies. This flexibility is where peer-referenced methods are particularly strong:
the framework imposes no structural constraints beyond non-expansiveness, ensuring that the TRPO
trust region is preserved or degrades controllably. Designing such operators remains an open and
promising avenue for both theoretical and applied research.

C CONVERGENCE

From the federated optimization perspective, the initial problem (3.1) can be considered as a global
objective optimization that aligns with local goals:

f∗ := min
π∈Πn

{
f(π) :=

1

n

n∑
i=1

fi(πi) =
1

n

n∑
i=1

E[fi(πi, ξi)]

}
, (11)

where (Πn, ∥ ·∥) is a compact convex subspace of Euclidean space Σn with a dual space (Πn∗, ∥ ·∥∗).
The classical approach to solving problem (11) is Mirror Descent (MD) (Nemirovsky et al., 1983). It
has been investigated for policy optimization in reinforcement learning in many works (Geist et al.,
2019; Shani et al., 2019; Neu et al., 2017; Liu et al., 2023). The theory behind MD allows one to
create practical and robust RL algorithms; therefore, we propose to analyze the following Algorithm
12:

πk+1
i = argmin

π∈Π
{γ⟨∇fi(π

k
i , ξ

k
i ), π⟩+KL(π,Ciπ

k)} (12)

The update rule (12) resembles the PR-GRPO objective (5) if we consider the inexact solution of
argmin. The convergence analysis of Algorithm (12) helps to better understand and explain the
rationale behind PR-GRPO and PR-PPO(Tomar et al., 2021b). To provide a careful theoretical
estimate, we require the following classical assumptions on the target function f .
Assumption 1. The functions fi are L-smooth, convex and have bounded gradients, i.e., for any
x, y ∈ Σ the following inequalities hold: 1. ∥∇fi(x) − ∇fi(y)∥∗ ≤ L∥x − y∥, 2. fi(y) ≥
fi(x) + ⟨∇fi(y), y − x⟩, 3. E ∥∇fi(x, ξ)∥2∗ ≤ M2.

Now, under these assumptions, we are ready to provide the convergence guarantees for Algorithm 12
in the case of uniform policy averaging through the C = (cij) = (1/n) communicator.
Theorem C.1. Let Assumption 1 be satisfied. Let problem (11) be solved by Algorithm 12. Assume
that γ ≲ min

{
1
2L ;

D√
KM

}
, D2 := maxx,y∈Π KL(x, y). Then, in order to achieve the ε-approximate

solution in terms of E[f( 1
Kn

∑
k,i

πk
i )− f(π∗)] ≤ ε it takes

K = Õ
(
max

{
LD2

ε
;
M2D2

ε2

})
iterations of Algorithm (12).

The results of Theorem C.1 align with the convergence rate of classical stochastic Mirror Descent
(Nemirovski et al., 2009).

C.1 CONVERGENCE PROOF

In this section, we provide a convergence proof for Theorem C.1. In the proof, we use the following

notation: π̄ = Ciπ
k = 1

n

n∑
i=1

πk
i . Let also ω(x) = −

∑
x
p(x) log p(x), and thus KL(x, y) =

ω(x)− ω(y)− ⟨∇ω(y), x− y⟩.
The following Lemma (we provide the case of KL-divergence) will help us to prove the final result.
Lemma 1 (Lemma 3 form Juditsky et al. (2011)). For all π ∈ Π we define the prox mapping Px(π)
as

Px(π) := argmin
y∈Π

{KL(y, x) + ⟨π, y⟩} .

For every x ∈ Π, the mapping π 7→ Px(π) is Lipschitz continuous, specifically,

∥Px(η)− Px(ζ)∥ ≤ ∥η − ζ∥∗ ∀η, ζ ∈ Y.

Now we are ready to provide the proof.
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Proof. Let us first write the optimality condition for Algorithm 12:

πk+1
i = argmin

π∈Π
{γ⟨∇fi(π

k
i , ξ

k
i ), π⟩+KL(π, π̄k)︸ ︷︷ ︸
g(π)

} ⇔ ∀π ∈ Π ↪→ ⟨∇g(πk+1
i ), πk+1

i − π⟩ ≤ 0.

Thus, one can obtain:

⟨γ∇fi(π
k
i , ξ

k
i ) +∇ω(πk+1

i )−∇ω(π̄k), πk+1
i − π⟩ ≤ 0,

γ⟨∇fi(π
k
i , ξ

k
i ), π

k+1
i − π⟩ ≤ −⟨∇ω(π̄k)−∇ω(πk+1

i ), π − πk+1
i ⟩.

Using three point identity, one can get:

γ⟨∇fi(π
k
i , ξ

k
i ), π

k+1
i − π∗⟩ ≤ −(KL(π∗, πk+1

i ) + KL(πk+1
i , π̄k)−KL(π∗, π̄k)).

Now, using straightforward algebra, one can obtain:

γ⟨∇fi(π
k
i , ξ

k
i ), π̄

k − π∗⟩ ≤ KL(π∗, π̄k)−KL(π∗, πk+1
i )−KL(πk+1

i , π̄k)

+ γ⟨∇fi(π
k
i , ξ

k
i ), π̄

k − πk+1
i ⟩.

γ⟨∇fi(π
k
i ), π̄

k − π∗⟩ ≤ KL(π∗, π̄k)−KL(π∗, πk+1
i )−KL(πk+1

i , π̄k)

+ γ⟨∇fi(π
k
i , ξ

k
i ), π̄

k − πk+1
i ⟩+ γ⟨∇fi(π

k
i )−∇fi(π

k
i , ξ

k
i ), π̄

k − π∗⟩.

γ⟨∇fi(π
k
i ), π

k
i − π∗⟩ ≤ KL(π∗, π̄k)−KL(π∗, πk+1

i )−KL(πk+1
i , π̄k) + γ⟨∇fi(π

k
i ), π

k
i − π̄k⟩

+ γ⟨∇fi(π
k
i , ξ

k
i ), π̄

k − πk+1
i ⟩+ γ⟨∇fi(π

k
i )−∇fi(π

k
i , ξ

k
i ), π̄

k − π∗⟩.

Let us define δki = ⟨∇fi(π
k
i )−∇fi(π

k
i , ξ

k
i ), π̄

k − π∗⟩. Now, using Cauchy-Schwarz inequality with
α = γ−1:

γ⟨∇fi(π
k
i ), π

k
i − π∗⟩ ≤ KL(π∗, π̄k)−KL(π∗, πk+1

i )−KL(πk+1
i , π̄k) + γ⟨∇fi(π

k
i ), π

k
i − π̄k⟩

+
γ2

2
∥∇fi(π

k
i , ξ

k
i )∥2∗ +

1

2
∥π̄k − πk+1

i ∥2 + γδki .

Since from 1-strongly convexity of ω it follows that −KL(x, y) ≤ 1
2∥x− y∥2, one can get:

γ⟨∇fi(π
k
i ), π

k
i − π∗⟩ ≤ KL(π∗, π̄k)−KL(π∗, πk+1

i )− 1

2
∥πk+1

i − π̄k∥2 + γ⟨∇fi(π
k
i ), π

k
i − π̄k⟩

+
γ2

2
∥∇fi(π

k
i , ξ

k
i )∥2∗ +

1

2
∥π̄k − πk+1

i ∥2 + γδki

≤ KL(π∗, π̄k)−KL(π∗, πk+1
i ) + γ⟨∇fi(π

k
i ), π

k
i − π̄k⟩

+
γ2

2
∥∇fi(π

k
i , ξ

k
i )∥2∗ + γδki .

Using Assumption 1, one has:

γ(fi(π
k
i )− fi(π

∗)) ≤ KL(π∗, π̄k)−KL(π∗, πk+1
i ) + γ(fi(π

k
i )− fi(π̄

k)) +
γL

2
∥πk

i − π̄k∥2

+
γ2

2
∥∇fi(π

k
i , ξ

k
i )∥2∗ + γδki .

γ(fi(π̄
k)− fi(π

∗)) ≤ KL(π∗, π̄k)−KL(π∗, πk+1
i ) +

γL

2
∥πk

i − π̄k∥2 + γ2

2
∥∇fi(π

k
i , ξ

k
i )∥2∗ + γδki .

Averaging clients from i = 1 to i = n, one obtains:

γ(f(π̄k)− f(π∗)) ≤ KL(π∗, π̄k)− 1

n

n∑
i=1

KL(π∗, πk+1
i ) +

γL

2

1

n

n∑
i=1

∥πk
i − π̄k∥2

+
γ2

2

1

n

n∑
i=1

∥∇fi(π
k
i , ξ

k
i )∥2∗ + γ

1

n

n∑
i=1

δki .
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Knowing that KL(π, ·) is convex, one can get using Jensen’s inequality:

γ(f(π̄k)− f(π∗)) ≤ KL(π∗, π̄k)−KL(π∗, π̄k+1) +
γL

2

1

n

n∑
i=1

∥πk
i − π̄k∥2 (13)

+
γ2

2

1

n

n∑
i=1

∥∇fi(π
k
i , ξ

k
i )∥2∗ + γ

1

n

n∑
i=1

δki .

Consider the term 1
n

∑n
i=1 ∥πk

i − π̄k∥2. Using Jensen inequality and Lemma 1, one can enroll the
sequence:

1

n

n∑
i=1

∥πk
i − π̄k∥2 ≤ 1

n2

n∑
i=1

n∑
j=1

∥πk
i − πk

j ∥2

=
1

n2

n∑
i=1

n∑
j=1
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Now, using Cauchy-Schwarz inequality:
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where in the last inequality we used Assumption 1. Substituting γ ≤ 1
2L , we get
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Continuing this process, one might obtain:
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where in the last inequality we used geometric progression. Now, substituting this into the inequality
(13), one has:

γ(f(π̄k)− f(π∗)) ≤ KL(π∗, π̄k)−KL(π∗, π̄k+1) +
γL
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Summing this inequality from k = 0 to K, one gets:
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Taking the mathematical expectation from both sides, using unbiasedness of f(π, ξ) and dividing
both sides by γ, one obtains:

E

[
f

(
1

K

K∑
k=0

π̄k

)
− f(π∗)

]
≤ 2D2

γK
+ 2γM2.

Now, taking γ as γ ≲ min
{

1
2L ;

D√
KM

}
, in order to achieve the ε-approximate solution one should

take:

K = Õ
(
max

{
LD2

ε
;
M2D2

ε2

})
steps of Algorithm 12. This completes the proof.

D EXPERIMENT DETAILS AND ADDITIONAL RESULTS

D.1 CLASSICAL RL

In section 4.1 we briefly introduced our extensive experiments in Atari and Minigrid environments to
benchmark our PR-PPO algorithm against isolated PPO and federated baseline approaches. Here, we
provide experimental setup in more detail.

Environments. To evaluate the performance of our algorithms we selected a diverse set of environ-
ments that fall into these two domains:

• Atari: We used AsterixNoFrameskip-v4 and BeamRiderNoFrameskip-v4,
which represent complex control tasks with high-dimensional pixel observations.

• Minigrid: We used FourRooms-v0, DoorKey-6x6-v0, and DistShift2-v0,
which represent a variety of navigation and planning challenges.

Agent Communication. In collaborative setups, we considered systems of three agents. The
weights in the communication matrix of our collaborative algorithms (both PR-PPO and FedAvg-
PPO) are updated during each global communication round proportionally to weighted average of
individual agents since the last global communication. We explored three different approaches to
communication matrix design:

• Uniform averaging, where each agent contributes equally with cij = 1/n, used in both Atari
and Minigrid environments (PR-PPO-ClassicAvg), (FedAvg-PPO-ClassicAvg).

• Performance-based (4) adaptive averaging, where weights are adjusted based on
agent rewards is used specifically in Atari environments (PR-PPO-WeightedAvg),
(FedAvg-PPO-WeightedAvg).

• Similarity-based (3) adaptive averaging, where policy similarity influences the
weighting is used specifically in Minigrid environments (PR-PPO-WeightedAvg),
(FedAvg-PPO-WeightedAvg).

Hyperparameter Search. For all algorithms, the configurations were carefully tuned through a grid
search over a comprehensive set of hyperparameters (Table 2). Each figure in our results represents
the performance of the best configurations, averaged across ten random seeds. It is important to
note that during our parameter search, we observed that varying the "Local updates" parameter
across different configurations did not result in significant differences in model quality. Therefore,
in all subsequent experiments, "Local updates" was fixed at 32 for Minigrid experiments and 16
for Atari experiments. For single-agent setups, we performed grid search over "Total timesteps,"
"Learning rate," and "KL penalty coeff." In collaborative setups, we focused our hyperparameter
search on "Learning rate," "Communication penalty coeff" (for PR-PPO), and "KL penalty coeff"
(for FedAvg-PPO). This approach allowed us to isolate the effects of the communication parameters
from other aspects of the algorithms.
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Figure 4: Performance of PR-PPO, isolated PPO and FedAvg-PPO on the DistShift2-v0,
DoorKey-6x6-v0 and AsterixNoFrameskip-v4. For PR-PPO and FedAvg-PPO the figure shows
average performance within the group.
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Figure 5: Performance of PR-PPO, isolated PPO and
FedAvg-PPO on the AsterixNoFrameskip-v4.
For PR-PPO and FedAvg-PPO the figure shows aver-
age performance within the group.

Computational Resources. All experiments
were conducted on a computing cluster with 15
NVIDIA RTX A4000 GPUs and 152 CPU cores.
For Minigrid environments, each experimental
run completed within 4-8 hours, while Atari ex-
periments required approximately 24-48 hours
per run due to their higher computational de-
mands and longer training durations.

Additional Results In addition to ex-
periments presented in the main part
(Figure 1), we deliver more results in
DistShift2-v0, DoorKey-6x6-v0,
AsterixNoFrameskip-v4 environments
below (Figures 4 and 5) to compare PPO,
FedAvg-PPO and our PR-PPO algorithm 4.
Within considered domains, our algorithm
outperforms both FedAvg-PPO and isolated PPO baselines.

D.2 RLHF SUMMARIZATION

Dataset details. Following Huang et al. (2024), we initialize the shared reward model from a super-
vised fine-tuned (SFT) model. To avoid data leakage, we hold out a subset of approximately 16k sam-
ples from the full TL;DR dataset for SFT training (referred to as tldr-sft) and use the remaining
data for PPO training (tldr-ppo). A separate preference-labeled dataset, tldr-preference,
is used to train the reward model.

To construct the heterogeneous TL;DR dataset, we partition the full dataset based on the Reddit
subreddit associated with each post, which provides a natural topic label (e.g., relationships, legal
advice, personal finance). For experiments involving 7 agents, we assign each agent to the following
subreddits:

0: loseit

1: dating_advice

2: legaladvice

3: offmychest

4: personalfinance

5: relationship_advice

6: tifu
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During PR-PPO and PR-GRPO training, all agents are evaluated on a shared validation split from the
tldr-ppo dataset. See the size of train and validation subsets in the Table 5.

Training Parameters. We provide a detailed overview of the training parameters used in our
experimental pipelines. The configuration for supervised fine-tuning (SFT) is shown in Table 3, the
reward model training setup in Table 4, and the main training pipeline for PR-PPO and PR-GRPO in
Table 5. Following Huang et al. (2024), we initialize the reward model from the SFT checkpoint to
improve reward quality. However, models for PR-PPO and PR-GRPO fine-tuning start from the base
model checkpoint (without SFT) to isolate the effects of pure RLHF-based alignment introduced by
these algorithms.

Evaluation details. We compute the winrate by prompting Qwen3-32B Team (2025) with the
prompt presented in the Figure 6. This prompt is the analogue of one used in TRL[Judges] library
von Werra et al. (2020). We host it on a separate 80GB GPU via vLLM (Kwon et al., 2023) and use
the inference parameters presented in Table 6.

Completion quality overview. In Figures 7, 8 we present sample model-generated summaries.
Across both examples, PR-PPO and PR-GRPO generate summaries that are faithful to the original
posts while improving on fluency and completeness compared to their single-agent counterparts.
In the breakup scenario, PR-PPO captures key emotional and temporal context (“ex of four years”,
“received another guitar from friend”, “before we stopped talking”), resulting in a more informative
and human-like summary. The single-agent PPO output, in contrast, omits relevant relational context
and compresses too aggressively, reducing clarity. Similarly, in the financial aid question, PR-GRPO
preserves specific numerical detail (“$2,500”), event structure, and the user’s uncertainty, whereas
the single GRPO summary is more terse and less readable. While the reference summaries provide
useful framing, the multi-agent completions often exhibit better structure, nuance, and alignment
with the original intent of the posts.
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Category Parameter Value

Environment

Environment type atari, minigrid

Gym ID

AsterixNoFrameskip-v4
BeamRiderNoFrameskip-v4
FourRooms-v0
DistShift2-v0
DoorKey-6x6-v0

Training
Total timesteps 5,000,000 (minigrid), 10,000,000 (atari)

Learning rate [5·10−5, 1·10−4, 2.5·10−4,
5·10−4, 1·10−3]

Algorithms

Value coeff 0.5
Entropy coeff 0.01

KL penalty coeff [0.5, 1.0, 2.0, 5.0,
10.0, 20.0, 50.0]

Clip coeff 0.1
PPO epochs 4
Minibatches 4

Optimization
Anneal learning rate True
Normalize advantage True
Max gradient norm 0.5

GAE Gamma 0.99
Lambda 0.95

Parallelization
Communication

Number of envs 4
Number of steps 512
Number of agents [1, 3]
Local updates [16, 32, 64, 128]

Agent
Communication

Communication penalty coeff [0.5, 1.0, 2.0,
5.0, 10.0, 20.0]

Policy aggregation mode

PR-PPO-WeightedAvg
PR-PPO-ClassicAvg
FedAvg-PPO-WeightedAvg
FedAvg-PPO-ClassicAvg

Table 2: Hyperparameter configuration for classical RL tasks experiments. Parameters in bold represent values
used in grid search.
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Category Parameter Value

Model
Base model Mistral-7B-v0.2
Model type AutoModelForCausalLM
Torch dtype bfloat16

LoRA

Rank / Alpha 16 / 32
Dropout 0.0
Target layers q_proj, k_proj, v_proj, o_proj
Task type CAUSAL_LM

Data
Dataset tldr-sft
Train / Eval size 16,722 / 1,500
Max sequence length 1024

Training
Epochs 2
Train / Eval batch size 4 / 4
Grad accumulation steps 4

Optimizer Optimizer AdamW
Learning rate 1× 10−5

Table 3: Training configuration for supervised finetuning (SFT) of a Llama 3.2B model using SFTTrainer
from TRL.

Category Parameter Value

Model
Base model Mistral-7B-v0.2-SFT
Model type AutoModelForSequenceClassification
Torch dtype bfloat16

LoRA

Rank / Alpha 16 / 32
Dropout 0.0
Target layers q_proj, k_proj, v_proj, o_proj
Task type SEQ_CLS

Data
Dataset tldr-preference
Train / Eval size 92,858 / 2,000
Max input length 1024

Training

Epochs 1
Train / Eval batch size 2 / 2
Grad accumulation steps 8
Gradient checkpointing False

Optimizer Optimizer AdamW
Learning rate 1× 10−5

Table 4: Training configuration for reward model (RM) on TL;DR using RewardTrainer from TRL.
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Category Parameter Value

Model

Model Mistral-7B-v0.2
Number of agents 7
Max response length 58
Data type bf16
Temperature 0.7

LoRA (Policy)

LoRA rank / alpha 64 / 16
Dropout 0.0
Target layers q_proj, k_proj, v_proj
Apply to MLP True
Apply to Output False

LoRA (Value Model)

LoRA rank / alpha 16 / 32
Dropout 0.0
Target layers q_proj, k_proj, v_proj
Apply to MLP True
Apply to Output True

PPO

PPO epochs 2
PPO batch size 32
Forward batch size 8
Grad accumulation steps 4
KL coeff [0.03, 0.1, 0.3]

Data

Dataset tldr-ppo
Train batch / steps 64 / 26 (1664 samples)
Train epochs 6
Eval batch / steps 8 / 16 (128 samples)

GAE (PPO)

Gamma 1.0
Lambda 0.95
Value coeff 0.1
Clip range 0.2

GRAE (GRPO) Group size 8

Reward Penalize no EOS True
Penalty value -3

Reference Model Update every N steps [1, 3, 7]
Self-preference [0.2, 0.6, 1.0]

Optimizer Type AdamW
Learning rate 1× 10−4

Table 5: Training parameters used for PR-PPO and PR-GRPO finetuning of Mistral-7B on the TL;DR task.
Parameters marked in bold denote values used in grid search for Expected Validation Performance calculation.
The main difference between PR-PPO and PR-GRPO is in the advantage estimation method: GAE vs GRAE.

Parameter Value
temperature 0.6
top_p 0.95

extra_body
enable_thinking True
top_k 20
min_p 0.0

Table 6: Inference parameters for Qwen3 LLM judge.
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Prompt template for LLM judge.

’’’
You are evaluating the performance of different language
models on a summarization task. Each model is given a Reddit
post and tasked with generating a concise and accurate
summary. Your job is to compare the outputs and select the
model that produces the best summary from a human perspective.

## Post

{{
"post": """\{prompt\}"""",

}}

## Model completions

The following are unordered completions with summaries
generated by different models. Each output is associated with
a unique model identifier.

{{
{{

"model_identifier": "0",
"output": """{response0}"""

}},
{{

"model_identifier": "1",
"output": """{response1}"""

}}

}}

## Task

Select the model that generated the best summary. Reply with
the identifier of the best model. Our evaluation will only
consider the last character of your answer, so ensure your
response contains only one of the identifiers and nothing
else (no quotation marks, no spaces, no new lines, ...).
’’’

Figure 6: Prompt template for the LLM judge.
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Reddit post

SUBREDDIT: r/relationships

TITLE: Do I [21F] have a right to sell something that my ex [21M] of four years gave/sold
me upon our breakup?

POST: I had a breakup six months ago with my then-boyfriend of four years. Upon breaking
up, we did the old breakup ritual of giving stuff back. He said I could keep a Takamine guitar
he had been letting me use, and requested that I only send him a check for $25 for it. I did, I
kept the guitar, and that was that.

I thought we parted on good terms, but now we don’t talk anymore as he broke off contact
with me quite bitterly (he’s somewhat emotionally unstable). I do play the guitar on a near
daily basis. I don’t know how much it’s actually worth.

This week, I came home from college, and my best friend just out of the blue *gave* me–for
free–a black Ibanez guitar that I absolutely LOVE. More so than the Takamine. For this
reason, I’m thinking of selling the Tak–I really don’t need two guitars, I could use a little
extra money, and I think I have appropriate enough closure on the relationship that I could
leave this part of it behind.

My problem is I don’t know if it’s acceptable to sell something that someone who you no
longer have contact with gave you. If it’s not acceptable, then I apologize if my question (or
I) was rude in any way.

Reference summary from the dataset

Ex-boyfriend gave (sold) me a guitar, have recently acquired a better guitar and am thinking
of selling the one he gave (sold) to me. What do?

PR-PPO

Ex of four years gave me guitar upon breakup, now received another guitar from friend and
considering selling first guitar, unsure if it’s acceptable to sell something someone gave me
before we stopped talking.

Single PPO

After breakup ex gave me guitar now im considering selling it, question if its acceptable to
sell something given by someone no longer in contact.

Figure 7: Reference summarization sample for PPO.
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Reddit post

SUBREDDIT: r/college

TITLE: Are scholarships and grants awarded per semester or year?

POST: I am starting my third semester of college soon and do not quite understand how
grants/scholarships work.

My first was in the previous academic school year over the summer and I just completed my
second at the start of the current academic year.

From what I’ve read online it sounds like scholarships and grants are awarded one time a year,
but are split up into two parts and refunded to you in those parts at the start of each semester.

So I got $2,500 from just the Pell Grant last semester(which went straight into my bank
because scholarships pay for it all), does that mean ill get another check of $2,500 at the start
of this upcoming semester or was that first check all i get for the year? The wording on the
sites for these grants is a little strange.

Reference summary from the dataset

Are grants split into 2 parts and given to me at separate times throughout the academic year
or is all of it given at the start?

PR-GRPO

I got $2,500 refunded to me from grants at the start of last semester, wondering if ill get
another check of that amount at the start of upcoming semester or just got all for the year.

Single GRPO

Got grant money last semester, unsure if ill get check w same amount at start of upcoming
semester or was that all i get for year from grant.

Figure 8: Reference summarization sample for GRPO.
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E REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our results. All experiments were
conducted using publicly available frameworks and datasets, including Hugging Face TRL library
(von Werra et al., 2020), Torchtune (torchtune maintainers and contributors, 2024), and the trl-
lib/tldr, trl-lib/tldr-preference datasets. In addition, we release our handcrafted instruments —
PrePPO, TunePPO, FedRL, and the anonymous-organization/tldr-thematic dataset — as anonymous
supplementary repositories. A detailed description of the learning pipeline and algorithms is provided
in the main text, with complete hyperparameter tables (following Dodge et al. (2021)) included
in the appendix. Data preprocessing procedures, training configurations, and evaluation protocols
are described in detail in the main text and supplementary materials. Together, these resources are
intended to facilitate full replication of our results.

F LLM USAGE STATEMENT

Large Language Models (LLMs) were used as an assistive tool throughout the preparation of this
paper. Specifically, LLMs were employed for text formatting, grammar correction, rephrasing, and
improving the clarity and flow of the narrative. They were also used to accelerate literature review
by providing preliminary summaries of relevant work, which were subsequently cross-checked
against the original sources by the authors. LLMs were not used for research ideation, model design,
experimental execution, or analysis of results. The authors take full responsibility for the final content
of the paper.
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https://huggingface.co/datasets/trl-lib/tldr
https://huggingface.co/datasets/trl-lib/tldr
https://huggingface.co/datasets/trl-lib/tldr-preference
https://anonymous.4open.science/r/PrePPO-864F/README.md
https://anonymous.4open.science/r/TunePPO-1088/README.md
https://anonymous.4open.science/r/ForkedPPO-5CDF/README.md
https://huggingface.co/datasets/anonymous-organization/tldr-thematic
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