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ABSTRACT

In this paper, we propose a Dual-Domain Diffusion based Progressive Style Ren-
dering (D3PSR) method to achieve style rendering from the semantic Domain
A to the style Domain B. Although some existing models obtain style transfer
in Image-to-Image (I2I) translation, little is known about how computers draw
images due to the black box problem of classic generative model. Leveraging
diffusion models for I2I style transfer, for the first time, we have implemented a
progressive method to visualize the intermediate steps in image generation, which
provides interpretability for style transfer. As far as we know, we are the first to
innovatively use the diffusion model for dual-domain image style transfer. Nu-
merous experimental results and comparisons with state-of-the-art methods in the
same field show that our approach has extremely superior performance in styliza-
tion and extraordinary preservation of semantic structure.

1 INTRODUCTION

Figure 1: The step-by-step process of our diffusion based progressive style rendering method. (a)
and (f) indicates the content image and target style image from Domain A and Domain B, respec-
tively. (b) ∼ (e) stand for the output images generated by our progressive rendering model. (g) ∼ (j)
shows the detail of output images selected by white box.

Since the remarkable work on StyleGAN (Karras et al., 2019), image-to-image (I2I) style transfer
has been a matter of huge interest, where a content image can often be rendered into a new artistic
style using a referenced image (Deng et al., 2022). Currently, one of the critical challenges in the
field of I2I style transfer lies in how to accurately extract essential feature information of images
from two different domains (Zhou et al., 2021), and combine them together creatively.

Early work (Efros & Freeman, 2001; Bruckner & Gröller, 2007) can generate stylized images based
on texture synthesis. However, the process of texture rendering requires complex computations. The
emerged popular solutions in the past few years include convolution neural networks (CNNs) based
generative models (Gatys et al., 2016; Gatys et al., 2017) that extract the style and content targets
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by the pre-trained network to optimize the joint content and style loss of pending images. Later,
various CNN-based style transfer methods were proposed (Kolkin et al., 2019; Wang et al., 2020;
Kalischek et al., 2021; Chen et al., 2021; Hong et al., 2021) that are highly efficient for feature
extraction in source image. Similarly, Zhu et al. (2017) proposed cycle-GAN to realize the unpaired
translation based on generative adversarial nets (Goodfellow et al., 2020). However, none of these
works demonstrate a step-by-step progressive process in their image rendering. In this paper, by
leveraging diffusion based models, we aim to develop a progressive I2I rendering tool capable of
step-by-step rendering while preserving semantic structures of the source image.

Figure 2: The ’U’ shape architecture of our D3PSR method. Content Image denotes the input data
from Domain A that contains the semantic structure we need to extract and Style Image denotes
the input data from Domain B that contains the styles such as texture of painting strokes we try to
imitate. s1, s2, s3, s4, s5 denote 5 style feature targets extracted from Domain B image by utilizing
the CNN as an encoder. c1 denotes content feature target extracted from Domain A image. The
deeper the set in the ’U’ shaped structure the more feature targets will be imposed. The guided
noises modify the image generation, which is guided with different number of si and c1 depending
on certain set. d controls the size of each set which depends on the total step T of the diffusion
model. The final output is obtained at the midst layer on the bottom of the ’U’ shape architecture.

Traditional convolutional neural network (CNN)-based generative models (Goodfellow et al., 2020;
Kingma & Welling, 2013; Makhzani et al., 2015) achieve high performance at the expense of inter-
pretability, and black boxes have become a fatal flaw in CNNs (Zhang & Zhu, 2018). The diffusion
model differs from these algorithms in that it gives us a way to visualise intermediate steps while
obtaining the final generated image.

Diffusion model is based on the mathematical framework described in the work (Sohl-Dickstein
et al., 2015). Since Ho et al. (2020) provided the foundational work for subsequent diffusion mod-
els, numerous works have emerging on this base, such as Denoising Diffusion Implicit Models
(DDIMs) (Song et al., 2020), Classifier-Free Guidance Diffusion (CFGD) (Ho & Salimans, 2022),
GLIDE (Nichol et al., 2021), OpenAI’s DALL E 2 (Ramesh et al., 2022) and Google’s Imagen (Sa-
haria et al., 2022). In the past year, many remarkable works have been done. Choi et al. (2021)
proposed Iterative Latent Variable Refinement (ILVR) method, by adding reference to the DDPM
generation process, they can control the generation and obtain high-quality images at the same time.
Kawar et al. (2022) proposed an efficient and unsupervised posteriori sampling method for image
restoration, coloring and deblurring. Wolleb et al. (2022) proposed a method to guide the denoising
process by an external gradient, which achieves to guide the image generation to the desired out-
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put. Su et al. (2022) proposed Dual Diffusion Implicit Bridges (DDIBs), which train two diffusion
models independently on each domain and leverage two ordinary differential equations (ODEs) for
image translation. However, there is so far no diffusion model based work that can achieve stunning
I2I style transfer via the precise rendering of textures and style with semantic structure preservation.

In this work, to address the black box problem of traditional image generation models, we creatively
leverage diffusion models to provide interpretability to the image generation process. As shown
in Fig. 2, for the first time, we propose a novel Dual-Domain Diffusion based Progressive Style
Rendering (D3PSR) method that progressively deepens the style rendering while extraordinary pre-
serving the semantic structure of the source image. Unlike existing diffusion-based methods that use
the U-net (Ronneberger et al., 2015) to obtain a noise predictor εθt , we use a CNN as an encoder to
extract style and content feature targets from both domains , and then impose these feature targets to
guide the noise εθt (xt|

∑5
i=1 si, c1). Consequently, we can make controlled stylistic modifications

to the generated image, allowing for a style transfer on the original image while retaining the desired
semantic structure.

In summary, our substantial contributions includes:

• Creatively proposing the novel D3PSR method which provides the interpretability for I2I
translation task by visualizing the intermediate steps.

• For the first time implementing the two-domain I2I style transfer with diffusion model.

• Comprehensive experiment results and detailed comparisons with state-of-the-art methods
demonstrating that D3PSR outperforms baseline methods and obtains extraordinary styl-
ization while preserving remarkable semantic structure.

2 PRELIMINARY ON DIFFUSION MODELS

Figure 3: The basic structure of diffusion model

Denoising diffusion probabilistic models (DDPM) (Ho et al., 2020) is a parameterized Markov chain
that uses variational inference to generate samples that match the data after a finite time T . Given
a data point sampled from the true data distribution x0 ∼ q(x), the forward process incrementally
adds noise εt ∼ N (0, I) over 0 ∼ T time steps, producing a series of noisy samples: x1, ..., xT .
The approximate posterior q(x1:T |x0) of the diffusion model is a fixed Markov chain, which can be
written as follows:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1) (1)

Adding Gaussian noise to the data is controlled by variance schedule β1, ..., βT . When βt is
small enough, the q(xt−1|xt) of the reverse process also abides Gaussian distribution. Therefore,
q(xt|xt−1) can be written as:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (2)

The derivation process uses the reparameterization trick proposed in VAE works (Kingma &
Welling, 2013; Rezende et al., 2014), given αt := 1 − βt and ᾱt :=

∏T
i=1 αi, xt can be expressed

as:
xt =

√
ᾱtx0 +

√
1− ᾱtε̄t: where ε̄t ∼ N (0, I) (3)

Then, sampling of xt can be written as:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I) (4)

3



Under review as a conference paper at ICLR 2023

Because the distribution of the whole dataset q(xt−1|xt) is intractable, the original work (Ho
et al., 2020) approximates this conditional probability with pθ for the reverse diffusion process:
pθ(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1|xt), where θ denotes the learning parameters. The loss function

can be expressed as follows:

Lsimple
t = Ex0,ε[∥ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)∥2] (5)

where εθ is a set of T function with trainable parameters θ(t). Figure 3 shows the structure of classic
diffusion model, where an image can be generated from noises or vice versa.

3 THE PROPOSED DIFFUSION BASED PROGRESSIVE STYLE RENDERING

In this section, we present our Dual-Domain Diffusion based Progressive Style Rendering (D3PSR)
method. The architecture of our model is shown in Figure 2. The traditional diffusion model is
inspired by the non-equilibrium thermodynamic entropy increase, where noise is continuously added
to a given input data in the forward process to finally obtain an isotropic Gaussian noise. In principle,
such kind of model can only handle single-domain image problems, since in the forward process,
sampling of xt can be expressed as:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I) (6)

which means the generated data is only sampled from one domain. Even if labels or conditions
ytarget are imposed during the training process, the required crucial information between two do-
mains cannot be efficiently and flexibly combined such as Choi et al. (2021). In order to efficiently
integrate the feature between two domains, we innovatively propose a double-end input ’U’ shape
structure.

Existing diffusion-based methods leverage the U-net (Ronneberger et al., 2015) to obtain a noise
predictor εθt , we creatively utilize a CNN as an encoder to extract style and content feature targets
(s1, s2, s3, s4, s5, c1) from two domains, and then impose these feature targets to guide the noise
εθt (xt|

∑5
i=1 si, c1) (the number i of the imposed feature targets depends on the certain set). Since

we can only extract 6 feature targets (6 ≪ T ) on different convolution layers of CNN and aim to
visualize the intermediate steps, we divide the time step T into 11 sets and impose different number
of feature targets on each set to obtain a progressive visualization of the output changing. In the
U-shaped structure, the closer of the set to the bottom, the more feature targets will be imposed.
Thus, we need to have 11 sets to ensure the gradually style rendering effect, so that we can impose
(1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1) feature targets on each set by order.

Given data xA sampled from the true data distribution pd(XA) from Domain A (XA), we continu-
ously add noise εt ∼ N (0, I) over 0 ∼ T time steps. x1, ..., xt denote the samples in each step. On
the basis of diffusion model as illustrated in section 2 and Eq. (6), we can obtain the sampling of
xlast as q(xlast|xA), where xlast denotes the data sampled from the last step of the our model with
input data xA. Given xB sampled from the true data distribution pd(XB) from Domain B (XB), we
can obtain the Kullback-Leibler Divergence (Kullback, 1997) between the true target distribution
and the data distribution generate by our model:

LB = KL[pd(xB)||q(xlast|xA)] (7)

which guides the diffusion model to rendering the data from XA →XB .

Let v be the convolutional layers codes vector extracted by utilizing a convolution neural network
(CNN) as encoder and pθ(v) be the prior distribution we want to impose on the codes with CNN
parameters θ, conditional style and content targets codes distribution can be obtained as pθ(vc|xA)
and pθ(vs|xB). Then the aggregated distribution of pθ(vc) and pθ(vs) can be obtained as pθ(vc) =∫
pθ(vc|xA)pθ(xA)dxA and pθ(vs) =

∫
pθ(vs|xB)pθ(xB)dxB that represent the content and style

targets codes distribution, respectively.

Given xt sampled from the intermediate steps xt ∼ q(xt|xA) in diffusion model and pθ(vc|xt),
pθ(vs|xt) be the encoding distributions. Then the aggregated distribution of content and style codes
of sampled data can be written as:

qθ(vc) =

∫ ∫
pθ(vc|xt)q(xt|xA)pθ(xA)dxtdxA (8)
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qθ(vs) =

∫ ∫
pθ(vs|xt)q(xt|xB)pθ(xB)dxtdxB (9)

To combine the dual-domain feature, we joint the content and style targets codes losses then obtain
optimal dual-domain targets codes loss function with Kullback-Leibler divergence (Kullback, 1997)
as follows:

Ldual = KL[pθ(vc)||qθ(vc)] +KL[pθ(vs)||qθ(vs)]
= µLcontent + λLstyle

(10)

where µ, λ denotes the weight coefficients for style and content codes vector loss respectively, with
which the progressive stylized images can be more rationally and optimally controlled. The first term
represents the texture and style loss compared with targets from XA and the second term represents
the content loss compare with the target from XB .

As shown in Figure 2, we separate the whole steps into 11 data sets (set 1−set 11). Since we expect
to obtain the progressive style transfer of different step and observe the style rendering pattern of
neural network, we impose different numbers of style and content targets at different step.

As we have the diffusion sampling q(xt|xA), we sample the data xmid from the midst layer of our
model, then the midst data distribution can be obtained from q(xmid|xA). In order to make the
content preservation of the midst output results adjustable, we introduce the parameter ϕ defined as
the Control Factor (CF) of semantic structure from XA. Then we can obtain the optimal function for
the midst data distribution loss based on the true data distribution pd(xA) from XA as follows:

LA = KL[pd(xA)||q(xmid|xA)] (11)

Ultimately, with Eq. (7), Eq. (10) and Eq. (11) we can obtain the final object function for our
D3PSR models, as shown below:

Ltotal = Ldual + ϕLA + LB (12)

where the fist term represents the convolutional layers feature loss between [v̇c ∼ pθ(v̇c|xt), v̇s ∼
pθ(v̇s|xt)] (with xt ∼ q(xt|xA) ) and [vc ∼ pθ(vc|xA), vs ∼ pθ(vs|xB)] (with xA ∼ pd(XA),
xB ∼ pd(XB)) from dual-domain extracted by our model, the second and third term denotes the
Kullback-Leibler divergence (Kullback, 1997) between the true data sampled from true distribution
representing XA & XB and the data sampled from midst step of diffusion model. In experiments, we
can optimize the midst output by adjusting the hyperparameters µ, λ, ϕ to be as close to the target as
possible on an artistic level (XB) while preserving the semantic structure (XA). Meanwhile, we can
also modify these three hyperparameters to control each intermediate step, so as to make the whole
style rendering process in a visibly progressive way.

4 EXPERIMENTS

In this section, we will give details of our experimental setup designs as well as our experimental
results. We selected a collection of classic artworks, set them as Domain B, used them to train
our D3PSR model to extract their style targets s1, s2, s3, s4, s5. A collection of nature landscape
pictures is set as Domain A, processed by our model to obtain content target c1. As shown in Figure
2, we use d to control the size of each set, in this experiment, we set d = 50. To better demonstrate
the performance of our model, MS-COCO (Lin et al., 2014) was used as the content dataset and
WikiArt (Phillips & Mackintosh, 2011) is used as the style dataset in section 4.1.

4.1 COMPARISON AGAINST OTHER STATE-OF-THE-ART METHODS

We compared our approach with StyTr2 (Deng et al., 2022), StyleFormer (Wu et al., 2021), AdaAttN
(Liu et al., 2021), SANet (Park & Lee, 2019) and AdaIN (Huang & Belongie, 2017), as shown in
Figure 4. We use the Unifying Structure and Texture Similarity proposed by Ding et al. as the
basis for our analysis, which is a method for analysing the structural and textural similarity between
images. Compared to this method, Mean Absolute Error (MAE), Multi-Scale Structural Similarity
(MS-SSIM) (Wang et al., 2003) and some other metrics such as SSIM (Wang et al., 2004) are
relatively inaccurate and perform weakly in analysing texture similarity between images, since they
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Table 1: Quantitative comparison of content and style DISTS value with other approaches
Ours StyTr2 StyleFormerAdaAttN SANet AdaIN

sample 1
DS 0.26431 0.26852 0.3574 0.3244 0.2709 0.2871
DC 0.42511 0.4384 0.4745 0.4423 0.4569 0.43082

sum 0.68941 0.70692 0.8319 0.7667 0.7278 0.7179
sample 2
DS 0.24821 0.28032 0.3492 0.3832 0.2879 0.3327
DC 0.4522 0.4531 0.5285 0.36141 0.4864 0.44422

sum 0.70041 0.73342 0.8777 0.7446 0.7743 0.7769
sample 3
DS 0.30132 0.3121 0.3160 0.3016 0.29382 0.3394
DC 0.27801 0.3311 0.33102 0.3293 0.3510 0.3686
sum 0.57931 0.6432 0.6470 0.63092 0.6448 0.7080
sample 4
DS 0.4009 0.29692 0.3222 0.3415 0.28571 0.3389
DC 0.39021 0.4940 0.5674 0.46722 0.5214 0.4848
sum 0.79112 0.79091 0.8896 0.8087 0.8071 0.8237

rely on a simple introjection mapping and tends to make more conservative estimates which produces
a superposition of all possible results.

The Table 1 shows the DISTS value (Ding et al., 2020) of the output images to target images after
style transfer by approaching different methods, where DS , DC indicates the distance to content
and style images from two domains. In the table, the first and second ranked scores are bolded
and superscripted with 1 and 2, respectively. From the quantitative result in the table 2, we can
see that our model is reliably in first or second place. Notably, SC shows that our model performs
remarkably effectively in terms of preserving semantic content and is basically in the first place,
which means that our model can obtain efficient stylistic rendering of the images while preserving
valid content features from the images in Domain A, which means that our model is particularly
distinguished in terms of its semantic recognizability performance.

Figure 4: The comparison of our model against several famous I2I style rendering approaches.

Further, the distinctive feature of our model compared to other methods is the conditioning mech-
anism which enable the liberty to modify the degree of texture rendering over semantic structure
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Table 2: Quantitative DISTS value with different set
set 1 set 2 set 3 set 4 set 5 set 6

sample 1
DS 0.3892 0.3671 0.3438 0.3444 0.3323 0.4309
DC 0.3673 0.3968 0.4043 0.3928 0.3939 0.3325
sample 2
DS 0.3788 0.3312 0.3059 0.2654 0.2637 0.2817
DC 0.2016 0.2437 0.2674 0.3108 0.3109 0.2810
sample 3
DS 0.4041 0.3571 0.3206 0.3101 0.3086 0.3089
DC 0.2989 0.3573 0.3952 0.4123 0.4039 0.3889
sample 4
DS 0.4242 0.3661 0.3716 0.3607 0.3597 0.3663
DC 0.3433 0.4333 0.4748 0.4662 0.4716 0.4492
sample 5
DS 0.3637 0.3165 0.2914 0.2851 0.2892 0.3561
DC 0.3673 0.3968 0.4043 0.3928 0.3939 0.3325
Average
DS 0.3920 0.3476 0.3267 0.3131 0.3107 0.3488
DC 0.3279 0.3739 0.3977 0.4046 0.4065 0.3601

preservation. Our model is allowed to freely obtain various extent of stylized results by modifying
the Control Factor (CF) ϕ to control the trade off between structure and texture. We illustrate the
effect of ϕ on style transfer in detail in Appendix B.

4.2 PROGRESSIVE STYLE TRANSFER EVALUATION

Here, we used style images and content images from two domains to evaluate the progressive style
rendering performance of our model. We selected the samples from set 1− 6 as examples shown
in Figure 5. These progressive style rendering samples demonstrate how our D3PSR model paints
step by step.

Figure 5: The progressive changes at each step in the style rendering process of our D3PSR model.

Qualitative evaluation. As we can observe from Figure 5, from set 1 to set 5 as more and more
style feature targets were imposed, the stylization in the images became more apparent (e.g. brush
strokes and textures), but also the semantic structure from the original content images became more
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Figure 6: The DISTS value varies over different
sets.

Figure 7: The effect of low/high level feature tar-
gets on structure during progressive rendering.

Table 3: Quantitative comparison of content and style DISTS value with other approaches
Ours StyTr2 AdaAttN SANet AdaIN

General 4.161 4.082 3.69 3.03 3.13
Texture 4.011 3.982 3.16 3.56 3.28
Structure 4.341 4.09 4.162 3.03 3.41

blurred. However, with the imposition of ϕ and content target features, the semantic structure in
set 6 becomes much sharper than in the previous output.

Quantitative evaluation. From the Table 2, it can be observed that as more style feature targets
(s1, s2, s3, s4, s5) are progressively imposed on each set, the style DISTS value (Ding et al., 2020)
is getting smaller which indicates that the generated images increasingly closely resemble the target
style images in terms of texture and style. In contrast, the content DISTS value is increasing which
indicates that the generated images lose more and more information about their semantic structure
as they are stylised, which also results in a gradual blurring of contours from the content image.
However, with the guidance of the content feature target (c1) and Control Factor ϕ in set 6, the
content DISTS value plummets, meaning that the image becomes more similar to the content image
from Domain A in terms of semantic structure (the generated images in Figure 5 indicate that the
semantic structure in set 6 becomes sharper). At the same time, the style DISTS value becomes
larger, demonstrates that there is a drop in performance at the stylised level compared to the previous
set.

From the above analysis and Figure 6 we can reveal that in the process of style transfer there is a
trade-off between preserving the semantic structure and stylization, which means that it is difficult to
preserve the structure and maximise the style transfer at the same time. This is where the superiority
of our model emerges, as we can have the freedom to control the extent to which the semantic
structure is preserved through Control Fctor ϕ. For example, we can select results from set 6 when
we require the output image with clearer content and less style; we can select results from set 5
when we need strong stylization and do not require much sharp semantic structure.

4.3 USER STUDY

To further evaluate the performance of our method, we conduct a user study with StyTr2 (Deng
et al., 2022), AdaAttN (Liu et al., 2021), SANet (Park & Lee, 2019) and AdaIN (Huang & Belongie,
2017) as baselines. We set up our questionnaire with reference to the work (Li & Chen, 2009), the
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questionnaire format with specific options definition is described in Appendix D. The options in the
questionnaire have: A. General: how well the image is stylized; B. Texture: how well the texture
strokes are imitated; C. Structure: whether the image preserves its content structure after the styliza-
tion. There are total 117 participants involved in our user study, including 56 males and 61 females,
with random ethnic sampling. The professional background of the participants covers art workers,
computer science researchers and the general public. We utilized the images for comparison in the
section 4.1 and 20 images were randomly selected for each participant to rate. The minimum usage
time for each marking is 20 seconds. Finally we counted the results obtained and recorded them in
Table 3. In the table, the first and second ranked scores are bolded and superscripted with 1 and 2,
respectively. From the table 3 we can clearly observe that our method outperforms other methods
in terms of overall style rendering, learning of stylised brushstroke textures, and semantic structure
preservation. In particular, the preservation of the semantic structure is extremely impressive.

5 DISCUSSION

A major benefit of our model is its nature to preserve semantic structures in its style rendering pro-
cess. So far, all existing diffusion model utilized the U-Net to obtain the noise predictor εθt . Inspired
by the work (Gatys et al., 2016), we utilized CNN as an encoder to extract the style and content
features (s1, s2, s3, s4, s5, c1) from target style image and semantic structure image to guidance the
noise εθt (xt|

∑5
i=1 si, c1) added to each step, and the number of features imposed depends on the

set index. With this method, our model performs well in simulating the style texture of target style
images while preserving semantic structure of original content image.

As shown in Figure 7, we can clearly notice that the outline of the hand and human face is becoming
sharper with the imposing of more feature targets extracted by the CNN. In the original image,
the woman wears a bracelet on her wrist. Since during learning, set 3 does not joint the target
c1 or control factor (CF) ϕ which adjusts the sharpness of the original semantic structure in the
output image and is more specifically defined in Methods section, the bracelet does not appear in
the rendered result. Also, because set 3 is only imposed with the lower-level vector of CNN, it is
more biased to simulate the local small structure texture from Domain B, which results in a cluster
of small structures near the nose and mouse. In contrast, set 6 adds more high-level features (s4, s5)
and imposed with the content target (c1); moreover, set 6 is imposed with CF ϕ, which controls the
extent of the semantic structure. Consequently, we can see that the bracelet and the hand curve, two
semantic structures in the source image, are nicely preserved in their structures in the final rendering
results in set 6, which demonstrates the superior performance of our method.

6 CONCLUSION

In this work, we proposed a novel Dual-Domain Diffusion based Progressive Style Rendering
(D3PSR) method for I2I style transfer. Utilizing the feature of diffusion model that can visualize
each step and possess remarkable performance in image generation, our D3PSR method provides
interpretability for the neural network in image generation, allowing the model to imitate human
artists in drawing step by step to a certain extent, providing substantial contribution to I2I style
transfer that was treated mostly as a black box in previous methods. To the best of our knowledge,
our work is the first one to implement two-domain style transfer with diffusion model, achieving
remarkable stylization while extraordinarily preserving the semantic structure of the source image.
Numerous experimental results and comparisons with state-of-the-art method, further demonstrate
the superiority of our method in the field of I2I style transfer.
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A NON-MARKOVIAN FORWARD PROCESS

In this section, we give a more detailed mathematical basis for our model. Different from the classic
DDPM Ho et al. (2020) which is a parameterized Markov Chain (as shown in Figure 3), our Dual-
Domain Diffusion based Progressive Style Rendering (D3PSR) method leverages input data from
dual-domain (as shown in Figure 2), which means any step in a finite time (T ) sequence is no longer
just related to the previous step, but also to the future step.

Given data xA, xB sampled from the true data distribution pd(XA), pd(XB) from dual-domain
XA, XB respectively, we continuously add noise εt ∼ N (0, I) starting from xA over 0 ∼ T time
steps. x1, ..., xt denote the samples in each step. Unlike DDPM Ho et al. (2020) which ends up
with an isotropic Gaussian distribution, our goal is to generate data that approximate the target data
distribution sampled from XB in the last step.

Based on the discussion in section 2 and section 3, we can obtain the sampling of xlast as
q(xlast|xA).Then the Kullback-Leibler Divergence (Kullback, 1997) between the true target dis-
tribution and the data distribution generated by our model can be written as:

LB = KL[pd(xB)||q(xlast|xA)]

=
∑

x∈XA,x∈XB

[
pd(xB)log

pd(xB)

q(xlast|xA)

]

= Ex∼pd(xB),x∼pd(xA)

[
log

pd(xB)

q(xlast|xA)

] (13)

which guides the model to reconstruct the data from XA →XB .

In order to impose condition on the intermediate steps, we need to extract the target code vector
v. As discussed in section 3, the aggregated distribution of pθ(vc) and pθ(vs) can be obtained as
follows:

pθ(vc) =

∫
p(vc|xA)pθ(xA)dxA (14)

pθ(vs) =

∫
p(vs|xB)pθ(xB)dxB (15)

that denotes the content and style target codes vector distribution, respectively.

Here, we discuss the relation of our target codes vector v with the latent code z in VAE (Kingma &
Welling, 2013; Rezende et al., 2014). In original work of VAE, consider an observed data sample x,
modeled as being drawn from pvae(x|z) with latent code z. pvae(z) denotes the prior distribution
of latent space, which follows isotropic distribution in general. pvae(z|x) denotes the posterior
distribution on the latent code, which is intractable. In original work, Kingma & Welling (2013) let
this variational approximate posterior be a multivariate Gaussian:

logq(z|x(i)) = logN (z;µ(i), σ2(i)I) (16)

Then VAE utilize the optimal function as follows:

Lvae = KL[qvae(x, z)||pvae(x, z)]

= Ex∼qvea(x)

[
−
∫

qvae(z|x)logp(x|z)dz +KL[qvae(z|x)||pvae(z)]
]

= Ex∼qvea(x)

[
− logpvae(x|z) +KL[qvae(z|x)||pvae(z)]

] (17)

However, Pu et al. (2017) proposed that the above optimization approach has certain errors due to the
cumulative posterior on latent codes:

∫
pvae(z|x)qvae(x)dx ≈

∫
qvae(z|x)qvae(x)dx = qvae(z) is
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Figure 8: The outputs with different control factor ϕ.

usually different from pvae(z). Since qvae(z|x) is a multivariate Gaussian, there will be a certain
error when learning complex data samples, and as the data set increases, the error will become
cumulatively larger.

In our model, convolution neural networks (CNNs) utilized as an encoder like VAE to extract the
target code vector. Different from the generation method of VAE, the data generated by diffusion
model is incrementally adding noise. With more learning time and longer steps in the diffusion
model, the performance of diffusion model to fit the observed distribution by superimposing noise
can be better than multivariate Gaussian method of VAE. Which means that the diffusion sampling
process (shown as follows) could be more accurate.

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I) (18)

In our model, to realize the progressive style rendering with structure preservation, we impose the
target codes vector v that obtained with Eq. (14) and Eq. (15) on the intermediate steps. Given
xt ∼ q(xt|xA) sampled from the intermediate steps in diffusion model and pθ(vc|xt), pθ(vs|xt) be
the encoding distributions. Then the aggregated distribution of content and style codes of sampled
data can be written as:

qθ(vc) =

∫ ∫
pθ(vc|xt)q(vc|xA)pθ(xA)dxtdxA (19)

qθ(vs) =

∫ ∫
pθ(vs|xt)q(vs|xB)pθ(xB)dxtdxB (20)

Different from the VAE (Kingma & Welling, 2013; Rezende et al.), whose goal is to reconstruct data
x by the multivariate Gaussian distribution qvae(z|x), we utilize diffusion model to generate data
samples with condition v. The optimal function of dual-domain target codes loss has been expressed
in Eq. (10)

B CONTROL FACTOR

Further, the distinctive feature of our model compared to other methods is the conditioning mech-
anism which enable the liberty to modify the degree of texture rendering over semantic structure
preservation. Our model is allowed to freely obtain various extent of stylized results by modifying
the Control Factor (CF) ϕ to control the trade-off between structure and texture as shown in Figure
8.

Qualitative evaluation. By modifying the ϕ value, the semantic structure and level of stylisation in
the generated image is adjusted. Figure 8 shows that as the ϕ value increases, the semantic structure
of the image becomes sharper (e.g. windows and doors of buildings, outlines of statues, etc.), while
at the same time the extent of stylisation decreases (e.g. brush strokes and textures in the image,
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Table 4: DISTS value with different ϕ
ϕ = 0 ϕ = 10 ϕ = 100 ϕ = 1000

sample 1
DS 0.2825 0.3161 0.4179 0.4613
DC 0.4574 0.4286 0.3544 0.2994
sample 2
DS 0.2760 0.2859 0.3111 0.3424
DC 0.3859 0.3630 0.3312 0.2822
sample 3
DS 0.2521 0.2617 0.2723 0.2986
DC 0.4098 0.3969 0.3841 0.3558

Figure 9: The DIST value with different control factor ϕ.

etc.). It is noticeable that we cannot aggressively reduce the ϕ value in pursuit of a stronger stylistic
transition, as too strong a stylisation can cause some areas of the image to overflow (e.g. when ϕ = 1
and 10 in sample 1 and 2). Similarly, the ϕ value should not be increased too large in an attempt to
obtain a sharper semantic structure, as this would make the generated image insufficiently stylised
(e.g. the stylised strokes and textures from Domain B are weak at ϕ = 1000 in samples 1 and 3).

Quantitative evaluation. Table 4 records the DISTS value Ding et al. (2020) of generated images in
Figure 8 in compare with the target style image and original content image, then can obtain the line
graph as shonw in Figure 9. From the quantitative analysis we can observe a clear trade-off between
style DIST and content DIST, which means that stylisation enhancement is accompanied by a loss
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of semantic structural information, with the sharper the semantic structure leading to a weakening
of stylisation.

C UNPAIRED IMAGE-TO-IMAGE TRANSLATION

We evaluated our model to using a set of classic art paintings as Domain B, from which we ex-
tracted textures and styles to render the contents of different nature landscape pictures in Domain A.
Figure 10 shows the fantastic results from our D3PSR model.

Figure 10: The rendering results over several typical artistic styles from our D3PSR model.

In Figure 10, we show the results obtained by rendering different nature scenes using different
painting styles. The resulting images are taken from set 6 from the midst of the ’U’ shape structure.
The styles used are, in chronological order from left to right, Sunflower (Van Gogh) representing
Post-Impressionism, Boats at Collioure (André Derain) representing Fauvism/Neo-Impressionism,
Reapers (Kazimir Severinovich Malevich) representing Neo-Suprematism, The Weeping Woman
(Pablo Ruiz Picasso) representing Cubism and architecture pen art painting from Rumeysa Şahin.

From the results we can observe that the output images consist of both the style and texture from
Domain B while preserving the semantic contents in Domain A, retaining the contour features of
the large structures inheriting from Domain A. Moreover, as shown in Figure 11, the clouds in the
black frame maintain the the semantic structure of clouds after the stylistic rendering. Meanwhile,
the output image inherits the dot painting characteristics of Domain B (shown by the white circle)
in the painting style and texture of the small structures.

D USER STUDY

In this section, we give an example as shown in Figure 12 to illustrate the setting of the questions and
the description of the options in our questionnaire. Each participant in this user study understands
the content and purpose of our research.
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Figure 11: The rendered global and local features from two domains using our D3PSR model

Figure 12: Example of questionnaire
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