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Abstract

Replaying past experiences has proven to be a highly effective approach for averting catas-
trophic forgetting in supervised continual learning. However, some crucial factors are still
largely ignored, making it vulnerable to serious failure, when used as a solution to forgetting
in continual reinforcement learning, even in the context of perfect memory where all data of
previous tasks are accessible in the current task. On the one hand, since most reinforcement
learning algorithms are not invariant to the reward scale, the previously well-learned tasks
(with high rewards) may appear to be more salient to the current learning process than the
current task (with small initial rewards). This causes the agent to concentrate on those
salient tasks at the expense of generality on the current task. On the other hand, offline
learning on replayed tasks while learning a new task may induce a distributional shift between
the dataset and the learned policy on old tasks, resulting in forgetting. In this paper, we
introduce RECALL, a replay-enhanced method that greatly improves the plasticity of existing
replay-based methods on new tasks while effectively avoiding the recurrence of catastrophic
forgetting in continual reinforcement learning. RECALL leverages adaptive normalization on
approximate targets and policy distillation on old tasks to enhance generality and stability,
respectively. Extensive experiments on the Continual World benchmark show that RECALL
performs significantly better than purely perfect memory replay, and achieves comparable or
better overall performance against state-of-the-art continual learning methods.

1 Introduction

Continual learning, an emerging machine learning paradigm, examines multiple learning tasks in sequence,
where the data distribution and learning objective change through time and is considered an important
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(a) First task performance (b) Second task performance (c) First task forgetting

Figure 1: The evaluation matrices in terms of success rate with Perfect Memory on pairwise sequential
tasks from Continual World. The numbers 0 � 9 indicate identi�cations of ten di�erent tasks, and the
mapping between them and the proper task names are shown in Figure 7 in Appendix A. For example,
if the identi�cations of two tasks is 5 and 0 respectively, it means that the learning is conducted on task
sequenceM = [ HANDLE-PRESS-SIDE-V1, HAMMER-V1]. We use the same colorbars to visualize the
performance in (a) and (b) and a reversed version to show the level of forgetting in (c), where darker red
indicates worse results. The average values of (a), (b), and (c) are0:87,0:44 and 0:02, respectively. It is clear
that naive experience replay with perfect memory can guarantee the stability to a large extent on RL tasks.
Nevertheless, it still exhibits a certain degree of forgetting on some tasks. Even worse, it su�ers from severe
plasticity restriction on the learning of new tasks.

step toward arti�cial general intelligence (Parisi et al., 2019; De Lange et al., 2021; Wang et al., 2023). An
e�ective continual learning system must emphasize two potentially con�icting optimization goals. First, when
a learned scenario is encountered again, the agent is expected to immediately demonstrate good performance,
ideally as good as before. Second, when a new scenario arises, the agent should conduct quick learning and
gain new skills without being limited by the maintenance of previously acquired skills. These con�icting
objectives � adapting to new tasks while maintaining the knowledge of old ones, correspond to the challenge
known as the plasticity-stability dilemma in arti�cial and biological neural systems (Mirzadeh et al., 2020).

Catastrophic forgetting is the quintessential failure mode of continual learning in which the acquisition of new
knowledge gradually overwrites old knowledge, resulting in desirable plasticity but limited stability. Inspired
by the memory consolidation mechanism of hippocampus replay inside biological systems, replaying previous
data is considered a simple yet e�ective way to mitigate catastrophic forgetting (Rebu� et al., 2017; Isele &
Cosgun, 2018; Rolnick et al., 2019; Korycki & Krawczyk, 2021), and has been widely adopted in supervised
continual learning (Rebu� et al., 2017; Isele & Cosgun, 2018; Korycki & Krawczyk, 2021).

Di�erent from supervised learning with naturally well scaled loss functions (e.g., cross entropy) and stationary
training distribution, reinforcement learning (RL) is a goal-oriented online sequential decision-making and
learning process (Sutton & Barto, 2018). It involves iteratively interacting with the environment and collecting
experiences, typically with the most recently learned policy, and then using these experiences to improve the
policy to maximize the reward function. In this process, the distribution of collected experiences is inherently
non-stationary, due to the constantly updated policy. Recently, a technique named CLEAR demonstrates the
e�ectiveness of experience replay for reducing catastrophic forgetting in continual RL (Rolnick et al., 2019).
However, other related works (Woªczyk et al., 2021; 2022) show that replay-based continual RL methods
su�er from rather poor performance on the newly proposed Continual World benchmark. Based on this, we
conducted a systematic experimental study on related tasks. As shown in Figure 1, the naive migration of
replay-based methods to continual RL may not perform well on learning sequential tasks by a single learning
system with limited representation capacities, even in the context of perfect memory where all experiences
are kept in the bu�er. More speci�cally, inspired by the stated balancing issue of multiple tasks competing for
limited resources of a single learning system in multi-task deep reinforcement learning (Hessel et al., 2019),
the saliency of a task for the agent increases with the magnitude and density of the rewards observed in
that task, which may di�er dramatically across tasks or at various learning phases within the same task.
This factor is likely to encourage the agent to focus on tasks that have been learned well in the past instead
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of the current task that presents small and sparse initial rewards (suppressing plasticity). Additionally,
using past experiences from old tasks as o�ine data via RL loss to prevent forgetting is a typical o�ine RL
paradigm due to the absence of further interaction. It may cause standard o�-policy RL methods to fail due
to overestimation of values induced by the distributional shift between the dataset and the learned policy,
degrading the well learned performance on previous tasks and resulting in forgetting (disrupting stability).

In this paper, we address the aforementioned two issues to provide an e�ective replay-enhanced method for
continual RL settings. We propose Replay-Enhanced ContinuAL rL (RECALL), an improved version of the
naive replay for continual RL, which incorporates the adaptive normalization mechanism on approximate
targets used in value function learning and the policy distillation technique for o�ine policy preservation.
The main contributions of this work are summarized as below:

ˆ Scale invariant replay-enhanced continual RL. We investigate the issue of limited plasticity for
subsequent tasks in replay-based continual RL settings, and introduce adaptive normalization on the
targets to balance the contribution of each task to the agent's updates, alleviating this limitation.

ˆ Policy distillation for o�ine policy preservation. We apply the distillation technique to the
policies for old tasks to prevent forgetting caused by o�ine training, further enhancing stability.

ˆ Empirical validation on Continual World. Extensive experiments on a suite of realistic robotic
manipulation tasks are conducted to validate the overall superiority of our method over baselines in
terms of average performance, forgetting, and forward transfer.

2 Related Work

Catastrophic forgetting has long been recognized as a key issue in neural networks, particularly in situations
where sequential tasks are learned continuously (Ring, 1997; French, 1999). Recently, a variety of approaches
have been investigated to combat catastrophic forgetting in continual learning. According to how the
knowledge of previous tasks is retained and leveraged, they can be classi�ed into three major categories:
parameter isolation methods, regularization-based methods, and replay methods.

Parameter isolation methods This family of works separately optimizes an isolated parameter subspace
dedicated to each task throughout the network, where the architectural resources can be �xed (Fernando
et al., 2017; Mallya & Lazebnik, 2018) or incrementally expanded (such as the network capacity (Rusu et al.,
2016b) or a policy library (Wang et al., 2019; 2022)). These strategies avoid catastrophic forgetting by
protecting all weights for the previous tasks from being perturbed by new information but knowledge transfer
and generalization between tasks might be restricted, with unnecessary redundancy in the network structure.

Regularization-based methods Regularization-based approaches protect learned knowledge from forget-
ting by imposing an extra regularization term on the learning objective, penalizing large updates on important
weights (Kirkpatrick et al., 2017; Kessler et al., 2020) or policies (Rusu et al., 2016a; Traoré et al., 2019;
Zhang et al., 2022; 2023) for previous tasks. This family of works requires careful design of regularization
terms and �ne-tuning of their associated coe�cients. It is easy to implement and tends to perform well on
small sets of tasks, but still faces performance trade-o�s on new and old tasks as their number increases.

Replay methods Experience replay is a basic and powerful strategy for reinforcing the signi�cance of
experiences from past tasks during continual learning. The core idea of replay methods is to store samples
of past tasks (Isele & Cosgun, 2018; Rolnick et al., 2019; Riemer et al., 2019; Korycki & Krawczyk, 2021)
or generate pseudo-samples from a generative model (Shin et al., 2017; Atkinson et al., 2021) to maintain
knowledge about the past in the network. These previous task samples are replayed while learning new tasks
in the form of either being reused as model inputs for rehearsal (Shin et al., 2017; Isele & Cosgun, 2018;
Rolnick et al., 2019; Korycki & Krawczyk, 2021; Atkinson et al., 2021) or constraining the optimization of
new tasks (Rolnick et al., 2019; Riemer et al., 2019), yielding decent results against catastrophic forgetting.

While storing past experiences in replay methods can be memory-intensive, it is an attractive strategy when
memory is su�cient due to its simplicity and excellent performance in reducing forgetting. A theoretical
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analysis (Knoblauch et al., 2020) has demonstrated the necessity of perfect memory to resolve the NP-hard
problem of optimal continual learning. It also shows that replaying or reconstructing observations from
previously observed tasks is likely to be more e�ective in developing reliable continual learning algorithms
in comparison with regularization-based approaches. Meanwhile, some studies (Rebu� et al., 2017; Isele
& Cosgun, 2018; Rolnick et al., 2019) show that it is su�cient to preserve a small quantity of selective
experiences using sampling tactics such as reservoir sampling when memory is severely constrained.

Most existing replay-based studies concentrate on classi�cation tasks, whereas only a few works look into
deep RL. CLEAR (Rolnick et al., 2019) provides preliminary evidence on the value of replay within the deep
RL framework, but it has only been empirically validated on tasks with comparable reward scales, without
any consideration of how the scale of rewards across sequential tasks may a�ect the learning process. Recent
works (Woªczyk et al., 2021; 2022) on a benchmark suite for continual RL, called Continual World, indicate
that even with perfect memory, common replay-based methods might still su�er from signi�cant failures
on certain robotic tasks. By contrast, our proposed RECALL seeks to o�er an e�ective remedy to tackle
this challenge, inspired by the power of knowledge distillation (Rusu et al., 2016a; Zhang et al., 2022) and
adaptive normalization for target scale invariant updates (van Hasselt et al., 2016; Hessel et al., 2019).

3 Preliminaries

Figure 2: An example of the learning curve of
Perfect Memory showing poor plasticity.

Reinforcement Learning RL is commonly studied fol-
lowing the MDP framework, which is de�ned as a tuple
M = hS; A ; P; R;  i , whereS is the set of states;A is the set
of actions; P : S � A � S ! [0; 1] is the transition probability
function; R : S � A � S ! R is the reward function, and
 2 [0; 1] is the discount factor. At each time step t 2 N, the
agent moves fromst to st +1 with probability p(st +1 jst ; at )
after it takes action at , and receives instant rewardr t . The
goal of RL is to �nd an optimal policy from experimental
trials and relatively simple feedbacks received, enabling the
agent to actively interact with the environment to obtain
maximum cumulative reward.

Soft Actor Critic Similar to (Woªczyk et al., 2022), we use the soft actor-critic (SAC) (Haarnoja et al.,
2018a;b) as the underlying RL algorithm in this paper. It is an o�-policy algorithm with experience replay,
based on the maximum entropy principle, which is especially bene�cial for replay-based continual learning.
Formally, let � � (at jst ) denote the policy network with parameters � and Q� (st ; at ) denote the Q-value
function with parameters � . Then, the Q-function can be trained to minimize the soft Bellman residual

L Q (� ) = E(st ;a t ) �D

h1
2

�
Q� (st ; at ) �

�
r (st ; at ) +  Est +1 � p[V�� (st +1 )]

� � 2i
; (1)

where V�� (st ) = Ea t � � �

�
Q �� (st ; at ) � � log � � (at jst )

�
is the soft state value function and � is the temperature

parameter that determines the relative importance of the entropy term versus the reward. The policy can be
updated by minimizing

L � (� ) = Est �D
�
Ea t � � � [� log(� � (at jst )) � Q� (st ; at )]

�
: (2)

Notably, under the replay-based continual RL setting, replay bu�er D here stores both new experiencesDnew

collected from the current task and replayed experiencesDold from the historical ones, i.e.,D = Dnew [ D old .

Perfect Memory Replay in Continual World To examine the replay method in the context of continual
RL, we systematically conduct preliminary experiments on 100 sequential tasks created through permuting
two of the ten di�erent realistic robotic manipulation tasks (see appendix A) from the latest Continual World
(Woªczyk et al., 2021) benchmark, where each task lasts for 1M steps in its corresponding environment.
We assume a multi-head network setting, and keep all the experiences in the replay bu�er to allow for a
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generous replay, dubbed Perfect Memory in (Woªczyk et al., 2021). After ending the training on both tasks,
we evaluate the �nal performance (success rate) on the �rst and second tasks as well as the forgetting of the
�rst task. The results are shown in Figure 1 from which we can observe the following �ndings:

ˆ Decent stability. According to Figure 1(a) (0:87 average success rate), the agent does perform well
on the majority of �rst tasks after training is complete, which demonstrates that replaying experiences
of past tasks, as in supervised learning, can also e�ectively ensure the stability of continual learning
algorithms in RL scenarios.

ˆ Limited plasticity. Unfortunately, as shown in Figure 1(b) (0:44 average success rate), the agent
shows no (31 out of 100 tasks have a success rate of zero) or weak (25 out of 100 tasks have a success
rate of less than0:5) success on a considerable percentage of the second tasks, indicating that the
plasticity is severely restricted. Figure 2 illustrates an example of the training curve in terms of
success rate for the current task (the one being trained) that su�ers such plasticity limitation, in
which the agent does not get any e�ective learning on the second task. More details about the losses
and Q value curves for the corresponding current task are provided in Appendix C.1 (see Figure 8).
Additionally, we conducted four experiments in Appendix C.1 that used actor and critic networks
that were either shared or not shared among tasks. The results (See Table 5) demonstrate that the
limited plasticity su�ered by Perfect Memory is primarily due to the shared critic network. Inspired
by the studies in (van Hasselt et al., 2016; Hessel et al., 2019), we mainly focus on addressing the
adverse e�ects on value function optimization caused by signi�cant di�erence in the initially observed
reward scale of the subsequent task relative to that of well learned old tasks.

ˆ Mild forgetting. While the agent performs well on most of the �rst tasks, Figure 1(c) (0:02 average
forgetting) shows that there are still a few tasks that exhibit some degree of forgetting (the success
rate decreased by over0:1 in 13 out of 100 tasks) and the maximum forgetting reached0:32. The
learning curves for the performance of these 13 tasks are provided in Appendix C.2 (see Figure
9). We also veri�ed that the forgetting shown here is essentially a result of the o�ine learning for
replayed tasks in Appendix C.2 by conducting further experiments of Perfect Memory using o�ine
and online replay modes, respectively (See Table 6).

4 The RECALL Method

RECALL employs multi-head neural network training for both actor and critic, with each head being
responsible for a speci�c task, which is widely used in continual learning. We de�ne a task sequence
M = [ M 1; M 2; : : : ; M N ] of N tasks, whereM i ; i 2 [1; 2; : : : ; N ] is a speci�c MDP that symbolizes the i th

task encountered during learning. When thei th task emerges, the aim of RECALL is to update parameters
� = f �; � g of policy � � and value function Q� to achieve maximum return on all encountered tasks
[M 1; M 2; : : : ; M i ]: � � = arg max �

P i
j =1 JM j (�) , where JM j is the expected return on taskM j .

In RECALL, we propose to utilize adaptive normalization on targets to balance the contribution of each task
to the agent's updates to ensure the plasticity for new tasks, together with the distillation technique to the
policies for old tasks to prevent forgetting caused by o�ine training. The core components of the training
framework are shown in Figure 3.

The PopArt method is a technique speci�cally used to address the value function scaling problem in deep RL
(van Hasselt et al., 2016). It scales the value function to ensure that its output is within a suitable range,
which helps to improve training stability and e�ciency. In multi-task RL, agents typically switch between
di�erent tasks, hence the need to train di�erent value functions for each task. Since each task may have
di�erent reward signals, the output range of each task's value function may also di�er. This leads to the
value function scaling problem (Hessel et al., 2019). Similarly, in replay-based continual RL, value functions
on both current and past task experiences need to be learned while learning a new task. Since each task
also generally have di�erent reward scales, we can view this process as a multi-task learning on current and
historical tasks. Therefore, applying the PopArt method to address the value function scaling problem in
replay-based continual RL is reasonable and necessary.

5



Published in Transactions on Machine Learning Research (11/2023)

Figure 3: The core components of the RECALL scheme. For each input(st ; at ), the normalized Q network
ultimately outputs only the normalized Q value of the head associated with the task to which it belongs.

To this end, we employ PopArt normalization, developed to derive a scale invariant algorithm for value-based
RL, to facilitate learning on new tasks. Concretely, we consider optimizing a normalized value function
Q�; norm = [ Q1

�; norm ; : : : ; Qi
�; norm ; : : : ; QN

�; norm ] with N output heads, one for each task in the task sequence.
In the following content, for each input (st ; at ), we default to using the normalized Q value of the head
corresponding to the task to which it belongs and updating the related parameters. Based on this, we omit
the subscript i for clarity. Given the targets denoted as Q ��;� , we conduct an a�ne transformation on it to

get normalized targets as eQ ��;� = � � 1(Q ��;� � � ), where � and � are scale and shift parameters. Notably, in
the normalized Q network, each head has its own(�; � ) learned from the data of the associated task. Under
this setting, the loss of Q�; norm can be expressed as:

L Q norm (� ) = E(st ;a t ) �D new [D old

h1
2

�
Q�; norm (st ; at ) � eQ ��;� (st ; at )

� 2
i
; (3)

where

Q ��;� (st ; at ) = r (st ; at ) +  Est +1 � p
�
Ea t +1 � � � [�Q ��; norm (st +1 ; at +1 ) + � � � log � � (at +1 jst +1 )]

�
; (4)

and �Q ��; norm (st ; at )+ � is the unnormalized function of the target normalized Q networkQ ��; norm . Accordingly,
the loss function of the policy network is rewritten as:

L �; norm (� ) = Est �D new [D old

�
Ea t � � � [� log(� � (at jst )) � Q�; norm (st ; at )]

�
: (5)

Here, the loss functionsL Q norm (� ) and L �; norm (� ) are applied on experiences from both old and new tasks.
In general, our experiments use a 50-50 experience mixture of novel and replayed tasks, as recommended in
(Rolnick et al., 2019). For each sample, only the head associated to the task that it belongs to in the value
and policy networks are updated. In addition, after each SAC update, RECALL is required to incrementally
update the scale and shift parameters to achieve adaptively targets rescaling:

� t = � t � 1 + � t (Q ��;� � � t � 1) and � 2
t = � t � � 2

t ; where � t = � t � 1 + � t (Q2
��;� � � t � 1); (6)

where � t estimates the second moment of the targets, and� t 2 [0; 1] is the step size. Then, the last layer
weights (w; b) of the corresponding head in the normalized Q network also need to be updated accordingly to
preserve the outputs of the unnormalized function precisely after the scale and shift change:

w0 = � � 1� w; b0 = � � 1(�b + � � � 0): (7)

In addition, in order to prevent forgetting caused by o�ine training, we employ the policy distillation
technique on the replayed tasks to preventing the distributional shift between the past experiences and the
learned policies of old tasks while learning a new task. Speci�cally, the data collection depends only on the
policy used for interaction rather than the value function, and the agent generally achieves a good policy on
the corresponding task at the end of each task's learning period. Therefore, we only need to add an additional
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Algorithm 1 Replay-Enhanced ContinuAL rL (RECALL)
Input : task sequenceM = [ M 1; M 2; : : : ; M N ], policy � � , value function Q� , replay bu�er Dold = Dnew = ;
Parameter : regularization coe�cient for policy distillation �
Output : approximate optimal policy and value function � �

� , Q�
�

1: Train SAC with PopArt normalization on task M 1:
2: Interact with environment of task M 1 and store transitions in Dnew

3: Sample mini-batches fromDnew and minimize L Q norm (� ), L �; norm (� ).

4: for task M i , i = 2 ; ::; N do
5: Gather actor outputs � old (�jst ) for each statest � D new and populate Dold

6: Dnew  ;
7: Interact with environment of task M i through the best-return exploration at the beginning of each

task and store transitions in Dnew

8: Train SAC on task M i , with the following modi�ed update rule:
9: Sample[st ; at ; r t ; st +1 ] � D old [ D new and compute L Q norm (� ), L �; norm (� )

10: Sample[st ; � old (�jst )] � D old and compute L � distill (� )
11: Minimize L Q norm (� ) + L �; norm (� ) + � L � distill (� ).
12: end for
13: return � �

� , Q�
� .

regularization term to the loss for policy (actor) network optimization to penalize the KL divergence between
the historical and current policy distributions on the old tasks when training the policy network. Formally,
this corresponds to adding the distillation loss function:

L � distill (� ) = Est �D old

�
KL [� � (�jst ); � old (�jst )]

�
: (8)

Note that L � distill (� ) is only applied on replayed experiences of old tasks, and� old is the historical policy
obtained after ending the training on the associated replayed task. In our implementations, before each new
task training starts, we compute � old (�jst ) for all experiences of the previous task through the latest learned
policy and store them along with the corresponding experiences inDold for subsequent use.

The Complete Scheme Finally, we combine Equations 3, 5, and 8 to form a joint optimization scheme.
Namely, we solve the continual RL problem based on the experience replay method with the following
optimization objective:

min
�;�

L Q norm (� ) + L �; norm (� ) + � L � distill (� ) (9)

where the hyperparameter� is the policy distillation regularization coe�cient to control the deviation degree
between the historical and current policy distributions of old tasks. The complete procedure of RECALL is
described in Algorithm 1. As an additional note, at the beginning of each new task, we initialize the weights
of its associated output head in both actor and critic to the already learned head that obtained the best
return on that task to facilitate exploration and adaptation. This is referred to as best-return exploration
in (Woªczyk et al., 2022) and has been shown experimentally to be a non-negligible SAC component for
promoting forward transfer.

5 Experimental Evaluation

We conduct comprehensive experiments on a suite of realistic robotic manipulation tasks from the Continual
World benchmark (De Lange et al., 2021), seeking to answer the overarching questions:

ˆ Q1: Can RECALL eliminate plasticity limitation while increasing stability?

ˆ Q2: Does RECALL achieve better continual reinforcement learning compared with state-of-the-art
methods?
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ˆ Q3: How do the adaptive normalization and policy distillation mechanisms a�ect the continual RL
performance, respectively?

ˆ Q4: How is RECALL's scalability regarding longer task sequences?

5.1 Experimental Settings

Datasets We perform our experiments on the new Continual World benchmark (De Lange et al., 2021)
designed as a testbed for evaluating RL agents with respect to challenges incurred by the continual learning
paradigm. It consists of ten realistic robotic manipulation tasks. The structure of the observation and action
spaces remains the same between tasks, allowing for multi-task learning with a single learning system. For all
tasks, the robot must either manipulate one object with a variable goal position, or two objects with a �xed
goal position. The observation space is represented as a 12-dimensional vector containing the coordinates of
the robot's gripper and relevant objects. The action space is a 4-dimensional vector describing the gripper
movement. Reward functions are shaped to make each task solvable and the binary success metric is used to
indicate whether the desired goal has been successfully accomplished. The tasks are arranged in sequences
and the training on each task lasts for 1M steps. Continual World provides eight triplet sequences of three
tasks to allow rapid experimenting, while a longer sequence contains 10 di�erent tasks arranged in a �xed
order (called CW10), and CW20 consists of CW10 repeated twice. See Appendix A for more details.

Baselines We evaluate our method in comparison to �ve standard baselines: (1)Fine-tuning is the vanilla
continual learning baseline where the model is trained on sequential tasks without any concern of preventing
forgetting or facilitating forward transfer. (2) EWC (Kirkpatrick et al., 2017) is a classic regularization-
based method that uses the Fisher information matrix to approximate the importance of each weight and
apply quadratic regularization to network weights to reduce forgetting. (3) PackNet (Mallya & Lazebnik,
2018) strictly prevents the performance from deteriorating on the previous tasks by iteratively pruning,
retraining, and freezing parts of the network after each task. It is a parameter isolation method, showing
good performance on Continual World (Woªczyk et al., 2021). (4)ClonEx (Woªczyk et al., 2022) is another
regularization-based method combining behavioral cloning and best-return exploration, which demonstrates
the best average performance and forward transfer on Continual World. (5)Perfect Memory (Woªczyk et al.,
2022) is a simple replay method primarily investigated in this paper which keeps all data from past tasks in
the SAC's bu�er to avoid forgetting. We abbreviate it to PM in our experimental results for simplicity.

Implementations We use an implementation of the underlying RL algorithm SAC (Haarnoja et al.,
2018a;b; Zhou et al., 2022) based on (Woªczyk et al., 2021), in which the maximum entropy coe�cient�
is tuned automatically according to the adjustment rule provided in (Haarnoja et al., 2018b). We follow
exactly the same experimental setup (including network structure and hyperparameters) from (Woªczyk et al.,
2022) for all baselines and the common settings for RECALL, ensuring fair comparison. The actor and critic
are implemented as two separate MLP networks, each with 4 hidden layers of 256 units and assuming the
multi-head setting. The di�erence is that we keep the actor's single-layer head structure consistent with that
in (Woªczyk et al., 2022) while designing the critic's output head with 3 hidden layers to avoid introducing
too much bias in new tasks during the value function approximation process. The model was trained on each
task for 1M steps, and performance was evaluated by testing the current policy on all tasks every 20k steps.
The SAC exploration phase takes10k steps. By default, we employ the best-return exploration in RECALL
that reuses old policy head to facilitate exploration when the new task begins, as used by ClonEx, as well as
inherit the corresponding critic head for faster adaptation. For each task sequence, we search method-speci�c
regularization coe�cient � for policy distillation of RECALL in f 0:01; 0:1; 1; 10; 100g, and the �nal selected
value is 10. Replay bu�er size is set to be consistent with that in Perfect Memory and batch size is 128. All
experiments were conducted with 5 di�erent seeds and we also provide90% con�dence intervals through
bootstrapping. More details can be found in Appendix B.

Metrics Following the convention in (Woªczyk et al., 2021), we use average performance, forgetting, and
forward transfer across all tasks as the primary metrics for evaluation. Speci�cally, assumepi (t) 2 [0; 1] as
the success rate of taski at time t, and that each of the N tasks is trained for � steps, so that (1) the average
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(a) First task performance (b) Second task performance (c) First task forgetting

Figure 4: The evaluation matrix for RECALL on pairwise sequential tasks from Continual World. The
average values of (a), (b), and (c) are0:91, 0:85 and � 0:02, respectively. It is clear that RECALL considerably
enhances the adaptability of the model for new tasks, and also performs well on eliminating mild forgetting,
in comparison with Perfect Memory shown in Figure 1.

performance at time t is P(t) = 1
N

P N
i =1 pi (t); (2) the forgetting metric is measured by the average di�erence

between the performance after training on each task versus the performance at the end of training on all tasks,
denoted asF = 1

N

P N
i =1 pi (i � �) � pi (N � �) ; (3) the forward transfer for all task is FT = 1

N

P N
i =1 FTi , where

FTi is the forward transfer of task i , de�ned as a normalized area between its training curveAUCi and the

reference training curveAUCb
i from training from scratch, i.e., FTi = AUC i � AUC b

i
1� AUC b

i
, AUCi = 1

�

Ri � �
( i � 1) � � pi (t)dt,

AUCb
i = 1

�

R�
0 pb

i (t)dt, and pb
i (t) 2 [0; 1] is the reference performance.

5.2 Plasticity and Stability

Figure 5: An example of the learning curve of
RECALL showing good plasticity.

Our �rst experiment was designed to demonstrate the e�-
cacy of RECALL on facilitating plasticity on new tasks as
well as reducing forgetting from o�ine learning (Q1). We
apply RECALL to 100 pairs of sequential tasks used in the
preceding preliminary experiments and summarize the results
in Figure 4. Our method e�ectively promotes the learning
on second tasks, while eliminating mild forgetting caused
by o�ine learning (see Perfect Memory in Figure 1 for ref-
erence). More precisely, RECALL reduces the number of
second tasks with success rate less than0:5 to 4 from 56 for
Perfect Memory, whilst achieving the dropo� in success rate
of less than0:1 on all 100 �rst tasks ( 87 for Perfect Memory).
Accordingly, an example of the current task's training curve
of RECALL is provided in Figure 5. When the task switches, the agent can quickly adapt to the new
environment, showing signi�cantly better plasticity for new tasks than Perfect Memory.

The fact that RECALL can achieve plasticity and stability simultaneously appears to go against the
conventional wisdom about the plasticity-stability trade-o�, which maintains that the plasticity of arti�cial
and biological neural systems is improved at the expense of stability, whereas too much stability will in turn
impede the e�cient learning of new knowledge. We argue that the aforementioned perception is fundamentally
based on the premise that the capacity of the neural system is fully and well exploited. That is, no additional
factors a�ect the model's performance except for the plasticity-stability dilemma. However, the issue of
limited plasticity discussed in this study is caused by the magnitude of rewards rather than excessive attention
to stability. Likewise, the mild forgetting that we alleviate is not brought on by too much focus on plasticity,
but rather by the o�ine learning for historical tasks. As a result, it is feasible to address these two parallel
issues at the same time to encourage the dual enhancement of plasticity and stability, which is also supported
by the results presented in Figure 4.
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Table 1: Average performance, forgetting, and forward transfer of all the methods on the triplet sequences
(CW3). Here and in related tables, the 90% con�dence intervals are provided through bootstrapping. The
best possible performance (con�dence intervals are considered) for each task is marked in boldface.

Average Performance

CW3 Fine-tuning EWC PackNet ClonEx PM RECALL

1 0:30 [0.29, 0.31] 0:71 [0.56, 0.85] 0:70 [0.60, 0.82] 0:84 [0.77, 0.91] 0:52 [0.40, 0.59] 0:90 [0.88, 0.92]

2 0:31 [0.29, 0.33] 0:58 [0.54, 0.62] 0:86 [0.83, 0.89] 0:90 [0.79, 0.96] 0:74 [0.65, 0.83] 0:92 [0.89, 0.94]

3 0:24 [0.22, 0.26] 0:42 [0.30, 0.51] 0:61 [0.53, 0.69] 0:73 [0.64, 0.81] 0:26 [0.15, 0.36] 0:91 [0.90, 0.93]

4 0:33 [0.32, 0.33] 0:75 [0.62, 0.89] 0:53 [0.43, 0.62] 0:88 [0.83, 0.93] 0:28 [0.24, 0.32] 0:87 [0.84, 0.89]

5 0:33 [0.33, 0.33] 0:54 [0.45, 0.62] 0:74 [0.65, 0.84] 0:89 [0.79, 0.97] 0:35 [0.28, 0.46] 0:92 [0.90, 0.94]

6 0:27 [0.24, 0.29] 0:82 [0.74, 0.89] 0:40 [0.32, 0.49] 0:74 [0.69, 0.80] 0:33 [0.25, 0.45] 0:91 [0.89, 0.93]

7 0:33 [0.33, 0.33] 0:80 [0.68, 0.92] 0:91 [0.86, 0.95] 0:90 [0.81, 0.99] 0:90 [0.78, 0.97] 0:95 [0.93, 0.96]

8 0:33 [0.33, 0.33] 0:41 [0.34, 0.52] 0:81 [0.67, 0.93] 0:81 [0.62, 0.93] 0:50 [0.40, 0.61] 0:95 [0.93, 0.97]

mean 0:31 0:63 0:70 0:84 0:49 0:92

Forgetting

CW3 Fine-tuning EWC PackNet ClonEx PM RECALL

1 0:59 [0.58, 0.61] 0:10 [-0.02, 0.22] 0:02 [0.00, 0.04] 0:02 [-0.01, 0.07] 0:02 [0.01, 0.04] � 0:01 [-0.03, 0.02]

2 0:53 [0.51, 0.55] 0:26 [0.23, 0.29] � 0:05 [-0.09, 0.00] � 0:04 [-0.08, -0.01] 0:04 [-0.04, 0.14] 0:00 [-0.02, 0.02]

3 0:61 [0.59, 0.63] 0:24 [0.21, 0.27] � 0:06 [-0.13, 0.01] 0:01 [-0.06, 0.09] � 0:02 [-0.07, 0.02] � 0:04 [-0.06, -0.01]

4 0:53 [0.51, 0.54] � 0:03 [-0.10, 0.07] � 0:06 [-0.09, -0.02] � 0:03 [-0.09, 0.04] 0:02 [-0.01, 0.05] 0:01 [-0.01, 0.03]

5 0:55 [0.49, 0.59] 0:03 [-0.01, 0.07] 0:01 [-0.05, 0.07] � 0:01 [-0.05, 0.03] 0:01 [0.00, 0.02] � 0:03 [-0.05, -0.02]

6 0:58 [0.56, 0.60] 0:04 [-0.03, 0.12] 0:02 [0.01, 0.03] 0:05 [-0.02, 0.13] � 0:01 [-0.03, 0.01] � 0:03 [-0.05, 0.00]

7 0:55 [0.51, 0.58] 0:13 [0.00, 0.27] 0:02 [-0.01, 0.05] 0:04 [-0.04, 0.12] � 0:01 [-0.03, 0.00] � 0:01 [-0.03, 0.01]

8 0:57 [0.53, 0.61] 0:16 [0.04, 0.26] 0:02 [-0.04, 0.08] 0:05 [-0.01, 0.12] 0:00 [-0.02, 0.02] � 0:06 [-0.09, -0.03]

mean 0:56 0:12 � 0:01 0:01 0:01 � 0:02

Forward Transfer

CW3 Fine-tuning EWC PackNet ClonEx PM RECALL

1 0:14 [0.05, 0.21] � 0:10 [-0.24, 0.02] � 0:23 [-0.47, 0.03] 0:32 [0.24, 0.40] � 0:96 [-1.32, -0.62] 0:35 [0.29, 0.41]

2 0:22 [0.11, 0.32] 0:03 [-0.13, 0.19] � 0:10 [-0.22, 0.01] 0:32 [0.03, 0.52] � 0:09 [-0.25, 0.09] 0:47 [0.44, 0.50]

3 0:33 [0.29, 0.38] 0:03 [-0.19, 0.16] 0:02 [-0.19, 0.17] 0:31 [0.16, 0.42] � 0:57 [-0.68, -0.47] 0:49 [0.45, 0.53]

4 0:40 [0.36, 0.44] 0:26 [0.21, 0.29] � 0:13 [-0.34, 0.08] 0:41 [0.23, 0.53] � 0:29 [-0.37, -0.21] 0:45 [0.41, 0.48]

5 0:51 [0.42, 0.59] 0:12 [-0.08, 0.31] 0:23 [0.15, 0.31] 0:48 [0.32, 0.62] � 0:19 [-0.33, -0.07] 0:52 [0.46, 0.57]

6 0:31 [0.18, 0.42] 0:19 [-0.02, 0.35] � 0:15 [-0.48, 0.08] 0:41 [0.26, 0.53] � 0:70 [-1.02, -0.42] 0:55 [0.52, 0.58]

7 0:32 [0.27, 0.38] 0:28 [0.20, 0.36] 0:08 [-0.01, 0.17] 0:56 [0.50, 0.63] � 0:10 [-0.43, 0.14] 0:55 [0.48, 0.62]

8 0:47 [0.39, 0.54] � 0:09 [-0.42, 0.16] � 0:01 [-0.50, 0.38] 0:30 [-0.81, 0.17] � 0:44 [-0.78, -0.14] 0:52 [0.47, 0.55]

mean 0:34 0:09 � 0:03 0:39 � 0:42 0:49

5.3 Performance Evaluation

Here we systematically perform a quantitative evaluation of RECALL against the �ve standard baseline
methods (Fine-tuning, EWC, PackNet, ClonEx, and PM) (Q2). We apply them to eight triplets (referred
to as CW3) and their twice repeated version (referred to as CW6) for fast experimenting and summarized
the results in Table 1 and Table 2. The networks used in all task sequences are exactly the same. From the
results, we �nd that RECALL obtained slightly better overall performance than ClonEx, the state-of-the-art
method, and signi�cantly better performance than the other four baselines, across all three metrics of average
performance, forgetting, and forward transfer.
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Table 2: Average performance, forgetting, and forward transfer of all the methods on CW6.

Average Performance

CW6 Fine-tuning EWC PackNet ClonEx PM RECALL

1 0:10 [0.06, 0.14] 0:71 [0.57, 0.84] 0:79 [0.71, 0.87] 0:87 [0.81, 0.92] 0:47 [0.44, 0.50] 0:95 [0.94, 0.95]

2 0:16 [0.16, 0.17] 0:59 [0.41, 0.74] 0:80 [0.74, 0.86] 0:90 [0.85, 0.95] 0:50 [0.45, 0.55] 0:98 [0.97, 0.99]

3 0:11 [0.09, 0.12] 0:61 [0.57, 0.65] 0:50 [0.42, 0.59] 0:81 [0.75, 0.85] 0:14 [0.13, 0.14] 0:87 [0.86, 0.88]

4 0:17 [0.17, 0.17] 0:56 [0.53, 0.58] 0:86 [0.82, 0.89] 0:85 [0.81, 0.88] 0:17 [0.13, 0.21] 0:89 [0.86, 0.90]

5 0:17 [0.17, 0.17] 0:42 [0.33, 0.52] 0:75 [0.61, 0.87] 0:91 [0.86, 0.96] 0:32 [0.29, 0.37] 0:97 [0.97, 0.98]

6 0:13 [0.13, 0.14] 0:75 [0.65, 0.85] 0:64 [0.57, 0.71] 0:74 [0.70, 0.79] 0:28 [0.17, 0.39] 0:95 [0.94, 0.97]

7 0:17 [0.17, 0.17] 0:96 [0.95, 0.96] 0:87 [0.79, 0.93] 0:96 [0.94, 0.98] 0:85 [0.75, 0.95] 0:97 [0.95, 0.99]

8 0:17 [0.17, 0.18] 0:51 [0.43, 0.59] 0:82 [0.67, 0.96] 0:97 [0.96, 0.98] 0:64 [0.61, 0.65] 0:95 [0.92, 0.97]

mean 0:15 0:64 0:75 0:88 0:42 0:94

Forgetting

CW6 Fine-tuning EWC PackNet ClonEx PM RECALL

1 0:71 [0.67, 0.75] 0:07 [0.00, 0.13] 0:00 [-0.02, 0.02] 0:02 [-0.01, 0.05] 0:01 [-0.02, 0.04] � 0:05 [-0.06, -0.04]

2 0:73 [0.71, 0.75] 0:20 [0.11, 0.29] 0:00 [-0.02, 0.01] 0:02 [-0.02, 0.06] 0:05 [0.00, 0.11] � 0:05 [-0.06, -0.03]

3 0:70 [0.68, 0.72] 0:02 [-0.05, 0.08] � 0:03 [-0.07, -0.01] 0:04 [0.01, 0.08] 0:00 [-0.01, 0.01] � 0:05 [-0.07, -0.04]

4 0:59 [0.54, 0.64] 0:05 [0.03, 0.06] � 0:04 [-0.07, 0.00] 0:02 [-0.01, 0.06] � 0:02 [-0.05, 0.01] � 0:04 [-0.06, -0.02]

5 0:74 [0.70, 0.77] 0:01 [-0.01, 0.02] � 0:04 [-0.08, -0.01] 0:03 [-0.02, 0.08] � 0:01 [-0.04, 0.02] � 0:04 [-0.05, -0.04]

6 0:68 [0.62, 0.74] 0:01 [-0.03, 0.06] � 0:01 [-0.03, 0.00] 0:08 [0.02, 0.15] � 0:02 [-0.05, 0.01] � 0:03 [-0.03, -0.02]

7 0:75 [0.73, 0.78] � 0:06 [-0.09, -0.03] � 0:03 [-0.08, 0.02] � 0:01 [-0.03, 0.01] 0:07 [0.00, 0.15] � 0:01 [-0.03, 0.00]

8 0:71 [0.64, 0.75] 0:05 [-0.01, 0.11] � 0:03 [-0.06, 0.00] � 0:01 [-0.03, 0.01] 0:01 [0.00, 0.02] � 0:05 [-0.06, -0.03]

mean 0:70 0:04 � 0:02 0:02 0:01 � 0:04

Forward Transfer

CW6 Fine-tuning EWC PackNet ClonEx PM RECALL

1 0:00 [-0.11, 0.11] � 0:02 [-0.18, 0.14] � 0:09 [-0.19, 0.00] 0:34 [0.22, 0.45] � 0:92 [-1.04, -0.82] 0:36 [0.32, 0.40]

2 0:26 [0.19, 0.33] � 0:02 [-0.27, 0.17] � 0:09 [-0.20, 0.02] 0:51 [0.45, 0.57] � 0:65 [-0.90, -0.42] 0:55 [0.50, 0.59]

3 0:24 [0.18, 0.29] � 0:11 [-0.26, 0.03] � 0:08 [-0.19, 0.03] 0:46 [0.43, 0.49] � 0:66 [-0.74, -0.60] 0:48 [0.45, 0.50]

4 0:28 [0.25, 0.31] 0:13 [0.05, 0.20] 0:41 [0.36, 0.45] 0:54 [0.51, 0.57] � 0:49 [-0.57, -0.42] 0:53 [0.50, 0.56]

5 0:42 [0.30, 0.53] � 0:12 [-0.28, 0.05] 0:18 [0.02, 0.34] 0:67 [0.61, 0.72] � 0:25 [-0.34, -0.18] 0:67 [0.64, 0.70]

6 0:39 [0.32, 0.45] 0:18 [-0.03, 0.34] 0:02 [-0.15, 0.17] 0:33 [0.15, 0.51] � 0:73 [-1.07, -0.42] 0:65 [0.59, 0.70]

7 0:45 [0.41, 0.48] 0:25 [0.12, 0.37] � 0:27 [-0.59, 0.06] 0:55 [0.48, 0.62] � 0:05 [-0.30, 0.19] 0:64 [0.59, 0.68]

8 0:43 [0.35, 0.50] � 0:20 [-0.42, -0.02] 0:05 [-0.38, 0.42] 0:68 [0.62, 0.73] 0:11 [0.02, 0.18] 0:61 [0.56, 0.66]

mean 0:31 0:01 0:02 0:51 � 0:46 0:56

It is worth noting that the fundamental reason that RECALL outperforms ClonEx is that they use completely
di�erent mechanisms to alleviate catastrophic forgetting. To be speci�c, ClonEx is a regularization-based
approach that reduces forgetting by adding a regularization term to constrain updates of network weights. In
general, if the network capacity is adequate, the optimal outcome that can be attained by this mechanism is
to entirely preserve the performance on previous tasks and achieve zero forgetting. It rarely obtains positive
backward transfer unless the solution space of subsequent tasks includes that of historical tasks. According
to the experimental results, it generally exhibits some level of forgetting on most task sequences due to the
requirement to ensure plasticity on following tasks, which is particularly apparent in long task sequences.

By contrast, to avoid catastrophic forgetting, RECALL maintains the training on past tasks by replaying
experiences while learning new tasks. If the agent does not reach optimal performance at the end of the
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(a) 1st task sequence (b) 2nd task sequence (c) 3rd task sequence

(d) 4th task sequence (e) 5th task sequence (f) 6th task sequence

(g) 7th task sequence (h) 8th task sequence

Figure 6: Average (over tasks) success rate per iteration of the four variants in CW6 task sequences.

respective training period of the old tasks, such experience replay (further training) is likely to make the
agent perform better on these tasks rather than just preventing catastrophic forgetting. Consequently,
RECALL can allow for positive backward transfer (i.e., produce negative forgetting values and improve
average performance). Furthermore, the combination of experiences from new and replayed tasks for joint
training can aid the model in �nding a better common solution space, improving the �nal performance on all
tasks, and also facilitating faster learning of new tasks to achieve more positive forward transfer relative to
regularization-based methods.

5.4 Ablation Study

In this section, we consider the individual e�ects of target normalization (TN) and policy distillation (PD)
mechanisms (Q3). To this end, we conduct experiments by manipulating a single variable at a time for
in-depth analysis. For each new task, the following four variants of the proposed method are applied for
continual learning in the new environment: (1) None: Neither target normalization nor policy distillation
mechanism is used, i.e., degenerating to the naive experience replay with best-return exploration. (2)TN:
Only apply target normalization mechanism. (3) PD: Only apply policy distillation mechanism. (4) TN+PD:
Both target normalization and policy distillation mechanisms are used, i.e., representing RECALL. The
learning curves in terms of average performance per iteration of these four variants on CW6 task sequences
are shown in Figure 6.

First, the variants of None and TN (or PD and TN+PD) are compared to identify how the target normalization
mechanism a�ects continual learning performance. In all eight task sequences, the targets are normalized
for each task throughout the whole training process, and the performance in terms of average success rate
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