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ABSTRACT

Classical diffusion models typically rely on isotropic Gaussian noise, treating
all regions uniformly and overlooking structural information that may be vital
for high-quality generation. We introduce an edge-preserving diffusion process
that generalizes isotropic models through a hybrid noise scheme. At its core
is an edge-aware scheduler that transitions smoothly from edge-preserving to
isotropic noise, allowing the model to capture fine structural details while generally
maintaining global performance. To measure the impact of structure-aware noise on
the generative process, we analyze and evaluate our edge-preserving process against
isotropic models in both diffusion and flow-matching frameworks. Importantly,
we show that existing isotropic models can be efficiently fine-tuned with edge-
preserving noise, making our approach practical for adapting pre-trained systems.
Beyond improvements in unconditional generation, it offers significant benefits in
structure-guided tasks such as stroke-to-image synthesis, improving robustness,
fidelity, and perceptual quality. Extensive evaluations (FID, KID, CLIP-score)
show consistent improvements of up to 30%, highlighting edge-preserving noise as
a simple yet powerful advance for generative diffusion, particularly in structure-
guided settings.
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Figure 1: A classic isotropic diffusion process (top row) is compared to our hybrid edge-aware
diffusion process (middle row) on the left side. We propose a hybrid noise schedule (bottom row)
that smoothly transitions from anisotropic (¢ € [0; 250]) to isotropic noise (¢ € [250;499]) . We use
our edge-aware noise for training and inference. On the right, we compare both noise schemes on the
SDEdit framework (Meng et al., 2022)) for stroke-based image generation. Our model consistently
outperforms DDPM’s isotropic noise scheme, is more robust against visual artifacts and produces
sharper outputs without missing structural details.

1 INTRODUCTION

Previous work on diffusion models mostly uses isotropic Gaussian noise to transform an unknown
data distribution into a known distribution (e.g., normal distribution), from which samples can be

efficiently drawn (Song & Ermon| 2019} [Song et al, 2021}; [Ho et al, [2020; [Kingma et al., [202T).

Due to the isotropic nature of the noise, all regions in the data samples x( are uniformly corrupted,
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regardless of the underlying structural content, which is typically distributed in a non-isotropic
manner. In the generative backward process, the model learns an isotropic denoising function, but
in doing so, it ignores potentially valuable non-isotropic information in the data that it was trained
on. Denoising has been a central topic in image processing research (Elad et al.l 2023). The seminal
work by |Perona & Malik| (1990) showed that accounting for image structure enables substantial gains
in denoising performance. Since generative diffusion models can also be seen as denoisers, we ask
ourselves: Can incorporating structural information from data samples improve the effectiveness of a
generative diffusion process?

To explore our question, we introduce a new class of diffusion models that generalizes over existing
isotropic models and explicitly learns a content-aware noise scheme. We call our noise scheme
edge-preserving noise.

To summarize, we make the following contributions:

* We introduce a novel class of content-aware diffusion models and show how it is a general-
ization of existing isotropic diffusion models (Section4.3). We also demonstrate that our
noise framework can be applied in the more general setting of flow matching (Section [4.4).

* We run extensive qualitative and quantitative experiments across a variety of datasets to
validate the positive impact of using edge-preserving noise over isotropic noise (Section 3]
and Appendix [F).

* We analyze our model’s generative process, and demonstrate that it converges more rapidly
to sharper, less noisy predictions (Fig. 2). In addition, we conduct a frequency analysis,
suggesting that our edge-preserving model better learns the low-to-mid frequencies of the
target data (Appendix [C).

* We observe consistent quantitive/qualitative improvements for unconditional image gener-
ation. In particular, our noise framework demonstrates strong potential for shape-guided
generative tasks, showing greater robustness and significantly improved quality on these
tasks (Fig. [3).

2 RELATED WORK

Most existing diffusion-based generative models (Sohl-Dickstein et al., 2015;|Song & Ermonl 2019;
Song et al.,2021;|Ho et al., 2020) corrupt data samples by adding noise with the same variance across
all pixels. Generative models tend to have the ability to produce more diverse and novel content
when the noise variance is higher, whereas lower variance noise is better at preserving the underlying
structure of the data. Various efforts have explored diffusion processes beyond those driven solely by
isotropic noise. |[Rissanen et al.|(2023)) introduced an inverse heat dissipation model (IHDM), which
applies isotropic Gaussian blurring to corrupt images, which they show is equivalent to introducing
non-isotropic noise in the frequency domain. One line of work (Bansal et al., [2023} |Daras et al.|
2023) investigates arbitrary forward diffusion processes with mixed components such as blurring,
noise, masking... [Hoogeboom & Salimans|(2023) propose a generalized form of heat dissipation and
diffusion by combining isotropic noise and blurring.

Another line of work has explored non-isotropic forms of noise in diffusion models. |Dockhorn
et al.| (2022) proposed to use critically-damped Langevin diffusion where the data variable at any
time is augmented with an additional "velocity" variable. Noise is only injected in the velocity
variable. |Voleti et al.| (2022)) performed a limited study on the impact of isotropic vs non-isotropic
Gaussian noise for a score-based model. The idea behind non-isotropic Gaussian noise is to use noise
with different variance across image pixels. They use a non-diagonal covariance matrix to generate
non-isotropic Gaussian noise, but their sample quality did not improve in comparison to the isotropic
case. |Yu et al.| (2024) developed this idea further and proposed a Gaussian noise model that adds
noise with non-isotropic variance to pixels. The variance is chosen based on how much a pixel or
region needs to be edited. They demonstrated a positive impact on editing tasks. More recently,
Huang et al.| (2024} proposed a blue noise diffusion model (BNDM), using negatively correlated
noise for enhanced visual quality and FID scores. While IHDM and BNDM also consider a form of
non-isotropic noise, they do not explicitly account for structures present in the signal.
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Our definition of non-isotropy is inspired by the seminal work of Perona & Malik| (1990) on
anisotropic diffusion for edge-preserving image filtering (removing noise from images). We apply a
non-isotropic variance to pixels in an edge-aware manner, meaning that we suppress noise on edges.

3 PRELIMINARIES

Generative diffusion processes. A generative diffusion model consists of two processes: the
forward process transforms data samples xq into samples x7 that are distributed according to a
well-known prior distribution, such as a normal distribution N (0, I'). The corresponding backward
process does exactly the opposite: it transforms samples x7 into X, distributed according to the
target distribution po(x). Sampling from this backward process involves predicting a vector quantity,
interpretable as either noise or the gradient of the data distribution, which is precisely the task for
which the generative diffusion model is trained. Previous works (Song & Ermonl [2019; Song et al.,
2021; Ho et al., 2020; |Kingma et al.,[2021; Rissanen et al.,|2023; /Hoogeboom & Salimans, [2023)
typically formulate the forward process as the following linear equation:

Xt = NtXo + 0t€y ()
here, x; is the data sample diffused up to time ¢, x( stands for the original data sample, €; is a
standard normal Gaussian noise, and the signal coefficient ; and noise coefficient o, determine
the signal-to-noise ratio (SNR) (7¢/o.). The SNR refers to the proportion of signal retained relative
to the amount of injected noise. Note that v, and o, are both scalars. Previous works have made
several different choices for v, and o respectively, leading to different variants, each with their own
advantages and limitations.

Denoising probabilistic model. Following the probabilistic paradigm of |Ho et al.|(2020)), we would
like to introduce the posterior probability distributions of the general diffusion process described by
Eq. (I). We will show the exact form that our forward and backward processes take in Section[4.T]and
Section .3 respectively. For details and full derivations of the equations provided in this paragraph,
we would like to refer to the appendix of |[Kingma et al|(2021). The isotropic diffusion process
formulated in Eq. (I)) has the following marginal distribution:

q(x¢[x0) = N (yx0, 07 1) ©)
Moreover, it has the following Markovian transition probabilities:
q(x¢[xs) ZN(’Yt\sXSaU?\SI) 3)

with the forward posterior signal coefficient v, = 3—' and the forward posterior variance (or square
of the noise coefficient) o7, = o7 — 77,02 and 0 < s < ¢ < T For a Gaussian diffusion process,

given that g(x|x;, Xo) x g(x¢|xs)q(xs|x0), one can analytically derive a backward process that is
also Gaussian, and has the following marginal distribution:

q(xs]x¢,%0) :N(p’t—mvgtz—wI)' “
The backward posterior variance o7, ; has the following form:
9 N\ —1
1 Vi)s
2
Orss= | —5+—= 5)
o <"3 “fs>
and the backward posterior mean g, _. ; is formulated as:
V¢ 7
Hiss = O-t2~>s (Uflzxt + Oéx()) . (6)

Samples can be generated by simulating the reverse Gaussian process with the posteriors in Eq. (3))
and Eq. (6). A practical issue is that Eq. (6) itself depends on the unknown x, the sample we are
trying to generate. To overcome this, one can instead approximate the analytic reverse process in
which xg is replaced by its approximator X, learned by a deep neural network fy(a;,t). The network
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can learn to directly predict x( given an x; (a sample with a level of noise that corresponds to time t),
but previous work (Ho et al.,[2020) has shown that it is beneficial to instead optimize the network to
learn the approximator €;. €; predicts the unscaled Gaussian white noise that was injected at time ¢.
X( can then be obtained via Eq. (7), which follows from Eq. (T).
1
o= —x — & @
Tt Ve

Edge-preserving filters in image processing. In this work, we aim to choose v; and o, such
that we obtain a diffusion process that injects noise in a content-aware manner. To do this, we are
inspired by the field of image processing, where a classic and effective technique for denoising is
edge-preserved filtering via anisotropic diffusion (Weickert, [1998). To overcome the problem of
destroying relevant structural information in the image when applying an isotropic filter, Perona &
Malik| (1990) instead propose an anisotropic diffusion process of the form:

t
Xy = Xg + / c(xs, 5)Ax; ds 8)
0

where the diffusion coefficient c(xs, s) takes the following form:
1

/1 1 ¥l

where || Vx|| is the gradient magnitude image, and ) is the edge sensitivity. Intuitively, in the regions
of the image where the gradient response is high (on edges), the diffusion coefficient will be smaller,
and therefore the signal gets less distorted there. The edge sensitivity A determines how sensitive the
diffusion coefficient is to the image gradient response.

c(x,t) = )

Inspired by the anisotropic diffusion coefficient presented in Eq. (9), we aim to design a linear
diffusion process that incorporates edge-preserving noise. Our hope is that by doing this, the
generative diffusion model will better learn the underlying geometrical structures of the target
distribution, leading to a more effective generative denoising process. To obtain our content-aware
linear diffusion process, we apply the idea of edge-preserved filtering to the noise term of Eq. (I)).
We cannot directly use (Perona & Malik} [1990)’s formulation because their time-dependent diffusion
coefficient makes the process nonlinear. Instead, we make the coefficient depend only on xg:

b

Vooll
Vit 5w

Where b is the noise coefficient’s numerator and can be chosen as desired. To investigate the mere
impact of non-isotropic edge-preserving noise on the generative diffusion process, we chose our
parameters v; = /& and b = /1 — @, such that it closely matches the well-studied forward process
of (Ho et al.;2020), but nothing prevents us from making different choices for +; and b. Note that the
noise coefficient in Eq. (I) becomes a tensor o instead of a scalar o for our process. Intuitively, we
preserve edges by reducing noise based on the edges in the original image. In our formulation, we
also consider \ to be time-varying (more details in Section[4.2)).

Xy = ViXo + (10)

4 AN EDGE-PRESERVING GENERATIVE PROCESS

4.1 FORWARD PROCESS WITH HYBRID NOISE SCHEME

The forward edge-preserving process described in Eq. (I0) in its pure form is not very meaningful
in a generative setting. This is because if the edges are preserved all the way up to time ¢t = T, we
end up with a rather complex prior distribution pr(z) that we cannot efficiently take samples from.
Instead, we would like to end up with a well-known distribution at time ¢ = 7', such as the standard
normal distribution. To achieve this, we instead consider the following hybrid forward process:

b
Xt = X0 + €t (11)

(1= 7)1+ 52l 4+ 7(2)
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The function 7(¢) now appearing in the denominator of the diffusion coefficient is the transition
Sunction. When 7(t) < 1, we obtain edge-preserving noise (the edge-preservation is strongest when
7(t) = 0). The turning point where 7(¢) = 1 is called the transition point t. At the transition point,
we switch over to isotropic noise with scalar noise coefficient oy = b (note that we chose vz = /&

and b = /1 — ).

This approach allows us to flexibly design noise schedulers that start off with edge-preserving noise
and towards the end of the forward process fall back to an isotropic diffusion coefficient. Practically,
one can choose any function for 7(¢), as long as it maps to [0; 1] and 7(¢) = 1 for ¢ in proximity to 7.
We performed an ablation for different transition functions in Appendix [A]

Observe how our diffusion process generalizes over existing isotropic processes: by setting 7(t) = 1
constant, we simply obtain an isotropic process with signal coefficient ; and noise coefficient o, = b.
Choosing any other non-constant function for 7(¢) leads to a hybrid diffusion process that consists of
an edge-preserving stage and an isotropic stage (starting at 7(¢) = 1).

4.2 TIME-VARYING EDGE SENSITIVITY A(t)

The edge sensitivity parameter A controls the
level of detail preserved along image edges.

Very low values of (e.g. A = 1le — 5) will retain Noise . . .
almost all fine details. The more we increase

A, the less details will be preserved. When A Perturbed
becomes very high (e.g. A = 1), the process .
becomes nearly isotropic. Our ablation study o4 Lo
(Appendix [A) explores impact of this parameter
in more detail. We found that constant A-values
harm sample quality: too low values results in
unrealistic, "cartoonish" images, while too high

0.8

0.6 T(t)
0.4

Scalar

L . Edge-preserving Isotropic
values diminish the effectiveness of the edge- 02
preserving diffusion model, making the model R
behave almost like an isotropic process. 00 02 04 " 06 08 10

To address this, we instead consider a time-varying edge sensitivity A(¢). We set an interval
[Amin; Amaz) that bounds the possible values for the time-varying edge sensitivity. The function that
governs A(t) within this interval can in theory again be chosen freely. We have so far experimented
with a linear function and a sigmoid function. We experienced that a linear function for \(¢) resulted
in higher sample quality and therefore used this function for our experiments. Additionally, we have
attempted to optimize the interval [Ap,in; Admaz], but this led to unstable behaviour.

4.3 EDGE-AWARE GENERATIVE PROCESS IN DIFFUSION MODELS

Given the forward hybrid diffusion process introduced in Section .1} we construct the corresponding
generative backward process within the denoising diffusion framework (for the edge-preserving
flow-matching variant, see Sectlon@) Specifically, we derive explicit expressions for the posterior
mean 4, _, s and Varlance o7, . of the backward process by substltutmg our chosen signal coefficient
7¢ and variance o? into Eq @) and Eq. . 5).Recall that we chose o? to be a tensor, which is why
the backward posterlor variance o7 , _ is again a tensor, contrary to isotropic diffusion processes
considered in previous works. Regardless, we can use the same equations and the algebra still works.

We first introduce an auxiliary variable o2 (¢), which represents the variance of our forward process
at a given time ¢. This is simply the square of our choice for the noise coefficient o; formulated in

Eq. (TT):

o (t) = L (12)

(1—7(1))2 (1+ ”Zg;‘;") +2 <(1_T( )1+ el (t)) +7(t)2
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Figure 2: We visually compare the impact of our edge-preserving noise on the generative process.
In each column, we show predictions X at selected time steps. Our method converges significantly
faster to a sharper and less noisy image than its isotropic counterpart. This is evident by the earlier
emergence (from ¢ = 400) of structural details like the pattern on the cat’s head, eyes, and whiskers
with our approach.

Here c; has the same meaning as earlier described in Section[3] We now have the backward posterior
variance o7, _:

. -1
1 =t
2
= 5 13
Tis (Uz(t) + o2(t) — (?02(8)) (13)
and the backward posterior mean p,_, .:
Vo =
2 Vs Vs
= 4 14
l’l"t*}s Ut—)s 0'2(75) _ %0'2(5) Xt + 0'2(8) X0 ( )

Given Eq. (13) and Eq. (T4), the only unknown preventing us from simulating the Gaussian backward
process is xg. Note that X in our case depends on a non-isotropic noise. Therefore, we cannot just
use an isotropic approximator €; for the isotropic noise €; to predict X via Eq. . Instead, we need
a model that can predict the non-isotropic noise o;€; .

We introduce the loss function that trains such an approximator:
,C: ||f9(wt7t)_o-t€t||2~ (15)

It is very similar to the simplified loss function derived in DDPM, with the difference that our
model explicitly learns to predict the non-isotropic edge-preserving noise (o :€;). Note that we
apply no weighting to our loss function. In Appendix B} we show that this is a heuristic, and we also
show how our loss formulation can be derived from a negative log-likelihood perspective, with the
accurate theoretically-founded weighting.

fo(x¢, t) stands for the time-conditioned U-Net used to approximate the time-varying noise function.
The visual difference between the backward process of an isotropic diffusion model (DDPM) and
ours is shown in Fig. 2] Our formulation introduces a negligible overhead. The only additional
computation that needs to be performed is the image gradient ||Vxg||, which can be done very
efficiently on modern GPUs. We have not noticed any significant difference in training time between
vanilla DDPM and our method.

4.4 EDGE-AWARE GENERATIVE PROCESS IN FLOW MATCHING

The general framework of flow matching allows users to design probability paths that on their turn
will correspond to some probability flow vector field. Our goal is to construct a such path that leads
to flows that are aware of the geometric structures in the target dataset. Motivated by its simple
formulation and the impressive results Lipman et al.|(2022) achieved with it, we choose to build
upon the optimal transport variant of flow matching (OT-FM). Theorem 3 derived by
provides an elegant and flexible design framework for probability flows, where the user only
has to specify differentiable functions pi;(x1) and o (x1). These functions correspond to the signal
coefficient v; and noise coefficient o; that we introduced in Section E[ The OT-FM formulation
chooses p;(z1) = t and o¢(z1) = 1 — ¢. Similar to what we did for isotropic diffusion (Sections 4]
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and , we make this probability path "edge-preserving" by leaving y; (1) unchanged, and only
operate on o¢(x1):
1—t
orla) = Vol (1
(L=7()/1+ 5 +7(0)

To use this formulation in the framework of flow matching, we also need to find its corresponding
time derivative:

9" — 19’
o (1)) = F—5"— (17)
g
Which follows from the quotient rule for derivatives, where f is the numerator of o¢(x1) , g is the
denominator of o4(x1), and f’ and ¢’ are its respective time derivatives: f* = —1, and ¢’ has the

following form:

o g Alt) = N'(2) 4 Vol
g—r<t>+<<1 (t))<”<f>2w>+< 1+ 5 )) as

However, note that because o(x1) has the requirement to be differentiable, f and g should also
be differentiable. For f there are trivially no issues, but g contains two nested functions 7(¢) and
A(t), which are not necessarily differentiable. For example, the linear choice we made for 7(t) (see
inline figure in Section[d) is only piecewise differentiable. We experimentally found that using this
formulation leads to an unstable optimization objective, preventing the model from convergence.
To overcome this, we tried to simplify our choice for o¢(x1). In particular, we removed the time
dependency on the edge sensitivity A, and changed 7(t) to be piecewise constant instead of a piecewise

linear function:
0 t<tg
t) = - 19
T( ) {1 t>te ( )

This results to the time-derivative ¢’ of the denominator of o¢(z1) now becoming:

9 1+HVX0H
= (2 1+‘|V;°|‘7/(t))+7’(t):0 (20)

This is the case because A no longer depends on time ¢ and the time derivative of 7(¢) is now 7/(¢) = 0
over the whole domain. As a consequence, o’(x1) now becomes:

_gf' =t _gf _f_ -1 @1

oy (1) = =5 ===
9 9 (1)1 + Tl )

With this slightly simplified formulation, we experienced a much more stable training objective. This
is the final formulation that we used to generate the results in Fig. [3]

5 EXPERIMENTS

Implementation details We provide the implementation details for our experiments in
Please also find our training performance analysis on different frequency bands in[Appendix C|

Unconditional image generation We evaluate unconditional generation with edge-preserving
noise in the diffusion framework (Fig. 4] Appendlx [F), with FID scores reported in Table[I] Across
datasets, edge preserving (non-isotropic) noise improves both metrics and visual quality compared to
isotropic noise (Ho et al.,[2020). While gains over DDPM can be subtle, our method reduces artifacts
and shows clearer advantages in structure-guided generation (Fig. [3).



Under review as a conference paper at ICLR 2026

| FID) | Blue | Isotr. | Ours |
CelebA(1282) | 68.0 4580 | 39.08
Church(1282) 93.81 72.54 56.14
Cat(1282) 5105 | 2761 | 23.50

Synthetic Blue noise Isotropic noise Ours

stroke painting Human Isotropic noise Ours
painting

Figure 3: Left: Impact of different types of noise to the SDEdit framework (Meng et al., 2022) for
shape-guided generation. The leftmost column displays the stroke-based guide (created via k-means
clustering applied to an image), with the other three columns showing the model outputs. Overall,
using our noise franework results in sharper details and less distortions compared to other noises,
leading to a better visual and quantitative performance. The corresponding FID scores are shown in
the top right column. Right: Our noise also works effectively with human-drawn paintings as shape

Tl AL, ;
CelebA(1282) LSUN-Church(128%)
Figure 4: Comparison of unconditional samples generated using the isotropic noise model from
DDPM (Ho et al|[2020) and our proposed edge-preserving noise model. While qualitative differences
can be subtle, the quantitative metrics reported in Table [T]indicate that the edge-preserving noise
model enhances the generative process. Additional results are provided in Appendix@

AFHQ-Cat(1282)

To show that our noise  Taple 1: Quantitative FID and KID score comparison (lower is better) for
scheduler also works  ynconditional image generation for DDPM (Ho et al.}[2020) (isotropic noise)

in practice within the  3n4 our method across different datasets.
framework of flow 5 2 3
matching, we com- _FID/KID () | CelebA(128%) | LSUN-Church(128°) | AFHQ-Cat(128%)

pare OT-FM (Lipman| DDPM 31.60/0.031 31.01/0.024 12.51/0.007
2022) against an Ours 26.15/0.022 23.16/0.018 9.53/0.005

edge-preserving vari-
ant (EP-OT-FM) (see Section [4.4] for details). Although FID/KID are similar, results in Fig. [3]
show consistent visual improvements. In a user study with 30 participants, our EP-OT-FM was con-
sistently preferred over OT-FM in terms of perceived quality for AFHQ-Cat, CelebA, and CIFAR-10
samples (see Table[2).

Edge-preserving noise in the latent space We also tested edge-preserving noise in the latent space,
with results shown in Table [3and Fig. [I3] We would like to clarify that it makes sense to do this,
given that in the latent space, a lot of geometric structure and shape of the original image is actually
preserved (see Fig.[6).

Stroke-guided image generation (SDEdit) We applied our edge-preserving
diffusion noise to SDEdit (Meng et all [2022) for stroke-based generation.

8
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EP-OT-FM (Ours) OT-FM EP-OT-FM (Ours) OT-FM EP-OT-FM (Ours) OT-FM
5.89 / 0.005 5.84 / 0.005 3.16/0.0008 3.14/0.0008

FID/KIDCL): 6.50,/0.0028 6.38/0.0027

AFHQ-Cat(128?) CelebA (64%) CIFAR-10(32?)

Figure 5: Visual and quantitative comparison between our edge-preserving variant (EP-OT-FM),
displayed on the left side of each column, and the standard Optimal Transport Flow Matching (OT-
FM) (Lipman et al,2022), displayed on the right. While FID and KID scores (lower is better) are
closely matching, we observe that in the majority of time, our method delivers visual improvements
in samples generated with the same seed.

Using k-means clustering, 1000 images were con-  Taple 2: User study results for perceived qual-
verted into stroke paintings and reconstructed with ity on samples generated by EP-OT-FM vs.
backbones trained on different noise types, includ- QT.FM. Score can range from 1 (worst) to 5
ing blue noise and isotropic  (pegt),

noise 2020), at a hijack point of 0.557.

Our method better adheres to guiding priors, re-

| EP-OT-EM (Ours) | OT-FM

duces artifacts, and achieves superior FID scores Mean score 3.72 2.80
(Fig. B). Score std. dev. 0.24 0.75

Additional results (Appendix [F) and further evalu-

ations on precision/recall and CLIP confirm that it maintains diversity while enhancing semantic
preservation compared to the isotropic backbone. These findings highlight the usefulness of edge-
preserving noise in editing tasks that rely on geometric fidelity.

Fine-tuning with edge-preserving noise We found that a model pre-trained with isotropic noise
can be efficiently fine-tuned using edge-preserving noise. After fewer than 5k fine-tuning iterations
on a model pre-trained for 150,000 steps (2000 epochs), it already shows clear evidence of learning
the non-isotropic noise patterns in the data (see Fig.[T4). This improvement is reflected in the FID
score, which drops from 16.03 for the pre-trained model to 12.59 after fine-tuning.

6 LIMITATIONS AND CONCLUSION

We introduced a new class of edge-preserving generative diffusion models that generalize isotropic
models and can be applied in both the frameworks of diffusion and flow matching. Our hybrid process
consists of an edge-preserving phase, which maintains structural details, followed by an isotropic
phase to ensure convergence to a known prior. This decoupled approach better captures low-to-mid
frequencies and accelerates convergence to sharper, less noisy predictions. It outperforms its isotropic
counterparts on both unconditional and shape-guided generative tasks. In addition, our framework
offers a large hyperparameter space that remains open for further exploration. We do not claim that
the parameters we currently used are optimal. Future work could explore more applications that can
benefit from accurate structure-guided generation, as well as experiment with our non-isotropic noise
framework in video generation (e.g. for better temporal consistency).
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7 REPRODUCIBILITY STATEMENT

We provide theoretical details on our proposed noise framework in Sections and Addi-
tionally, we provide further implementation details of our experiments and training parameters in
Appendix |[E] The source code for training and inference along with the checkpoints to produce the
reported results will be released upon publication of the paper.

8 ETHICS STATEMENT

Generative diffusion models, while capable of generating high-quality and realistic images, pose
several significant risks. One major concern is the creation of deepfakes, which can spread misinfor-
mation and deceive the public, undermining trust in digital media. Additionally, the replication of
artistic works without proper attribution raises intellectual property issues. Nonetheless, we believe
that transparency and the development of new insights into how these models function can also
support the cybersecurity community in advancing methods to more effectively secure generative
models. We should not forget to mention that generative diffusion models also impact the world in a
positive manner, from synthetic data generation, artistic content generation to scientific breakthrough
such as drug discovery.
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A ABLATION STUDY

Impact of transition function 7(¢). We have experimented with three different choices for the tran-
sition function 7(¢): linear, cosine and sigmoid. While cosine and sigmoid show similar performance,
we found that having a smooth linear transition function significantly improves the performance of
the model. A qualititative and quantitative comparison between the choices is presented in the inline
figure below.

Impact of transition points 5. We have

investigated the impact of the transition FID: 2123 18.01 13.06
point t5 on our method’s performance by 7 i
considering 3 different diffusion schemes:
25% edge-preserving - 75% isotropic, 50%
isotropic - 50% edge-preserving and 75%
edge-preserving - 25% isotropic. A vi-
sual example for AFHQ-Cat (1282) is pre-
sented in the inline figure on the right. We 7(t): Cosine Sigmoid Linear
have experienced that there are limits to FID:  23.91 22.11 33.06
how far the transition point can be placed - y
without sacrificing sample quality. Visu-
ally, we observe that the further the tran-
sition point is placed, the less details the
model generates. The core shapes however
stay intact. This is illustrated well by Fig.[J]
in Appendix[F] For the datasets we tested
on, we found that the 50%-50% diffusion
scheme works best in terms of FID metric
and visual sharpness. This again becomes
apparent in Fig.[0} although the samples
for tg = 0.25 contain slightly more details,
the samples for ¢4 = 0.5 are significantly
sharper.

Impact of edge sensitivity A(¢). As shown in the inline figure on the right, lower constant A(t)
values lead to less detailed, more flat, "water-painting-style" samples. Intuitively, a lower constant
A(t) corresponds to stronger edge-preservation in the noise and our model is explicitly trained
accordingly to better learn the core structural shapes instead of the high-frequency details that we
typically find in interior regions. Our time-varying choice for \(¢) works better than other settings in
our experiments, by effectively balancing the preservation of structural information across different
granularities of detail.

B RELATION TO ELBO OBJECTIVE IN DIFFUSION LITERATURE

In this section we explain how the loss derivation from a perspective of minimizing the negative
log-likelihood can be done for our formulation, similar to what is discussed in the original DDPM

(2020) paper.

The denoising probabilistic model paradigm defined in the DDPM paper defines the loss by minimiz-
ing a variational upper bound on the negative log likelihood. Because our noise is still Gaussian, the
derivation they make in Eq. (3) to (5) of their paper still holds for us. The difference however is that
we are non-isotropically scaling our noise based on the image content. As a result, our methods differ
on Eq. (8) in their paper. Instead, we end up with the following form of this equation:

L1 =Eq[(S7" (i (x¢,%0) — po(x¢, 1)), (i (x¢, %0) — po (¢, 1)))] (22)
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In essence, for our formulation that considers non-isotropic Gaussian noise, we need to apply a
different loss scaling for each pixel. A theoretically-founded weighted version of our loss function
(introduced in Eq. (I3)) would then be the following:

£ = 2 o) — ). (ol ) — or60) @)

However, note that in the original DDPM paper, the loss is also simplified by removing the weighting,
which they call the simplified or reweighted loss (Eq. (14) in their paper). The authors argue that this
reweighting leads to improved sample quality. To save computational resources, we follow a similar
heuristic in our loss function where we remove the weighting. While our heuristic loss function
already proved effective, a more theoretically accurate loss would include the scaling discussed
above.

In our non-isotropic case, 3. is dependent on both the clean data xy and ¢. Therefore, the scaling could
be approximated by choosing %; such that ¢ ||2|] < [|2(x0)¢|| < ¢2]|2¢]], for some ¢, c2 > 0 and
for all xo, where ||.|| is an appropriate norm.

C FREQUENCY ANALYSIS OF TRAINING PERFORMANCE

To better understand our model’s capacity of modeling the target distribution, we conducted
an analysis on its training performance for different frequency bands. Our setup is as
follows, we create 5 versions of the AFHQ-Catl28 dataset, each with a different cutoff
frequency. This corresponds to convoluting each image in the dataset with a Gaussian
kernel of a specific standard deviation o, representing a frequency band. For each fre-
quency band, we then trained our model for a fixed amount of 10000 training iterations.
We place a model checkpoint at every
1000 iterations, so we can also inves-
tigate the evolution of the performance
over this training time. We measure
the performance by computing the FID
score between 1000 generated samples
(for that specific checkpoint) and the origi-
nal dataset of the corresponding frequency
band. A visualization of the analyzed
results is presented in the inline figure
on the right. We found that our model
is able to learn the low-to-mid frequen-
cies of the dataset significantly better than
the isotropic model (DDPM). The figure
shows the evolution of FID score over
the first 10,000 training iterations per fre-
quency band (larger o values correspond
to lower frequency bands). a) and b)
show performance in terms of FID score
of DDPM and our model, respectively. c)
shows their difference (positive favors our
method). d) visualizes the information in
2D for a more accurate comparison. Our
model significantly outperforms in low-to-mid frequency bands (lower FID is better).

FID score evolution over training time, per cutoff frequency

a) b)

Difference (DDPM - Ours)
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D VISUALIZATION OF IMAGE LATENTS
* Wamme i, 95

CRumy

Figure 6: We visualize image latents for the AFHQ-Cat(5122) dataset. Notice that most of the
structural content of the image remains preserved in the latent space. Therefore, it makes sense to
also apply edge-preserving noise in the latent space (also see TableEl and Fig. |E[)

E IMPLEMENTATION DETAILS OF EXPERIMENTS

We compare our method against two baselines that use an isotropic form of noise, namely DDPM

2020) and Optimal Transport Flow Matching (OT-FM) (Lipman et al.,[2022).

We perform unconditional generation experiments on two settings: pixel-space diffusion following
the setting of [Ho et al| (2020); Rissanen et al.|(2023)) and latent-space diffusion following
noted as LDM in Table 3] where the diffusion process runs in the latent space. Besides
this, we perform an experiment on shape-guided generation, as summarized in Fig. 3] and an analysis
on the capabilities of our model to learn different frequency bands of the data, further explained in
Appendix [Cl We used the following datasets: CIFAR-10(322, 50,000 training images)
et al 2009!, CelebA (1282, 30,000 training images) (Lee et al.| [2020), AFHQ-Cat (1282, 5,153
training images) (Choi et a1.|, 2020), Human-Sketch (128, 20,000 training images) (Eitz et al.L 2012)
(see Fig. EI) and LSUN-Church (1282, 126,227 training images) (Yu et all [2015) for pixel-space
diffusion. For latent-space diffusion (Rombach et al., 2022), we tested on AFHQ-Cat (5122).

We used a batch size of 64 for all experiments in image space, and a batch size of 128 for all
experiments in latent space. We trained CIFAR-10(32%) and AFHQ-Cat (1282) for 1000 epochs,
AFHQ-Cat (5122) (latent diffusion) for 1750 epochs, CelebA(1282) for 475 epochs and LSUN-
Church(1282) for 90 epochs for our method and the baselines we compare to. Our framework is
implemented in Pytorch (Paszke et al.| 2017). For the network architecture we adopt the 2D U-Net
from Rissanen et al] (2023). We use T = 500 discrete time steps for both training and inference,
except for AFHQ-Cat (128%), where we used T = 750. To optimize the network parameters, we use
Adam optimizer (Kingma & Bal [2014) with learning rate 1e~* for latent-space diffusion models and
2¢~5 for pixel-space diffusion models. We trained all datasets on 2x NVIDIA Tesla A40.

For our final results, we used a linear scheme for A(t) that linearly interpolates between A, = le—?
and Aar = le—!. We used a transition point tg = 0.5 and a linear transition function 7 ().

To evaluate the quality of generated samples, we consider FID (Heusel et all, 2017). using the
implementation from [Stein et al.| (2024), with Inception-v3 network (Szegedy et al, 2016) as
backbone. We generated 30k images to compute FID scores for unconditional generation and
shape-guided generation, for all datasets.
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F ADDITIONAL RESULTS

In this section, we provide additional results and ablations.

Table[3]shows quantitative FID comparisons using latent diffusion (Rombach et al.,[2022) models on
all the baselines.

Figure [T0] Figure [T1] Figure [12] Figure T3] show more generated samples and comparisons with
DDPM on all previously introduced datasets. In Fig.[7]we show samples for the Human-Sketch
(128?) data set specifically. This dataset was of particular interest to us, given the images only consist
of high-frequency, edge content. Although we observed that this data is remarkably challenging for
all methods, our model is able to consistently deliver visually better results.

FigureEl shows an additional visualization of the impact t3 for the LSUN-Church (1282) dataset.
te = 0.5 works best in terms of FID metric, consistent to the results shown in Appendix [A]

DDPM (FID: 67.96)

Ours (FID: 40.03)

Figure 7: Generated unconditional samples for the Human Sketch (1282) dataset (Eitz et al., 2012).
Both models were trained for an equal amount of 575 epochs.

Church (1282)  CelebA (1282)

P

g
Synthetic ~ Blue noise  Isotropic Ours Synthetic Blue noise Isotropic Ours
painting painting

Figure 8: More samples for our model and other baselines applied to SDEdit (Meng et al.,[2022).
Note how our model is able to generate sharper results that suffer less from artifacts. Although
BNDM can generate satisfactory results in certain cases (e.g., cat and church), it often deviates
from the stroke painting guide, potentially producing outcomes that differ significantly from the
user’s original intent. In contrast, our method closely follows the stroke painting guide, accurately
preserving both shape and color.
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FID: 39.31 35.71 86.41
- 1 " AT e —

025

Figure 9: Impact of location of transition point tg on sample quality, shown for the LSUN-Church
(128?) dataset. If we place tg too far, the model happens to learn only the lowest frequencies and
generates no details at all. Placing it too early leads to results that are less sharp. We found that
by placing tg at 50%, we strike a good balance between the two, leading to better quantitative and
qualitative results.

Table 3: Quantitative FID score comparison on latent diffusion models (Rombach et al.l [2022)

between DDPM @ and our method.

| Unconditional FID (|) | AFHQ-Cat(512% latent) |
‘ DDPM 22.86

Ours 18.91

Table 4: Shape-guided image generation (based on SDEdit (Meng et al.,2022)): precision (metric
for realism) and recall (metric for diversity) scores (Kynkddnniemi et al.| |2019) for isotropic model
DDPM, and our edge-preserving model. We consistently outperform in terms of precision, and
closely match in terms of recall.

Ours Isotropic noise
‘ Shape-guided image generation | Precision (1)  Recall (1) ‘ Precision (1)  Recall (1) ‘
AFHQ-Cat(128%) 0.93 0.80 0.92 0.66
CelebA(1282) 0.65 0.46 0.53 0.53
LSUN-Church(1282) 0.87 0.46 0.84 0.50

Table 5: Unconditional image generation: precision (metric for realism) and recall (metric for
diversity) scores for isotropic model DDPM, and our edge-preserving model. While our model
slightly get outperformed, we find that our edge-preserving model closely matches DDPM on both
metrics. We would therefore argue that edge-preserving noise minimally impacts diversity.

Ours Isotropic noise
‘ Unconditional image generation | Precision (1) Recall (1) ‘ Precision (1)  Recall (1) ‘
AFHQ-Cat(128%) 0.76 0.20 0.77 0.21
CelebA(128?) 0.90 0.16 0.92 0.17

LSUN-Church(128?) 0.65 0.33 0.47 0.38

Table 6: Additional CLIP-based comparisons (Radford et al., [2021) for stroke-guided genera-
tion (Meng et all, [2022) show that our method consistently outperforms the isotropic baseline,
producing images that are more semantically aligned with the originals.

| CLIP | Ours | DDPM |
AFHQ-Cat(1282) 88.97 | 88.78
CelebA(128?) 61.15 | 61.02
LSUN-Church(128%) | 64.32 | 62.57
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DDPM Ours

Figure 10: More unconditional samples for DDPM (isotropic noise) and our edge-preserving noise
on the AFHQ-Cat (1282) dataset.

DDPM  Ours

Figure 11: More unconditional samples for DDPM (isotropic noise) and our edge-preserving noise
on the CelebA (1282) dataset.
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DDPM

Figure 12: More unconditional samples for DDPM (isotropic noise) and our edge-preserving noise on
the LSUN-Church (1282) dataset. Although our results appear similar to DDPM’s, our method more
effectively captures the geometric details of buildings and exhibits fewer artifacts, such as blurry
regions, compared to DDPM.

Ours

Figure 13: More unconditional samples for DDPM (isotropic noise) and our edge-preserving noise on
the AFHQ-Cat (5122, LDM) dataset. All samples are generated via diffusion in latent space. While
difference in visual quality is subtle, TableEl shows that our noise framework improved the FID score.
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Figure 14: Grid of predicted noises for a batch of 16 samples after fine-tuning an isotropic model pre-
trained for 2000 epochs on the AFHQ-Cat (1282) dataset. After fewer than Sk fine-tuning iterations
with edge-preserving noise, the model has already learned the non-isotropic variance corresponding
to the structures in the data.
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