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ABSTRACT

Collaborative perception emphasizes enhancing environmental understanding by
enabling multiple agents to share visual information with limited bandwidth re-
sources. While prior work has explored the empirical trade-off between task
performance and communication volume, a significant gap remains in the theo-
retical foundation. To fill this gap, we draw on information theory and introduce
a pragmatic rate-distortion theory for multi-agent collaboration, specifically for-
mulated to analyze performance-communication trade-off in goal-oriented multi-
agent systems. This theory concretizes two key conditions for designing optimal
communication strategies: supplying pragmatically relevant information and trans-
mitting redundancy-less messages. Guided by these two conditions, we propose
RDcomm, a communication-efficient collaborative perception framework that intro-
duces two key innovations: i) task entropy discrete coding, which assigns features
with task-relevant codeword-lengths to maximize the efficiency in supplying prag-
matic information; ii) mutual-information-driven message selection, which utilizes
mutual information neural estimation to approach the optimal redundancy-less
condition. Experiments on 3D object detection and BEV segmentation demonstrate
that RDcomm achieves state-of-the-art accuracy on DAIR-V2X and OPV2V, while
reducing communication volume by up to 108 x. The code will be released.

1 INTRODUCTION

Multi-agent collaborative perception enhances environmental understanding by enabling agents to
jointly perceive and share information. This paradigm has shown clear advantages over single-agent
sensing, particularly in overcoming occlusions and limited fields of view, and has been widely adopted
in tasks such as 3D object detection|Wang et al.|(2020) and BEV segmentation Xu et al.| (2022a]).

In this field emphasizing multi-agent collaboration, a fundamental challenge remains: the trade-
off between task performance and communication volume |Hu et al.| (2022). While sharing richer
information tends to preserve collaboration quality, it introduces significant communication overhead;
conversely, aggressively limiting communication may result in the loss of task-critical information,
ultimately degrading overall performance. Recent works tackle this trade-off by extracting informative
and compact representations from visual observations to serve as collaborative messages. One
representative line of work focuses on spatial selection, aiming to transmit only task-relevant regions,
such as those with high detection confidence [Hu et al.| (2022) or sparse observation coverage Xu et al.
(2025). Another direction leverages neural compression techniques Ballé et al.|(2018)); 'Van Den Oord
et al.|(2017), reducing the size of transmitted features through autoencoders|Shao et al.|(2024); Hu
et al.| (2024)) or channel reduction |Li et al.| (2021)); [Lu et al.| (2024). Despite some empirical gains,
previous approaches are heuristic in nature, relying on manually designed communication strategies
or intuitive criteria. Such approaches lack theoretical grounding and provide no principled guidance
on what to communicate or how to encode it under bandwidth constraints.

To fill this gap, we take an information-theoretic perspective and propose pragmatic rate-distortion
theory for multi-agent collaboration, which explicitly models the trade-off between communication
bit-rate and task-specific pragmatic distortion. Our theoretic analysis extends Shannon’s classical
rate-distortion framework Shannon et al.|(1959) in two key aspects. First, we introduces pragmatic
distortion, a task-driven metric that reflects the impact of message degradation on downstream task
performance, distinct from reconstruction-based distortions |Blau & Michaeli| (2019);|Cover]| (1999).
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Second, our theory generalizes to distributed communication among multiple agents, where both
message senders and receivers observe the environment. We thus account for inter-agent redundancy,
a factor typically neglected in traditional rate—distortion analysis. Building upon these extensions, our
theory ultimately characterizes the minimal communication cost required to meet a specified distortion
threshold, and derives two key conditions that an optimal communication strategy should satisfy:
pragmatic-relevant and redundancy-less. We envision this theoretical framework as a foundation for
analyzing communication efficiency in broader multi-agent tasks.

Inspired by the two theoretical conditions, we propose RDcomm (Rate-Distortion guided pragmatic
communication), a novel communication-efficient collaborative perception system, which optimizes
both message selection and coding to reduce communication overhead while preserving collabora-
tive complementarity and task effectiveness. Specifically, we design the two core components of
RDcomm based on the two derived conditions: i) Based on the pragmatic-relevant condition, we
propose a novel task entropy discrete coding module. It first utilizes learned codebooks to quantize
feature vectors, and then applies variable-length coding guided by task relevance, assigning shorter
codewords to more informative features. ii) Based on the redundancy-less condition, we propose
a novel feature selection module leveraging mutual information neural estimation Belghazi et al.
(2018)). This module enables agents to perform an inter-agent handshake process to assess message
redundancy by quantifying the mutual information between shared and locally observed features. We
validate RDcomm on two representative perception tasks: 3D object detection and BEV semantic
segmentation, using both real-world dataset DAIR-V2X |Yu et al.| (2022) and simulation dataset
OPV2V Xu et al.| (2021)). Experimental results show that RDcomm reduces communication volume
by up to 108 times compared against existing methods.

Our main contributions are summarized as follows:

* We introduce a pragmatic rate—distortion theory for multi-agent collaboration, which charac-
terizes the performance—communication trade-off, and concretize two optimal conditions: 1)
supply pragmatic-relevant information; ii) avoid inter-agent redundancy.

* We propose RDcomm, a communication-efficient collaborative perception framework that
is designed to approach the two optimal conditions with two innovations: i) task entropy
discrete coding; ii) mutual-information-driven message selection. Experiments on detec-
tion and segmentation tasks demonstrate that RDcomm achieves dual superiority in both
performance and communication efficiency.

2 RELATED WORKS

2.1 COMMUNICATION-EFFICIENT COLLABORATIVE PERCEPTION

In multi-agent collaboration, a key challenge is to balance task performance and communication
cost|Hu et al.| (2022). Early collaboration transmits raw sensor dataHan et al.|(2023) and achieves high
accuracy but suffers from heavy bandwidth usage. Late collaboration reduces bandwidth by sending
final predictions, but degrades performance under noise Lu et al.|(2023); |Hu et al.| (2022). To address
this, intermediate collaboration transmits feature maps to strike a balance between performance
and efficiency. Prior works mainly improve efficiency via: i) spatial selection, which transmits
features at critical regions; and ii) feature compression. For spatial selection, Where2comm Hu et al.
(2022)) selects high-confidence regions, CodeFilling Hu et al.|(2024) removes redundant collaborators,
and CoSDH [Xu et al.| (2025) targets unobserved areas. For compression, techniques include value
quantization Wang et al.| (2020); |Shao et al.[(2024), vector quantization |Hu et al.| (2024), and channel
reduction |Li et al.| (2021)); [Lu et al.|(2024). However, these methods are primarily heuristic and lack
theoretical guarantees for communication efficiency. In our work, we provide a theoretical framework
grounded in rate-distortion analysis, offering explicit conditions for optimal communication.

2.2 RATE-DISTORTION THEORY BACKGROUND

Rate-distortion theory Shannon et al.|(1959) provides a fundamental framework for lossy compression
by characterizing the minimum bits required to represent a signal X as a compressed representation
Z under a specified distortion constraint D[ X, Z] < §. The goal is to find a probabilistic encoding
map p(Z|X) that minimizes the mutual information I(X; Z) , as formulated in (I):

Rate(§) = pgi&)l(x; Z) st.D[X,Z] <6 (1
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In lossy compression, Z is an approximate reconstruction of X. A typical example is a Gaussian
source X ~ N (u,0?) with mean squared error (MSE) distortion, where the optimal rate under
distortion level § has a closed-form solution R(8) = h(X) — 3 log(2mes), which reflects the total
information in X minus the portion tolerable under the distortion budget. Despite its general
application in visual compression [Ballé et al.| (2018]), classical rate-distortion analysis mostly caters
to fidelity-based distortion metrics |Blau & Michaeli| (2019) and single-source settings. In general,
any distortion measure d : X x Z — Rxq of the form D[X, Z] = E,, .)[d(z, z)] is valid, as
long as there exists a z € Z such that D[X, Z] is finite |Dubois et al.| (2021). Our work extends
this framework to multi-agent collaborative perception by incorporating task-specific distortion and
inter-agent redundancy.

3 PRAGMATIC RATE-DISTORTION THEORY FOR COLLABORATION

We introduce the pragmatic rate-distortion theory for multi-agent collaboration. Our theoretical
analysis follows three high-level steps: i) We reformulate the collaboration task objective in a rate-
distortion formulation (Sec. ; ii) Defining the pragmatic distortion for collaboration (Sec. ; iii)
We derive the minimal transmission rate under constrained distortion, and present the conditions for
an optimal communication strategy (Sec.[3.3). See detailed proofs in the Appendix [A.3]

3.1 PROBLEM FORMULATION

We first introduce the problem we target to solve in rate-distortion formulation. In collaborative tasks,
our goal is to optimize model parameters and the message generation strategy, in order to achieve the

minimal transmission bits under constrained task loss, that is (2)):
N N

mlnz |{Zs—>r}s;ér s.t. Z LY Yra (I)Q (Xra {Zs—w*}s;tr)) = Lmaz (2)
r=1
where N denotes the number of agents; {ZSHT}S;,&T represents the messages sent from agent s to
other agents; | - | measures the information volume; ®g(-) is the task model parameterized by 0;
X, and Y, denote the local observation and ground-truth label of agent r, respectively; Ly (-) is
the loss function associated with task Y, and L. specifies the maximum tolerable task loss. We
then present (3 as a formal rate-distortion optimization version of (2), which defines the minimal
communication bits Rate(d) and serves as the foundational objective.
Rate(d) = min  I(Xg; Zsy,) st Dy [Xg, Zs | Xy < 0. 3)
P(Zs—r|Xs)
As shown in , the communication volume is captured by I(X; Z;_,), which quantifies the amount
of information from the original observation X that is preserved in the transmitted message Zs_, .
We denote Dy [Xs, Zs—,» | X,] as the pragmatic distortion for the collaborative task Y, which
measures the degradation in task performance when transmitting Z_,, instead of X, given the local
observation X,.. See detailed discussions on our problem formulation in Appendix [A.3.1]

3.2 PRAGMATIC DISTORTION FOR COLLABORATIVE PERCEPTION

In this section we make the pragmatic distortion Dy [ X, Zs—,, | X, in (3) explicit for collaborative
perception. Let X, X, denote the sender’s and receiver’s local observations, respectively, Y denotes
the perception task target. Z,_,, is compressed from X. We define Dy [ X, Z;_,| X, ] in :

DY [X57 ZS—)T'|X7'] = BT'isk: [Y|Zs—>ra X7] - BTisk [Y|X57 X7] (4)
where Byisk[Y| X, X5] denotes the Bayes Risk Dubois et al.| (2021, which measures the minimum
achievable prediction error for the target Y given the joint inputs X, and X;. We define the
distortion Dy [ X, Zs_,,| X, ] as the increase in Bayes Risk when predicting Y with the compressed
representation Z,_,, instead of the original signal X, while conditioning on the existing local
information X,.. Formally, the Bayes Risk is B [Y|X] = inf; E,x v, [L (Y, f(X))] , where f
is any predictor. For perception tasks, the loss is typically computed independently at each BEV
location. Accordingly, we define the overall Bayes Risk as the average of pixel-wise Bayes Risks
over all locations, as in (3)), where i € S denotes a BEV coordinate within the perception range S,
and Y{;) and f(X);) denote the corresponding ground-truth label and model prediction.

Brisk[Y|X] = ir}pr(X,Y) [L(Y, f(X |Y| Z Epx vy LYy, fF(X) i D] 6)



Under review as a conference paper at ICLR 2026

We instantiate the pragmatic distortion for two representative perception tasks: BEV segmentation
and 3D object detection. Specifically, for BEV segmentation, we adopt the per-pixel cross-entropy
(CE) loss; for 3D object detection, we adopt the widely used CenterPoint loss |Yin et al.| (2021). We
directly present the final derivations of the pragmatic distortion Dy [X, Z;_,,.| X ] in Tab.|l| Note
that we express pragmatic distortions in terms of entropy, which is naturally adaptive for information
theory analysis.

Table 1: Pragmatic distortions differ from classical reconstruction distortion by considering task entropy H(Y|-)
and local redundancy X .. Proofs are provided in Appendix

Task (loss function) Distortion Dy [ X, Z,_..| X, ]

Lossy reconstruction|Ballé et al.|(2018) (MSE) ﬁ |Xs = Zoosrl3, 10 X, 6)
BEV segmentation (CE) ﬁ ;[H(Ym | Zoosr, Xo) — H(Y(h) | Xs, X0)] %)
3D detection. (CenterPoint) ﬁ g[H(Yw) | Zaors X)) = (Vi) | X X) 45 % (H0am B X1 O,

®)

3.3 MINIMAL BIT-RATE OF COLLABORATIVE MESSAGE AND OPTIMAL CONDITIONS

In this section, we present the trade-off between communication bit-rate and distortion by incorporat-
ing the pragmatic distortions (7) and (8) into objective (3).

Theorem 1 (Minimal bit-rate Rate(d) of collaborative message under distortion constraint, see
proof in[A.3.5). Consider a message sender agent as and a message receiver agent a, and their
observation denoted as X, X, where the sender compresses X as Zs_,, and transmits it to
the receiver to collaborates in achieving task target Y. Then, the minimal transmission bit-rate
Rate(d) = miny 7z, x.,) (Xs; Zssr) s.t. Dy [Xs, Zsp] < 0 is givenin .

Rate(é) :p(ZS%T‘XS) s.rt.nlgri[Xs,Zsér]géI(Xs; Zs%r) = I(Y7 X | Xr) -9 )
ZH(XS) — H(Xs Y) — I(Y; XS;XT) —0 (10)
———r —_———

information in X s irrelevant to’ Y information in X 5 redundant with X . about Y’

The minimal bit-rate Rate(d) can be achieved only if the following two conditions are satisfied.

Pragmatic-relevant. The transmitted message Z_,, should contain only information relevant to the
receiver’s task Y, as formalized in (TI):

H(Zsoyr|Y) = 0 (11)

Equation implies that the uncertainty of Z,_,, is eliminated given a specific task target Y,
indicating a unique mapping from Y to Z,_,,.. Consequently, Z,_,, should exclude any information
unrelated to the task Y, and the task-relevant messages should be prioritized during coding.

Redundancy-less. The transmitted message Z,_,,- should avoid maintaining information that is
already contained in the receiver’s observation X, which is expressed as (I2):

(Zssri X,) = 0 (12)

Equation (12)) shows that the mutual information between the transmitted message Z;_,, and the
observation of receiver X, should be eliminated. In other words, Z_,, should avoid containing the
redundant information, but exactly supply the information missed in X,..

4 RDCOMM: EFFICIENT COMMUNICATION FOR CO-PERCEPTION

Inspired by the theoretical analysis, we introduce RDcomm, a novel communication-efficient col-
laborative perception framework with three main components (Fig. [T): i) a perception pipeline that
provides the basic functionalities for perception tasks; ii) a task entropy discrete coding module
(Sec. [.T)), following the pragmatic-relevant condition (TI]), which adopts a novel variable-length cod-
ing guided by task relevance; iii) a mutual-information—driven selection module (Sec. #.2), following
the redundancy-less condition (I2)), which selects complementary messages for transmission.

Perception pipeline. The perception pipeline couples a BEV encoder with task-specific decoders.
The BEV encoder accepts either LiDAR or camera inputs and maps sensor data into a unified bird’s-
eye-view (BEV) representation, enabling consistent spatial alignment across agents. Denoting the
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Figure 1: RDcomm features two key components: i) task entropy discrete coding for improving the pragmatic
relevance of message, which assigns short codewords to the codes with high confidence frequency; ii) mutual-
information-driven message selection, which measures message redundancy by mutual information estimation.

observation of the sender agent by X, the BEV encoder @y, () produces a BEV feature map by
Fy = ®pey (Xs) € RPXwXe followed by task-specific decoders @, for downstream tasks such as
3D object detection and BEV segmentation. Backbone details are provided in Appendix We
then focus on compressing the feature F into a collaboration message Z;_,, for any receiver agent.

4.1 TASK ENTROPY DISCRETE CODING

Our first objective is to approach the pragmatic-relevant condition H(Z,_,,[Y) = 0 in (11). We
approximate it by minimizing the task-conditioned entropy H(Z;_,,|Y").

Layered vector quantization. We begin by constraining H(Z,_,,.) via vector quantization inspired
by|Zhu et al.|(2022)), where the core idea is to represent each vector in F; with the nearest embedding
e; inacodebook B = [e1,e3,...,€,] € R™*4 with n learnable embeddings. We further implement a
layered discrete auto-encoder ®.(-) to quantize the BEV feature Fs by Fd = O, (Fs, Bpase, Bres)
By se is used to approximate the basic coarse-grained information of Fs with small codebook volume
n, and the residual error Fy — @y (Fs, Bygse) is further approximated by a fine-grained codebook
B, s with larger volume. This layered quantization is described in (I3)(T4):

Zgase = arg mln ||BbasP[ ] fln( S)H27 Zres = Fyg — Zgase (13)
Zl.s = arg Iniln ||BT€S[’L] - fin(ZTGS)H% = fout(Z} res Zgase) (14)

where fin(+), fout(-) are MLP projectors to bridge the distribution gap between continuous vectors
and codebook embeddings, and the input feature map F is flattened before quantization.

Task-aware priority and encoding. While quantization reduces representation length by restricting
the vector-space volume, we further improve coding efficiency by introducing task bias. Specifically,
we prioritize task-relevant messages for selection and encode them with shorter code lengths. Recall
that our objective is to minimize the task-conditioned entropy H(Z;_,,|Y) — 0, which can be

expanded as (T3).
mln ]Ey Z (Zs—rY) log p(Zs—r|Y)] (15)

Zs—r

Note that maximizing p(Z,_,.|Y") to 1 provides a sufficient solution for minimizing H(Z,_,.|Y"),
and p(Zs—,|Y) x p(Y|Zs—r)p(Zs—,) for a given target distribution p(Y"). Therefore we priority
the messages with high task confidence p(Y'|Z;s_;,) for transmission. We implement this with a
confidence generator ®eon¢(-) producing scores Cy = Deone(Fs) € R"*®_ The confidence mask
is M, = 1[Cs > 7.], where 7, is a confidence threshold, and quantized features are selected as
Fi = M. ® F4. In practice, we instantiate ®cone(-) by reusing the task decoder Py, (+).

We further reduce the average coding length of the quantized F'Z,, where we encode each embedding
€; in {Bypase, Bres } considering the joint effect of task confidence p(Y'|e;) and occurrence frequency
p(e;). Specifically, we define the confidence frequency p.(-) for each embedding e; as (16):

pelei) =Y > Deont (Fa)[u, v] (16)

Fs {(u,v): € €Pyq(Fs)u,v]}
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where p.(e;) represents the total task confidence predicted from e; across the entire dataset. We
compute it by accumulating the confidence scores ®con(F)[u, v] at spatial locations (u, v) where
Fy[u,v] are quantized with embedding e;. To improve coding efficiency for the task-relevant
embeddings, we propose to assign shorter code lengths for the embeddings with higher confidence
frequency. For implementation, this work provides a straightforward yet effective solution by applying
Huffman coding [Huffman| (2007), where we set the Huffman weight of e; to be its confidence
frequency p.(e;). Our task-entropy coding ultimately produces an index map Dy € ({0, 1}lww)hxw
to represent the input feature F, € R"*%*¢ where {0, 1}! denotes binary strings of variable
length I, . Ds[u,v] = [D%**¢[u,v]|| D7 [u,v]] € {0,1}'=+ denotes the code at location (u, v),
which consists of coarse-grained semantic information D%*%¢[u, v] and fine-grained D%®*[u, v)].

Discussion. i) The relation between coding method and the information optimization target (13):
the high-confidence selection module @, (.) reduces the task-conditioned entropy H(Z,_.,|Y")
governed by p(Z,,.|Y) x p(Y|Zs—r)p(Zs—). We instantiate this by defining the confidence
frequency p.(-), and use it as the weight for entropy coding. ii) The intuition behind is simple: with
limited bandwidth, high-confidence messages are selected more often, making their embeddings
frequent. Accordingly, we weight entropy coding using the confidence frequency p.(e;). iii) We
use the accumulation of confidence rather than the average to distinguish embeddings with similar
task relevance but different occurrence frequencies. iv) The confidence-frequency coding is applied
post-training and remains lossless for task performance, as it only reassigns embedding indices.

4.2 COMPLEMENTARY SELECTION WITH MUTUAL INFORMATION ESTIMATION

In this section we focus on reducing inter-agent message redundancy according to the redundancy-less
condition I(Z,_,,; X,,) =0 . We approximate this target by . ) denotes the selection region.

min [(FZ,[Q); ) (17)

To obtain the redundancy-less region €2, we perform feature selection via mutual information neural
estimation: we approximate I[(F'9,; F,.) by with a learnable estimator ®;(F'%, F).) and select features
accordingly. Note that we use the coarse-grained compression 13136 = Byase[ D8] as an abstract of
F,, which is pre-handed to the receiver to estimate its redundancy with the receiver’s information Fi..
This abstraction ch helps estimate semantic redundancy by transmitting D%**¢ with much smaller
communication volume, which is 10 times smaller than the lossless message D;.

Mutual information neural estimation. Consider the variable pair s, r € R€ that are included in

Fd F, € Ri*wxe regpectively, the mutual information I(s, r) can be estimated using l}

I(s,r) == Dgr(Psy || Ps @ Py) > ., Rsuﬂ}; . {Eps,r[T(s,r)] — log(Ep,gp, [eT(S"")])} (18)
:RexRe—

where Ps . denotes the joint distribution of s and r, and Ps,P, denote marginals; D, is KL
divergence; T' : R¢ x R® — R is any function that projects the (s,r) pair into a real number.
Formulation shows that mutual information I(s, r) actually measures the divergence between the
joint distribution PPs ;. and marginal distribution Ps ® IP,.. While employs the KL divergence as a
standard estimation, we instead adopt the GAN-style divergence Nowozin et al.|(2016) following [Li
et al.|(2020) to facilitate optimization, and use the estimation target in . o(+) denotes sigmoid.

I(s,r) > sup {Ep,,[logo(T(s,r))] + Ep,gp, [log(1 — o(T(s,1)))]} (19)
T:R¢xRe—R

The inequality results from approximating 7'(-) with limited representation ability, which is a sub-
class of projection R® x R® — R. Our objective is to optimize 7'(-) to maximize the estimation
bound in , where T'(+) is implemented by a learnable estimator @y (+), with the loss defined
in :

1

Lyr=—15—
Ps x|

Z log o (Py(s,r)) 1 Z log (1 — o (Pya(s,r))) (20)

(s,r)EPs r [Psl[Pxl SEPs,rEP:

where Ps » denotes the set sampled from Ps . where s, r are visual features from two agents at the
same location. Pg, P, are sampled from the marginals where s, r are randomly combined. We see
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that the mutual information estimator ®y;(-) actually serves as a discriminator. It predicts whether a
feature pair (s, r) is drawn from the joint distribution Pg ., i.e., two agents’ observations at the same
location that exhibit similar patterns, or from the product of marginals Ps ® P, in which observations
are randomly paired and likely to differ in pattern due to non-corresponding locations.

Redundancy-less feature selection. To reduce redundancy in transmission, we prioritize the
message s with a low mutual information score @ (s, r). Specifically, we obtain the redundancy

map Ry, = CIDMI(F a,F,) € R"*w and derive the redundancy-less selection mask My;; =

sc) T

1[Rs—» < Tars), where 7y is a redundancy threshold. The feature finally sent to the receiver is
Zosr = My © Fgc. This selection filters out the messages in Z_,,. that are already covered by Fi..
The total communication volume of RDcomm is computed as |D, © M, ® M| + |D%*%¢ © M,|.
The first term measures the volume of the selected lossless information Z,_,,., and the second term
measures the cost for identifying redundancy and is much smaller than the first term by setting By, se
with small codebook size n and dimension d with limited segments.

Message smoothing and fusion. Note that Z,_,,. is obtained under sparse masks M and M.
Although it preserves salient information, the sparsity may degrade semantic content. We mitigate
this by applying a UNet Ronneberger et al. (2015) Pgpen(+) to smooth and dilate Z,_,,., propagating
sparse signals to neighboring regions. The receiver then obtains the enhanced perception results
as Yy = Ppagi(Prusion (Frs Psmth (Zs—r))), Where $pygion (+) is instantiated using the effective max-
fusion operation following Hu et al.|(2024).

4.3 TRAINING

We train RDcomm in three stages. First, we train the BEV encoder ®},., and the task decoder &5
with task loss L4k, which corresponds to the CenterPoint loss for 3D detection and the per-pixel
cross-entropy loss for BEV segmentation. Second, we train the vector quantization module ®.,, with
both task loss L%, and feature reconstruction 108s Lccon = ||F9 — F||3. After that, the confidence
frequency p.(-) is updated. Finally, we train the mutual-information estimator ® 1 using £ /7. In the
later stages of training, the thresholds 7., 737 are randomly varied to facilitate bandwidth adaptation.

5 EXPERIMENTS

To evaluate RDcomm, we conduct experiments on two representative collaborative perception tasks:
3D object detection and BEV semantic segmentation. To validate the effectiveness and generality of
the proposed RDcomm, our evaluation spans both LiDAR and camera modalities, up to 5 collaborating
agents, and varying bandwidth constraints.

Collaborative 3D detection. We evaluate collaborative 3D detection on two datasets: the real-world
DAIR-V2X Yu et al.|(2022) and the simulated OPV2V [Xu et al.|(2021). DAIR-V2X is a vehicle-
to-infrastructure dataset with 9K frames of 2-agent collaboration between a vehicle and a roadside
unit (RSU). Each agent is equipped with a LIDAR and a 1920x1080 camera, where the RSU uses a
300-channel LiDAR and the vehicle a 40-channel LiDAR. OPV2YV is a vehicle-to-vehicle dataset
simulated with CARLA Dosovitskiy et al.|(2017), containing 12K frames. Our experiments involve
up to 3 agents, each equipped with a 64-channel LiDAR and four RGB cameras at 800x600 resolution.
We evaluate both LiDAR and camera modalities and report Average Precision (AP) at IoU thresholds
of 30%, 50%, and 70%. Following|Lu et al.|(2024)), the perception range is set to 204.8mx102.4m.
Collaborative BEV segmentation. We evaluate BEV semantic segmentation on OPV2V dataset
following CoBEVT [Xu et al.| (2022a)). Each agent predicts a BEV semantic occupancy map with
camera inputs, ground truth classes include dynamic vehicles, drivable area, and lane. We involve
collaboration among up to 5 agents. Performance is measured by Intersection-over-Union (IoU)
between predictions and ground-truth BEV labels, with the perception range fixed at 100mx100m.

5.1 QUANTITATIVE ANALYSIS

Benchmark comparison. Fig. [2and Fig. [3|compare RDcomm with previous collaborative perception
methods in terms of the trade-off between perception performance and communication volume on
3D detection and BEV segmentation. The baselines include no collaboration, CodeFilling Hu et al.
(2024), V2X-ViT[Xu et al.|(2022b), CoBEVT Xu et al.|(2022a)), DiscoNet|Li et al.| (2021)), AttFuse [Xu
et al.| (2021), V2VNet Wang et al.| (2020), Fcooper|Chen et al.|(2019), HEAL |Lu et al.| (2024), and
late Fusion (directly share the final perception results). We see that: i) RDcomm consistently delivers
a superior perception—communication trade-off across all bandwidth settings for both detection and
segmentation; the gains persist across LiDAR/camera modalities and multiple semantic classes.
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Figure 2: RDcomm achieves the best performance—communication trade-off in 3D detection, across DAIR-
V2X/OPV2V datasets with LiDAR/camera input modalities.
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Figure 3: RDcomm achieves the best performance—communication trade-off in BEV segmentation.

ii) Under extreme bandwidth constraints, RDcomm achieves larger gains than prior methods: for
detection, +11.49/4+19.82% (LiDAR/camera) on DAIR-V2X and +12.01/+22.92% on OPV2V with
a 50K times reduction relative to uncompressed features; for segmentation, +5.69% mloU at a 1K
times reduction. iii) RDcomm outperforms previous communication-efficient SOTA, CodeFilling,
with significantly reduced communication cost in detection: 15/13 times less (LiDAR/camera) on
DAIR-V2X and 54/108 times less on OPV2V; and 8 times less for segmentation.

Ablation on coding method. Fig. fa] compares the proposed task entropy coding in RDcomm
against: i) classic entropy coding weighted by occurrence frequency [Huffman| (2007); ii) fixed-length
coding Hu et al.| (2024)), where code length is log 2 of the codebook volume. We see that task entropy
coding saves 83/57%(detection/segmentation) in communication volume compared to fixed-length
coding, and 30/25% compared to occurrence-driven entropy coding. The reason is that our task
entropy coding prioritizes pragmatic-rich codes by assigning them shorter codewords, whereas
classic entropy coding may waste short codewords on high-frequency but pragmatically weak codes.
Theoretically, we use confidence mask M to reduce the entropy H(Z,_,,.|Y), and entropy coding
weighted by confidence frequency p.(-) shortens the expected code length toward the entropy limit
implied by this entropy.

Ablation on selection method. Fig. #b]compares our mutual-information—driven (MI) redundancy
selection against other redundancy selection: i) confidence-based [Hu et al.| (2024)); ii) LiDAR-
coverage—based [ Xu et al.| (2025). Our MI selection reduces communication volume by 60/50%
(detection/segmentation) relative to these baselines. The gain arises since MI leverages a pragmatic
yet lightweight abstraction to identify redundancy, providing richer cues than one-dimensional
confidence or coverage signals. Theoretically, the mutual information estimator encourages agents to
transmit Z_,, with low I(Z,_,,., F}.) relative to the receiver’s feature F,.. Meanwhile, we observe
that the smoothing module improves AP50 by 4% and IoU by 10%, demonstrating its effectiveness
in mitigating sparsity under high selection rates.
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Figure 4: Ablation study on OPV2V detection/segmentation, evaluating coding and selection methods.
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Lossless bit-rate. We compare the bit-rate of RDcomm
with the optimal bit-rate Rate(d) in under lossless
pragmatic compression, i.e., § = 0. To reduce the error in
estimating Rate(0), we exclude the receiver’s information ~ Method mloU? bppl.
X, in the experiment; the optimal rate is then I(Y; X,),  vQVAE-32 038 (82%) 10
which is tightly upper-bounded by H(Y") ~ log,(4),1.e.,2  VQVAE-128 0.40 (87%) 14

bits-per-pixel (bpp). Here we define "lossless" as a perfor- RDcomm-128 ~ 0.44 (95%) 4
No compression  0.46 (100%) 4096

Table 2: Segmentation performance with
compression. bpp: bits-per-pixel.
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mance drop of less than 5%. Tab. 2| compares RDcomm’s

BEV segmentation performance with the no-compression scheme. RDcomm attains 95% of mloU
with 4 bpp, close to the 2 bpp upper bound. Here bpp describes BEV feature. We also report
VQVAE [Van Den Oord et al.|(2017) results (codebook sizes 32/128, segment number 2), where
RDcomm uses a codebook size of 128. RDcomm delivers higher accuracy at a lower rate, indicating
that effective pragmatic compression cannot be achieved by merely tuning codebook size, requires
selective transmission and shorter codewords for task-relevant codes.

Cost for transmitting abstract. Tab. 3|reports the share

. o .~ Table 3: Allocation of icati 1-
of bandwidth consumed by transmitting the pragmatic ocation of communication vo

~ ume.
abstraction F'Z. on DAIR-V2X detection. We observe that
: 1eqi _ AP30 0.82 0.79 0.76
abstraction transmission accounts for only 9%—11% of the T oA o o

total communication volume, yet is effective to identify  ,pqracibits  8829%) 49(11%) 19(11%)
redundancy as showed in Fig. #b]
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Figure 5: Visualization of mutual information estimation and task entropy coding length on DAIR-V2X.

5.2 QUALITATIVE ANALYSIS

Fig. [§] visualizes mutual-information estimates and task-entropy code lengths in two cases. In case 1,
both agents A and B detect the same vehicles, forming high—mutual-information regions. In case 2,
A and B detect different vehicles, yielding low—mutual-information regions that are prioritized for
sharing. We also observe that task-entropy coding assigns short codewords to task-relevant regions.
Long codewords are assigned to background areas, which are omitted when bandwidth is limited.

6 CONCLUSIONS

This work investigates the trade-off between task performance and communication volume from an
information-theoretic perspective. We formulate a pragmatic rate—distortion theory for collaborative
perception, deriving the optimal bit rate for message transmission and two necessary conditions for
optimal compression: pragmatic-relevant and redundancy-less. Guided by these two conditions,
we propose RDcomm, a communication-efficient collaborative perception method with two novel
components: i) task entropy discrete coding and ii) mutual-information-driven message selection.
Experiments covering both detection and segmentation show that RDcomm achieves state-of-the-art
perception—communication trade-offs across both LIDAR and camera modalities.

Limitations and future work. Our study focuses on perception tasks. Future directions include
extending the framework to broader tasks such as navigation, manipulation, and scene captioning,
and incorporating additional modalities such as motion and language.

Reproducibility Statement. We have taken multiple steps to ensure the reproducibility of our
work. The detailed formulations of our theoretical results, including all assumptions and proofs, are
provided in Appendix [A.3] The design of RDcomm and its components is described in Sec.[d} with
training details in Sec.4.3|and backbone details reported in Appendix.[A.2.1] The datasets used in
our experiments (DAIR-V2X and OPV2V) are publicly available. We will release our source code
and configuration files in the camera-ready version to further facilitate reproducibility.
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A APPENDIX

A.1 STATEMENTS
LLM Usage. We used an LLM (ChatGPT) solely for language refinement, such as improving

grammar, clarity, and readability of sentences. The research ideas, methodology, experiments, and
overall writing structure were entirely developed by the authors.

A.2 MODEL
A.2.1 SINGLE-AGENT PERCEPTION PIPELINE

The perception pipeline comprises two components: a BEV encoder and a task-specific decoder. The
BEV encoder projects sensor inputs into bird’s-eye-view (BEV) representations, enabling consistent

11
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spatial alignment and collaboration across different views. Task-specific decoders are then applied
for downstream detection or segmentation tasks.

BEYV Encoder. Our framework supports either LiDAR or camera inputs, where we commonly denote
the observation of the ith agent as X;. We obtain BEV feature as F; = ®.,,.(X;) € R"*"*¢ where
®,,..(+) denotes the complete BEV encoder. F; then serves as the information source for selection and
compression. For LiDAR inputs, we adopt the widely used PointPillars encoder Lang et al.| (2019) to
extract BEV features from point clouds. For camera inputs, we employ the Lift-Splat-Shoot |Philion
& Fidler (2020) module following|Lu et al.|(2024), which lifts image features into 3D frustums and
aggregates them into the BEV plane via learned depth distributions. For both LiDAR and camera
modality, the extracted BEV features are further processed by a 2D convolutional ResNeXt-based
backbone [Lu et al.|(2024).

Decoder. Based on the BEV feature F;, we incorporate task-specific decoders. For 3D object
detection, the decoder consists of a classification head, a box regression head, and a direction
estimation head to predict object bounding boxes, following|Lu et al.| (2024); Hu et al.| (2022). For
BEV semantic segmentation, we employ a MLP as decoder to produce dense, per-pixel semantic
predictions, following Xu et al.[(2022a).

A.3 THEORY

In this section, we provide: i) further discussion on our problem formulation; ii) proof of the proposed
propositions and theories.

A.3.1 DISCUSSION ON PROBLEM FORMULATION

Note that our theory formulation equa-

tion E] €quation E] Is not an ad hoc 48~ Table 4: Problem formulations of bandwidth-constrained
sumption, but consistent with the learning  collaboration. R: bit-rate, D: distortion/loss.

objects in pragmatic compression . Ta-

ble @ reveals that the optimizaﬁon objec_ Formulation Type Optimization target Distortion/loss D

1 1 1 _ 1 Constrained task loss/Hu et al. (2022} minD st R<S task loss function
tive equatlon E] 18 dual equlValent to SeVCral Task-compression joint loss|Ballé et al.|(2018] minD + AR task loss function
prior approaches Hu et al. (2022)’ Baué Pragmatic rate-distortion (ours) minR st.D<E pragmatic distortion

et al.| (2018)), as they all share the same La-
grangian target min D 4+ AR, which is a weighted sum of distortion D and communication rate R
with weight \. In the Sectionwe make the task distortion Dy [ X, Zs | X,] explicit.

As an extreme case, consider early collaboration Han et al.|(2023)), where agents directly transmit raw
sensor data (i.e., Z, = X;). In this case, the communication volume becomes I(X; Zs) = H(Xj),
corresponding to the full information content of X, and the distortion Dy [ X, X|X,] is zero.

A.3.2 DISCUSSION ON PRAGMATIC DISTORTION

From Tab. [§| we see that: i) for collaborative BEV segmentation, pragmatlc distortion is expressed as
the gap in conditional entropy, based on the Bayes risk B,.;sx[Y|X] = \Yl Sies H (Y| Zs, X)) i)
for collaborative 3D detection, the distortion further incorporates an exponential term of conditional
entropy, where K = {loc, size, ori} denotes the set of regression losses (location, size, and orienta-
tion), which contribute more uncertainty than classification; iii) compared to the widely used MSE
distortion in image reconstruction |Ballé et al.| (2018)), the pragmatic distortion defined in our theory
differs in two aspects: first, it emphasizes task uncertainty rather than fidelity, second, it accounts for
the receiver’s information (e.g., X,.) to analyze redundancy.

A.3.3 PROOF OF|[PROPOSITION I} BAYES RISK R[Y|X] FOR PERCEPTION TASKS

Proposition 1 (Bayes risk R[Y | X] for perception tasks, see proof in . Given an observation
input X and a perception task target Y, we focus on the Bayes risk R[Y to measure the difficulty
of predicting Y from X. In object detection task, the detection results and corresponding target label
are denoted as Y, Y € R*wx@+K) \whore the (8 + K) channels stand for classtﬁcatton heatmap
Y.,Y. € thw”{, offset Y,,Y, € thwxz” size Yy, Ys € RWXWX3 yoration Y, Y € Rhxwx2,
Here [h, w] denotes the BEV perception range. The total loss is shown in equanon
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Llotal = Lheatmap + A2L()f/'set + A3[/51'ze + )\4Lr0tuli0n (21)

where Ao, A3, Ay are the loss weights. Consider N objects involved in ground truth, the heatmap
loss optimizes the model to classify the foreground object from background, where we adopt the
~ K AN ~ .
focal loss Lpca (y,9) = —> 11 o (1 — Ur)” yrlog g, where ay,~ are hyper-parameters in
focal loss, here we consider a simplified situation that o, = 1,7 = 0 and the loss degenerates
into cross entropy loss Lee. Logser, Lgize, and Lyoion are LI loss. Specifically, we consider the

situation that the elements in Y, follow Gaussian distribution Yo 1| X ~ N(p1o(X),02(X)),

Yo X ~ N (ps(X),02(X)), Yo jy | X ~ N(pr(X),02(X)), and the number of objects is Nop;.

S T

The Bayes risk of object detection with centerpoint detection loss is given as equation[22}

RYIX] = Y H(Yei ) X) + Nopjv/2/m (A200(X) + Aa0s(X) + Mo (X)) (22)

i<h,j<w

When the task Y refers to occupancy prediction, the regression terms are put off and the Bayes risk
RI[Y'|X] solely consists of the terms of conditional entropy, as shown in equation

RYV[X]= > HYeqpnlX)= Y HYjylX) (23)

i<h,j<w i<h,j<w

In each communication round, messages are transmitted between connected agents as shown in
equation 2] where the connection is established by the pre-defined collaboration principle. We denote
the observation of message sender/reciever as X, X,., the perception target as Y. The message Ps_,
is obtained via P_,, = C(X;), where C(-) is a compressor that reduces the transmission bit-rate.
The pragmatic distortion is defined in equation [24] where Y is the perception target, R[Y| X denotes
the Bayes risk when predicting Y from X, R[Y|X,., X;] denotes the Bayes risk when predicting Y’
from the fused information of X,., X,.

Dy [Xs,Zs]=R[Y | X\, Zs) - R[Y | X;, X] (24)

To analyze this distortion in perception tasks, we need to:

* Give the specific formulation of Bayes risk R[Y|X,](single perception) and
R[Y| X,., X](collaborative perception) in detection 3D task with centerpoint loss(for exam-
ple).

* Reformulate the distortion Dy by introducing the task related Bayes risk R[Y| X, X,].

* Reformulate the distortion Dy by introducing the supply-request information.

Definition 1 (Bayes risk). Let X € X be the input variable (features, observed data), Y € ) be the
target variable (labels), P(X,Y’) denote the joint probability distribution of X and Y, L(Y,Y’) be
the loss function quantifying the discrepancy between a prediction Y = f(X) and the true value Y,
and f : X — Y be a predictive model. The Bayes risk is defined as the infimum of the expected loss
over all possible decision functions, as shown in equation 25}

R=infExy [L(Y, /(X)) (25)

Bayes risk is the minimum achievable loss by an ideally trained model. It captures unavoidable
uncertainty in the data, such as the ambiguity due to overlapping classes in classification tasks or
stochastic noise in target variables for regression tasks. For any model f, the expected loss satisfies
E[L(Y, f(X))] > Rapayes- With a given loss function, the Bayes risk completely depends on the data
distribution P(X,Y), it indicates the "difficulty” of learning the projection f : X — ). Due to its
property to characterize data distribution, we utilize the differences of Bayes risk to measure the
pragmatic distortion.
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Bayes risk for perception tasks In this section, we derive the Bayes risk of perception tasks with
specific loss functions.

First, we review the formulation of centerpoint loss. Suppose that the observation from camera
or LIDAR can be represented by 3D voxel feature X € RP*"xwxC the detection results and

corresponding target label are denoted as Y,Y € R*wx(8+K) where the (8 + K) channels stand
for classification heatmap Y., Y, € R/"*WXE offset Y,,Y, € RM*wX3 size Y, Y, € Rh*wx3,
rotation Y., Y, € R"*%*2_The total loss is:

Ltolal = Lheatmap + )\2L0ffsel + )\3Lsize + )\4Lrolalion (26)

where , Ao, A3, A4 are the loss weights. Consider N objects in ground truth, the heatmap loss
optimizes the model to classify the foreground object from background, we utilize focal loss

Liocal (y,9) = — Z,{;l ar (1 — 9x)” yk log gk, where vy, v are hyper-parameters in focal loss, here
we consider a simplified situation that a, = 1, = 0 and the loss degenerates into cross entropy loss
Lce- Loffset 7LSiZe , and Lrotation are L1 loss.

Now we derive the Bayes risk in 3D object detection with centerpooint detection loss. To simplify
the formulation, we approximately decompose the total Bayes risk into the sum of Bayes risk on each
location as shown in equation 27}

RIYV|X] = infExy (LY. F(X)] = inf 3" Exve,, [0V F(X)ap)] @D

i<h,j<w

We regard the perception task at each region as independent tasks, and we define the located Bayes
risk for perception tasks in equation

R[Yiip)|X] = if Ex. v, ;) [L(¥, F(X)ip)] (28)

We derive the Bayes risk for two primarily used loss function involved in perception tasks: focal loss,
MSE loss, and L1 loss.

Focal loss. The true distribution of P(Y., X) satisfies p(Ye(; j 1) = 1/X) = p; jx, and we have
P(Ye|X) =I1, j  p(Ye(i k| X) since different classes and locations are independent. The Bayes

A~k
optimal prediction is the true conditional distribution: Ye(; ; 1) = P(i,j,k), then we have:

R[Ye(i )| X] = Ex v, ;) Lee(Ye(ig) i) (29)
=Ex Z P(Ye(i )| X) Lee(Yeqi gy, Pig) (30)
Ye(i,g)
K
=Ex Z —p(Ye(ijn = 1X)logp(Ye(ijn = 11X) (3D
k=1

MSE loss. Given a specific X, we assume that the elements in offset target Y, follow Gaussian
distribution Y, ; ;)| X ~ N (p10(X), 02(X)), and the number of objects is Nop;. This assumption is
reasonable, since minimizing MSE loss can be regarded as MLE(Maximum likelihood estimation)

when Y, (; ;)| X ~ N (p1o(X),02(X)). The Bayes optimal prediction is f(X) = Yo*i,j) = po(X).

Put this into equation |27} the Bayes risk is derived as Nop;+/2/70,(X). Similarly, we can derive
the Bayes risk for the size and rotation targets by assuming their distributions follow a Gaussian
distribution Yy (; ;)| X ~ N (ps(X),02(X)), Yr (i jy| X ~ N (pr(X),02(X)). Combining the Bayes
risk of the individual loss function described in equation [26] we obtain the Bayes risk of object
detection with centerpoint detection loss as equation
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Rcenterpoint [Y‘X] = Z H(K(z,])|X) + Nobj V 2/7T ()‘QUO(X) + )\30'5(X) + >\4U7‘(X))

i<h,j<w

(33)
L1 loss. Given a specific X, we assume that the elements in target Y, follow Laplace distribution
p(Y, | X) = 2b1\x exp (—W). This assumption is reasonable, since minimizing L1 loss can

be regarded as MLE(Maximum likelihood estimation) when Y, ; ;) | X ~ le‘x exp (—W)

The Bayes optimal prediction is f(X) = Aoz‘iyj) = median(Y,(; j) | X) = po(X). Put this
into equation 27} the Bayes risk is derived as:

R[Y, (| X] = ]EX’YWJ)L“(YO(M), po(X)) definition (34)
o0 1 Yo (i) — #o(X)
= Ex / Yoi ) — Ho(X)| - exp (— 2D T0 Ay, ) (35)
o 20, x bo|x
=Ex ! /OO |z|exp | — 12 dz 2= Yo(i5) — Ho(X)
2bo|X oo bo|X d
(36)
—Exo ot (37)
=Ex ST ol X
~ Exbyx 39)
= by|x bo| x is a constant
(39)

On the other hand, when p(Y,(; ;) = y|X = ) = le‘x exp (*mzui‘o;fm), we can formulate the

conditional entropy H(Y5(; ;)| X) as:

H(Yo(i,j) IX) = EINXH(Yo(i,j)|X = .2?) (40)
=E;nx / —p(y)logp(y) dy 4D
o1 Iy—uo(x)|> 1 [y — po()|
=FE.~ / — exp (— lo — d 42)
* —o0 2bo\X bo|X ( 8 2bo\X bo\X ) Y

=E, x 10g(2bO|X) +1 43)

= log (20, x) + 1 bo|x is a constant

(44)

Combining equation 39| with equation[44] we have:

1 J—
RYo( | X] = §eH<Yo<i,j>|X) 1 s

A.3.4 PROOF OF TAB.[I} PRAGMATIC DISTORTION FOR COLLABORATIVE PERCEPTION.

In this section, we derive the pragmatic distortion in collaborative perception. To achieve this, we
start from decomposing the contribution of ego agent and other agents.

Now we derive the pragmatic distortion in collaborative perception task. Consider a simple scenario
with 2 collaborators, and the observations/features of message sender and receiver are X and X,
and the sender compresses X into Z; to transmit, we define the pragmatic distortion as shown
in equation 46} which measures the increase of Bayes risk after replacing the collaboration message
X, with Zg:
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Dy [Xs,Z;|=R[Y | X, Zs)] —R[Y | X, X4] (46)

We give a specific formulation by replacing the Bayes risk in equation 46| with the Bayes risk of
centerpoint loss in equation 33} as shown in equation {7

Dy, , [Xs, Zs] = H(Ye(i )| Xy Zs) — H(Ye(i )| Xy Xs)+ 47
%)\Q(QH(YDU,MXT,ZS)A _ eH(Yo“,j)|XT,XS)71)jL (48)
T (49)

%)\4(eH(YT'<i,J‘)|X'st)*1 — MY | X Xa) =1y (50)

We consider a degraded version by ignoring the regression loss, which is suitable for semantic
occupancy prediction task, as shown in equation [51}

DY(M) [Xsa ZS] = H(Y(i,j)|XTa Zs) - H(Y(i,j) ‘Xr; Xs) on

A.3.5 PROOF OF[THEOREM I} OPTIMAL BIT-RATE OF COLLABORATIVE MESSAGE

In this section, we derive the optimal transmission bit-rate in collaborative perception task. Consider
the same collaboration situation described in Tab. [T]with 2 collaborators, and the observations/features
of message sender and receiver are X and X, and the sender compresses X, into Z; to transmit.
Our goal is to derive the minimum bit-rate needed to transmit Z, while guaranteeing a limited
pragmatic distortion, as shown in equation 52}

Rate(d) = min I(Xs;Zs) s.t. Dy [X;, Zg] < 6. (52)
p(Zs|Xs)

For occupancy prediction, put pragmatic distortion equation [5T]into the constraint in equation[52] we
have equation[53}

Dy[X,, Z,] = H(Y|X,, Z,) — H(Y|X,, X,) (53)
= [H(Y|X,) = IY; Z|X,)] — [H(Y|X,) = I(Y; X,| X,)] (54)
=1(Y; X,|X,) = 1(Y; Z,|X,) < 6 (55)

This inequality condition also satisfies for object detection task, which corresponds to the distortion
defined in equation [50] by considering two approximation:

* First-order approximation.

—_

eH(YO(i’])IX“Zs)il - eH(YO(i’j)lX“Xs)il > *(H(Yo(i,j)|Xh Zs) - H(Yo(i,j)|Xr7Xs))
(56)

@

* Decomposition of joint entropy, with the assumption that the existing of object(Y,) is
independent with the location (Y}), size (Ys), and heading (Y,.).

H(Ye, Yo, Ve, Ye) = H(Ye) + H(Yo) + H(Ys) + H(Y;) 57)

Given that, We reformulate equation[52]as shown in equation [64
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Rate(d) = i (X,: Zs 58

* e( ) p(Zs]|Xs) s?ﬁg[xs,zs]ga ( ) 58)

> min I(Xs; Z5| X,) (59
p(Z4|Xs) st Dy [X4,Z,]<6

> min I(Y; Zs| X,) (60)
p(Zs|Xs) st Dy [Xs,Zs]<6

> min I(Y; X,|X,) =6 (61)
p(Zs|Xs) st. Dy [Xs,Z]<8

=I(Y; X, | X;) =5 (noZy) (62)

—H(X,) - [H(X,) - (V3 X,)] = [I0V3 X)) — (Y3 X, | X,)] -8 (63)

=H(X,) -~ HXY) - 1Y X5 X,) 5 (64

—— N—————

information in X irrelevant to Y information in X s redundant with X ,. about Y

We make assumption that the variables follow the Markov chain ¥ + X, < Z, and
X, < X > Z,. Next, we will explain the reasoning behind each inequality and the conditions for
these inequality to achieve equality.

The first inequality equation [39]is satisfied when Markov chain X, <+ X, <+ Z, holds. This is
because equation [63}

:[(Zs; XS7XT) = I(ZS;X’I“) + I(Zsa X5|Xr) = I(ZS;XS) + I(Zs; XT|XS) (65)
The Markov chain X, <> X, < Z; leads to I(Z;; X| Xs) = 0. Then we have equation
I(Zg X)) =1(Zs; X)) +1(Zs; X1 X)) > 1(Zg; X| X)) (66)

Here we can see the equality condition for the first inequality equation [59|is that, I(Z,; X,.) = 0,
which means Z;, the compressed version of X, should not have redundant information in X,..

The second inequality equation [60]is satisfied since due to DPI(Data Processing Inequality) given the
Markov chain Y <+ X <+ Z,. This is because equation [67}

[(Zs; X, Y)=1Zs;Y)+ 1(Zs; Xs|Y) =1(Zs; Xs) + 1(Zs; Y| Xs) 67)
The Markov chain Y + X + Z; leads to I(Z,; Y| X) = 0. Then we have equation
I(ZS;XS) :I(ZS;Y) +I(ZS§XS‘Y) > I(ZS;Y) (68)

We can see that the equality condition for the second inequality equation |60|is that, I(Z; X|Y") = 0.
We can derive that equation [69

I<Zs§ XS‘Y) = H(ZS|Y) - H(ZS|XS»Y) =0 (69)
We can see from equation [69]that H(Z,|Y") = H(Z,|X,,Y), since Z, is a compressed version of

X, the uncertainty H(Z,|X;,Y) is 0, therefore H(Z;|Y") = 0. This implies that Z, is completely
task-relative, it does not contains information unrelated to the task Y.

The third inequality is derived from equation [55] and the equality condition is achieved when the
distortion budget is sufficiently utilized.
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