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ABSTRACT

Collaborative perception emphasizes enhancing environmental understanding by
enabling multiple agents to share visual information with limited bandwidth re-
sources. While prior work has explored the empirical trade-off between task
performance and communication volume, a significant gap remains in the theoret-
ical foundation. To fill this gap, we draw on information theory and introduce a
pragmatic rate-distortion theory for multi-agent collaboration, specifically formu-
lated to analyze performance-communication trade-off in goal-oriented multi-agent
systems. This theory concretizes two key conditions for designing optimal commu-
nication strategies: supplying pragmatically relevant information and transmitting
redundancy-less messages. Guided by these two conditions, we propose RDcomm,
a communication-efficient collaborative perception framework that introduces two
key innovations: i) task entropy discrete coding, which assigns features with task-
relevant codeword-lengths to maximize the efficiency in supplying pragmatic in-
formation; ii) mutual-information-driven message selection, which utilizes mutual
information neural estimation to approach the optimal redundancy-less condition.
Experiments on 3D detection and BEV segmentation show that RDcomm achieves
state-of-the-art accuracy on datasets DAIR-V2X, OPV2V, V2XSeq, and V2V4Real,
while reducing communication volume by up to 108×. The code will be released.

1 INTRODUCTION

Multi-agent collaborative perception enhances environmental understanding by enabling agents to
jointly perceive and share information. This paradigm has shown clear advantages over single-agent
sensing, particularly in overcoming occlusions and limited fields of view, and has been widely adopted
in tasks such as 3D object detection Wang et al. (2020) and BEV segmentation Xu et al. (2022a).

In this field emphasizing multi-agent collaboration, a fundamental challenge remains: the trade-
off between task performance and communication volume Hu et al. (2022). While sharing richer
information tends to preserve collaboration quality, it introduces significant communication overhead;
conversely, aggressively limiting communication may result in the loss of task-critical information,
ultimately degrading overall performance. Recent works tackle this trade-off by extracting informative
and compact representations from visual observations to serve as collaborative messages. One
representative line of work focuses on spatial selection, aiming to transmit only task-relevant regions,
such as those with high detection confidence Hu et al. (2022) or sparse observation coverage Xu et al.
(2025). Another direction leverages neural compression techniques Ballé et al. (2018); Van Den Oord
et al. (2017), reducing the size of transmitted features through autoencoders Shao et al. (2024); Hu
et al. (2024) or channel reduction Li et al. (2021); Lu et al. (2024). Despite some empirical gains,
previous approaches are heuristic in nature, relying on manually designed communication strategies
or intuitive criteria. Such approaches lack theoretical grounding and provide no principled guidance
on what to communicate or how to encode it under bandwidth constraints.

To fill this gap, we take an information-theoretic perspective and propose pragmatic rate-distortion
theory for multi-agent collaboration, which explicitly models the trade-off between communication
bit-rate and task-specific pragmatic distortion. Our theoretic analysis extends Shannon’s classical
rate-distortion framework Shannon et al. (1959) in two key aspects. First, we introduces pragmatic
distortion, a task-driven metric that reflects the impact of message degradation on downstream task
performance, distinct from reconstruction-based distortions Blau & Michaeli (2019); Cover (1999).
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Second, our theory generalizes to distributed communication among multiple agents, where both
message senders and receivers observe the environment. We thus account for inter-agent redundancy,
a factor typically neglected in traditional rate–distortion analysis. Building upon these extensions, our
theory ultimately characterizes the minimal communication cost required to meet a specified distortion
threshold, and derives two key conditions that an optimal communication strategy should satisfy:
pragmatic-relevant and redundancy-less. We envision this theoretical framework as a foundation for
analyzing communication efficiency in broader multi-agent tasks.

Inspired by the two theoretical conditions, we propose RDcomm (Rate-Distortion guided pragmatic
communication), a novel communication-efficient collaborative perception system, which optimizes
both message selection and coding to reduce communication overhead while preserving collaborative
complementarity and task effectiveness. Specifically, we design the two core components of RDcomm
based on the two derived conditions: i) Based on the pragmatic-relevant condition, we propose a novel
task entropy discrete coding module. It first utilizes learned codebooks to quantize feature vectors,
and then applies variable-length coding guided by task relevance, assigning shorter codewords to more
informative features. ii) Based on the redundancy-less condition, we propose a novel feature selection
module leveraging mutual information neural estimation Belghazi et al. (2018). This module enables
agents to perform an inter-agent handshake process to assess message redundancy by quantifying
the mutual information between shared and locally observed features. We validate RDcomm on two
representative perception tasks: 3D object detection and BEV semantic segmentation, using both
real-world datasets DAIR-V2X Yu et al. (2022), V2XSeq Yu et al. (2023), V2V4Real Xu et al. (2023)
and simulation dataset OPV2V Xu et al. (2021). Experimental results show that RDcomm reduces
communication volume by up to 108 times compared against existing methods.

Our main contributions are summarized as follows:

• We introduce a pragmatic rate-distortion theory for multi-agent collaboration, which charac-
terizes the performance-communication trade-off, and concretize two optimal conditions: i)
supply pragmatic-relevant information; ii) avoid inter-agent redundancy.

• We propose RDcomm, a communication-efficient collaborative perception framework that
is designed to approach the two optimal conditions with two innovations: i) task entropy
discrete coding; ii) mutual-information-driven message selection. Experiments on detec-
tion and segmentation tasks demonstrate that RDcomm achieves dual superiority in both
performance and communication efficiency.

2 RELATED WORKS

2.1 COMMUNICATION-EFFICIENT COLLABORATIVE PERCEPTION

In multi-agent collaboration, a key challenge is to balance task performance and communication
cost Hu et al. (2022). Early collaboration transmits raw sensor data Han et al. (2023) and achieves high
accuracy but suffers from heavy bandwidth usage. Late collaboration reduces bandwidth by sending
final predictions, but degrades performance under noise Lu et al. (2023); Hu et al. (2022). To address
this, intermediate collaboration transmits feature maps to strike a balance between performance
and efficiency. Prior works mainly improve efficiency via: i) spatial selection, which transmits
features at critical regions; and ii) feature compression. For spatial selection, Where2comm Hu et al.
(2022) selects high-confidence regions, CodeFilling Hu et al. (2024) removes redundant collaborators,
and CoSDH Xu et al. (2025) targets unobserved areas. For compression, techniques include value
quantization Wang et al. (2020); Shao et al. (2024), vector quantization Hu et al. (2024), and channel
reduction Li et al. (2021); Lu et al. (2024). However, these methods are primarily heuristic and lack
theoretical guarantees for communication efficiency. In our work, we provide a theoretical framework
grounded in rate-distortion analysis, offering explicit conditions for optimal communication.

2.2 RATE-DISTORTION THEORY BACKGROUND

Rate-distortion theory Shannon et al. (1959) provides a fundamental framework for lossy compression
by characterizing the minimum bits required to represent a signal X as a compressed representation
Z under a specified distortion constraint D[X,Z] ≤ δ. The goal is to find a probabilistic encoding
map p(Z|X) that minimizes the mutual information I(X;Z) , as formulated in (1):

Rate(δ) = min
p(Z|X)

I(X;Z) s.t. D[X,Z] ≤ δ (1)
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In lossy compression, Z is a reconstruction of X . A typical example is a Gaussian source X ∼
N (µ, σ2) with mean squared error (MSE) distortion, where the optimal rate under distortion level
δ has a closed-form solution R(δ) = h(X) − 1

2 log(2πeδ), which reflects the total information in
X minus the portion tolerable under the distortion budget. Despite its general application in visual
compression Ballé et al. (2018), classical rate-distortion analysis mostly caters to fidelity-based
distortion metrics Blau & Michaeli (2019) and single-source settings. In general, any distortion
measure d : X × Z → R≥0 of the form D[X,Z] = Ep(x,z)[d(x, z)] is valid, as long as there exists
z ∈ Z such that D[X,Z] is finite Dubois et al. (2021). Our work extends this framework to multi-
agent collaborative perception by incorporating pragmatic distortion and inter-agent redundancy.

3 PRAGMATIC RATE-DISTORTION THEORY FOR COLLABORATION

We introduce the pragmatic rate-distortion theory for multi-agent collaboration. Our theoretical
analysis follows three high-level steps: i) We reformulate the collaboration task objective in a rate-
distortion formulation (Sec. 3.1); ii) Defining the pragmatic distortion for collaboration (Sec. 3.2); iii)
We derive the minimal transmission rate under constrained distortion, and present the conditions for
an optimal communication strategy (Sec. 3.3). See detailed proofs in the Appendix A.6.

3.1 PROBLEM FORMULATION

In collaborative tasks, our goal is to optimize model parameters and the message generation strategy,
in order to achieve the minimal transmission bits under constrained task loss, that is (2):

min
Zs,θ

N∑
r=1

|{Zs→r}s̸=r| s.t.
N∑
r=1

LY (Yr,Φθ (Xr, {Zs→r}s̸=r)) ≤ Lmax (2)

where N denotes the number of agents; {Zs→r}s̸=r represents the messages sent from agent s to
other agents; | · | measures the information volume; Φθ(·) is the task model parameterized by θ;
Xr and Yr denote the local observation and ground-truth label of agent r, respectively; LY (·) is
the loss function associated with task Y , and Lmax specifies the maximum tolerable task loss. We
then present (3) as a formal rate-distortion optimization version of (2), which defines the minimal
communication bits Rate(δ) and serves as the foundational objective.

Rate(δ) = min
p(Zs→r|Xs)

I(Xs;Zs→r) s.t. DY [Xs, Zs→r|Xr] ≤ δ (3)

As shown in (3), the communication volume is captured by I(Xs;Zs→r), which quantifies the amount
of information from the original observation Xs that is preserved in the transmitted message Zs→r.
We denote DY [Xs, Zs→r | Xr] as the pragmatic distortion for the collaborative task Y , which
measures the degradation in task performance when transmitting Zs→r instead of Xs, given the local
observation Xr. See detailed discussions on our problem formulation in Appendix A.6.1.

3.2 PRAGMATIC DISTORTION FOR COLLABORATIVE PERCEPTION

We then make the pragmatic distortion DY [Xs, Zs→r | Xr] in (3) explicit for collaborative perception.
Let Xs, Xr denote the sender’s and receiver’s local observations, respectively, Y denotes the
perception task target. Zs→r is compressed from Xs. We define DY [Xs, Zs→r|Xr] in (4):

DY [Xs, Zs→r|Xr] = Brisk [Y |Zs→r, Xr]− Brisk [Y |Xs, Xr] (4)

where Brisk[Y |Xr, Xs] denotes the Bayes Risk Dubois et al. (2021), which measures the minimum
achievable prediction error for the target Y given the joint inputs Xr and Xs. We define the
distortion DY [Xs, Zs→r|Xr] as the increase in Bayes Risk when predicting Y with the compressed
representation Zs→r instead of the original signal Xs, while conditioning on the existing local
information Xr. Formally, the Bayes Risk is Brisk[Y |X] = inff Ep(X,Y )

[
L
(
Y, f(X)

)]
, where f

is any predictor. For perception tasks, the loss is typically computed independently at each BEV
location. Accordingly, we define the overall Bayes Risk as the average of pixel-wise Bayes Risks
over all locations, as in (5), where i ∈ S denotes a BEV coordinate within the perception range S,
and Y(i) and f(X)(i) denote the corresponding ground-truth label and model prediction.

Brisk[Y |X] = inf
f

Ep(X,Y ) [L(Y, f(X))] = inf
f

1

|Y |
∑
i∈S

Ep(X,Y(i))

[
L(Y(i), f(X)(i))

]
(5)
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We instantiate the pragmatic distortion for two representative perception tasks: BEV segmentation
and 3D object detection. Specifically, for BEV segmentation, we adopt the per-pixel cross-entropy
(CE) loss; for 3D object detection, we adopt the widely used CenterPoint loss Yin et al. (2021). We
directly present the final derivations of the pragmatic distortion DY [Xs, Zs→r|Xr] in Tab. 1.
Table 1: Pragmatic distortions differ from classical reconstruction distortion by considering task entropy H(Y |·)
and local redundancy Xr . Proofs are provided in Appendix A.6.4.

Task (loss function) Distortion DY [Xs, Zs→r|Xr]

Lossy reconstruction Ballé et al. (2018) (MSE)
1

|Xs|
∥Xs − Zs→r∥22 , no Xr (6)

BEV segmentation (CE)
1

|Y |
∑
i∈S

[H
(
Y(i) | Zs→r, Xr

)
−H

(
Y(i) | Xs, Xr

)
] (7)

3D detection. (CenterPoint)
1

|Y |
∑
i∈S

[H
(
Y(i,c) | Zs→r, Xr

)
−H

(
Y(i,c) | Xs, Xr

)
+

1

2

∑
k∈K

(
eH(Y(i,k)|Zs→r,Xr)−1 − eH(Y(i,k)|Xs,Xr)−1

)
]

(8)

3.3 MINIMAL BIT-RATE OF COLLABORATIVE MESSAGE AND OPTIMAL CONDITIONS

We present the trade-off between communication bit-rate and distortion by incorporating the pragmatic
distortions (7) and (8) into objective (3).

Theorem 1 (Minimal bit-rate Rate(δ) of collaborative message under pragmatic distortion con-
straint, see proof in A.6.5). Consider a message sender agent as and a message receiver agent ar
and their observation denoted as Xs, Xr, where the sender compresses Xs as Zs→r and transmits it
to the receiver to collaborates in achieving task target Y . Then, the minimal transmission bit-rate
Rate(δ) = minp(Zs→r|Xs) I(Xs;Zs→r) s.t. DY [Xs, Zs→r] ≤ δ is given in (10).

Rate(δ) = min
p(Zs→r|Xs) s.t. DY [Xs,Zs→r]≤δ

I(Xs;Zs→r) = I(Y ;Xs | Xr)− δ (9)

=H(Xs)− H(Xs|Y )︸ ︷︷ ︸
information in Xs irrelevant to Y

− I(Y ;Xs;Xr)︸ ︷︷ ︸
information in Xs redundant with Xr about Y

−δ (10)

The minimal bit-rate Rate(δ) can be achieved only if the following two conditions are satisfied.
Pragmatic-relevant. The transmitted message Zs→r should contain only information relevant to the
receiver’s task Y , as formalized in (11):

H(Zs→r|Y ) = 0 (11)
Equation (11) implies that the uncertainty of Zs→r is eliminated given a specific task target Y ,
indicating a unique mapping from Y to Zs→r. Consequently, Zs→r should exclude any information
unrelated to the task Y , and the task-relevant messages should be prioritized during coding.

Redundancy-less. The transmitted message Zs→r should avoid maintaining information that is
already contained in the receiver’s observation Xr, which is expressed as (12):

I(Zs→r;Xr) = 0 (12)
Equation (12) shows that the mutual information between the transmitted message Zs→r and the
observation of receiver Xr should be eliminated. In other words, Zs→r should avoid containing the
redundant information, but exactly supply the information missed in Xr.

4 RDCOMM: EFFICIENT COMMUNICATION FOR CO-PERCEPTION

Inspired by the theoretical analysis, we introduce RDcomm, a novel communication-efficient col-
laborative perception framework with three main components (Fig. 1): i) a perception pipeline that
provides the basic functionalities for perception tasks; ii) a task entropy discrete coding module
(Sec. 4.1), following the pragmatic-relevant condition (11), which adopts a novel variable-length cod-
ing guided by task relevance; iii) a mutual-information–driven selection module (Sec. 4.2), following
the redundancy-less condition (12), which selects complementary messages for transmission.
Perception pipeline. The perception pipeline couples a BEV encoder with task-specific decoders.
The BEV encoder accepts either LiDAR or camera inputs and maps sensor data into a unified bird’s-
eye-view (BEV) representation, enabling consistent spatial alignment across agents. Denoting the
observation of the sender agent by Xs, the BEV encoder Φbev(·) produces a BEV feature map by
Fs = Φbev(Xs) ∈ Rh×w×c, followed by task-specific decoders Φtask for downstream tasks such as
3D object detection and BEV segmentation. Backbone details are provided in Appendix A.4.1. We
then focus on compressing the feature Fs into a collaboration message Zs→r for any receiver agent.
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Figure 1: RDcomm features two key components: i) task entropy discrete coding for improving the pragmatic
relevance of message, which assigns short codewords to the codes with high confidence frequency; ii) mutual-
information-driven message selection, which measures message redundancy by mutual information estimation.

4.1 TASK ENTROPY DISCRETE CODING

Our first objective is to approach the pragmatic-relevant condition H(Zs→r|Y ) = 0 in (11). We
approximate it by minimizing the task-conditioned entropy H(Zs→r|Y ).
Layered vector quantization. We begin by constraining H(Zs→r) via vector quantization inspired
by Zhu et al. (2022), where the core idea is to represent each vector in Fs with the nearest embedding
ei in a codebook B = [e1, e2, . . . , en] ∈ Rn×d with n learnable embeddings. We further implement a
layered discrete auto-encoder Φvq(·) to quantize the BEV feature Fs by F q

s = Φvq(Fs,Bbase,Bres).
Bbase is used to approximate the basic coarse-grained information of Fs with small codebook volume
n, and the residual error Fs − Φvq(Fs,Bbase) is further approximated by a fine-grained codebook
Bres with larger volume. This layered quantization is described in (13)(14):

Zq
base = argmin

i
∥Bbase[i]− fin(Fs)∥2, Zres = Fs − Zq

base (13)

Zq
res = argmin

i
∥Bres[i]− fin(Zres)∥2, F q

s = fout(Z
q
res + Zq

base) (14)

where fin(·), fout(·) are MLP projectors to bridge the distribution gap between continuous vectors
and codebook embeddings, and the input feature map Fs is flattened before quantization.

Task-aware priority and encoding. While quantization reduces representation length by restricting
the vector-space volume, we further improve coding efficiency by introducing task bias. Specifically,
we prioritize task-relevant messages for selection and encode them with shorter code lengths. Recall
that our objective is to minimize the task-conditioned entropy H(Zs→r|Y ) → 0, which can be
expanded as (15).

min
Zs→r

EY

∑
Zs→r

[−p(Zs→r|Y ) log p(Zs→r|Y )] (15)

Note that maximizing p(Zs→r|Y ) to 1 provides a sufficient solution for minimizing H(Zs→r|Y ),
and p(Zs→r|Y ) ∝ p(Y |Zs→r)p(Zs→r) for a given target distribution p(Y ). Therefore we priority
the messages with high task confidence p(Y |Zs→r) for transmission. We implement this with a
confidence generator Φconf(·) producing scores Cs = Φconf(Fs) ∈ Rh×w. The confidence mask
is Mc = 1[Cs > τc], where τc is a confidence threshold, and quantized features are selected as
F q
sc = Mc ⊙ F q

s . In practice, we instantiate Φconf(·) by reusing the task decoder Φtask(·).
We further reduce the average coding length of the quantized F q

sc, where we encode each embedding
ei in {Bbase,Bres} considering the joint effect of task confidence p(Y |ei) and occurrence frequency
p(ei). Specifically, we define the confidence frequency pc(·) for each embedding ei as (16):

pc(ei) =
∑
Fs

∑
{(u,v): ei∈Φvq(Fs)[u,v]}

Φconf(Fs)[u, v] (16)

where pc(ei) represents the total task confidence predicted from ei across the entire dataset. We
compute it by accumulating the confidence scores Φconf(Fs)[u, v] at spatial locations (u, v) where
Fs[u, v] are quantized with embedding ei. To improve coding efficiency for the task-relevant

5
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embeddings, we propose to assign shorter code lengths for the embeddings with higher confidence
frequency. For implementation, this work provides a straightforward yet effective solution by applying
Huffman coding Huffman (2007), where we set the Huffman weight of ei to be its confidence
frequency pc(ei). Our task-entropy coding ultimately produces an index map Ds ∈ ({0, 1}lu,v )h×w

to represent the input feature Fs ∈ Rh×w×c, where {0, 1}lu,v denotes binary strings of variable
length lu,v. Ds[u, v] = [Dbase

s [u, v] ∥Dres
s [u, v]] ∈ {0, 1}lu,v denotes the code at location (u, v),

which consists of coarse-grained semantic information Dbase
s [u, v] and fine-grained Dres

s [u, v].

Discussion. i) The relation between coding method and the information optimization target (15):
the high-confidence selection module Φconf(·) reduces the task-conditioned entropy H(Zs→r|Y )
governed by p(Zs→r|Y ) ∝ p(Y |Zs→r)p(Zs→r). We instantiate this by defining the confidence
frequency pc(·), and use it as the weight for entropy coding. ii) The intuition behind is simple: with
limited bandwidth, high-confidence messages are selected more often, making their embeddings
frequent. Accordingly, we weight entropy coding using the confidence frequency pc(ei). iii) We
use the accumulation of confidence rather than the average to distinguish embeddings with similar
task relevance but different occurrence frequencies. iv) The confidence-frequency coding is applied
post-training and remains lossless for task performance, as it only reassigns embedding indices.

4.2 COMPLEMENTARY SELECTION WITH MUTUAL INFORMATION ESTIMATION

In this section we focus on reducing inter-agent message redundancy according to the redundancy-less
condition I(Zs→r;Xr) = 0 (12). We approximate this target by (17). Ω denotes the selection region.

min
Ω

I(F̂ q
sc[Ω];Fr) (17)

To obtain the redundancy-less region Ω, we perform feature selection via mutual information neural
estimation: we approximate I(F̂ q

sc;Fr) by with a learnable estimator ΦMI(F̂
q
sc, Fr) and select features

accordingly. Note that we use the coarse-grained compression F̂ q
sc = Bbase[D

base
s ] as an abstract of

Fs, which is pre-handed to the receiver to estimate its redundancy with the receiver’s information Fr.
This abstraction F̂ q

sc helps estimate semantic redundancy by transmitting Dbase
s with much smaller

communication volume, which is 10 times smaller than the lossless message Ds.
Mutual information neural estimation. Consider the variable pair s, r ∈ Rc that are included in
F̂ q
sc, Fr ∈ Rh×w×c respectively, the mutual information I(s, r) can be estimated using (18):

I(s, r) := DKL(Ps,r ∥ Ps ⊗ Pr) ≥ sup
T :Rc×Rc→R

{
EPs,r [T (s, r)]− log(EPs⊗Pr [e

T (s,r)])
}

(18)

where Ps,r denotes the joint distribution of s and r, and Ps,Pr denote marginals; DKL is KL
divergence; T : Rc × Rc → R is any function that projects the (s, r) pair into a real number.
Formulation (18) shows that mutual information I(s, r) actually measures the divergence between the
joint distribution Ps,r and marginal distribution Ps ⊗ Pr. While (18) employs the KL divergence as a
standard estimation, we instead adopt the GAN-style divergence Nowozin et al. (2016) following Li
et al. (2020) to facilitate optimization, and use the estimation target in (19). σ(·) denotes sigmoid.

Î(s, r) ≥ sup
T :Rc×Rc→R

{
EPs,r [log σ(T (s, r))] + EPs⊗Pr [log(1− σ(T (s, r)))]

}
(19)

The inequality results from approximating T (·) with limited representation ability, which is a sub-
class of projection Rc × Rc → R. Our objective is to optimize T (·) to maximize the estimation
bound in (18), where T (·) is implemented by a learnable estimator ΦMI(·), with the loss defined
in (20):

LMI = − 1

|Ps,r|
∑

(s,r)∈Ps,r

log σ (ΦMI(s, r))−
1

|Ps||Pr|
∑

s∈Ps,r∈Pr

log (1− σ (ΦMI(s, r))) (20)

where Ps,r denotes the set sampled from Ps,r where s, r are visual features from two agents at the
same location. Ps,Pr are sampled from the marginals where s, r are randomly combined. We see
that the mutual information estimator ΦMI(·) actually serves as a discriminator. It predicts whether a
feature pair (s, r) is drawn from the joint distribution Ps,r, i.e., two agents’ observations at the same
location that exhibit similar patterns, or from the product of marginals Ps⊗Pr, in which observations
are randomly paired and likely to differ in pattern due to non-corresponding locations.
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Redundancy-less feature selection. To reduce redundancy in transmission, we prioritize the
message s with a low mutual information score ΦMI(s, r). Specifically, we obtain the redundancy
map Rs→r = σ(ΦMI(F̂

q
sc, Fr)) ∈ Rh×w and derive the redundancy-less selection mask MMI =

1[Rs→r < τMI ], where τMI is a redundancy threshold. The feature finally sent to the receiver is
Zs→r = MMI ⊙ F̂ q

sc. This selection filters out the messages in Zs→r that are already covered by Fr.
The total communication volume of RDcomm is computed as |Ds ⊙Mc ⊙MMI |+ |Dbase

s ⊙Mc|.
The first term measures the volume of the selected lossless information Zs→r, and the second term
measures the cost for identifying redundancy and is much smaller than the first term by setting Bbase

with small codebook size n and dimension d with limited segments.
Message smoothing and fusion. Note that Zs→r is obtained under sparse masks MC and MMI .
Although it preserves salient information, the sparsity may degrade semantic content. We mitigate
this by applying a UNet Ronneberger et al. (2015) Φsmth(·) to smooth and dilate Zs→r, propagating
sparse signals to neighboring regions. The receiver then obtains the enhanced perception results
as Ȳr = Φtask(Φfusion(Fr,Φsmth(Zs→r))), where Φfusion(·) is instantiated using the effective max-
fusion operation following Hu et al. (2024).

4.3 TRAINING

We train RDcomm in three stages. First, we train the BEV encoder Φbev and the task decoder Φtask

with task loss Ltask, which corresponds to the CenterPoint loss for 3D detection and the per-pixel
cross-entropy loss for BEV segmentation. Second, we train the vector quantization module Φvq with
both task loss Ltask and feature reconstruction loss Lrecon = ∥F q

s −Fs∥22. After that, the confidence
frequency pc(·) is updated. Finally, we train the mutual-information estimator ΦMI using LMI . In the
later stages of training, the thresholds τc, τMI are randomly varied to facilitate bandwidth adaptation.
We present an analysis of the training cost in Appendix A.3.

5 EXPERIMENTS

To evaluate RDcomm, we conduct experiments on two representative collaborative perception tasks:
3D object detection and BEV semantic segmentation. Our evaluation spans both LiDAR and camera
modalities, 2-5 collaborating agents, and varying bandwidth constraints. In RDComm, we adjust the
communication volume by varying τc in interval [0, 1] while keeping τMI = 0.7 to adapt to different
bandwidth constraints. The effects of controlling thresholds τMI , τc are analyzed in Appendix A.5.1,
and performance with varying numbers of collaborators is reported in Appendix A.5.2.

Experimental setup of collaborative 3D detection. We evaluate on four representative collaborative
perception datasets: three real-world datasets DAIR-V2X Yu et al. (2022), V2XSeq Yu et al. (2023),
V2V4Real Xu et al. (2023), and a simulated dataset OPV2V Xu et al. (2021). DAIR-V2X is a
vehicle-to-infrastructure dataset with 9K frames of 2-agent collaboration between a vehicle and a
roadside unit (RSU). Each agent is equipped with a LiDAR and a 1920×1080 camera, where the RSU
uses a 300-channel LiDAR and the vehicle a 40-channel LiDAR. V2XSeq is a sequential perception
dataset, which includes more than 15,000 frames captured from 95 vehicle-to-infrastructure scenarios.
V2V4Real is a vehicle-to-vehicle dataset. It includes a total of 20K frames of LiDAR point cloud
with 240K annotated 3D bounding boxes. OPV2V is a vehicle-to-vehicle dataset simulated with
CARLA Dosovitskiy et al. (2017), containing 12K frames. Our experiments involve up to 3 agents,
each equipped with a 64-channel LiDAR and four RGB cameras at 800×600 resolution. We evaluate
both LiDAR and camera modalities and report Average Precision (AP) at IoU thresholds of 30%,
50%, and 70%. We set the perception range to 204.8m×102.4m for DAIR-V2X, OPV2V, V2XSeq
and 140.8m*76.8m for V2V4Real, following Lu et al. (2024); Wang et al. (2025).

Experimental setup of collaborative BEV segmentation. We evaluate BEV semantic segmentation
on OPV2V dataset following CoBEVT Xu et al. (2022a). Each agent predicts a BEV semantic
occupancy map with camera inputs, ground truth classes include dynamic vehicles, drivable area, and
lane. We involve collaboration among up to 5 agents. Performance is measured by Intersection-over-
Union (IoU) between predictions and ground-truth BEV labels. Perception range is 100m×100m.

5.1 QUANTITATIVE ANALYSIS

Benchmark comparison. Fig. 2 and Fig. 3 compare RDcomm with previous collaborative perception
methods in terms of the trade-off between perception performance and communication volume on 3D
detection and BEV segmentation. The baselines include the state-of-the-art collaborative perception
methods CodeFilling Hu et al. (2024), CoSDH Xu et al. (2025), STAMP Gao et al. (2025), CoST Tang
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(a) DAIR-V2X LiDAR (AP30/AP50) (b) DAIR-V2X camera (AP30/AP50)

(c) OPV2V LiDAR (AP50/AP70) (d) OPV2V camera (AP50/AP70)

(e) V2XSeq LiDAR (AP30/AP50) (f) V2V4Real LiDAR (AP50/AP70)

Figure 2: RDcomm achieves the best performance–communication trade-off in 3D detection, across
DAIRV2X/OPV2V/V2XSeq/V2V4Real datasets with LiDAR/camera input modalities.

(a) Vehicle (b) Drive area (c) Lane (d) Mean
Figure 3: RDcomm achieves the best performance–communication trade-off in BEV segmentation.

et al. (2025), CoCMT Wang et al. (2025), mmCooper Liu et al. (2025), V2X-ViT Xu et al. (2022b),
CoBEVT Xu et al. (2022a), DiscoNet Li et al. (2021), AttFuse Xu et al. (2021), V2VNet Wang et al.
(2020), Fcooper Chen et al. (2019), HEAL Lu et al. (2024), no collaboration, and Late Fusion (directly
share the final perception results). We see that: i) RDcomm consistently delivers a superior perception-
communication trade-off across all bandwidth settings for both detection and segmentation; the gains
persist across LiDAR/camera modalities and multiple semantic classes. ii) Under extreme bandwidth
constraints, RDcomm achieves larger gains than prior methods: for detection, +11.49/+19.82%
(LiDAR/camera) on DAIR-V2X and +12.01/+22.92% on OPV2V with a 50K times reduction relative
to uncompressed features; for segmentation, +5.69% mIoU at a 1K times reduction. iii) RDcomm
outperforms previous communication-efficient methods with significantly reduced communication
cost in detection: 15/13 times less (LiDAR/camera) on DAIR-V2X, 30/108 times less on OPV2V, 32
times less on V2XSeq, 4 times less on V2V4Real, and 8 times less for OPV2V segmentation.
Ablation on coding method. Fig. 4a compares the proposed task entropy coding in RDcomm
against: i) classic entropy coding weighted by occurrence frequency Huffman (2007); ii) fixed-length
coding Hu et al. (2024), where code length is log 2 of the codebook volume. We see that task entropy
coding saves 83/57%(detection/segmentation) in communication volume compared to fixed-length
coding, and 30/25% compared to occurrence-driven entropy coding. The reason is that our task
entropy coding prioritizes pragmatic-rich codes by assigning them shorter codewords, whereas classic
entropy coding may waste short codewords on high-frequency but pragmatically weak codes.
Ablation on selection method. Fig. 4b compares our mutual-information-driven (MI) redundancy
selection against other redundancy selection: i) confidence-based Hu et al. (2024); ii) LiDAR-
coverage-based Xu et al. (2025). Our MI selection reduces communication volume by 60/50%
(detection/segmentation) relative to these baselines. The gain arises since we leverages a pragmatic
yet lightweight abstraction to identify redundancy, providing richer cues than one-dimensional
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confidence or coverage signals. Besides, the smoothing module improves AP50 by 4% and IoU by
10%, demonstrating its effectiveness in mitigating sparsity under high selection rates.

(a) Ablation on the coding method (b) Ablation on the selection method

Figure 4: Ablation study on OPV2V detection/segmentation, evaluating coding and selection methods.

Figure 5: Effects on H(Zs→r|Y ), I(Zs→r;Xr).

The approximation of optimal conditions.
Fig. 5 illustrates RDComm’s impact on
conditional entropy H(Zs→r|Y ) in (11)
and the mutual information I(Zs→r;Xr)
in (12). The results show that: i) As RD-
comm removes 0-90% redundant informa-
tion via mutual-information-driven selection,
I(Zs→r;Xr) drops from 2.16 to 0.74 with
negligible impact on detection accuracy, indi-
cating effective redundancy removal of RDcomm. ii) As task-irrelevant information is reduced by
0-99% through task-entropy-based discrete coding, the conditional entropy H(Zs→r | Y ) decreases
from 0.39 to 0.08, with only marginal performance loss, demonstrating effective preservation of task-
relevant cues. The evaluation is on OPV2V LiDAR detection, see more details in Appendix A.5.4.

Table 2: Robustness against transmission latency and pose noise. We highlight first/second-place performances.

V2V4Real AP50↑ DAIR-V2X AP50↑

Method Ideal Latency (ms) Pose noise (m/°) Ideal Latency (ms) Pose noise (m/°)
200 400 0.2/0.2 0.4/0.4 200 400 0.2/0.2 0.4/0.4

Late fusion 0.540 0.474 0.462 0.500 0.459 0.719 0.625 0.612 0.632 0.608
Disconet Li et al. (2021) 0.622 0.527 0.502 0.576 0.483 0.688 0.651 0.625 0.656 0.637
V2X-ViT Xu et al. (2022b) 0.665 0.587 0.569 0.625 0.561 0.720 0.719 0.705 0.721 0.709
CoST Tang et al. (2025) 0.705 0.618 0.559 0.650 0.558 0.743 0.708 0.648 0.716 0.679
RDcomm (ours) 0.726 0.631 0.593 0.672 0.581 0.782 0.754 0.731 0.768 0.724
No collaboration 0.516 0.664

Robustness to transmission latency and pose noise. Tab. 2 reports the robustness of RDcomm
under transmission latency and pose noise on V2V4Real and DAIR-V2X datasets. We evaluate
latency at 200 ms and 400 ms. Pose noise follows CoAlign Lu et al. (2023), where Gaussian noise
is added to both location and orientation with zero mean and standard deviations of 0.2m/0.2◦ and
0.4m/0.4◦. We see that RDcomm outperforms baselines and the no-collaboration setting across all
tested conditions. We owe this gain to two aspects. First, the UNet smoothing module helps propagate
visual evidence from perturbed regions to their correct spatial locations. Second, to boost model
robustness, we incorporate communication constraints and noise into the training process, enhancing
the generalizability of RDcomm to disturbed scenarios.

Table 3: Parameter size, average inference time, and accu-
racy on OPV2V LiDAR detection with RDcomm.

Method Params Infer time AP50↑
V2X-ViT Xu et al. (2022b) 20.58 MB 87.19 ms 0.850
CoBEVT Xu et al. (2022a) 9.37 MB 23.25 ms 0.566
mmCooper Liu et al. (2025) 3.83 MB 21.72 ms 0.810
RDcomm (ours) 3.75 MB 14.88 ms 0.933

Table 4: Segmentation performance under differ-
ent compressors. bpp: bits-per-pixel.

Method mIoU↑ bpp↓
VQVAE-32 Zhu et al. (2022) 0.38 (82%) 10
VQVAE-128 Zhu et al. (2022) 0.40 (87%) 14
RDcomm-128 (ours) 0.44 (95%) 4

No compression 0.46 (100%) 4096

Inference cost. We evaluate the parameter size and inference time of the fusion/communication
module while excluding the perception backbone. The results show that the proposed RDcomm
method is both lightweight and efficient: the communication module requires only 3.75 MB of
GPU memory and 14.88 ms per inference. At the same time, RDcomm achieves strong detection
performance with this lightweight design, demonstrating its suitability for practical deployment.
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Lossless bit-rate. We compare the bit-rate of RDcomm with the optimal bit-rate Rate(δ) in (10)
under lossless pragmatic compression, i.e., δ = 0. To reduce the error in estimating Rate(0), we
exclude the receiver’s information Xr in the experiment; the optimal rate is then I(Y ;Xs), which is
tightly upper-bounded by H(Y ) ≈ log2(4), i.e., 2 bits-per-pixel (bpp). Here we define "lossless" as a
performance drop of less than 5%. Tab. 4 compares RDcomm’s BEV segmentation performance with
the no-compression scheme. RDcomm attains 95% of mIoU with 4 bpp, close to the 2 bpp upper
bound. Here bpp describes BEV feature. We also report the performance of residual VQVAE Zhu et al.
(2022) (codebook sizes 32/128, segment number 2), where RDcomm uses a codebook size of 128.
RDcomm delivers higher accuracy at a lower rate, indicating that effective pragmatic compression
cannot be achieved by merely tuning codebook size, requires selective transmission and shorter
codewords for task-relevant codes.

Table 5: Allocation of communication.

AP30 0.82 0.79 0.76

total bits 9054 449 166
abstract bits 882(9%) 49(11%) 19(11%)

Cost for transmitting abstract. Tab. 5 reports the share
of bandwidth consumed by transmitting the pragmatic
abstraction F̂ q

sc on DAIR-V2X detection. We observe that
abstraction transmission accounts for only 9%–11% of the
total communication volume, yet is effective to identify
redundancy as showed in Fig. 4b.

Figure 6: Visualization of mutual information estimation and task entropy coding length on DAIR-V2X.

5.2 QUALITATIVE ANALYSIS

Fig. 6 visualizes mutual-information estimates and task-entropy code lengths in two cases. In case 1,
both agents A and B detect the same vehicles, forming high–mutual-information regions. In case 2,
A and B detect different vehicles, yielding low–mutual-information regions that are prioritized for
sharing. We also observe that task-entropy coding assigns short codewords to task-relevant regions.
Long codewords are assigned to background areas, which are omitted when bandwidth is limited.

6 CONCLUSIONS

This work investigates the trade-off between task performance and communication volume from an
information-theoretic perspective. We formulate a pragmatic rate–distortion theory for collaborative
perception, deriving the optimal bit rate for message transmission and two necessary conditions for
optimal compression: pragmatic-relevant and redundancy-less. Guided by these two conditions,
we propose RDcomm, a communication-efficient collaborative perception method with two novel
components: i) task entropy discrete coding and ii) mutual-information-driven message selection.
Experiments covering both detection and segmentation show that RDcomm achieves state-of-the-art
perception–communication trade-offs across both LiDAR and camera modalities.

Limitations and future work. Our study focuses on perception tasks. Future directions include
extending the framework to broader tasks such as navigation, manipulation, and scene captioning,
and incorporating additional modalities such as motion and language.

Reproducibility Statement. We have taken multiple steps to ensure the reproducibility of our
work. The detailed formulations of our theoretical results, including all assumptions and proofs, are
provided in Appendix A.6. The design of RDcomm and its components is described in Sec. 4, with
training details in Sec. 4.3 and backbone details reported in Appendix. A.4.1. The datasets used in
our experiments (DAIR-V2X and OPV2V) are publicly available. We will release our source code
and configuration files in the camera-ready version to further facilitate reproducibility.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436, 2018.

Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In International conference
on machine learning, pp. 531–540. PMLR, 2018.

Yochai Blau and Tomer Michaeli. Rethinking lossy compression: The rate-distortion-perception
tradeoff. In International Conference on Machine Learning, pp. 675–685. PMLR, 2019.

Qi Chen, Xu Ma, Sihai Tang, Jingda Guo, Qing Yang, and Song Fu. F-cooper: Feature based
cooperative perception for autonomous vehicle edge computing system using 3d point clouds. In
Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, pp. 88–100, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PmLR, 2020.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. In Conference on robot learning, pp. 1–16. PMLR, 2017.

Yann Dubois, Benjamin Bloem-Reddy, Karen Ullrich, and Chris J Maddison. Lossy compression for
lossless prediction. Advances in Neural Information Processing Systems, 34:14014–14028, 2021.

Xiangbo Gao, Runsheng Xu, Jiachen Li, Ziran Wang, Zhiwen Fan, and Zhengzhong Tu. Stamp:
Scalable task and model-agnostic collaborative perception. arXiv preprint arXiv:2501.18616,
2025.

Yushan Han, Hui Zhang, Huifang Li, Yi Jin, Congyan Lang, and Yidong Li. Collaborative perception
in autonomous driving: Methods, datasets, and challenges. IEEE Intelligent Transportation Systems
Magazine, 15(6):131–151, 2023.

R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. arXiv preprint arXiv:1808.06670, 2018.

Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Siheng Chen. Where2comm: Communication-
efficient collaborative perception via spatial confidence maps. Advances in neural information
processing systems, 35:4874–4886, 2022.

Yue Hu, Juntong Peng, Sifei Liu, Junhao Ge, Si Liu, and Siheng Chen. Communication-efficient
collaborative perception via information filling with codebook. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 15481–15490, 2024.

David A Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, 2007.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
pillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12697–12705, 2019.

Maosen Li, Siheng Chen, Ya Zhang, and Ivor Tsang. Graph cross networks with vertex infomax
pooling. Advances in neural information processing systems, 33:14093–14105, 2020.

Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng, and Wenjun Zhang. Learning dis-
tilled collaboration graph for multi-agent perception. Advances in Neural Information Processing
Systems, 34:29541–29552, 2021.

Bingyi Liu, Jian Teng, Hongfei Xue, Enshu Wang, Chuanhui Zhu, Pu Wang, and Libing Wu. mm-
cooper: A multi-agent multi-stage communication-efficient and collaboration-robust cooperative
perception framework. arXiv preprint arXiv:2501.12263, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yifan Lu, Quanhao Li, Baoan Liu, Mehrdad Dianati, Chen Feng, Siheng Chen, and Yanfeng Wang.
Robust collaborative 3d object detection in presence of pose errors. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 4812–4818. IEEE, 2023.

Yifan Lu, Yue Hu, Yiqi Zhong, Dequan Wang, Yanfeng Wang, and Siheng Chen. An extensible
framework for open heterogeneous collaborative perception. arXiv preprint arXiv:2401.13964,
2024.

Guiyang Luo, Hui Zhang, Quan Yuan, and Jinglin Li. Complementarity-enhanced and redundancy-
minimized collaboration network for multi-agent perception. In Proceedings of the 30th ACM
International Conference on Multimedia, pp. 3578–3586, 2022.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. Advances in neural information processing systems, 29,
2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding images from arbitrary camera rigs
by implicitly unprojecting to 3d. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, pp. 194–210. Springer, 2020.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Claude E Shannon et al. Coding theorems for a discrete source with a fidelity criterion. IRE Nat.
Conv. Rec, 4(142-163):1, 1959.

Jiawei Shao, Teng Li, and Jun Zhang. Task-oriented communication for vehicle-to-infrastructure
cooperative perception. In 2024 IEEE 34th International Workshop on Machine Learning for
Signal Processing (MLSP), pp. 1–6. IEEE, 2024.

Wanfang Su, Lixing Chen, Yang Bai, Xi Lin, Gaolei Li, Zhe Qu, and Pan Zhou. What makes good
collaborative views? contrastive mutual information maximization for multi-agent perception. In
Proceedings of the AAAI conference on artificial intelligence, volume 38, pp. 17550–17558, 2024.

Zongheng Tang, Yi Liu, Yifan Sun, Yulu Gao, Jinyu Chen, Runsheng Xu, and Si Liu. Cost: Efficient
collaborative perception from unified spatiotemporal perspective. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1120–1129, 2025.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Rujia Wang, Xiangbo Gao, Hao Xiang, Runsheng Xu, and Zhengzhong Tu. Cocmt: Communication-
efficient cross-modal transformer for collaborative perception. arXiv preprint arXiv:2503.13504,
2025.

Tsun-Hsuan Wang, Sivabalan Manivasagam, Ming Liang, Bin Yang, Wenyuan Zeng, and Raquel
Urtasun. V2vnet: Vehicle-to-vehicle communication for joint perception and prediction. In
Computer vision–ECCV 2020: 16th European conference, Glasgow, UK, August 23–28, 2020,
proceedings, part II 16, pp. 605–621. Springer, 2020.

Junhao Xu, Yanan Zhang, Zhi Cai, and Di Huang. Cosdh: Communication-efficient collaborative
perception via supply-demand awareness and intermediate-late hybridization. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 6834–6843, 2025.

Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Liu, and Jiaqi Ma. Opv2v: An open bench-
mark dataset and fusion pipeline for perception with vehicle-to-vehicle communication. 2022
International Conference on Robotics and Automation (ICRA), pp. 2583–2589, 2021.

Runsheng Xu, Zhengzhong Tu, Hao Xiang, Wei Shao, Bolei Zhou, and Jiaqi Ma. CoBEVT:
Cooperative bird’s eye view semantic segmentation with sparse transformers. CoRL, 2022a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-Hsuan Yang, and Jiaqi Ma. V2x-vit:
Vehicle-to-everything cooperative perception with vision transformer. In European conference on
computer vision, pp. 107–124. Springer, 2022b.

Runsheng Xu, Xin Xia, Jinlong Li, Hanzhao Li, Shuo Zhang, Zhengzhong Tu, Zonglin Meng, Hao
Xiang, Xiaoyu Dong, Rui Song, et al. V2v4real: A real-world large-scale dataset for vehicle-to-
vehicle cooperative perception. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 13712–13722, 2023.

Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and tracking.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11784–11793, 2021.

Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang Yang, Yifeng Shi, Zhenglong Guo, Hanyu Li,
Xing Hu, Jirui Yuan, et al. DAIR-V2X: A large-scale dataset for vehicle-infrastructure cooperative
3d object detection. In Proceedings of the IEEE/CVF Conference on computer vision and pattern
recognition (CVPR), 2022.

Haibao Yu, Wenxian Yang, Hongzhi Ruan, Zhenwei Yang, Yingjuan Tang, Xu Gao, Xin Hao,
Yifeng Shi, Yifeng Pan, Ning Sun, et al. V2x-seq: A large-scale sequential dataset for vehicle-
infrastructure cooperative perception and forecasting. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5486–5495, 2023.

Xiaosu Zhu, Jingkuan Song, Lianli Gao, Feng Zheng, and Heng Tao Shen. Unified multivariate
gaussian mixture for efficient neural image compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 17612–17621, 2022.

A APPENDIX

A.1 STATEMENTS

LLM Usage. We used an LLM (ChatGPT) solely for language refinement, such as improving
grammar, clarity, and readability of sentences. The research ideas, methodology, experiments, and
overall writing structure were entirely developed by the authors.

A.2 RELATED WORKS

Mutual information neural estimation. Mutual information measures the statistical dependence
between two variables, yet it is historically difficult to compute, especially in high-dimensional
settings. To address this, mutual information neural estimation Belghazi et al. (2018) provides a
general-purpose solution by reformulating mutual information as the Kullback–Leibler divergence
between the joint distribution and the product of marginals, and then maximizing a variational lower
bound to obtain an estimate. Beyond direct estimation, contrastive learning is often interpreted through
the lens of mutual information. Deep InfoMax Hjelm et al. (2018) maximizes mutual information
between the input and the output of an encoder; Contrastive Predictive Coding Oord et al. (2018)
employs the InfoNCE loss, which serves as a variational lower bound on the mutual information
between context representations and future latent variables; and SimCLR Chen et al. (2020) similarly
builds upon InfoNCE as the core objective for learning invariant visual representations.

Mutual information estimation has also been adopted in collaborative perception. CMiMC Su et al.
(2024) focuses on obtaining an effective feature fusion module, it introduces a feature fusion module
that maximizes mutual information before and after fusion to preserve each collaborator’s local
information; CRCNet Luo et al. (2022) also focuses on obtaining an effective fusion module, it
transmits full feature maps and then minimizes inter-view mutual information to encourage com-
plementary representations. These approaches typically use mutual information estimation as an
auxiliary training signal, without employing the estimator during inference, and seldom analyze the
meaning or utility of the estimated values. In contrast, our work focuses on communication efficiency
and incorporates mutual information from a rate–distortion perspective. We show that minimizing
mutual information between collaborators provides an optimality condition for efficient communica-
tion, which explicitly motivates the estimation of mutual information between collaboration pairs,
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and guides the redundancy-less feature selection on regions with low inter-agent mutual information
estimates.

A.3 TRAINING DETAILS

Training cost analysis. To further illustrate the training process described in Sec. 4.3, we present a
detailed breakdown of the training cost for RDcomm’s three-stage pipeline.

• Stage 1 (∼68%) trains the BEV encoder Φbev and task decoder Φtask, taking approximately
25 GPU·h on an RTX 3090 (DairV2X camera detection). This is comparable to existing
collaborative perception methods, as we implement all baselines with the same BEV encoder
and task decoder configuration.

• Stage 2 (∼8%) trains the vector quantization module Φvq as a compressor. This stage
converges quickly, taking approximately 3 GPU·h on an RTX 3090.

• Stage 3 (∼24%) trains the mutual information estimator ΦMI, taking about 9 GPU·h on an
RTX 3090.

We also compare the training cost of the proposed RDcomm with that of existing methods on the
DAIR-V2X camera-based detection task. RDcomm employs a three-stage training scheme, with
40 epochs in Stage 1, 20 epochs in Stage 2, and 80 epochs in Stage 3. For comparison, we train
V2XViT Xu et al. (2022b) for 40 epochs, DiscoNet Li et al. (2021) for 40 epochs each for its teacher
and student models, and CodeFilling Hu et al. (2024) for 40 epochs for the backbone followed
by an additional 30 epochs for its compression module. Overall, the training cost of RDcomm is
comparable to these baselines while achieving superior detection performance.

Table 6: Comparison of training cost in DAIR-V2X camera-based detection.

Method Training cost (3090 GPU*h) AP30 (DAIR-V2X camera)

V2XViT Xu et al. (2022b) ∼30 0.224
DiscoNet Li et al. (2021) ∼50 0.288
CodeFilling Hu et al. (2024) ∼30 0.289
RDcomm (ours) ∼37 0.293

Discussion on the training of mutual information estimation. Our method is not sensitive to
potential bias in estimating absolute mutual information value, we only need the estimator to assign
the redundant messages with a relatively lower value than the non-redundant ones. While it is well
known that estimating absolute MI values in high-dimensional spaces is challenging, our framework
does not depend on obtaining accurate absolute mutual information measurements. Instead, the
MI estimator serves as a distribution discriminator, allowing us to distinguish feature pairs that
are relatively more “independent” (i.e., sampled from the independent distribution and considered
complementary) from those that are more “joint” (i.e., sampled from the joint distribution and
considered redundant). We do not rely on obtaining accurate estimates of the absolute mutual
information between the two variables; we only require that redundant feature pairs be assigned
relatively lower values by the estimator.

To improve the stability of training the mutual information estimator, we adopt re-balanced feature
sampling to construct positive and negative pairs. Specifically, for all pairs, we ensure that the ratio
of foreground to background regions is approximately 5:1. This is because we aim to focus the MI
estimation on foreground regions, which contain more task-relevant information, while excessive
training on background regions could disturb the estimator’s ability to distinguish redundancy between
task-related features.

A.4 MODEL STRUCTURE

A.4.1 SINGLE-AGENT PERCEPTION PIPELINE

The perception pipeline comprises two components: a BEV encoder and a task-specific decoder. The
BEV encoder projects sensor inputs into bird’s-eye-view (BEV) representations, enabling consistent
spatial alignment and collaboration across different views. Task-specific decoders are then applied
for downstream detection or segmentation tasks.
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BEV Encoder. Our framework supports either LiDAR or camera inputs, where we commonly denote
the observation of the ith agent as Xi. We obtain BEV feature as Fi = Φenc(Xi) ∈ Rh×w×c, where
Φenc(·) denotes the complete BEV encoder. Fi then serves as the information source for selection and
compression. For LiDAR inputs, we adopt the widely used PointPillars encoder Lang et al. (2019) to
extract BEV features from point clouds. For camera inputs, we employ the Lift-Splat-Shoot Philion
& Fidler (2020) module following Lu et al. (2024), which lifts image features into 3D frustums and
aggregates them into the BEV plane via learned depth distributions. For both LiDAR and camera
modality, the extracted BEV features are further processed by a 2D convolutional ResNeXt-based
backbone Lu et al. (2024).

Decoder. Based on the BEV feature Fi, we incorporate task-specific decoders. For 3D object
detection, the decoder consists of a classification head, a box regression head, and a direction
estimation head to predict object bounding boxes, following Lu et al. (2024); Hu et al. (2022). For
BEV semantic segmentation, we employ a MLP as decoder to produce dense, per-pixel semantic
predictions, following Xu et al. (2022a).

A.5 EXPERIMENT ANALYSIS

A.5.1 THRESHOLDS OF SPATIAL SELECTION

We provide further analysis and ablation on the two thresholds: τc in Sec. 4.1 and τMI in Sec. 4.2.
Recall that τc ∈ [0, 1] is the threshold to select high-confidence regions, features with confidence
above τc will be transmitted; τMI ∈ [0, 1] is for selecting low-redundancy regions, features with
mutual-information estimation value σ(ΦMI) below τMI will be transmitted. Our strategy to set
threshold for different bandwidth limit is: set a fixed τMI = 0.7 and adjust τc to adapt to various
bandwidth limit, this strategy selects the high-confidence regions and then remove the redundant
ones.

In Tab. 7 and Tab. 8 we study the individual effect of τMI and τc on the perception–communication
trade-off by varying each hyperparameter. The evaluations are conducted on OPV2V LiDAR
detection. In Tab. 7, we examine performance under different τMI while fixing τc = 0.005. We see
that as τMI decreases, the selector filters out more redundancy, reducing the proportion of selected
regions. Remarkably, even when only 1% of regions are selected, AP70 drops by only 1% (from
0.934 to 0.920), demonstrating that our mutual-information-driven selection effectively identifies
the most critical regions for collaboration. In Tab. 8, we evaluate performance under different τc
with τMI = 0. We see that as τc increases, the proportion of selected regions decreases. Specifically,
when τc = 0.01, the selected regions account for only 3% of the total area, yet AP50 drops only
slightly (0.967 to 0.964). This demonstrate the sparsity of task-relevant information in the features.

Table 7: OPV2V LiDAR detection performance under
different threshold τMI , where τc = 0.005.

τMI AP50 AP70 Selection ratio

0.9000 0.967 0.934 48.944%
0.7000 0.966 0.933 18.607%
0.5000 0.966 0.929 2.782%
0.2500 0.966 0.925 1.711%
0.1000 0.965 0.920 1.006%
0.0500 0.963 0.911 0.579%
0.0200 0.960 0.897 0.342%
0.0067 0.955 0.878 0.151%
0.0025 0.948 0.858 0.046%
0.0009 0.919 0.824 0.004%
0.0003 0.904 0.817 0.000%
0.0000 0.903 0.816 0.000%

Table 8: OPV2V LiDAR detection performance
under different threshold τc, where τMI = 1.

τc AP50 AP70 Selection ratio

0.000 0.966 0.933 94.75%
0.001 0.966 0.933 86.31%
0.003 0.966 0.931 64.57%
0.005 0.966 0.928 48.94%
0.007 0.964 0.922 8.69%
0.010 0.964 0.915 3.62%
0.030 0.958 0.886 0.43%
0.050 0.954 0.873 0.22%
0.070 0.950 0.867 0.15%
0.100 0.946 0.861 0.10%
0.200 0.935 0.850 0.05%
0.400 0.921 0.836 0.03%
0.700 0.911 0.826 0.01%
1.000 0.903 0.816 0.00%
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A.5.2 PERFORMANCE IN MULTI-AGENT COLLABORATION

We further investigate the performance under varying numbers of collaborating agents on OPV2V
LiDAR detection (communication <1 KB). Tab. 9 compares RDcomm with CodeFilling Hu et al.
(2024), a method specifically designed for modeling multi-agent redundancy. We see that RDcomm
consistently outperforms CodeFilling across all agent-number settings, demonstrating both the
efficiency of our communication strategy and its scalability to multi-agent scenarios.

Table 9: Performance under different numbers of collaborator.

OPV2V LiDAR (AP50/AP70), communication <1 KB

Method 2 agents 3 agents 4 agents 5 agents

CodeFilling Hu et al. (2024) 0.874/0.796 0.918/0.855 0.927/0.864 0.929/0.867
RDcomm (ours) 0.959/0.899 0.965/0.925 0.967/0.932 0.968/0.933

A.5.3 EFFECTIVENESS OF MUTUAL INFORMATION NEURAL ESTIMATION

We further compare two types of mutual information estimators: i) a KL-divergence–based estima-
tor Belghazi et al. (2018), and ii) the GAN-style divergence estimator Nowozin et al. (2016) (the one
adopted in our method). We evaluate their effectiveness by examining the downstream perception
performance under each estimator. It is worth noting that classical statistical MI estimators (e.g.,
kNN-based estimators) cannot be integrated into the proposed RDcomm framework. These methods
estimate mutual information between two variables only after observing a large set of samples, and
therefore cannot evaluate whether a single message should be selected to reduce mutual information.
In contrast, our approach reduces the MI between two variables by selecting feature pairs that are
likely to be drawn from the independent distribution.

Table 10: Comparison between two types of mutual information neural estimator.

Method OPV2V LiDAR (AP50) DAIR-V2X LiDAR (AP50)
no bandwidth limit <1KB <0.06KB no bandwidth limit <1KB <0.06KB

Random selection 0.967 0.906 0.902 0.782 0.674 0.662
Confidence selection Hu et al. (2022) 0.967 0.94 0.914 0.782 0.756 0.737

RDcomm selector with KL divergence Belghazi et al. (2018) 0.967 0.948 0.922 0.782 0.762 0.743
RDcomm selector with GAN-style divergence Nowozin et al. (2016) 0.967 0.965 0.954 0.782 0.777 0.760

Here we report the LiDAR detection performance (AP50) in both OPV2V and DairV2X datasets
under two communication-volume constraints (<1 KB and <0.06 KB). We observe that: i) the
mutual-information–driven selector, using either the KL-based or GAN-style divergence estimator,
consistently outperforms confidence-based selection Hu et al. (2022) and random selection, indicating
that our selector is effective at identifying the critical complementary messages; ii) the GAN-style
divergence estimator achieves better performance than the KL-based estimator. We hypothesize
that this advantage arises from the symmetry of the GAN-style divergence objective (19) with
respect to positive and negative sample pairs, while the KL-based estimator adopts an asymmetric
formulation (18), which may make optimization more difficult and hinder stable convergence.

A.5.4 DETAILS OF ESTIMATING THE APPROXIMATION OF OPTIMAL CONDITIONS.

We illustrate the details in estimating I(Zs→r;Xr) and H(Zs→r | Y ) in Fig. 5(a)(b). In our experi-
ments, both Zs→r and Xr are 64-dimensional BEV feature vectors, and the label Y is a 9-dimensional
vector used for 3D detection. Such high-dimensional feature spaces pose substantial challenges
for estimating entropy and mutual information, as traditional statistical estimators may suffer from
the curse of dimensionality and could lead to highly biased results. Trying to mitigate this issue,
we employ dense sampling and collect 100K triplets (Zs→r, Xr, Y ) to reduce estimation variance.
For mutual information, we estimate I(Zs→r;Xr) by computing the average pairwise mutual in-
formation across each feature dimension using a kNN-based estimator. The conditional entropy
H(Zs→r | Y ) is approximated via the decomposition H(Zs→r) − I(Zs→r;Y ), where I(Zs→r;Y )
is also estimated using kNN-based methods. All evaluations are performed on the OPV2V LiDAR
detection benchmark.
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A.6 THEORY

In this section, we provide: i) further discussion on our problem formulation; ii) proof of the proposed
propositions and theories.

A.6.1 DISCUSSION ON PROBLEM FORMULATION

Table 11: Problem formulations of bandwidth-constrained
collaboration. R: bit-rate, D: distortion/loss.

Formulation Type Optimization target Distortion/loss D
Constrained task loss Hu et al. (2022) minD s.t. R ≤ δ task loss function
Task-compression joint loss Ballé et al. (2018) minD + λR task loss function
Pragmatic rate-distortion (ours) minR s.t. D ≤ δ pragmatic distortion

Note that our theory formulation equa-
tion 2 equation 3 is not an ad hoc as-
sumption, but consistent with the learning
objects in pragmatic compression . Ta-
ble 11 reveals that the optimization objec-
tive equation 3 is dual-equivalent to several
prior approaches Hu et al. (2022); Ballé
et al. (2018), as they all share the same La-
grangian target minD + λR, which is a weighted sum of distortion D and communication rate R
with weight λ. In the Section 3.2 we make the task distortion DY [Xs, Zs | Xr] explicit.

As an extreme case, consider early collaboration Han et al. (2023), where agents directly transmit raw
sensor data (i.e., Zs = Xs). In this case, the communication volume becomes I(Xs;Zs) = H(Xs),
corresponding to the full information content of Xs, and the distortion DY [Xs, Xs|Xr] is zero.

A.6.2 DISCUSSION ON PRAGMATIC DISTORTION

From Tab. 8 we see that: i) for collaborative BEV segmentation, pragmatic distortion is expressed as
the gap in conditional entropy, based on the Bayes risk Brisk[Y |X] = 1

|Y |
∑

i∈S H
(
Y(i)|Zs, Xr

)
; ii)

for collaborative 3D detection, the distortion further incorporates an exponential term of conditional
entropy, where K = {loc, size, ori} denotes the set of regression losses (location, size, and orienta-
tion), which contribute more uncertainty than classification; iii) compared to the widely used MSE
distortion in image reconstruction Ballé et al. (2018), the pragmatic distortion defined in our theory
differs in two aspects: first, it emphasizes task uncertainty rather than fidelity, second, it accounts for
the receiver’s information (e.g., Xr) to analyze redundancy.

A.6.3 PROOF OF PROPOSITION 1: BAYES RISK R[Y |X] FOR PERCEPTION TASKS

Proposition 1 (Bayes risk R[Y |X] for perception tasks, see proof in A.6.3). Given an observation
input X and a perception task target Y , we focus on the Bayes risk R[Y |X] to measure the difficulty
of predicting Y from X . In object detection task, the detection results and corresponding target label
are denoted as Ŷ , Y ∈ Rh×w×(8+K), where the (8 +K) channels stand for classification heatmap
Ŷc, Yc ∈ Rh×w×K , offset Ŷo, Yo ∈ Rh×w×3, size Ŷs, Ys ∈ Rh×w×3, rotation Ŷr, Yr ∈ Rh×w×2.
Here [h,w] denotes the BEV perception range. The total loss is shown in equation 21:

Ltotal = Lheatmap + λ2Loffset + λ3Lsize + λ4Lrotation (21)

where λ2, λ3, λ4 are the loss weights. Consider N objects involved in ground truth, the heatmap
loss optimizes the model to classify the foreground object from background, where we adopt the
focal loss Lfocal (y, ŷ) = −

∑K
k=1 αk (1− ŷk)

γ
yk log ŷk, where αk, γ are hyper-parameters in

focal loss, here we consider a simplified situation that αk = 1, γ = 0 and the loss degenerates
into cross entropy loss Lce. Loffset ,Lsize , and Lrotation are L1 loss. Specifically, we consider the
situation that the elements in Yo follow Gaussian distribution Yo(i,j)|X ∼ N (µo(X), σ2

o(X)),
Ys(i,j)|X ∼ N (µs(X), σ2

s(X)), Yr(i,j)|X ∼ N (µr(X), σ2
r(X)), and the number of objects is Nobj .

The Bayes risk of object detection with centerpoint detection loss is given as equation 22:

R[Y |X] =
∑

i≤h,j≤w

H(Yc(i,j)|X) +Nobj

√
2/π (λ2σo(X) + λ3σs(X) + λ4σr(X)) (22)

When the task Y refers to occupancy prediction, the regression terms are put off and the Bayes risk
R[Y |X] solely consists of the terms of conditional entropy, as shown in equation 23.
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R[Y |X] =
∑

i≤h,j≤w

H(Yc(i,j)|X) =
∑

i≤h,j≤w

H(Y(i,j)|X) (23)

In each communication round, messages are transmitted between connected agents as shown in
equation 2, where the connection is established by the pre-defined collaboration principle. We denote
the observation of message sender/reciever as Xs, Xr, the perception target as Y . The message Ps→r

is obtained via Ps→r = C(Xs), where C(·) is a compressor that reduces the transmission bit-rate.
The pragmatic distortion is defined in equation 24, where Y is the perception target, R[Y |X] denotes
the Bayes risk when predicting Y from X , R[Y |Xr, Xs] denotes the Bayes risk when predicting Y
from the fused information of Xr, Xs.

DY [Xs, Zs] = R [Y | Xr, Zs]− R [Y | Xr, Xs] (24)

To analyze this distortion in perception tasks, we need to:

• Give the specific formulation of Bayes risk R[Y |Xr](single perception) and
R[Y |Xr, Xs](collaborative perception) in detection 3D task with centerpoint loss(for exam-
ple).

• Reformulate the distortion DY by introducing the task related Bayes risk R[Y |Xr, Xs].
• Reformulate the distortion DY by introducing the supply-request information.

Definition 1 (Bayes risk). Let X ∈ X be the input variable (features, observed data), Y ∈ Y be the
target variable (labels), P (X,Y ) denote the joint probability distribution of X and Y , L(Y, Ŷ ) be
the loss function quantifying the discrepancy between a prediction Ŷ = f(X) and the true value Y ,
and f : X → Y be a predictive model. The Bayes risk is defined as the infimum of the expected loss
over all possible decision functions, as shown in equation 25:

R = inf
f

EX,Y [L(Y, f(X))] (25)

Bayes risk is the minimum achievable loss by an ideally trained model. It captures unavoidable
uncertainty in the data, such as the ambiguity due to overlapping classes in classification tasks or
stochastic noise in target variables for regression tasks. For any model f , the expected loss satisfies
E[L(Y, f(X))] ≥ RBayes. With a given loss function, the Bayes risk completely depends on the data
distribution P (X,Y ), it indicates the "difficulty" of learning the projection f : X → Y . Due to its
property to characterize data distribution, we utilize the differences of Bayes risk to measure the
pragmatic distortion.

Bayes risk for perception tasks In this section, we derive the Bayes risk of perception tasks with
specific loss functions.

First, we review the formulation of centerpoint loss. Suppose that the observation from camera
or LiDAR can be represented by 3D voxel feature X ∈ RD×h×w×C , the detection results and
corresponding target label are denoted as Ŷ , Y ∈ Rh×w×(8+K), where the (8 +K) channels stand
for classification heatmap Ŷc, Yc ∈ Rh×w×K , offset Ŷo, Yo ∈ Rh×w×3, size Ŷs, Ys ∈ Rh×w×3,
rotation Ŷr, Yr ∈ Rh×w×2. The total loss is:

Ltotal = Lheatmap + λ2Loffset + λ3Lsize + λ4Lrotation (26)

where , λ2, λ3, λ4 are the loss weights. Consider N objects in ground truth, the heatmap loss
optimizes the model to classify the foreground object from background, we utilize focal loss
Lfocal (y, ŷ) = −

∑K
k=1 αk (1− ŷk)

γ
yk log ŷk, where αk, γ are hyper-parameters in focal loss, here

we consider a simplified situation that αk = 1, γ = 0 and the loss degenerates into cross entropy loss
Lce. Loffset ,Lsize , and Lrotation are L1 loss.
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Now we derive the Bayes risk in 3D object detection with centerpooint detection loss. To simplify
the formulation, we approximately decompose the total Bayes risk into the sum of Bayes risk on each
location as shown in equation 27:

R[Y |X] = inf
f

EX,Y [L(Y, f(X))] = inf
f

∑
i≤h,j≤w

EX,Y(i,j)

[
L(Y(i,j), f(X)(i,j))

]
(27)

We regard the perception task at each region as independent tasks, and we define the located Bayes
risk for perception tasks in equation 28:

R[Y(i,j)|X] = inf
f

EX,Y(i,j)

[
L(Y(i,j), f(X)(i,j))

]
(28)

We derive the Bayes risk for two primarily used loss function involved in perception tasks: focal loss,
MSE loss, and L1 loss.

Focal loss. The true distribution of P (Yc, X) satisfies p(Yc(i,j,k) = 1|X) = pi,j,k, and we have
P (Yc|X) =

∏
i,j,k p(Yc(i,j,k)|X) since different classes and locations are independent. The Bayes

optimal prediction is the true conditional distribution: Ŷc
∗
(i,j,k) = p(i,j,k), then we have:

R[Yc(i,j)|X] = EX,Yc(i,j)
Lce(Yc(i,j), p(i,j)) (29)

= EX

∑
Yc(i,j)

p(Yc(i,j)|X)Lce(Yc(i,j), p(i,j)) (30)

= EX

K∑
k=1

−p(Yc(i,j,k) = 1|X) log p(Yc(i,j,k) = 1|X) (31)

= H(Yc(i,j)|X) (32)

MSE loss. Given a specific X , we assume that the elements in offset target Yo follow Gaussian
distribution Yo(i,j)|X ∼ N (µo(X), σ2

o(X)), and the number of objects is Nobj . This assumption is
reasonable, since minimizing MSE loss can be regarded as MLE(Maximum likelihood estimation)
when Yo(i,j)|X ∼ N (µo(X), σ2

o(X)). The Bayes optimal prediction is f(X) = Ŷo
∗
(i,j) = µo(X).

Put this into equation 27, the Bayes risk is derived as Nobj

√
2/πσo(X). Similarly, we can derive

the Bayes risk for the size and rotation targets by assuming their distributions follow a Gaussian
distribution Ys(i,j)|X ∼ N (µs(X), σ2

s(X)), Yr(i,j)|X ∼ N (µr(X), σ2
r(X)). Combining the Bayes

risk of the individual loss function described in equation 26, we obtain the Bayes risk of object
detection with centerpoint detection loss as equation 33:

Rcenterpoint[Y |X] =
∑

i≤h,j≤w

H(Yc(i,j)|X) +Nobj

√
2/π (λ2σo(X) + λ3σs(X) + λ4σr(X))

(33)

L1 loss. Given a specific X , we assume that the elements in target Yo follow Laplace distribution
p(Yo | X) = 1

2bo|X
exp

(
− |Y−µo(X)|

bo|X

)
. This assumption is reasonable, since minimizing L1 loss can

be regarded as MLE(Maximum likelihood estimation) when Yo(i,j)|X ∼ 1
2bo|X

exp
(
− |Y−µo(X)|

bo|X

)
.

The Bayes optimal prediction is f(X) = Ŷo
∗
(i,j) = median(Yo(i,j) | X) = µo(X). Put this

into equation 27, the Bayes risk is derived as:
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R[Yo(i,j)|X] = EX,Yo(i,j)
Ll1(Yo(i,j), µo(X)) definition (34)

= EX

∫ ∞

−∞
|Yo(i,j) − µo(X)| · 1

2bo|X
exp

(
−
|Yo(i,j) − µo(X)|

bo|X

)
dYo(i,j) (35)

= EX
1

2bo|X

∫ ∞

−∞
|z| exp

(
− |z|
bo|X

)
dz z = Yo(i,j) − µo(X)

(36)

= EX
1

2bo|X
2b2o|X (37)

= EXbo|X (38)

= bo|X bo|X is a constant
(39)

On the other hand, when p(Yo(i,j) = y|X = x) = 1
2bo|X

exp
(
− |y−µo(x)|

bo|X

)
, we can formulate the

conditional entropy H(Yo(i,j)|X) as:

H(Yo(i,j)|X) = Ex∼XH(Yo(i,j)|X = x) (40)

= Ex∼X

∫ ∞

−∞
−p(y) log p(y) dy (41)

= Ex∼X

∫ ∞

−∞
− 1

2bo|X
exp

(
−|y − µo(x)|

bo|X

)
(log

1

2bo|X
− |y − µo(x)|

bo|X
) dy (42)

= Ex∼X log(2bo|X) + 1 (43)

= log(2bo|X) + 1 bo|X is a constant
(44)

Combining equation 39 with equation 44, we have:

R[Yo(i,j)|X] =
1

2
eH(Yo(i,j)|X)−1 (45)

A.6.4 PROOF OF TAB. 1: PRAGMATIC DISTORTION FOR COLLABORATIVE PERCEPTION.

In this section, we derive the pragmatic distortion in collaborative perception. To achieve this, we
start from decomposing the contribution of ego agent and other agents.

Now we derive the pragmatic distortion in collaborative perception task. Consider a simple scenario
with 2 collaborators, and the observations/features of message sender and receiver are Xs and Xr,
and the sender compresses Xs into Zs to transmit, we define the pragmatic distortion as shown
in equation 46, which measures the increase of Bayes risk after replacing the collaboration message
Xs with Zs:

DY [Xs, Zs] = R [Y | Xr, Zs]− R [Y | Xr, Xs] (46)

We give a specific formulation by replacing the Bayes risk in equation 46 with the Bayes risk of
centerpoint loss in equation 33, as shown in equation 47 :

DY(i,j)
[Xs, Zs] = H(Yc(i,j)|Xr, Zs)−H(Yc(i,j)|Xr, Xs)+ (47)

1

2
λ2(e

H(Yo(i,j)|Xr,Zs)−1 − eH(Yo(i,j)|Xr,Xs)−1)+ (48)

1

2
λ3(e

H(Ys(i,j)|Xr,Zs)−1 − eH(Ys(i,j)|Xr,Xs)−1)+ (49)

1

2
λ4(e

H(Yr(i,j)|Xr,Zs)−1 − eH(Yr(i,j)|Xr,Xs)−1) (50)
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We consider a degraded version by ignoring the regression loss, which is suitable for semantic
occupancy prediction task, as shown in equation 51:

DY(i,j)
[Xs, Zs] = H(Y(i,j)|Xr, Zs)−H(Y(i,j)|Xr, Xs) (51)

A.6.5 PROOF OF THEOREM 1: OPTIMAL BIT-RATE OF COLLABORATIVE MESSAGE

In this section, we derive the optimal transmission bit-rate in collaborative perception task. Consider
the same collaboration situation described in Tab. 1 with 2 collaborators, and the observations/features
of message sender and receiver are Xs and Xr, and the sender compresses Xs into Zs to transmit.
Our goal is to derive the minimum bit-rate needed to transmit Zs while guaranteeing a limited
pragmatic distortion, as shown in equation 52:

Rate(δ) = min
p(Zs|Xs)

I(Xs;Zs) s.t. DY [Xs, Zs] ≤ δ. (52)

For occupancy prediction, put pragmatic distortion equation 51 into the constraint in equation 52, we
have equation 55:

DY [Xs, Zs] = H(Y |Xr, Zs)−H(Y|Xr, Xs) (53)
= [H(Y |Xr)− I(Y ;Zs|Xr)]− [H(Y |Xr)− I(Y ;Xs|Xr)] (54)
= I(Y ;Xs|Xr)− I(Y ;Zs|Xr) ≤ δ (55)

This inequality condition also satisfies for object detection task, which corresponds to the distortion
defined in equation 50 by considering two approximation:

• First-order approximation.

eH(Yo(i,j)|Xr,Zs)−1 − eH(Yo(i,j)|Xr,Xs)−1 ≥ 1

e
(H(Yo(i,j)|Xr, Zs)−H(Yo(i,j)|Xr, Xs))

(56)

• Decomposition of joint entropy, with the assumption that the existing of object(Yc) is
independent with the location (Yo), size (Ys), and heading (Yr).

H(Yc, Yo, Ys, Yr) = H(Yc) + H(Yo) + H(Ys) + H(Yr) (57)

Given that, We reformulate equation 52 as shown in equation 64:

Rate(δ) = min
p(Zs|Xs) s.t. DY [Xs,Zs]≤δ

I(Xs;Zs) (58)

≥ min
p(Zs|Xs) s.t. DY [Xs,Zs]≤δ

I(Xs;Zs|Xr) (59)

≥ min
p(Zs|Xs) s.t. DY [Xs,Zs]≤δ

I(Y ;Zs|Xr) (60)

≥ min
p(Zs|Xs) s.t. DY [Xs,Zs]≤δ

I(Y ;Xs|Xr)− δ (61)

=I(Y ;Xs | Xr)− δ (no Zs) (62)

=H(Xs)−
[
H(Xs)− I(Y ;Xs)

]
−
[
I(Y ;Xs)− I(Y ;Xs | Xr)

]
− δ (63)

=H(Xs)− H(Xs|Y )︸ ︷︷ ︸
information in Xs irrelevant to Y

− I(Y ;Xs;Xr)︸ ︷︷ ︸
information in Xs redundant with Xr about Y

−δ (64)

Specifically, we set Rate(δ) = 0 when δ ≥ I(Y ;Xs | Xr). We make assumption that the variables
follow the Markov chain Y ↔ Xs ↔ Zs and Xr ↔ Xs ↔ Zs. Next, we will explain the reasoning
behind each inequality and the conditions for these inequality to achieve equality.
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The first inequality equation 59 is satisfied when Markov chain Xr ↔ Xs ↔ Zs holds. This is
because equation 65:

I(Zs;Xs, Xr) = I(Zs;Xr) + I(Zs;Xs|Xr) = I(Zs;Xs) + I(Zs;Xr|Xs) (65)

The Markov chain Xr ↔ Xs ↔ Zs leads to I(Zs;Xr|Xs) = 0. Then we have equation 66:

I(Zs;Xs) = I(Zs;Xr) + I(Zs;Xs|Xr) ≥ I(Zs;Xs|Xr) (66)

Here we can see the equality condition for the first inequality equation 59 is that, I(Zs;Xr) = 0,
which means Zs, the compressed version of Xs, should not have redundant information in Xr.

The second inequality equation 60 is satisfied since due to DPI(Data Processing Inequality) given the
Markov chain Y ↔ Xs ↔ Zs. This is because equation 67:

I(Zs;Xs, Y ) = I(Zs;Y ) + I(Zs;Xs|Y ) = I(Zs;Xs) + I(Zs;Y |Xs) (67)

The Markov chain Y ↔ Xs ↔ Zs leads to I(Zs;Y |Xs) = 0. Then we have equation 68:

I(Zs;Xs) = I(Zs;Y ) + I(Zs;Xs|Y ) ≥ I(Zs;Y ) (68)

We can see that the equality condition for the second inequality equation 60 is that, I(Zs;Xs|Y ) = 0.
We can derive that equation 69:

I(Zs;Xs|Y ) = H(Zs|Y )−H(Zs|Xs, Y ) = 0 (69)

We can see from equation 69 that H(Zs|Y ) = H(Zs|Xs, Y ), since Zs is a compressed version of
Xs, the uncertainty H(Zs|Xs, Y ) is 0, therefore H(Zs|Y ) = 0. This implies that Zs is completely
task-relative, it does not contains information unrelated to the task Y .

The third inequality is derived from equation 55, and the equality condition is achieved when the
distortion budget is sufficiently utilized.

A.6.6 DISCUSSION ON REDUNDANCY VS SYNERGY

We would like to argue that I(Y ;Xs;Xr) in (10) is non-negativity in the collaborative perception sce-
nario and discuss the reason. According to the definition, I(Y ;Xs;Xr) = I(Xr;Xs)−I(Xr;Xs|Y ),
in our case, Y presents the ground truth signal, and Xr, Xs present noisy observations of signal Y
from different views (Xr = fr(Y ) and Xs = fs(Y )), where Xr and Xs contain shared information
in Y . I(Xr;Xs)− I(Xr;Xs|Y ) is positive, since knowing signal Y will reduce the mutual infor-
mation between Xr, Xs. In collaborative perception scenarios, we can formulate Xr = fr(Y ) and
Xs = fs(Y ). An simlified example is Xr = Y,Xs = 2Y , then we have I(Xr;Xs|Y ) = 0, and
I(Y ;Xs;Xr) is positive.

One classical condition for I(Y ;Xs;Xr) to be negative is when Y emerges from the interaction
between Xs;Xr; for example Y = Xs ⊕ Xr (XOR). In such case, knowing Y increases the
correlation between Xs and Xr. However, in our scenario, the observations Xr, Xs depend on the
ground truth Y but not vice versa, thus differs from this class of synergy condition.
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