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ABSTRACT

Large Language Models (LLMs) exhibit exceptional capabilities in various nat-
ural language tasks but are constrained by static knowledge, potential hallucina-
tions, and opaque reasoning processes. Integrating external Knowledge Graphs
(KGs) has emerged as a promising solution. While agent-based paradigms en-
hance knowledge exploration by iteratively retrieving grounded facts from KGs,
they often adopt a conservative KG-centric strategy that deliberately avoids using
the LLM’s internal knowledge—rendering them vulnerable to failures whenever
missing links occur, a common challenge even in largely complete KGs.
We propose a KG–LLM collaborative framework that repositions the LLM’s
knowledge as dynamic knowledge probes, generated via our Guidance Graph
of Thought (GGoT) reasoning backbone from partially specified triples. These
probes guide KG exploration, highlight potential incompleteness, and trigger
trust-aware bridging with existence and necessity checks before integrating LLM-
derived entities. Cross-triple constraint-based disambiguation then ensures con-
sistency, using KG structure for credible nodes and LLM validation for low-
confidence ones.
Extensive experiments across multiple benchmarks show that our framework con-
sistently achieves superior performance over existing approaches, with ablation
studies verifying the contribution and necessity of each component in our design.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance across a wide range
of natural language processing tasks, including question answering Wang et al. (2024b); Li et al.
(2024); Zhao et al. (2024)and commonsense reasoning. By leveraging deep architectures pre-trained
on massive corpora, they are capable of generating coherent and contextually appropriate responses
Ji et al. (2024); Chen et al. (2023; 2022); Gong & Sun (2024). However, their knowledge remains
frozen after training, and they are prone to producing plausible yet factually incorrect outputs—a
phenomenon known as hallucination Bang et al. (2023); Ji et al. (2023); Luo et al. (2023b). Knowl-
edge Graphs (KGs), on the other hand, offer structured, explicit, and verifiable representations of en-
tities and their relationships, making them well-suited to compensate for these limitations of LLMs
Zhang et al. (2019b); Yao et al. (2019); Wang et al. (2021); Luo et al. (2023a).

Existing integration strategies can be broadly categorized into two types. Simple coupling meth-
ods enable the LLM to directly generate KG queries and retrieve relevant facts on demand. While
straightforward, these approaches treat the KG as a black box and may fail when the generated
queries do not align with the schema or content of the graph. Agent-based exploration meth-
ods—such as ToG Sun et al. (2024a), PoG Chen et al. (2024), FiSKE Tao et al. (2025b), and
GG-explore—allow the LLM to iteratively explore subgraphs of the KG. These paradigms enhance
reasoning robustness by decomposing complex queries and using the KG for grounded fact retrieval.

However, these agent-based paradigms remain fundamentally KG-authoritative and notoriously brit-
tle: they strictly rely on the KG as the sole source of truth to avoid hallucinations, but this rigidity
becomes their Achilles’ heel. The entire reasoning chain can catastrophically fail even if a single
link is missing in the KG. This all-or-nothing reliance on KG completeness is a critical limitation,
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Existing KG-authoritative Methods

Our Proposed LLM–KG Collaborative Exploration Framework

Alfred Lennon John Lennon
father of 

... There is a missing entity here,
exploration stops

?...

KG

released on 

The Beatles
member of last recorded

Abbey Road 1969.9.26

John Lennon once was the member of The Beatles, and 
the band's last reccorded album was Abbey Road 

Alfred Lennon John Lennon
father of ...

KG

...

Q:In what year was the last recorded album by Alfred Lennon's son's band released?

Figure 1: Illustration of KG Reasoning under Incompleteness: Existing Approaches vs Trust-aware
Bridging in Our Framework.

as real-world KGs are inherently incomplete. A truly robust framework must not only leverage the
KG’s verifiability but also compensate for its incompleteness, as illustrated in Fig. 1.

To overcome this brittleness, we propose a new explicit LLM–KG collaborative exploration frame-
work that tightly couples the complementary strengths of both components. The LLM supplies
probes—lightweight, LLM-generated candidate entities that suggest where to look in the KG—to
(i) steer exploration toward semantically relevant subgraphs, (ii) flag points where the KG may be
incomplete, and (iii) when needed, trigger trust-aware bridging.

Our framework is built on our proposed Guidance Graph of Thought (GGoT), an LLM-only multi-
step reasoning backbone. Rather than producing one-shot answers, GGoT progressively elicits the
model’s parametric knowledge across steps, classifies triples by specificity, and iteratively converts
partially specified triples (Type II) into fully specific triples (Type I) via knowledge mining and con-
straint disambiguation. Crucially, GGoT is decoupled and thus highly extensible: each step exposes
a clean interface that outputs a vetted set of facts; subsequent steps consume only these facts—not
prior textual rationales. This modular interface is the extension point that lets us interleave KG
verification and bridging between steps and scale GGoT from an LLM-only process to a tightly
integrated LLM–KG co-exploration without changing step logic. We extend GGoT with three key
mechanisms: (1) Guided KG Exploration via LLM Knowledge Probes, where LLM-generated
candidate entities are intersected with KG candidates, expanded into high-confidence sets, and veri-
fied via semantic consistency filtering to narrow the search space; (2) Trust-aware Bridging of KG
Knowledge Gaps, which performs existence and necessity checks before temporarily integrating
LLM-suggested entities, and removes them if they fail to connect to credible knowledge in later
steps; (3) Constraint-Based Disambiguation in KG-LLM Collaboration, enforcing consistency
across triples sharing a generic entity by using KG structure for credible nodes and LLM cross-
validation for low-confidence bridge nodes.

In summary, our main contributions are as follows:

• We propose the Guidance Graph of Thought (GGoT) framework — an LLM-only, multi-
step reasoning backbone that classifies triples by specificity and iteratively converts par-
tially specified triples into fully specific ones via knowledge mining and constraint-based
disambiguation. Its decoupled, fact-level interface between steps enables clean integration
points for external modules.

• Building on GGoT, we design a KG–LLM collaborative reasoning extension that in-
terleaves KG verification and LLM reasoning. This extension introduces three mecha-
nisms: (i) Guided KG Exploration via LLM Knowledge Probes to direct exploration to-
ward semantically relevant subgraphs and narrow the candidate scope; (ii) Trust-aware
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Bridging of KG Knowledge Gaps with existence and necessity checks before safely in-
tegrating LLM-suggested entities; and (iii) Constraint-based Disambiguation to enforce
cross-triple consistency using KG structure for credible nodes and LLM cross-validation
for low-confidence ones.

• Experimental results demonstrate that our method consistently outperforms existing ap-
proaches across diverse datasets and remains highly effective even for LLMs with fewer
parameters, highlighting its practical utility. Ablation studies further validate the effective-
ness of each module, particularly the designed trustworthy knowledge probe. This work
offers a new perspective for reliably leveraging internal knowledge in LLMs.

2 RELATED WORK

Reasoning with Large Language Models. Recent work has improved LLM reasoning via struc-
tured prompting. DecomP He et al. (2021) decomposes tasks into sub-tasks. Chain-of-Thought
(CoT) Wei et al. (2022a) and variants—Tree-of-Thought (ToT) Yao et al. (2023), Graph-of-Thought
(GoT) Besta et al. (2024), Memory-of-Thought (MoT) Li & Qiu (2023)—generate intermediate rea-
soning steps. Plan-and-Solve prompting Wang et al. (2024a) guides LLMs to formulate and execute
plans.

Integrating Knowledge Graphs with LLMs. Knowledge Graphs (KGs) provide structured
knowledge to support reasoning. Early methods embed KG knowledge during pre-training or fine-
tuning Zhang et al. (2019a), while retrieval-augmented approaches Li et al. (2023b); Linders &
Tomczak (2025); Baek et al. (2023) dynamically fetch relevant facts. Agent-based paradigms such
as ToG Sun et al. (2024b); Xu et al. (2024) and UniKGQA Jiang et al. (2022); Zhao et al. (2022)
traverse KGs iteratively to answer complex queries. Surveys and benchmarks have analyzed KGQA
methods Cohen et al. (2023); Sen et al. (2021); Saffari et al. (2021).

3 GUIDANCE GRAPH OF THOUGHT

We first introduce the Guidance Graph of Thought (GGoT), which serves as the core represen-
tation in our framework. It organizes the input query into a structured form, enabling explicit de-
composition of reasoning steps and subsequent KG-LLM collaborative mechanisms. This section
presents the construction of GGoT, the categorization of its triples, and the conversion process from
generic to specific entities.

3.1 GUIDANCE GRAPH CONSTRUCTION

Natural language queries often mix concrete entities (e.g., “Beijing”) with abstract concepts or se-
mantic types (e.g., “city”). Direct reasoning over raw text makes it difficult to control and verify
logical steps. Encoding these queries as a structured graph separates known facts from reasoning
targets, allowing precise manipulation in downstream modules.

Following the structured rules and procedures of Tao et al.Tao et al. (2025a), we convert each query
into a declarative sentence and identify specific entities (concrete entities, e.g., ‘Beijing’) and generic
entities (semantic types, e.g., ‘city’). We then integrate these elements into a structured graph
where nodes are specific or generic entities and edges are labeled relations extracted from the query.
This Guidance Graph forms the foundational input to our method.

The detailed construction rules are in Appendix A.3. Prompt templates used for construction are
presented in Tables A1 and A2.

3.2 SPECIFICITY-DRIVEN ITERATIVE TRIPLE RESOLUTION

Triples in the Guidance Graph (h, r, t) vary in their specificity: some encode fully grounded facts,
while others contain generic placeholders requiring inference. This variability calls for a systematic
process to resolve triples — turning ambiguous generic entities into specific ones — in an iterative
manner. By progressively reducing uncertainty, we enable coherent and verifiable reasoning over the
graph.
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Q: Who directed the science fiction film released in 1992 starring Bruce Campbell?​

the leading role

directed by

Released
 in

science 
fiction film 1992

director

Bruce 
Campbell

?

Mindwarp,Universal 
Soldier and Frankenstein 
are released in1992...LLM

a

the leading role

directed by
Released in

1992

director

Bruce 
Campbell ?

Bruce Campbell is the 
leading role of  
Mindwarp...LLM

b

the leading role

directed by

Released
 inMindwarp 1992

director

Bruce 
Campbell

?

Steve Barnett is the 
director of Mindwarp...

LLM

c

the leading role

directed by

Released
 inMindwarp 1992

Steve 
Barnett

Bruce 
Campbell

A:The 1992 sci-fi film 
starring Bruce Campbell is 
titled Mindwarp, directed 
by Steve Barnett.LLM

d

Mindwarp
Universal Soldier

Frankenstein

Figure 2: Specificity-driven Iterative Resolution of the Guidance Graph: An Example.

We define three mutually exclusive categories:

• Type I: Both head h and tail t are specific entities (China, Capital, Beijing).
These carry explicit facts and often emerge through reasoning from less specific triples.

• Type II: One side specific, the other generic (China, Capital, City). Ambiguous
information in such triples can be resolved using the specific entity as a clue.

• Type III: Both head and tail are generic (Country, Capital, City), containing no
concrete facts and requiring dependency on other triples to resolve.

Iterative Resolution Process Resolution begins with Type II triples. We invoke the internal
knowledge of large LLMs to resolve the generic entity into concrete candidates, producing new
Type I triples. When a generic entity in a Type III triple becomes specific via connections to re-
solved triples, the triple is promoted to Type II. This iterative reduction process continues until all
triples are fully specific (Type I), marking reasoning completion. Figure 2 illustrates the complete
iterative resolution process of the guidance graph through an example.

3.3 ITERATIVE TRIPLE CONVERSION

Triple conversion is the core operation within the iterative resolution process. It specifies how a
Type II triple is transformed into a Type I triple through knowledge mining and constraint-based
disambiguation.

Knowledge Mining: For a given Type II triple (s, r, g), where s is a specific entity, r is a relation,
and g is a generic entity, we treat s and r as reasoning clues and g as the inference target. We prompt
the LLM to mine concrete knowledge about this target from its internal parametric knowledge (see
the Appendix A3 for detailed prompts). This process generates one or more candidate specific enti-
ties for the generic entity g, effectively transforming the original Type II triple into Type I triple.

Disambiguation: In a knowledge graph, a single generic entity g often participates in multiple
Type II triples, each connected to a different specific entity si. These interconnected si entities
collectively form multi-faceted constraints on g. Therefore, after mining a set of candidate values
for g from one triple (e.g., (s1, r1, g)), we must leverage these pre-existing constraints from other
related triples for disambiguation. As illustrated in Step 2 of the figure, we use a specific entity
s2 and its relation r2 from another connected triple (s2, r2, g) as new clues. We prompt the LLM
to verify and filter the candidate set, specifically by eliminating candidates that conflict with the
context or commonsense knowledge implied by s2 and r2. This step enhances the reliability of the
final resolved entity. Detailed prompts are provided in the Appendix A4.
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4 KNOWLEDGE GRAPH–AUGMENTED TRIPLE CONVERSION VIA LLM
PROBES

To mitigate the hallucination issue of large language models and enhance the reliability of knowledge
reasoning, we extend the LLM-only GGoT approach to a collaborative framework into a collabo-
rative paradigm that integrates both knowledge graphs and LLMs. GGoT is originally designed for
triple conversion as a decoupled process, where each step depends solely on the output of its prede-
cessor, independent of the intermediate reasoning process. Leveraging this decoupling property, we
incorporate verified knowledge from a KG to augment and restructure triple conversion within the
GGoT framework. In this augmented setting, KG-verified facts serve as the primary trusted foun-
dation, ensuring the reliability of converted triples and the inferred relational paths. The internal
parametric knowledge of the LLM is employed strategically as a knowledge probe in this process,
serving as a complementary guide rather than the primary source of facts. The knowledge probe has
two roles: (i) identify promising directions for targeted exploration within the KG, and (ii) detect
potential knowledge gaps, enabling a controlled bridging mechanism that fills missing links while
preserving reasoning coherence, as shown in Fig. 3.

4.1 DYNAMIC DISCOVERY OF KG STARTING POINTS

Exploration of a knowledge graph requires a valid starting point—an entity already present in the
KG—which serves as the anchor for subsequent queries. Existing approaches typically either (i) rely
on prior knowledge to directly provide a topic entity, or (ii) perform simple string-based matching
against KG labels. The first strategy severely limits generalizability, while the second is prone to
failure in the presence of entity aliases, abbreviations, or mismatched textual descriptions, often
causing the KG exploration process to terminate prematurely.

To address these limitations, we propose a dynamically updated starting point discovery mechanism
that iteratively expands a candidate set until a valid KG match is found. This mechanism maintains
a set of potential starting entities and updates it in successive rounds, prioritizing direct KG entity
linking before invoking GGoT’s reasoning capabilities to generate new candidates with a higher
likelihood of matching standardized KG identifiers.

The process begins by identifying all specific entities from the deconstructed Guidance Graph, form-
ing an initial starting point candidate set S = {s1, s2, . . . , sn}. Each candidate si is linked to the KG
via string-based entity matching; if a corresponding KG node ni is found, it is immediately adopted
as the starting point. If none of the candidates in S can be linked successfully, the GGoT reason-
ing engine is triggered—focusing on Type II triples involving the current candidates—to perform
knowledge mining. The generic entities in these triples are resolved into one or more new specific
entities, which are then added to S for another round of KG matching.

If the iterative expansion process yields no match, the system assumes the KG lacks relevant content
and falls back to pure GGoT mode, relying on the LLM’s internal knowledge to generate the answer.

4.2 GUIDED KG EXPLORATION VIA LLM KNOWLEDGE PROBES

Knowledge graph exploration often involves screening a vast number of potential relations and
entities, where irrelevant candidates can misdirect the reasoning process. We employ knowledge
probes—candidate entities readily obtained from LLM-based knowledge mining—to guide KG ex-
ploration and narrow the search space. This module concludes by selecting the relations and entities
that meet the semantic requirements of the query via semantic consistency filtering.

First, given a Type II triple (Specific s,Relation r,Generic g), we apply GGoT’s knowledge mining
to produce a candidate entity set {p e1, p e2, . . . }—this set constitutes the knowledge probe. The
specific entity Specific s is assumed to have been successfully linked to a KG node N in a previous
starting point discovery round. We then retrieve all entities directly connected to N via relation r,
forming the local KG candidate set: Candidate kg = {e|(N, r, e) ∈ KG}.

Next, probe verification and candidate reduction. We intersect the knowledge probe set with
Candidate KG: any probe entity found in Candidate KG is deemed highly reliable, since it reflects
consensus between the LLM and KG. To avoid omitting relevant knowledge, for each such high-
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②  knowledge probe guide the exploration in KG
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Figure 3: Example of Knowledge Probe Production and Usage in KG-LLM Collaboration. The
knowledge probe Malik narrows the search scope for KG exploration, while the probe Sasha bridges
the relationship between the Barack Obama node and the Sasha node in the KG. Malia is an erro-
neously generated probe that was filtered out during semantic consistency filtering.

confidence probe (N, r, p e), we retrieve all KG triples sharing the same (N, r) context, thereby
forming a high-confidence candidate set and significantly reducing the search space.

Finally, semantic consistency filtering. For the candidate set, semantic consistency filtering is applied
to precisely identify the entity that best matches the original query semantics. The core idea is
that for a qualified candidate entity e, its contextual relationship with node N in the KG—i.e.,
(N, r, e)—should align with the semantic intent of the query triple (Specific s, r,Generic g).

To mitigate computational overhead caused by one-to-many relationships in the KG, use
(N, relation) to represent the context of nodes under the same relation and complete it as
(N, relation, generic). If the semantics of the completed (N, relation, generic) aligns with that of
(specific, r, generic), then all nodes e under the context of (N, relation) are considered semanti-
cally consistent with generic. We perform semantic consistency filtering with LLM, and the specific
prompt can be found in the Appendix A5. The selected node will serve as the corresponding node
for generic, thereby transforming generic into a specific entity.

4.3 TRUST-AWARE BRIDGING OF KG KNOWLEDGE GAPS

Even in well-curated knowledge graphs, it is common to encounter missing relational links or unrep-
resented facts during reasoning. To prevent reasoning breakdown in such cases, we introduce a trust-
aware bridging mechanism that selectively incorporates LLM-mined knowledge while safeguarding
against hallucinations. We leverage knowledge probes to detect and bridge potential knowledge gaps
in the KG. If a probe entity is absent from the local candidate set Candidate KG, two cases are pos-
sible: (i) inherent KG incompleteness—where the knowledge exists but is unrecorded in the current
KG; or (ii) the probe is an LLM hallucination. To ensure trustworthiness, our bridging mechanism
evaluates both existence and necessity before incorporating such knowledge.

Existence verification and temporary bridging. For each LLM-generated probe pe that does not
match any entry in Candidate KG, we first perform entity linking across the entire KG to verify
whether pe exists as an independent node. If it exists, the knowledge is deemed highly credible, and
its absence from Candidate KG is attributed to local incompleteness (i.e., the lack of a relational
edge r from node N to pe). In this case, we dynamically construct a temporary relational edge r
from N to pe and treat pe, along with collaboratively mined results, as the node corresponding to
generic g.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

If pe does not exist anywhere in the KG, it is preliminarily classified as low-credibility knowledge,
potentially an LLM hallucination.

Necessity-driven final decision. If no eligible candidate entities remain in Candidate KG after
collaborative mining—indicating a complete absence of relevant knowledge in the KG—the low-
credibility internal knowledge from the LLM becomes the sole available option. In this scenario, the
necessity of adopting pe increases significantly. We then accept the LLM-provided pe as a temporary
node and construct a temporary edge r from N to pe, ensuring continuity in the reasoning chain.

As a safeguard against persistent hallucinations, any temporary nodes and edges introduced through
bridging are removed if they fail to connect to credible knowledge during subsequent exploration.

4.4 CONSTRAINT-BASED DISAMBIGUATION IN KG-LLM COLLABORATION

Following the GGoT framework, when a generic entity appears in multiple Type II triples, cross-
triple constraint-based disambiguation is performed after knowledge mining on any one of them.
Consider a triple (g → s1, r, s2), where g → s1 indicates that s1 was mined from g via knowledge
mining. In the original GGoT setting, the LLM is used to disambiguate s1. However, in our KG-
LLM collaborative framework, the LLM is reserved for disambiguating only those candidates that
are absent from the KG—referred to as low-confidence bridge nodes.

Credible knowledge disambiguation. For credible knowledge present in the KG, disambiguation
exploits structural connections. The triple (g → s1, r, s2) implies a relational link between s1 and
s2. If s2 exists in the KG, we identify correct s1 candidates by retrieving all KG entities connected
to s2 via relation r, effectively filtering out irrelevant nodes. If s2 is absent, we perform semantic
consistency filtering over all relational edges of s1 based on (g → s1, r, s2), selecting only edges
whose relation label matches r. This mirrors the semantic alignment checks used in Step 3 of our
framework.

Low-confidence node handling. For low-confidence nodes introduced via the bridging mecha-
nism and absent from the KG, credibility can be increased if they are validated again through the
LLM’s internal knowledge in new contexts (g → s1, r, s2). Such cross-validation strengthens trust
in the node. Conversely, nodes failing this validation are identified as hallucinations and removed
using GGoT’s knowledge elimination procedure.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Metrics. To assess the effectiveness of the proposed paradigm, we employ
two external knowledge bases: one open-source graph and one self-constructed graph. The open-
source resource is Freebase Bollacker et al. (2008).

Freebase is a large-scale, semi-structured knowledge base supported by Google, designed to orga-
nize information about millions of entities and their relations. Owing to its rich coverage, Freebase
serves as a suitable external resource for our knowledge-intensive setting. We evaluate on two QA
benchmarks built upon Freebase: WebQSP Yih et al. (2016) and CWQ Talmor & Berant (2018).

For multi-answer questions, we report results under two evaluation metrics: (i) partial match, which
considers a prediction correct if at least one gold answer is retrieved, and (ii) complete match, which
requires retrieval of all gold answers.

Baselines. We compare our approach against eight baselines: standard prompting (IO prompt)
Brown et al. (2020), chain-of-thought prompting (CoT prompt) Wei et al. (2022b), ToG Sun et al.
(2024a), PoG Chen et al. (2024), StructGPT Jiang et al. (2023), KB-BINDER Li et al. (2023a), and
FiSKE Tao et al. (2025b).

Experimental Setup. For all experiments, we fix the temperature parameter to 0 to ensure repro-
ducibility. On the English QA datasets (WebQSP and CWQ), we adopt the original prompts from
the corresponding baseline implementations.
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5.2 PERFORMANCE COMPARISON

Table 1 presents results on WebQSP and CWQ. Our full LLM+KG collaborative method outper-
forms existing approaches consistently. The LLM-only GGoT framework exhibits strong sensitivity
to the base model: switching from LLaMA3-8B to DeepSeek-V3 improves partial matching by 20%
and more than doubles complete matching on WebQSP, with similar gains on CWQ. This highlights
the importance of internal knowledge in LLMs for this setting.

Notably, even with LLaMA3-8B, our collaborative framework surpasses most GPT-3.5-based meth-
ods. Performance improvements on CWQ are more pronounced than on WebQSP, likely because
CWQ contains more multi-hop questions. These often expose KG incompleteness, increasing re-
liance on the LLM’s internal knowledge, whereas WebQSP’s single-hop questions depend more on
the KG.

In summary, our framework achieves state-of-the-art performance across single- and multi-hop QA,
even with smaller LLMs.

Table 1: Results for WebQSP and CWQ. In CWQ, each question has only one answer, so partial
matching is equivalent to complete matching.

Method WebQSP CWQ
partial complete partial complete

without external knowledge
IO prompt Brown et al. (2020) w/DeepSeek-V3 63.3 35.3 44.8 44.8
COT Wei et al. (2022b) w/DeepSeek-V3 70.5 41.4 46.7 46.7

with external knowledge
ToG Sun et al. (2024a) w/Llama3-8B 55.6 32.3 – –
PoG Chen et al. (2024) w/Llama3-8B 63.4 34.4 – –
FiSKE Tao et al. (2025b) w/Llama3-8B 70.8 40.4 – –
StructGPT Jiang et al. (2023) w/GPT-3.5 72.6 – 54.3 54.3
KB-BINDER Li et al. (2023a) w/GPT-3.5 74.4 – – –
ToG Sun et al. (2024a) w/GPT-3.5 76.2 – 57.1 57.1
PoG Chen et al. (2024) w/DeepSeek-V3 81.9 60.7 55.7 55.7
FiSKE Tao et al. (2025b) w/DeepSeek-V3 82.5 61.1 50.2 50.2
GG-explore w/Llama3-8B Tao et al. (2025a) 79.3 54.1 56.7 56.7
GG-explore w/DeepSeek-V3 Tao et al. (2025a) 81.8 64.5 71.8 71.8
GGoT (Ours) w/Llama3-8B 52.1 21.2 35.9 35.9
GGoT (Ours) w/DeepSeek-V3 72.5 46.4 53.4 53.4
Ours w/Llama3-8B 81.3 55.2 59.3 59.3
Ours w/DeepSeek-V3 85.7 65.5 75.2 75.2

5.3 COMPUTATIONAL COST

Our efficiency results are summarized in Table 2. The proposed method uses a comparable number of
LLM calls and tokens to FiSKE and GG-Explore, while being more efficient than PoG. On WebQSP,
our approach incurs lower computational cost, as the knowledge probing mechanism mainly guides
the exploration direction in its single-hop dominant setting. On CWQ, which contains more multi-
hop questions, higher token consumption is required to compensate for potential KG gaps and verify
connection reliability, leading to slightly higher cost than FiSKE and GG-Explore.

5.4 STUDIES ON TRUST-AWARE BRIDGING

Table 3 presents an ablation study on the Trust-aware Bridging module. The results confirm its in-
trinsic effectiveness: using untrusted bridging knowledge (Ours*) leads to clear performance degra-
dation, validating the reliability of our trust judgment.

On CWQ, 90.5% of questions were assigned trusted knowledge chains. Performance on this fil-
tered subset (Filtered CWQ) exceeds that of the full dataset, indicating that even when bypassing
untrusted chains and reverting to the base LLM, answers for distrusted cases remain significantly
less accurate.
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Table 2: Efficiency Comparison Across Datasets.

Dataset Method LLM Call Input Token Output Token Total Token

WebQSP

PoG 11.3 6590.2 427.0 7017.2
FiSKE 7.9 3079.0 1379.7 4458.7

GG-explore 8.6 3264.5 584.0 3848.5
Ours 8.13 3077.5 408.9 3486.4

CWQ

PoG 23.4 15483.4 694.8 16178.2
FiSKE 9.4 3578.8 1828.7 5407.5

GG-explore 10.2 4052.0 708.6 4760.6
Ours 11.0 5239.5 619.9 5859.4

Table 3: Experimental results on CWQ for trust-aware bridging (Filter: fully trusted QA set; Ours*:
keeps untrusted bridging; w/o TB: bridging removed).

Dataset Method Trust ratio LLM Call Total Token Partial match Complete match

CWQ Ours 90.5% 11.0 5859.4 75.2 75.2
CWQ Ours* 90.5% 11.0 5840.3 72.6 72.6
CWQ Ours w/o TB 90.5% 9.2 4114.5 72.2 72.2
CWQ Ours* w/o TB 90.5% 9.2 4099.1 69.3 69.3
Filtered-CWQ Ours 100% 11.2 6100.8 77.4 77.4

5.5 ABLATION STUDIES

We conducted ablation studies on three modules: (1) Dynamic Discovery of KG Starting Points —
removing this module means we only determine the starting points based on the initial specific node;
(2) Trust-Aware Bridging — ablating this module implies that we no longer attempt to bridge incom-
plete knowledge via knowledge probes; (3) Knowledge Probe — removing this module represents a
reversion to existing KG-centric paradigms.

Removing each module individually leads to performance degradation, confirming their respective
contributions. Notably, ablating only one module (e.g., Dynamic Discovery or Trust-Aware Bridg-
ing) results in worse performance than removing all Knowledge Probe-dependent modules together.
We attribute this to the collaborative design of our framework: the absence of a single component
disrupts the overall synergy, whereas a fully KG-centric baseline (removing all such modules) main-
tains greater internal consistency despite its limitations.

Table 4: Ablation Studies on CWQ set.

Variant partial match LLM Call Input Token Output Token Total Token

Ours 75.2 11.0 5239.5 619.9 5859.4
w/o dynamic discovery of KG starting points 69.3 12.2 3850.2 514.7 4364.9
w/o trust aware bridging 69.3 9.2 3631.5 483.0 4114.5
w/o knowledge probe 70.7 10.7 4136.1 691.8 4827.9

6 CONCLUSION

Existing methods for integrating LLMs and KGs remain fundamentally KG-centric and notoriously
brittle: they strictly rely on the knowledge graph as the sole source of truth to prevent hallucinations.
The entire reasoning chain can collapse catastrophically even if a single link is missing in the KG.

To address this issue, we propose Guidance Graph-of-Thought (GGoT), an LLM-only multi-step
reasoning framework. We further extend this architecture by leveraging the internal knowledge of
the LLM as a probe to guide knowledge graph exploration and bridge incomplete knowledge.

Experimental results demonstrate that our method consistently outperforms existing approaches and
remains effective even with smaller LLMs. Ablation studies confirm the contribution of each pro-
posed module.
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Reproducibility Statement Our main code has been submitted with full algorithm logic and anno-
tations. The utils.py file referenced handles LLM calls and database operations, which do not affect
the algorithm. LLM prompts are included in the appendix, and database function returns are noted
in the code. With the provided code and appendix prompts, our method can be readily reproduced.
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A APPENDIX

A.1 LLM USAGE STATEMENT

The large language model was only used for grammar checking and polishing, and nothing else.

A.2 PROMPT TEMPLATES

In this subsection, we introduce all prompt templates used in this paper. The complete prompt A1
and structure prompt A2 are employed for constructing the guidance graph. The internal prompt A3
is used in GGoT to mine the internal knowledge of the LLM, while the specific internal prompt A4
serves for disambiguation. The prune prompt is A5 applied for semantic consistency filtering, and
answer by triples A6 is designed for generating answers based on knowledge chains.
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Table A1: complete prompt.

complete

Rephrase the question as a statement, ensuring:
1. All explicit and logically implied information is included (e.g., location, time, scope if hinted in the question).
2. Split compound noun phrases into individual entities.
3. Classify each entity as generic/specific.
Do not answer the question.
question: What team did Payton Manning’s father play for?
answer:
statement: Identify the team Payton Manning’s father played for.
entities:

- team (generic)
- Payton Manning (specific)
- father (generic)

question: what did James K. Polk do before he was president?
answer:
statement: Identify the job of James K. Polk before he became president.
entities:

- job (generic)
- James K. Polk (specific)
- president (generic)

question: Where did the ”Country Nation World Tour” concert artist go to college?
answer:
statement: Identify the college attended by the concert artist of the ”Country Nation World Tour.”
entities:

- college (generic)
- Country Nation World Tour (specific)
- concert artist (generic)

Now answer with the format of the example above. Be brief and precise.
question: {}
answer:

Table A2: structure prompt

structure

Please analyze the relationships between the following entities in the given sentence.
Represent each relationship as a triple in the format (subject, relation, object).
Important Rules:
- Do not alter the provided keywords. Use them exactly as given (no paraphrase, no pluralization).
You may add other words only if they appear in the sentence.
- If a generic keyword and another keyword refer to the same entity,
the generic keyword must be treated as a relation rather than an entity.
- Ensure the triples are logically connected.
sentence: Identify the father of Keyshia Cole.
generic keywords: father
specific keywords: Keyshia Cole
answer:
triples: [(father, of, Keyshia Cole)]
sentence: Identify the main trading partner of China that appointed Abdelaziz Bouteflika to a governmental position.
generic keywords: main trading partner; governmental position
specific keywords: China; Abdelaziz Bouteflika
answer:
triples: [(main trading partner, of, China), (main trading partner, appointed, Abdelaziz Bouteflika),
(Abdelaziz Bouteflika, appointed to, governmental position)]
Now answer with the format of the example above. Be brief and precise.
sentence: {}
generic keywords: {}
specific keywords: {}
answer:
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Table A3: internal prompt.

internal

Task: Infer the entity that fills the target slot in the triples using only the semantics of the relation and general world knowledge.

Critical rules:
- non target context contains information about the other side of the triple (the complementary entity), NOT the target.
- Never output any string that appears as a key or value in non target context.
If you include any item from non target context in your answer, it is wrong.
- Output concrete, specific entities that can occupy the target slot
(e.g., for target=award: award names; for target=year: a 4-digit year).
- Multiple correct answers may exist; list the most likely 1–5.
- If you cannot reasonably infer any specific target, output []
- Output format must be exactly: [answer1, answer2, ...] with no other text.

Examples:
triples: [(Marie Curie, winner of, award)]
target slot: award
non target context: {}
answer: [Nobel Prize]

triples: [(’team’, ’lastWonWorldSeries’, ’year’)]
target slot: year
non target context: {{’team’: ’San Francisco Giants’}}
answer: [2014]

triples: [(’director’, ’directed’, ’film’)]
target slot: film
non target context: {{’director’: ’Greta Gerwig’}}
answer: [Lady Bird, Little Women]

triples: [(’author’, ’wrote’, ’book’)]
target slot: book
non target context: {{’author’: ’Haruki Murakami’}}
answer: [Norwegian Wood, Kafka on the Shore]

Now answer this:
triples: {triples}
target slot: {target entity}
non target context: {previous knowledge}
answer:

Table A4: specific internal prompt.

specific internal

Please rely on your own knowledge to find the answer to the target entity
based on the given triples and previous knowledge.
There may be more than one answer. Here are some examples.

triples: [(Marie Curie, winner of, award)]
previous knowledge: {{award: [Nobel Prize, Fields Medal, Turing Award]}}
answer: [Nobel Prize]

triples: [(programming language, named after, comedy group)]
previous knowledge: {{programming language: [Python, C++]}}
answer: [Python]

Now answer with the format of the example above.
triples: {triples}
previous knowledge: {previous knowledge}
answer:
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Table A5: prune prompt.

prune

Select the most semantically matching relation from the candidate relations to replace
the given relation in the theme information while maintaining its essential meaning.
Rate it on a scale of 0 to 10. Be brief and precise.

Below is an example:
theme information: main spoken language of country
relation: of
candidate relations: {

’language.human language.main country’,
’language.human language.human language’,
’language.human language.language family’,
’language.human language.iso 639 3 code’,
’base.rosetta.languoid.parent’,
’language.human language.writing system’,
’base.rosetta.languoid.languoid class’

}
assess:
- ’language.human language.human language’ can perfectly replace the relation, (9) score.
- ’language.human language.main country’ can replace the relation, (8) score.
- other relations are not related to any information in the sentence, (0) score.

Now answer with the format of the example above. Be brief and precise.
theme information: {}
relation: {}
candidate relations: {}
assess:

Table A6: answer by triples prompt.

answer by triples

Please answer the question. Triples are available for reference.
If there is not enough information in the triples, please answer with your own knowledge.

question: Which place is the madam satan located?
triples: [(’madam satan’, ’film.film.country’, ’the USA’),
(’madam satan’, ’film.film.language’, ’English’)]
answer: ’madam satan’ is located in ’the USA’.

question: {}
triples: {}
answer:
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A.3 GUIDANCE GRAPH CONSTRUCTION RULES

1. Specific keywords exclusively serve as graph nodes (i.e., entities in triples) rather than
edges.

2. When a generic keyword co-refers to the same entity as a specific keyword, it functions as
a triple’s relation rather than an entity.

3. For two distinct generic keywords referencing the same entity, one must be assigned as the
relation in the triple.

4. For associated keywords referring to different entities, we construct triples where the key-
words become head/tail entities and their association forms the relational edge.
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