
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

,

RESOLVE: RELATIONAL REASONING WITH SYM-
BOLIC AND OBJECT-LEVEL FEATURES USING VECTOR
SYMBOLIC PROCESSING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern transformer-based encoder-decoder architectures struggle with reasoning
tasks due to their inability to effectively extract relational information between input
objects (data/tokens). Recent work introduced the Abstractor module, embedded
between transformer layers, to address this gap. However, the Abstractor layer
while excelling at capturing relational information (pure relational reasoning),
faces challenges in tasks that require both object and relational-level reasoning
(partial relational reasoning). To address this, we propose RESOLVE, a neuro-
vector symbolic architecture that combines object-level features with relational
representations in high-dimensional spaces, using fast and efficient operations such
as bundling (summation) and binding (Hadamard product) allowing both object-
level features and relational representations to coexist within the same structure
without interfering with one another. RESOLVE is driven by a novel attention
mechanism that operates in a bipolar high dimensional space, allowing fast attention
score computation compared to the state-of-the-art. By leveraging this design, the
model achieves both low compute latency and memory efficiency. RESOLVE also
offers better generalizability while achieving higher accuracy in purely relational
reasoning tasks such as sorting as well as partial relational reasoning tasks such as
math problem-solving compared to state-of-the-art methods.

1 INTRODUCTION

Figure 1: Example of purely relational task:
Pairwise Ordering

Analogical reasoning, which involves recogniz-
ing abstract relationships between objects, is
fundamental to human abstraction and thought.
This contrasts with semantic (meaning-based)
and procedural (task-based) knowledge acquired
from sensory information, which is typically pro-
cessed through contemporary approaches like
deep neural networks (DNNs). However, most
of these techniques fail to extract abstract rules
from limited samples Barrett et al. (2018); Ricci
et al. (2018); Lake & Baroni (2018).

These reasoning tasks can be purely or partially
relational. Figure 1 presents an example of a
purely relational task where the objects (e.g.
frog, mountains) are randomly generated. In
this task, only the information representing rela-
tionships between the objects is relevant, not the
objects themselves. By contrast, in Figure 2a the
purpose is to learn the abstract rule of subtrac-
tion, which is unknown to the model, from pairs
of MNIST digits. This abstract rule relies on the relational representation between the digits (derived
from their relationship with one another, in this case their ordering) and the digits themselves (the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Subtraction using MNIST digits (b) Quadratic Equation Solution

Figure 2: Two examples of partially relational tasks(Figure 2a and 2b)

values being subtracted), which are object features. This is a partially relational problem. Similarly,
in Figure 2b, the purpose is to learn the abstract rule of the quadratic formula (i.e. the solution to
the quadratic problem shown at the bottom of Figure 2b) from the object features (derived from the
text tokens representing equation coefficients) and the relational representation (derived from the
coefficient ordering).

These relational or partially relational tasks have been shown to be problematic for transformer-
based architectures (Altabaa et al., 2023), which encode both the object features and relational
representations into the same structure. (Altabaa et al., 2023) instead created a learnable inductive
bias derived from the transformer architecture for explicit relational reasoning. Although this solution
is sufficient for purely relational tasks such as Figure 1, it is less efficient for partially relational tasks
such as Figures 2a and 2b where the object features and relational representations are both significant.

The poor ability of transformers to superpose relational representations and object-level features is
due to the low dimensionality of their components, causing interference between object features and
relational representations (Webb et al., 2024b). By contrast, vector symbolic architectures (VSA)
have used high-dimensional spaces to superpose object features and relational representations with
low interference Hersche et al. (2023). Transformer-based architectures are moreover known to
be power-inefficient due to the attention score computation Debus et al. (2023). Vector symbolic
architectures have been proven to be power-efficient Menet et al. (2024) with low memory overhead
due to the low-bitwidth (bipolar) representation of high-dimensional vectors. However, current VSA
techniques require prior knowledge of abstract rules and a pre-engineered set of relations and objects
(e.g., blue, triangle), making them unsuitable for sequence-to-sequence reasoning.

These arguments motivate the design of RESOLVE, an innovative vector symbolic architecture
allowing superposition of relational representations and object-level features in high dimensional
spaces. Object-level features are encoded through a novel, fast, and efficient HD-attention mechanism.
The key contributions of this paper are:

• We are the first to propose a strategy for addressing the relational bottleneck problem
(capturing relational information between data/objects rather than input data/object attributes
or features from limited training data) using a vector symbolic architecture. Our method
captures relational representations of input objects in a hyperdimensional vector space, while
maintaining object-level information and features in the same representation structure, while
minimizing their interference with each other at the same time. The method outperforms
prior art in tasks that require both pure and partial relational reasoning.

• We implement a novel, fast and efficient attention mechanism that operates directly in
a bipolar ({−1, 1}) high-dimensional space. Vectors representing relationships between

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

symbols are learned, eliminating the need for prior knowledge of abstract rules required by
prior work Hersche et al. (2023).s

• Our system significantly reduces computational costs by simplifying attention score matrix
multiplication to bipolar operations and relying on lightweight high-dimensional operations
such as the Hadamard product (also known as binding).

In the following section we discuss related prior work, followed by an overview of our symbolic
HD-attention mechanism in Section 3. We then discuss our vector-symbolic hyperdimensional
attention mechanism and contrast it to the relational bottleneck approach in Section 4. The RESOLVE
encoder and hypervector bundling is then discussed in Section 5 and the full architecture in Section 6.
We then present experimental validation in Section 7, followed by conclusions.

2 RELATED WORK

To address the problem of learning abstract rules, symbolic AI architectures such as the Relation
Network (Santoro et al., 2017) propose a model for pairwise relations by applying a Multilayer
Perceptron (MLP) to concatenated object features. Another example, PrediNet (Shanahan et al.,
2020), utilizes predicate logic to represent relational features. Symbolic AI approaches combined with
neural networks were leveraged by neurosymbolic learning Manhaeve et al. (2018); Badreddine et al.
(2022); Barbiero et al. (2023); Xu et al. (2018) to improve this rule learning, with optimizations such
as logical loss functions Xu et al. (2018) and logical reasoning networks applied to the predictions of
a neural network Manhaeve et al. (2018). However, these systems require prior knowledge of the
abstract rules guiding a task. They also require pre-implementation of object attributes Hersche et al.
(2023) (e.g., red, blue, triangle, etc.). This approach is only feasible for simple tasks (e.g., Raven’s
Progressive Matrices Raven (1938)) and is not appropriate for complex sequence-based partially
relational tasks such as the quadratic solution of Figure 2b.

For sequence-based partially relational tasks such as the math problem-solving of Figures 2a and
2b an encoder-decoder structure with transformers has been used Saxton et al. (2019). However,
transformers often fail to capture explicit relational representations.

A solution to the shortcomings of encoder-decoder approaches is proposed in (Webb et al., 2024b),
using the relational bottleneck concept. This aims to separate relational representations learned using
a learnable inductive bias from object-level features learned using connectionist encoder-decoder
transformer architectures or DNNs. Several models are based on this idea: CoRelNet, introduced
in (Kerg et al., 2022), simplifies relational learning by modeling a similarity matrix. A recent
study (Webb et al., 2020) introduced an architecture inspired by Neural Turing Machines (NTM)
(Graves et al., 2014), which separates relational representations from object features. Building on
this concept, the Abstractor (Altabaa et al., 2023) adapted Transformers (Vaswani et al., 2017) for
abstract reasoning tasks by creating an ’abstractor’—a mechanism based on cross-attention applied
to relational representations for sequence-to-sequence relational tasks. A model known as the Visual
Object Centering Relational Abstract architecture (OCRA) (Webb et al., 2024a) maps visual objects
to vector embeddings, followed by a transformer network for solving symbolic reasoning problems
such as Raven’s Progressive Matrices (Raven, 1938). A subsequent study (Mondal et al., 2024)
combined and refined OCRA and the Abstractor to address similar challenges. However, these
relational bottleneck structures still suffer from the drawback of intereference between the relational
representations and object features in deep layers due to their lower feature dimensionality (Webb
et al., 2024b).

However, recent work (Hersche et al., 2023) has shown that Vector Symbolic Architectures (VSAs), a
neuro-symbolic paradigm using high-dimensional vectors (Kanerva, 2009) with a set of predefined
operations (e.g., element-wise addition and multiplication), exhibit strong robustness to vector
superposition as an alternative to the relational bottleneck. In addition, Hyperdimensional Computing
(HDC) is recognized for its low computational overhead (Mejri et al., 2024b; Amrouch et al.,
2022) compared to transformer-based approaches. However, prior work on VSAs has relied on
pre-engineered set of objects and relations, limiting their applicability to sequence-to-sequence
reasoning tasks.

In contrast to prior research, this paper is the first to leverage VSAs to efficiently combine object-level
information with relational information in high-dimensional spaces, taking advantage of the lower

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

interference between object features and relational representations in high dimensions. We also
propose the first efficient attention mechanism for high-dimensional vectors (HD-Attention).

3 OVERVIEW

In this section we present an overview of prior architectures used to learn abstract rules, and use them
to illustrate the unique features of our VSA-based architecture.

Figure 3a illustrates the self-attention mechanism used in transformer architectures Vaswani et al.
(2017). In step t1 , objects are first encoded into keys, queries, and values. In step t2 , self-attention
captures correlations between keys and queries in an attention score matrix. Finally, in step t3 ,
this matrix is used to mix values and create encoded outputs. Self-attention is thus designed to
capture correlations between input object sequence elements. However, it fails to capture relational
representations of the input object sequence Altabaa et al. (2023), leading to poor generalization
capability for abstract rule-based tasks. The Abstractor mechanism aims to fix that flaw.

Figure 3b illustrates the Abstractor mechanism. In step a1 of the abstractor architecture shown in Fig.
3b, objects are first encoded into queries and keys, which are used to build attention scores (step a2)
similar to self-attention. In parallel, in step a3 , a set of symbols (learnable inductive biases) consisting
of a set of trainable vectors are encoded into values. In step a4 , the attention scores and the symbols
are used to generate the abstract outputs, a dedicated structure for relational representations Altabaa
et al. (2023); Webb et al. (2020) that are disentangled from object-level features. This approach,
known as the relational bottleneck, separates object-level features from relational representations.
However, this separation can make it difficult to learn abstract rules for partially relational tasks.

(a) Self Attention
(Transformer)

(b) Relational bottleneck
(Abstractor)

(c) Object and symbolic vector
symbolic feature mixing (RESOLVE)

Figure 3: Comparison of a relational bottleneck approach applied on the transformer (Figure 3b) sep-
arating object-level features while keeping only abstract features with a vector symbolic architecture
alternative to the relational bottleneck using binding to mix object and abstract level information in
high dimensional (HD) space with low interference (Figure 3c)

The RESOLVE architecture (shown in Figure 3c) explicitly structures the learning of relational
information while encoding object-level features. In step r1 , objects and symbols are mapped to a
high-dimensional (HD) space using an high-dimensional encoder to generate HD Objects (object-
level feature representations) and HD Abstract outputs (relational representations). The HD Objects,
shown three times, are identical. They are first used in step r2 to compute attention scores. Then,
in step r3 , these attention scores are used as weights to combine the HD Objects, producing an HD
encoded output. In step r4 , the HD Abstract output and the HD encoded output are superimposed
through a binding operation (Hadamard product) to provide a mixed relational representation and
object feature vector in high dimensions, avoiding the interference between relational representations
and object features that this mixing causes in lower dimensions (seen in transformers (Webb et al.,
2024b)).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 RELATIONAL BOTTLENECK AND VSA APPROACH MODELING

(a) E← SelfAttention(O) (b) A← RelCrossAttention(O,S)

(c) hEO⊗S ← HD-Attention(hO)⊗ hS

Figure 4: Comparison between SelfAttention Vaswani et al. (2017) 4a, RelationalCrossAttention Altabaa et al.
(2023) 4b and our VSA approach 4c. We show a single head of multi-attention for brevity. The object-related
operations are in red and the relational-related (abstract/symbolic) operations are in turquoise.
Figure 4 contrasts the self-attention mechanism (Figure 4a), the relational cross-attention (Figure 4b),
and our approach (Figure 4c), using red and turquoise colors. The self-attention mechanism in
Figure 4a is applied to a sequence of objects (for instance, token embeddings) denoted by O1..N.
Each object is of dimension F. The objects are encoded into Keys, Queries, and Values through
linear projections: ϕQ : O 7→ O · WQ, ϕK : O 7→ O · WK , and ϕV : O 7→ O · WV , where WQ,WK ,WV

are learnable matrices. The Queries and Keys are used to compute an attention score matrix, which
captures the relationships between encoded objects through a pairwise dot product ⟨, ⟩. (Altabaa
et al., 2023) interprets this as a relation tensor, denoted by R = [⟨ϕQ(Oi), ϕK(Oj)⟩] i, j = 1N . R is
normalized to obtain R using a Softmax function to produce probabilities. SelfAttention(O) thus
generates a mixed relational representation E of the encoded objects (Values) through the normalized
relational tensor R (i.e., Ei =

∑
j ;RijϕV (Oj)). A transformer uses the matrix R to capture input

relations and ϕV to encode object-level features, but ϕV is not designed to learn abstract rules.

Figure 4b shows the relational attention mechanism by (Altabaa et al., 2023) that isolates object-level
features (in red) from abstract/relational information (in turquoise) to improve abstract rule learning.
Like self-attention, the objects O1..N are first encoded into Keys and Queries through the same
learnable projection functions ϕK and ϕQ, which are then used to build a normalized relation tensor
R. In parallel, a set of symbols S1..N (N learnable vectors with the same dimensionality as the objects)
are encoded into values using a projection function ϕV (i.e., V = ϕV (S)). The encoded symbols
(Values) are mixed using the relation tensor weights through a relational cross-attention mechanism to
generate a mixed relational representation containing less object-level information and more relational
(abstract) information. These are called Abstract States, denoted as A1..N (Ai =

∑
j ;RijϕV (Sj)).

Figure 4c shows our VSA-based system. It starts by encoding the objects O1..N from their F-
dimensional space into a high-dimensional (D-dimensional) space using an encoder denoted by ϕHD
to generate high-dimensional object vectors hO1..N

. We extract relational scores from this using a
novel HD-attention mechanism to build a HD relation tensor, denoted as R. This matrix is then

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

normalized through a softmax function to generate R. These normalized scores are used to mix
the hO1..N

, generating encoded object-level high-dimensional vectors hEOi =
∑

j RijhOj
. A set of

learnable symbols S1..N with the same dimensionality as the objects is used to encode relational
information. These symbols are mapped to the high-dimensional space through ϕHD, generating
hS1..N

. These high-dimensional symbolic vectors are bound (i.e., Hadamard product/element-wise
multiplication) with the encoded high-dimensional object-level vectors to generate vectors hEO⊗S that
carry both object-level and relational (abstract) information.

5 RESOLVE: HD-ENCODER AND HD-ATTENTION MECHANISM WITH
HYPERVECTOR BUNDLING

Figure 5: HD-Encoder ϕHD and HD-Attention(O1...N)

Figure 5 shows the HD-Encoder
and HD-Attention mechanism ap-
plied to an input sequence of ob-
jects O1, ..., ON (see Figure 4). In
Step 1 , objects are mapped from
the F -dimensional feature space to
a D-dimensional HD space (D ∼
103) using the HD encoder ϕHD.
We have implemented ϕHD using
single-dimension convolution op-
erations inspired by Mejri et al.
(2024a). In this encoder scheme,
each object Oi is convolved with
a learnable high dimensional vec-
tor called the HD-Basis denoted
by Bi ∈ RN×D−F+1, giving rise to the high-dimensional HD Object hypervectors hOi [j] =∑

k Oi[k] · Bi[j − k].

Step 2 consists of generating the relation tensor R, made up of attention scores that capture rela-
tionships between different HD objects hOi

. These scores are built using a novel hyperdimensional
attention mechanism, called HD-Attention. Prior work Vaswani et al. (2017); Altabaa et al. (2023)
has generated these relational representations using a pairwise inner product between object features
in a low dimensional space. In contrast, the HD-Attention mechanism maps object features to a
high-dimensional space where (as shown in Menet et al. (2024)), the HD Object hypervectors are
quasi-orthogonal, allowing efficient relational representation and object feature superposition in the
high dimensional vector space.

The HD-Attention mechanism represents object sequences using the bundling operation (i.e., ⊕)
between HD-encoded sequence elements. Given two objects Oi and Oj we first project them onto
a hyperspace using the HD-Encoder ϕHD. The HD object hypervectors are thus hOi

= ϕHD(Oi).
Before calculating the attention score, these HD objects are made bipolar using the function δ(x) =
−1{x<0} + 1{x>0}, replacing the binary coordinate-wise majority in the bipolar domain used in
(Kanerva, 2022). Thus, the (i, j)th element of the relation tensor Rij denoting the object-level
relationships between Oi and Oj can be expressed according to the equation 1 where cos(.) denotes
the cosine similarity function and ∥∥2 denotes the L2 norm:

Rij = cos(δ(hOi
), δ(hOi

⊕ hOj
)) =

⟨δ(hOi
), δ(hOi

⊕ hOj
)⟩

D
(1)

The denominator of the cosine similarity function cos(.) is ∥δ(hOi)∥2.∥δ(hOi⊕hOj)∥2. Since the
HD objects are bipolar, their L2 norm is

√
D, leading to the expression in Equation 1. We define

bundling (⊕) as the element-wise real value summation between two bundled HD objects. It captures
the dominant or relevant features of an object pair. The sign of each HD object element follows the
sign of the element with a higher magnitude, amplified by dominant features of object pair during
training. In step, 3 the relation tensor matrix R is normalized using a softmax function to generate
R. This matrix is used to encode the HD Object hypervectors by mixing them according to their
corresponding weights in the normalized relation tensor R.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

6 RESOLVE: ARCHITECTURE OVERVIEW

Figure 6: The RESOLVE module inside an encoder-decoder for sequence-to-sequence tasks. It includes abstract
(turquoise path) and object level (red path) information that are superposed. The RESOLVE module operates in
a high dimensional space (bold arrows). The rest operate in a low dimensional space (dotted arrows)

(a) RESOLVE Architecture for single out-
put purely relational task

(b) RESOLVE Architecture for single output partially re-
lational task

(c) RESOLVE Architecture for sequence-to- sequence purely re-
lational task

(d) RESOLVE Architecture for sequence-to- sequence partially
relational task

Figure 7: RESOLVE pipelines for four tasks

The RESOLVE module implementation is illustrated in
Figure 6, for a sequence-to-sequence encoder-decoder
structure with RESOLVE Modules (2 to 4). An input
sequence, in this case a set of tokens, is encoded into
embedding vectors and then passed to the Attentional
Encoders in Step 1 , which consist of self-attention
layers followed by feedforward networks Vaswani et al.
(2017). This module is commonly used in sequence-to-
sequence modeling and in prior art (Altabaa et al., 2023)
to extract object-level information from the sequence.

In step 2 , the output of the Attentional Encoders,
which consists of a set of encoded objects, is mapped
to a high-dimensional space using the HD Encoder 2 .
These HD Object hypervectors are then mixed using the
HD-Attention 3 mechanism to generate hEO . In paral-
lel, a set of relational representations (the learnable sym-
bols of Section 4) S are mapped to high-dimensional
space through the same HD-encoder 2 . The resulting
hypervectors, denoted by hs, are then combined with
the mixed HD Object hypervectors through a binding
operation in Step 4 . The result is denoted as hS⊗EO .

High dimensional vectors are known to be holistic Kan-
erva (2009) meaning that information is uniformly dis-
tributed across them. This gives high information redundancy and makes it possible to map to a
low-dimensional space with low information loss Yan et al. (2023). The hypervectors gained from
Step 4 (hS⊗EO) are thus mapped to low-dimensional space through a learnable linear layer in Step 5 .
The resulting vectors are then forwarded to a set of Attentional Decoders in Step 6 , which consist of
causal-attention and cross-attention layers Vaswani et al. (2017).

Figure 7 shows four different RESOLVE architecture configurations used for different tasks. The
RESOLVE architectures illustrated in (Figure 7a) consists of a single RESOLVE encoder followed by
a fully connected layer. It is used for single output purely relational tasks (e.g. pairwise ordering)
that don’t require an attentional object level encoding. On the other hand, Figure 7b shows the same
architecture with an attentional encoder in the front-end used to process object level features for
single output partially relational tasks (e.g. learning the abstract rule of subtraction). Figure 7c and 7d
shows RESOLVE architecture for sequence-to-sequence purely (e.g. sorting) and partially relational
tasks (e.g. mathematical problem solving (Saxton et al., 2019)) respectively. Both of them use an
attentional encoder to process object level features and an attentional decoder to generate the output
sequence. However, the architecture in Figure 7d requires a skip-connection between the encoder and
the decoder because the output sequence in the partially relational tasks relies on object features as
well as relational representations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

7 EXPERIMENTS

We have evaluated the performance of RESOLVE compared to the state-of-the-art on several relational
tasks: (1) Single output purely relational tasks (pairwise ordering, a sequence of image pattern learning
with preprocessed inputs); (2) Single output partially relational tasks (sequence of image pattern
learning with low-processed inputs, mathematical abstract rule learning from images); (3) Sequence-
to-sequence purely relational tasks (Sorting); (4) Sequence-to-sequence partially relational tasks
(Mathematical problem solving). The baselines used for comparison are CorelNet Kerg et al. (2022)
with Softmax activation, Predinet Shanahan et al. (2020), the Abstractor Altabaa et al. (2023), the
transformer Vaswani et al. (2017), a multi-layer-perceptron (as evaluated in Altabaa et al. (2023)) and
the LEN Zheng et al. (2019), a neuro symbolic architecture.

7.1 SINGLE OUTPUT PURELY RELATIONAL TASKS

(a) Learning ≺ relation accuracy (b) SET Classification accuracy

Figure 8: Experiments on single output purely relational tasks and comparison to SOTA.

Order relations: modeling asymmetric relations As described in Altabaa et al. (2023), we gen-
erated 64 random objects represented by iid Gaussian vectors oi ∼ N (0, I) ∈ R32, and established
an anti-symmetric order relation between them o1 ≺ o2 ≺ · · · ≺ o64. From 4096 possible object
pairs (oi, oj), 15% are used as a validation set and 35% as a test set. We train models on varying
proportions of the remaining 50% and evaluate accuracy on the test set, conducting 5 trials for each
training set size. The models must generalize based on the transitivity of the ≺ relation using a limited
number of training examples. The training sample sizes range between 10 and 210 samples. Figure
8a demonstrates the high capability of RESOLVE to generalize with just a few examples, achieving
over 80% accuracy with just 210 samples (1.05× better than the second best model and 1.09× better
than Abstractor). The Transformer model is the second best performer, better than the Abstractor and
CorelNet-Softmax due to the lower level of abstraction needed for learning asymmetric relations.

Figure 9: The SET
game

SET: modeling multi-dimensional relations with pre-processed objects
In the SET (Altabaa et al., 2023) task, players are presented with a sequence
of cards. Each card varies along four dimensions: color, number, pattern and
shape. A triplet of cards forms a "set" if they either all share the same value or
each have a unique value (as in Figure 9). The task is to classify triplets of card
images as either a "set" or not. The shared architecture for processing the card
images in all baselines as well as RESOLVE is CNN → {·} → Flatten →
Dense, where {·} is one of the aforementioned modules. The CNN embedder
is pre-trained and object features are taken from the last linear layer of the
model. The relational models thus focus on learning the abstract rules without
having to encode object features. For this specific task, there are four relational representations (e.g.,
shape, color, etc.) and one abstract rule (whether it is a triplet or not).

Figure 8b shows RESOLVE outperforms all the baselines (up to 1.05x better than the second best
model and 1.11x better than the Abstractor), as it balances object features with relational representa-
tions. In this particular case, PrediNet also shows high accuracy. Its feature vectors are less connected
to object-level features than those of the transformer but more than those of the Abstractor. This
experiment shows that for descriminative purely relational tasks, abstract rules are often easy to
extract and are highly correlated to object features, resulting in the transformer outperforming the
Abstractor.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

7.2 SINGLE OUTPUT PARTIALLY RELATIONAL TASKS

(a) SET Classification accuracy (b) MNIST-Math Classification accuracy

Figure 10: Experiments on single output partially relational tasks and comparison to SOTA.

SET: modeling multi-dimensional relations with low-processed objects Instead of extracting
highly encoded object level features from the pre-trained CNN used in Section 7.1, we extract the
feature map of the first convolutional layer of the pretrained CNN to assess the ability of RESOLVE to
handle low processed object level features. Figure 10a shows the mean accuracy of different relational
models when trained on small portion of the dataset. RESOLVE outperforms the state of the art with
more than 80% accuracy using just 600 training samples. In contrast to the Section 7.1, PrediNet is
the second best model thanks to its balanced trade-off between object-level feature processing and
abstract feature encoding.

Figure 11: MNIST-Math classification task

MNIST-MATH: extracting mathematical rules from
a pair of digit images In this case (Figure 11), the
math rule to extract is a non-linear weighted subtraction
(i.e, F (a, b) = |3a − 2b|). This task is partially rela-
tional since the input image label is unknown, making
object level feature extraction more critical. According
to Figure 10b, RESOLVE outperforms the other base-
lines, with 1.14× better accuracy than the transformer
and 1.47× better accuracy than the Abstractor. The
transformer outperforms the Abstractor here due to to
the relative simplicity of the abstract rule, this problem
relies more on object level information than abstract
information.

7.3 OBJECT-SORTING: PURELY RELATIONAL SEQUENCE-TO-SEQUENCE TASKS

Figure 12: Performance of RESOLVE
compared to baselines for 6 elements

sequence sorting.

We generate have generated random objects for the
sorting task. First, we create two sets of random
attributes: A = a1, a2, a3, a4, where and B =
b1, . . . , b12. Each set of attributes has a strict order-
ing: a1 ≺ a2 ≺ a3 ≺ a4 for A and b1 ≺ b2 ≺ · · · ≺
b12 for B. Our random objects are formed by taking
the Cartesian product of these two sets, O = A× B,
resulting in N = 48 objects. Each object in O is a
vector in R12, formed by concatenating one attribute
from A with one attribute from B.

We then establish a strict ordering relation for O, us-
ing the order relation of A as the primary key and
the order relation of B as the secondary key. Specif-
ically, (ai, bj) ≺ (ak, bl) if ai ≺ ak or if ai = ak
and bj ≺ bl. We generated a randomly permuted set of 5 and a set of 6 objects in O. The target
sequences are the indices representing the sorted order of the object sequences (similar to the ’argsort’
function). The training data is uniformly sampled from the set of 6 elements based sequences in O.
We generate non-overlapping validation and testing datasets in the following proportion: 20% testing,
10% validation and 70% training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We used element wise accuracy to assess the performance of RESOLVE, as in (Altabaa et al., 2023).
The accuracy of RESOLVE is compared against the Relational Abstractor (Altabaa et al., 2023),
Transformer Vaswani et al. (2017) and CorelNet(Kerg et al., 2022).

Figure 12 shows that RESOLVE achieves better accuracy than the baselines (1.56x to 1.02x better than
Relational-Abstractor). Relational-Abstractor (Altabaa et al., 2023) still outperforms the transformer
and CorelNet-Softmax, validating the results of (Altabaa et al., 2023). RESOLVE demonstrates a high
generalizability compared to SOTA. However, as the number of training sample increases, Relational
Abstractor and RESOLVE converge toward the same level of accuracy with increased training data.

7.4 MATH PROBLEM-SOLVING: PARTIALLY-RELATIONAL SEQUENCE-TO-SEQUENCE TASKS

Task: Numbers_place_value
Question: what is the tens digit of 3585792?
Answer: 9

Task: Comparison_pair
Question: Which is bigger: 4/37 or 7/65?
Answer: 4/37 is bigger

Figure 13: Examples of input/target sequences from the math problem-solving dataset.
Comparison Closest Comparison Pair Comparison Place Value

Train size 100 1000 10000 avg 100 1000 10000 avg 100 1000 10000 avg Overall
RESOLVE 15.08 20.88 52.36 29.44 28.43 38.15 66.84 44.47 19.36 36.98 98.68 51.67 41.86

Rel-Abstractor 13.77 19.49 52.46 28.57 26.86 35.82 69.19 43.95 19.93 32.21 99.43 50.52 41.01Model
Transformer 14.25 18.08 37.76 23.36 30.73 34.1 64.37 43.06 21.1 32.91 99.64 51.21 39.21

Table 1: Accuracy (probability of correct answer) of RESOLVE compared to SOTA for three mathematical
reasoning tasks (best accuracy in bold)

We further evaluate RESOLVE on a mathematical reasoning dataset (Figure 13), which represents
a partially relational sequence-to-sequence problem. Table 1 presents the accuracy achieved by
the relational abstractor, transformer, and RESOLVE on three different datasets using 100 to 10,000
training samples. The accuracy corresponds to the percentage of full sequence matches, each one
representing a correct answer. We report the average accuracy across the three different training
sizes in the table, as well as an overall accuracy for all test cases. RESOLVE outperforms the state-
of-the-art (SOTA) on average across the three test cases. It also achieves higher accuracy with a
small training set, demonstrating the generalizability of the proposed architecture. Notably, neither
the relational representation nor the object-level features alone are sufficient for inducing abstract
rules from partially relational tasks, which penalizes both the Abstractor and transformer. In contrast,
RESOLVE combines both levels of knowledge into a single structure.

7.5 COMPUTATIONAL OVERHEAD ASSESSMENT

Embedding size 32 64
Model π β (L1 Cache) β (DRAM) π β (L1 Cache) β (DRAM)

HD Attention 1.99 0.787 0.867 1.99 0.788 0.870
Self-Attention 1.99 0.783 0.869 1.97 0.781 0.863

Table 2: Comparison between the HD-Attention Self attention mechanism in term of computational overhead.
β is the bandwidth bound in Flop/Byte and π is processor peak performance in GFLOPS

We assessed the computational overhead of the HD-Attention mechanism described in Section 5
against the baseline of a regular self attention mechanism Vaswani et al. (2017). The operations are
done on a CPU using Multi-threading. The memory overhead is measured at the level of DRAM and
L1 cache memory using the roofline model Ofenbeck et al. (2014). A high β value means that the
system is less likely to encounter memory bottlenecks. A high π means the processor is capable of
performing more computations per cycle. Table 2 shows that the HD-Attention mechansim has better
computational performance compared to self-attention (π) with higher memory bandwidth β. This is
due to the use of the bipolar HD representation and operations such as bundling and binding.

8 CONCLUSION

In this work we have presented RESOLVE, a vector-symbolic framework for relational learning that
outperforms the state of the art thanks to its use of high-dimensional attention mappings for mixing
relational representations and object features. In future we plan to examine multimodal learning tasks
and sequence-to-sequence learning tasks in the high-dimensional domain, taking advantage of the
computational efficiency of vector-symbolic architectures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

Acknowledgements removed for review.

REFERENCES

Awni Altabaa, Taylor Webb, Jonathan Cohen, and John Lafferty. Abstractors: Transformer modules
for symbolic message passing and relational reasoning. stat, 1050:25, 2023.

Hussam Amrouch, Mohsen Imani, Xun Jiao, Yiannis Aloimonos, Cornelia Fermuller, Dehao Yuan,
Dongning Ma, Hamza E Barkam, Paul R Genssler, and Peter Sutor. Brain-inspired hyperdi-
mensional computing for ultra-efficient edge ai. In 2022 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS), pp. 25–34. IEEE, 2022.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022.

Pietro Barbiero, Francesco Giannini, Gabriele Ciravegna, Michelangelo Diligenti, and Giuseppe
Marra. Relational concept based models. arXiv preprint arXiv:2308.11991, 2023.

David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring abstract
reasoning in neural networks. In International conference on machine learning, pp. 511–520.
PMLR, 2018.

Charlotte Debus, Marie Piraud, Achim Streit, Fabian Theis, and Markus Götz. Reporting electricity
consumption is essential for sustainable ai. Nature Machine Intelligence, 5(11):1176–1178, 2023.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Michael Hersche, Mustafa Zeqiri, Luca Benini, Abu Sebastian, and Abbas Rahimi. A neuro-vector-
symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelligence, 5(4):
363–375, 2023.

Pentti Kanerva. Hyperdimensional computing: An introduction to computing in distributed represen-
tation with high-dimensional random vectors. Cognitive computation, 1:139–159, 2009.

Pentti Kanerva. Hyperdimensional computing: An algebra for computing with vectors. Advances in
Semiconductor Technologies: Selected Topics Beyond Conventional CMOS, pp. 25–42, 2022.

Giancarlo Kerg, Sarthak Mittal, David Rolnick, Yoshua Bengio, Blake Richards, and Guillaume La-
joie. On neural architecture inductive biases for relational tasks. arXiv preprint arXiv:2206.05056,
2022.

Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In International conference on machine learning, pp.
2873–2882. PMLR, 2018.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. Advances in neural information processing
systems, 31, 2018.

Mohamed Mejri, Chandramouli Amarnath, and Abhijit Chatterjee. Adare-hd: Adaptive-resolution
framework for efficient object detection and tracking via hd-computing. In 2024 IEEE 67th
International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 811–817. IEEE, 2024a.

Mohamed Mejri, Chandramouli Amarnath, and Abhijit Chatterjee. A novel hyperdimensional com-
puting framework for online time series forecasting on the edge. arXiv preprint arXiv:2402.01999,
2024b.

Nicolas Menet, Michael Hersche, Geethan Karunaratne, Luca Benini, Abu Sebastian, and Abbas
Rahimi. Mimonets: Multiple-input-multiple-output neural networks exploiting computation in
superposition. Advances in Neural Information Processing Systems, 36, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shanka Subhra Mondal, Jonathan D Cohen, and Taylor W Webb. Slot abstractors: Toward scalable
abstract visual reasoning. arXiv preprint arXiv:2403.03458, 2024.

Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G Spampinato, and Markus Püschel.
Applying the roofline model. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 76–85. IEEE, 2014.

JC Raven. Raven’s progressive matrices: Western psychological services los angeles, 1938.

Matthew Ricci, Junkyung Kim, and Thomas Serre. Same-different problems strain convolutional
neural networks. arXiv preprint arXiv:1802.03390, 2018.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Timothy Lillicrap. A simple neural network module for relational reasoning.
Advances in neural information processing systems, 30, 2017.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. arXiv preprint arXiv:1904.01557, 2019.

Murray Shanahan, Kyriacos Nikiforou, Antonia Creswell, Christos Kaplanis, David Barrett, and
Marta Garnelo. An explicitly relational neural network architecture. In International Conference
on Machine Learning, pp. 8593–8603. PMLR, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Taylor Webb, Shanka Subhra Mondal, and Jonathan D Cohen. Systematic visual reasoning through
object-centric relational abstraction. Advances in Neural Information Processing Systems, 36,
2024a.

Taylor W Webb, Ishan Sinha, and Jonathan D Cohen. Emergent symbols through binding in external
memory. arXiv preprint arXiv:2012.14601, 2020.

Taylor W Webb, Steven M Frankland, Awni Altabaa, Simon Segert, Kamesh Krishnamurthy, Declan
Campbell, Jacob Russin, Tyler Giallanza, Randall O’Reilly, John Lafferty, et al. The relational
bottleneck as an inductive bias for efficient abstraction. Trends in Cognitive Sciences, 2024b.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A semantic loss function for
deep learning with symbolic knowledge. In International conference on machine learning, pp.
5502–5511. PMLR, 2018.

Zhanglu Yan, Shida Wang, Kaiwen Tang, and Weng-Fai Wong. Efficient hyperdimensional computing.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.
141–155. Springer, 2023.

Kecheng Zheng, Zheng-Jun Zha, and Wei Wei. Abstract reasoning with distracting features. Advances
in Neural Information Processing Systems, 32, 2019.

A APPENDIX

CODE AND REPRODUCIBILITY

The code, detailed experimental logs, and instructions for reproducing our experimental results are
available at: https://github.com/mmejri3/RESOLVE.

SINGLE OUTPUT TASKS

In this section, we provide comprehensive information on the architectures, hyperparameters, and
implementation details of our experiments. All models and experiments were developed using
TensorFlow. The code, along with detailed experimental logs and instructions for reproduction, is
available in the project’s public repository.

12

https://github.com/mmejri3/RESOLVE

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.1 COMPUTATIONAL RESOURCES

For training the RESOLVE and SOTA models on the single-output relational tasks, we used a GPU
(Nvidia RTX A6000 with 48GB of RAM). For training LARS-VSA and SOTA on purely and partially
sequence-to-sequence abstract reasoning tasks, we used a single GPU (Nvidia A100 with 80GB of
RAM). The overhead assessment of the HD-attention mechanism was conducted on a CPU (11th
Gen Intel® Core™ i7).

A.2 Single Output Purely Relational Tasks

A.2.1 PAIRWISE ORDER

Each model in this experiment follows the structure: input → module → flatten → MLP,
where module represents one of the described modules, and MLP is a multilayer perceptron with
one hidden layer of 32 neurons activated by ReLU.

RESOLVE Architecture Each model consists of a single module and a hypervector of dimen-
sionality D = 1024. We use a dropout rate of 0.1 to prevent overfitting. The two hypervectors are
flattened and passed through hidden layers containing 32 neurons with ReLU activation, followed by
a final layer with one neuron activated by a sigmoid function.

Abstractor Architecture The Abstractor module utilizes the following hyperparameters: number
of layers L = 1, relation dimension dr = 4, symbol dimension ds = 64, projection (key) dimension
dk = 16, feedforward hidden dimension dff = 64, and relation activation function σrel = softmax.
No layer normalization or residual connections are applied. Positional symbols, which are learned
parameters, are used as the symbol assignment mechanism. The output of the Abstractor module is
flattened and passed to the MLP.

CoRelNet Architecture CoRelNet has no hyperparameters. Given a sequence of objects, X =
(x1, . . . , xm), standard CoRelNet (Kerg et al., 2022) computes the inner product and applies the
Softmax function. We also add a learnable linear map, W ∈ Rd×d. Hence, R̄ = Softmax(R),
where R = [⟨Wxi,Wxj⟩] ij. The CoRelNet architecture flattens R̄ and passes it to an MLP to
produce the output. The asymmetric variant of CoRelNet is given by R̄ = Softmax(R), where
R = [⟨W1xi,W2xj⟩] ij, and W1,W2 ∈ Rd×d are learnable matrices.

PrediNet Architecture Our implementation of PrediNet (Shanahan et al., 2020) is based on the
authors’ publicly available code. We used the following hyperparameters: 4 heads, 16 relations, and
a key dimension of 4 (see the original paper for the definitions of these hyperparameters). The output
of the PrediNet module is flattened and passed to the MLP.

MLP The embeddings of the objects are concatenated and passed directly to an MLP, which has
two hidden layers, each containing 32 neurons with ReLU activation.

Training/Evaluation We use cross-entropy loss and the AdamW optimizer with a learning rate of
10−4. The batch size is 128, and training is conducted for 100 epochs. Evaluation is performed on
the test set. The experiments are repeated 5 times, and we report the mean accuracy and standard
deviation.

A.2.2 SET

The card images are RGB images with dimensions of 70 × 50 × 3. A CNN embedder processes
these images individually, producing embeddings of dimension d = 64 for each card. The CNN
is trained to predict four attributes of each card. After training, embeddings are extracted from
an intermediate layer, and the CNN parameters are frozen. The common architecture follows the
structure: CNN Embedder → Abstractor, CoRelNet, PrediNet, MLP → Flatten
→ Dense(2). Initial tests with the standard CoRelNet showed no learning. However, removing the
Softmax activation improved performance slightly. Hyperparameter details are provided below.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Common Embedder Architecture: The architecture follows this structure: Conv2D →
MaxPool2D→ Conv2D→ MaxPool2D→ Flatten→ Dense(64, ReLU)→ Dense(64,
ReLU)→ Dense(2). The embedding is taken from the penultimate layer. The CNN is trained to
perfectly predict the four attributes of each card, achieving near-zero loss.

RESOLVE Architecture: The RESOLVE module has the following hyperparameters: hypervector
dimension D = 1024. The outputs are flattened and passed through a feedforward hidden layer with
dimension dff = 64, followed by a final layer with a single neuron and sigmoid activation. A dropout
rate of 0.4 is used to prevent overfitting.

Abstractor Architecture: The Abstractor module uses the following hyperparameters: number
of layers L = 1, relation dimension dr = 4, symmetric relations (W i

q = W i
k for i ∈ [dr]), ReLU

activation for relations, symbol dimension ds = 64, projection (key) dimension dk = 16, feedforward
hidden dimension dff = 64, and no layer normalization or residual connections. Positional symbols,
which are learned parameters, are used as the symbol assignment mechanism.

CoRelNet Architecture: In this variant of CoRelNet, we found that removing the Softmax ac-
tivation improved performance. The standard CoRelNet computes R = Softmax(A), where
A = [⟨Wxi,Wxj⟩]ij .

PrediNet Architecture: The hyperparameters used are 4 heads, 16 relations, and a key dimension of
4, as described in the original paper. The output of the PrediNet module is flattened and passed to the
MLP.

MLP: The embeddings of the objects are concatenated and passed directly to an MLP with two
hidden layers, each containing 32 neurons with ReLU activation.

Data Generation: The dataset is generated by randomly sampling a "set" with probability 1/2 and a
non-"set" with probability 1/2. The triplet of cards is then randomly shuffled.

Training/Evaluation: We use cross-entropy loss and the AdamW optimizer with a learning rate
of 10−4. The batch size is 512, and training is conducted for 200 epochs. Evaluation is per-
formed on the test set. We train our model on a randomly sampled set of N samples, where
N ∈ 500, 700, 900, 1100, 1300, 1500, 1700.

A.3 Single Output Partially Relational Tasks

A.3.1 SET

We used the same settings as in the previous SET experiment. However, in this task, the input
features used as a sequence of objects are derived from the first convolutional layer of the pre-trained
CNN. This approach avoids using highly processed object-level features, allowing us to assess the
ability of RESOLVE and the baseline models to capture both object-level features and relational
representations.

We did not change the hyperparameters of the baseline models or the RESOLVE model. However,
we added an attentional encoder at the front end, with a single layer and two heads.

A.3.2 MNIST-MATH

This experiment is inspired by the MNIST digits addition task introduced by Manhaeve et al. (2018).
We randomly selected 10,000 pairs of MNIST digits from the MNIST training set and generated
labels using a non-linear mathematical formula: F (a, b) = |3a− 2b|.
The digits are normalized and flattened before being passed to the relational models. We used the
same hyperparameters as in the SET experiment.

A.4 RELATIONAL SEQUENCE-TO-SEQUENCE TASKS

A.4.1 Object-Sorting Task

RESOLVE Architecture We used architecture (c) from Figure 7. The encoder includes a Batch-
Normalization layer. The RESOLVE architecture consists of a single module with a hyperdimensional

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

dimension of D = 1024. The decoder has 4 layers, 2 attention heads, a feedforward network with 64
hidden units, and a model dimension of 64.

Abstractor Architecture Each of the Encoder, Abstractor, and Decoder modules consists of L = 2
layers, with 2 attention heads/relation dimensions, a feedforward network with dff = 64 hidden units,
and a model/symbol dimension of dmodel = 64. The relation activation function is σrel = Softmax.
Positional symbols are used as the symbol assignment mechanism, which are learned parameters of
the model.

Transformer Architecture We implemented the standard Transformer architecture as described
by (Vaswani et al., 2017). Both the Encoder and Decoder modules share the same hyperparameters,
with an increased number of layers. Specifically, we use 4 layers, 2 attention heads, a feedforward
network with 64 hidden units, and a model dimension of 64.

Training and Evaluation The models are trained using cross-entropy loss and the Adam optimizer
with a learning rate of 5 · 10−4. We use a batch size of 128 and train for 500 epochs. To evaluate
the learning curves, we vary the training set size, sampling random subsets ranging from 260 to 460
samples in increments of 50. Each sample consists of an input-output sequence pair. For each model
and training set size, we perform 10 runs with different random seeds and report the mean accuracy.

A.4.2 Math Problem-Solving

The dataset consists of various math problem-solving tasks, each featuring a collection of question-
answer pairs. These tasks cover areas such as solving equations, expanding polynomial products,
differentiating functions, predicting sequence terms, and more. The dataset includes 2 million training
examples and 10,000 validation examples per task. Questions are limited to a maximum length of
160 characters, while answers are restricted to 30 characters. Character-level encoding is used, with a
shared alphabet of 95 characters, which includes upper and lower case letters, digits, punctuation,
and special tokens for start, end, and padding.

Abstractor Architectures The Encoder, Abstractor, and Decoder modules share identical hy-
perparameters: number of layers L = 1, relation dimension/number of heads dr = nh = 2,
symbol dimension/model dimension ds = dmodel = 64, projection (key) dimension dk = 32, and
feedforward hidden dimension dff = 128. The relation activation function in the Abstractor is
σrel = Softmax. One model uses positional symbols with sinusoidal embeddings, while the other
uses symbolic attention with a symbol library of ns = 128 learned symbols and 2-head symbolic
attention.

Transformer Architecture The Transformer Encoder and Decoder have the same hyperparameters
as the Encoder and Decoder in the Abstractor architecture.

RESOLVE Architectures The RESOLVE model follows architecture (D) from Figure 7. We use
the same Decoder as the Abstractor architecture. The RESOLVE model has a single module and a
hyperdimensional dimension of D = 1024.

Training and Evaluation Each model is trained for 1000 epochs using categorical cross-entropy
loss and the Adam optimizer with a learning rate of 6× 10−4, β1 = 0.9, β2 = 0.995, and ε = 10−9.
The batch size is 64. The training set consists of N samples, where N ∈ 100, 1000, 10, 000.

15

