
Geometric attacks on batch normalization

Amur Ghose†
Huawei

Apurv Gupta‡
IBM

Yaoliang Yu†

UWaterloo
Pascal Poupart†

UWaterloo

Abstract

Constructing adversarial examples usually requires labels, which provide a loss
gradient to construct the example. We show that for batch normalized architectures,
intermediate latents that are produced after a batch normalization step suffice to
produce adversarial examples using an intermediate loss solely utilizing angular
deviations, without any label. We motivate our loss through the geometry of batch
normed representations and concentration on a known hypersphere. Our losses
build on and expand intermediate latent based attacks that usually require labels.
The success of our method implies that leakage of intermediate representations may
suffice to create a security breach for deployed models, which persist even when the
model is transferred to downstream usage. We further show that removal of batch
norm weakens our attack significantly, suggesting that batch norm’s contribution to
adversarial vulnerability may be understood by analyzing such attacks.

1 Introduction

Adversarial examples xadv are commonly defined as data instances which lie only ϵ away in some
norm (usually L∞) from an actual data instance xreal . To humans, ϵ is small and xreal , xadv share the
same label, yet to a classifier neural network, this is not the case. Since their initial discovery [1, 2],
adversarial examples have spurred research in both attacking [3, 4] (i.e., generation of adversarial
data instances) and defending [5] neural networks against them. Common variants for generating
adversarial images rely on gradient steps. One of the earliest effective attacks is Fast Gradient Sign
Method (FGSM) [2], which is improved by Projected Gradient Descent (PGD) [6]. We highlight
and build on intermediate-level attacks, exemplified by members such as Intermediate Level Attack
Projection (ILAP) [7] and its variants [8]. In this attack, an initial direction is determined via e.g.
FGSM. Then, gradient steps are used to maximally perturb the intermediate hidden representation
along the initial direction to find a suitable xadv, unlike directly working with the label. Such a
method can often outperform the FGSM itself. ILAP relies on FGSM to set the initial direction, but
once the direction is obtained, the layers after the intermediate layer play no role.

With this in mind, we pose a question. Given an unlabeled x, can an adversary - with knowledge only
of the intermediate layers upto L of a neural network of total depth D,D > L, create adversarial
examples that fool the entire neural network ? In our scenario, any labels are absent. For full fairness,
we also cannot use the penultimate layer of logits, as a highly accurate model would simply be able
to find the true label through an argmax. We show that this is indeed the case. In particular, we adapt
the method advanced in ILAP to remove the need for label-based FGSM, and proceed instead with
an angular loss based on the geometry of batch normalization. Our concrete contributions are :

• To provide a label-free attack that relies on only gradient access upto intermediate layers

• Show that two highly popular architectures - ResNets and EfficientNets - are vulnerable

• Attacks persist even in transfer learning setting when fine-tuning is done downstream

† {a3ghose,yaoliang.yu,ppoupart}@uwaterloo.ca, ‡ : apurvgupta1996@gmail.com

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Taken together, our results imply that simply releasing the first few layers of a model publicly, without
any label access, may constitute successful ammunition for adversarial attacks, which has obvious
security implications. Our attack exploits the radial geometry of batch normalization assuming that
the norm of the latent representations concentrates around a constant, allowing us to exploit the
geometry so formed. We show that the success of the attack has such a dependence - removing batch
normalization and replacing it with alternatives such as Fixup nullifies the attack’s success.

2 Previous attacks - FGSM, PGD and intermediate attacks

We describe the Projected Gradient Descent (PGD) attack [6]. We seek x′ such that ∥x′ − x∥≤ ϵ,
usually in L∞ norm. There is a step size α, typically far less than ϵ, used to iteratively update xt

i as :

xt
i = xt−1

i + α× sign(∇L)t−1
i

With a clamping step on xt
i that enforces the constraint of ∥x′ − x∥≤ ϵ, this step after initializing x0

i
at xi yields much stronger adversarial examples than FGSM (which is PGD with one step and α = ϵ)
at higher t. L is the classification loss e.g. cross-entropy w.r.t. the model outputs and known label.

2.1 Intermediate Level Attack Projection (ILAP)

The above methods - FGSM and PGD - rely only on the input and the final layer’s output loss with
respect to the true label. However, we can consider a neural network N of depth D as follows :

N(x) = Ni+1,D(N1,i(x))

With 1 based indexing, Nj,k denotes the neural sub-network with layers from depth j to k. Let
zi = N1,i(x) be the latent representation at depth i. Consider xadv obtained by any method, and let

zadvi = N1,i(xadv) ; z
orig
i = N1,i(x) ; ∆

adv
i = zadvi − zorigi

We then seek to find an alternate adversarial example, xILAP
i which works with the loss function :

L = ⟨∆adv
i ,∆ILAP

i ⟩ where ∆ILAP
i = zILAP

i − zorigi and zILAP
i = N1,i(x

ILAP
i)

The above L can then be plugged into PGD. This loss encourages movement in the latent space
in a direction similar to the movement under the label loss. L is in inner product agreement with
∆adv

i and the later iterations use it instead of the true loss. This method is highly transferable - e.g.,
adversarial examples created using ResNet18 and ILAP succeed more against different models such
as DenseNet than corresponding FGSM examples. Often, it improves [7] on FGSM on the source
model itself. ILAP demonstrates that latent representations can fuel adversarial attacks, but suffers
from needing an initial adversarial example xadv created through the real loss gradient.

3 Angular attacks on hyperspherical representation spaces

Suppose that we had a representation space Z, given by a blackbox function F, F (Xi) = Zi where
for each input pair Xi, Xj , the corresponding Zi, Zj satisfied ∥Zi∥= ∥Zj∥. Further, the “true"
similarity between Xi, Xj could be evaluated based on ⟨Zi, Zj⟩. In this case, given xi, we generate a
x0
i satisfying ∥x0

i − xi∥= α, using the initial loss Linit = −||zi||,i.e.
x0
i = xi + α× sign(∇Linit)

We then iteratively update using an angular loss L to grow the initial perturbation :

xt
i = xt−1

i + α× sign(∇L)t−1 ;L = − ⟨zi, zti⟩
∥zi∥∥zti∥

where zi = F (xi) and zti = F (xt
i)

Our attack can be seen as equivalent to the ILAP attack, where the initial direction ∆adv
i is arrived at

solely by means of an unsupervised radial loss without any label. Our loss then on is solely angular
and maximizes the angular deviation from the original latent. The intuition behind our attack can
be understood as follows. The most dissimilar point to Zi under ⟨·, ·⟩ is −Zi. The surrogate loss
−||zi|| incentivizes movement along the chord joining these two antipodal points in the interior of
the hypersphere, on whose surface the latent representations reside. Moving along this chord flips
the label by moving to a different region of the latent space. Note that we can only manipulate xt

i
and cannot guarantee exact radial inward movement, only some decrease of −||zi||, which upon
projection, creates implied targeted deviations C. We show this in Figure 1.

2

x

y

z

A
C Ai

Figure 1: Left: A,C are latent representations of images, while Ai lies on the chord joining them.
Right: A0 results from the initial step towards O, with an implied movement towards C. A1, . . . , Aadv

show the evolution. The implied movement is towards C ′ - further, angularly, than C from A.

The intuition goes as follows: if we knew A,C (the latents) and the corresponding xA, xC we could
move xA towards xC in latent space even if we did not know the labels to create an adversarial
example. In a hyperspherical space, the most dissimilar latent to A, i.e., −A is known “for free".

3.1 Where do hyperspherical latent spaces occur?

Given a minibatch of inputs xi of dimensions n with mean µij and standard deviation σij at index j,
consider batch normalization [9] or just BN as (ignoring any affine shift layers):

[BN(xi)]j =
xij − µij

σij
(1)

Suppose that the sample means and standard deviations in a pre-BN layer converge to actual sample
statistics. After the BN layer, the representation vector Z satisfies indexwise: E(Zi) = 0 and
E
(
Z2
i

)
= 1. Suppose the Zi were independent, and the fourth moment bounded. In this case, it is a

known result [10] that for a vector Z of high dimensionality d, the random variable ∥Z∥ strongly
concentrates around

√
d - i.e., nearly all vectors after a BN step would lie near a spherical shell of

radius
√
d. For deep linear models and batchnormed Z, we have the result that [11, 12]:

E[DKL(Z||N (0, Id))] = O((1− α)i +
b

α
√
d
)

Where Z is the distribution after N1,i i.e., i layers, and α is a constant, and b is the batch size used for
training. The LHS indicates the KL divergence between the distribution of the latents to the isotropic
Gaussian falls and implies the latent norms being clustered around

√
d. The “gaussianization" of

latents goes beyond just deep linear networks [13, 14, 15, 16]. Another work implying that latents lie
on hyperspheres is neural collapse [17]. Often, e.g. in neural collapse, the claim is that latents lie
on a hypersphere of unknown center and radius. Through BN, we know the center to “reflect" the
latent over for free. The above equation indicates deeper layers i.e., increasing i will align with our
assumptions - this exponentially drops the KL divergence to a Gaussian, with secondary benefits from
the width increase. These theoretical predictions line up with results from ILAP’s empirical ablations,
which demonstrated that the optimal i to create the latents for the attack occurred in the range 0.6 to
0.8 (with the entire network depth normalized to 0 to 1). We can expect our optimal layers for the
latent to lie closer to the end of the network. If we assume our latents lie on a hypersphere, adapting
the inner product metric (which ILAP shows to work) to the sphere results in an angular cosine metric.
Finally, we can take N1,i (the neural network upto i, ending in a BN layer) as F for our angular
attack. We can also combine loss signs from N1,i, N1,i′ i.e., work with

∑
j sign(∇Lj)

t−1 where Lj

is from layer j, and use Linit for more than 1 initial iterations. These details are in appendix B.

3

4 Results

Our results show the efficacy of the angular attack in figure 2. Ablations, visualizations, statistical
details and further results are in the appendix. We show transfer results on CIFAR-100 [18] in table 1
(results on CIFAR-10 are in the appendix). We run experiments on ResNet [19]-{18, 34, 50, 101, 152}
and EfficientNet models [20] B-1 to B-5. As a batch norm free architecture, we choose Fixup [21].
We train Fixup resnets on imagenet as alternatives to the batchnormed models for Resnet only because
fixup does not generalize to efficientnets. As expected, the attack does not work on Fixup Resnets.
These models repeatedly stack similar blocks which each possess at least one batch norm layer,
allowing extraction of the appropriate latent (in our case, from roughly 3

4 -th the depth of the net - see
appendix). All models were ran on Imagenet [22], with standard normalization pre-processing steps.
We obtained models from publicly available repositories for PyTorch [23], namely torchvision and
EfficientNets-PyTorch. As ϵ for the adversarial attack, we chose ϵ = 0.03, 0.06, 0.1 and α = 0.01
over 40 iterations. For the CIFAR-100 case, the model is fine-tuned in last few blocks, and the
adversarial example on CIFAR-100 is produced accessing the latent at the end of the frozen layers
only, without seeing the changes in last layers. (Details in appendix)

Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 0.0 0.0 0.0 0.0 0.0 0.0
Random 60.88 86.19 49.94 78.68 42.41 71.08
FGSM 13.28 36.48 15.88 37.77 13.84 32.8

Angular 2.17 8.57 1.57 7.04 1.34 6.48

Table 1: Accuracies (percentage) on CIFAR-100 transfer, Resnet-18

0.00 0.03 0.06 0.10
Epsilon values

0

10

20

30

40

50

60

70

80

90

Ac
cu
ra
cy

Resnet18 FGSM
Resnet34 FGSM
Resnet50 FGSM
Resnet101 FGSM
Resnet152 FGSM
Resnet18 Angular
Resnet34 Angular
Resnet50 Angular
Resnet101 Angular
Resnet152 Angular

Original Resnet

0.00 0.03 0.06 0.10
Epsilon values

10

20

30

40

50

60

70

80

90

Ac
cu
ra
cy

Fixup Resnet18 FGSM
Fixup Resnet34 FGSM
Fixup Resnet50 FGSM
Fixup Resnet101 FGSM
Fixup Resnet152 FGSM
Fixup Resnet18 Angular
Fixup Resnet34 Angular
Fixup Resnet50 Angular
Fixup Resnet101 Angular
Fixup Resnet152 Angular

Fixup Resnet

0.00 0.03 0.06 0.10
Epsilon values

0

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

B1 EffNet FGSM
B2 EffNet FGSM
B3 EffNet FGSM
B4 EffNet FGSM
B5 EffNet FGSM
B1 EffNet Angular
B2 EffNet Angular
B3 EffNet Angular
B4 EffNet Angular
B5 EffNet Angular

EfficientNet

Figure 2: Accuracies (%) of networks under FGSM (blue) and our Angular attack (red). (Color
intensity proportional to network size). Accuracies under angular attack are lower without Fixup.

5 Conclusion

We have shown a powerful label-free attack which only needs one data instance and a portion of all
the layers available for a network to construct adversarial examples fooling the entire network. It
succeeds without knowing the label, other instances, training surrogate models, or having gradient
access to the full model, and these adversarial examples - without ever seeing succeeding layers -
generalize to the novel dataset transfer case where the model was fine-tuned afterwards in its later
layers, allowing attacks on publicly released, privately fine-tuned models. These results are relevant
to adversarial robustness and also the study of batch normalization [24, 25, 26] and its drawbacks.

4

https://github.com/lukemelas/EfficientNet-PyTorch

References
[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-

low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[2] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[3] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer
vision: A survey. Ieee Access, 6:14410–14430, 2018.

[4] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive
attacks to adversarial example defenses. Advances in Neural Information Processing Systems,
33:1633–1645, 2020.

[5] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks and defenses
for deep learning. IEEE transactions on neural networks and learning systems, 30(9):2805–
2824, 2019.

[6] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[7] Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam Lim. Enhancing
adversarial example transferability with an intermediate level attack. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4733–4742, 2019.

[8] Qizhang Li, Yiwen Guo, and Hao Chen. Yet another intermediate-level attack. In European
Conference on Computer Vision, pages 241–257. Springer, 2020.

[9] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[10] Roman Vershynin. High-dimensional probability, 2019.

[11] Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi. Batch
normalization provably avoids ranks collapse for randomly initialised deep networks. Advances
in Neural Information Processing Systems, 33:18387–18398, 2020.

[12] Hadi Daneshmand, Amir Joudaki, and Francis Bach. Batch normalization orthogonalizes
representations in deep random networks. Advances in Neural Information Processing Systems,
34:4896–4906, 2021.

[13] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S Schoenholz.
A mean field theory of batch normalization. arXiv preprint arXiv:1902.08129, 2019.

[14] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian pro-
cess behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2019.

[15] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

[16] Amur Ghose, Abdullah Rashwan, and Pascal Poupart. Batch norm with entropic regularization
turns deterministic autoencoders into generative models. In Conference on Uncertainty in
Artificial Intelligence, pages 1079–1088. PMLR, 2020.

[17] Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the
terminal phase of deep learning training. Proceedings of the National Academy of Sciences,
117(40):24652–24663, 2020.

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

5

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[20] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International conference on machine learning, pages 6105–6114. PMLR, 2019.

[21] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning
without normalization. arXiv preprint arXiv:1901.09321, 2019.

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[24] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization? Advances in neural information processing systems, 31, 2018.

[25] Philipp Benz, Chaoning Zhang, and In So Kweon. Batch normalization increases adversarial
vulnerability: Disentangling usefulness and robustness of model features. 2020.

[26] Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and Graham W Taylor.
Batch normalization is a cause of adversarial vulnerability. arXiv preprint arXiv:1905.02161,
2019.

6

A Appendix

The appendix consists of the following :

• Full descriptions and specifications of models examined and their baseline performance
under FGSM, PGD, and random perturbation, as well as no noise.

• Results obtained on these models, under angular attacks, with confidence intervals added.
• Ablations on resnet-18, resnet-34 and resnet-50, showing that depth controls the accuracy

drop, and some stronger baselines.
• Transfer accuracy results on CIFAR-10 and CIFAR-100.
• Visualizations of some sample adversarial images produced by our method to contrast

against the baseline.

B Loss details

We take the last two layers upto which we have access as i, i′ to sum the signs of the angular loss.
We cut the α by 2 to adjust for the sum of the signs. Also, before switching over to the angular loss,
we can keep using Linit for more than the initial iterations. We utilize 20 such iterations before
switching, at α′ = α/40. Hence, in total, our angular PGD attack consists of 20 iterations of finding
an unsupervised radial direction of moving to the antipodal point in latent space, and 20 iterations of
maximizing the angular deviation given the initial movement.

Projection back to the valid PyTorch Tensor space for the adversarial instance (adjusting for nor-
malization layers) proceeds as per normal PGD methods. The ϵ values here are calculated in the
normalized Tensor space i.e. after normalizing the [0, 1] tensor Imagenet image with parameters
of mean as [0.485, 0.456, 0.406] and standard deviation as [0.229, 0.224, 0.225] channelwise. The
projection is such that it respects both the original tensor’s range and the ϵ in the normalized space.

Normalization settings for Imagenet for Resnet were kept as-is from the pytorch examples 3 and also
as per the Fixup repository4 as well as for Efficientnet5.

3https://github.com/pytorch/examples/blob/main/imagenet/main.py
4https://github.com/hongyi-zhang/Fixup
5https://github.com/lukemelas/EfficientNet-PyTorch/tree/master/examples/imagenet

7

C Original ResNets

We recall that in this class fall 5 models, namely Resnet-18,34,50,101, and 152. In terms of block
count, they respectively possess 8, 16, 16, 33, 50 layers. All radial attacks are performed with the last
2 layers upto which we have access. Access is granted upto blocks 6, 12, 12, 25, 38 respectively. So
for example, on Resnet-18 the radial attack uses the loss signal from blocks 5, 6 alone to craft the
example. Every value provided in every table is a percentage accuracy metric.

C.1 Baseline Performance

ResNet type 18 34 50 101 152
Acc@1 69.75 73.31 76.13 77.37 78.31
Acc@5 89.07 91.42 92.86 93.54 94.04

Table 2: Clean accuracies for ResNets

Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

Resnet-18 1.95 69.40 1.16 68.58 1.22 67.11
Resnet-34 4.36 73.06 2.95 72.43 3.13 71.23
Resnet-50 8.18 75.79 6.62 74.89 7.10 73.57

Resnet-101 9.93 77.24 8.32 76.79 9.10 75.57
Resnet-152 10.23 77.21 8.76 76.76 9.82 76.28

Table 3: Comparison of FGSM and Random noise, Top-1 accuracy.

Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

Resnet-18 21.93 88.94 15.39 88.51 13.74 87.46
Resnet-34 30.54 91.31 23.65 90.96 22.08 90.26
Resnet-50 39.04 92.07 33.33 92.32 32.58 91.58

Resnet-101 43.27 93.52 37.88 93.25 37.61 92.75
Resnet-152 44.65 93.78 39.23 93.48 38.25 92.98

Table 4: Comparison of FGSM and Random noise, Top-5 accuracy.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 0.006 ±0.001 3.374 ±0.04 0.0 ±0.0 0.484 ±0.04 0.0 ±0.0 0.17 ±0.02
34 0.006 ±0.001 4.386 ±0.03 0.006 ±0.001 0.666 ±0.04 0.004 ±0.001 0.288 ±0.03
50 0.028 ±0.007 8.076 ±1.23 0.006 ±0.002 2.914 ±0.4 0.0 ±0.0 1.956 ±0.3

101 0.032 ±0.07 9.648 ±1.76 0.008 ±0.002 3.902 ±0.62 0.006 ±0.002 2.702 ±0.54
152 0.042 ±0.08 9.864 ±1.83 0.014 ±0.003 4.16 ±0.73 0.015 ±0.004 3.253 ±0.64

Table 5: Comparison of PGD attacks, top-1 and top-5 accuracy, with confidence intervals on different
Resnet types.

8

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 23.416 ±1.22 40.034 ±2.12 2.422 ±0.52 5.980 ±1.12 0.454 ±0.11 1.602 ±0.39
34 7.164 ±1.28 14.320 ±2.48 0.592 ±0.64 1.916 ±0.32 0.216 ±0.04 0.814 ±0.27
50 13.968 ±2.82 24.796 ±5.22 1.418 ±0.22 3.680 ±0.83 0.432 ±0.12 1.478 ±0.26

101 7.012 ±0.62 13.886 ±1.23 0.874 ±0.126 2.606 ±0.78 0.390 ±0.122 1.346 ±0.28
152 5.030 ±0.4 10.438 ±1.02 0.534 ±0.12 1.572 ±0.265 0.248 ±0.05 0.808 ±0.21

Table 6: Comparison of Angular attacks, top-1 and top-5 accuracy, with confidence intervals on
different Resnet types.

At higher values of ϵ, angular attack outperforms the FGSM one. The confidence intervals (constructed
by bootstrapping, denoted by ±) mark the 5 and 95 percentile confidence intervals and can be used to
gauge statistical significance.

9

D Fixup ResNets

Just as with original Resnets, here we have 5 models, namely Resnet-18,34,50,101, and 152. In terms
of block count, they respectively possess 8, 16, 16, 33, 50 layers. All radial attacks are performed
with the last 2 layers upto which we have access. Access is granted upto blocks 6, 12, 12, 25, 38
respectively. So for example, on FixUpResnet-18 the radial attack uses the loss signal from blocks
5, 6 alone to craft the example. Every value provided in every table is a percentage accuracy
metric. In short, everything is performed just as with the original Resnets.

D.1 Baseline Performance

ResNet type 18 34 50 101 152
Acc@1 68.212 70.466 72.938 73.596 73.866
Acc@5 87.910 89.470 90.932 91.273 91.528

Table 7: Clean accuracies for ResNets

Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

Resnet-18 2.09 68.18 1.25 67.61 1.19 66.28
Resnet-34 3.73 70.79 2.18 70.39 2.08 69.36
Resnet-50 5.34 73.29 3.63 72.80 3.51 71.61

Resnet-101 6.37 74.41 4.17 73.93 4.17 72.76
Resnet-152 6.59 74.68 4.71 74.21 4.60 73.06

Table 8: Comparison of FGSM and Random noise, Top-1 accuracy.

Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

Resnet-18 23.17 87.91 14.23 87.56 11.33 86.75
Resnet-34 29.86 89.52 19.71 89.28 16.05 88.58
Resnet-50 33.67 91.12 23.32 90.83 19.95 90.10

Resnet-101 37.22 91.83 26.18 91.63 22.50 91.00
Resnet-152 37.64 92.09 26.29 91.80 22.70 91.24

Table 9: Comparison of FGSM and Random noise, Top-5 accuracy.

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 0.034 ±0.003 4.490 ±0.32 0.014 ±0.003 0.322 ±0.05 0.008 ±0.002 0.058 ±0.013
34 0.106 ±0.02 6.524 ±0.8 0.046 ±0.008 0.608 ±0.108 0.030 ±0.007 0.142 ±0.03
50 0.090 ±0.015 5.592 ±1.26 0.016 ±0.003 0.266 ±0.05 0.006 ±0.002 0.022 ±0.005
101 0.140 ±0.03 6.988 ±1.13 0.018 ±0.005 0.317 ±0.04 0.006 ±0.001 0.048 ±0.004
152 0.124 ±0.08 7.474 ±1.18 0.020 ±0.003 0.340 ±0.06 0.004 ±0.001 0.030 ±0.005

Table 10: Comparison of PGD attacks, top-1 and top-5 accuracy, with confidence intervals on different
Resnet types.

10

Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

18 66.972 ±1.78 87.128 ±0.68 62.856 ±0.78 83.970 ±0.68 54.666 ±1.24 77.336 ±1.27
34 69.968 ±0.84 88.972 ±0.67 67.012 ±1.27 86.780 ±0.84 61.868 ±0.94 83.034 ±0.53
50 72.914 ±0.42 90.434 ±0.62 68.368 ±1.2 87.818 ±0.67 61.664 ±1.2 82.570 ±0.87

101 73.306 ±1.07 91.128 ±0.48 69.424 ±0.47 88.686 ±0.34 62.550 ±0.81 83.318 ±0.56
152 73.626 ±0.72 91.412 ±0.37 70.224 ±0.84 89.078 ±0.64 63.700 ±0.84 84.116 ±0.74

Table 11: Comparison of Angular attacks, top-1 and top-5 accuracy, with confidence intervals on
different Resnet types.

Unlike the original resnets, the angular values do not even come close to the FGSM counterparts.
This strongly suggests that removal of batch norm completely fixes this mode of vulnerability.

11

E EfficientNets

Here we have 5 models, namely EfficientNets B1 to B5. In terms of block count, they respectively
possess 23, 23, 26, 32, 39 layers. All radial attacks are performed with the last 2 layers upto which
we have access. Access is granted upto blocks 17, 17, 19, 24, 31 respectively. So for example, on
B1 the radial attack uses the loss signal from blocks 16, 17 alone to craft the example. Every value
provided in every table is a percentage accuracy metric. In short, everything is performed just as
with the original Resnets.

E.1 Baseline Performance

Efficientnet type B1 B2 B3 B4 B5
Clean accuracy (top-1) 78.382 79.808 81.532 83.026 83.778
Clean accuracy (top-5) 94.036 94.732 95.646 96.342 96.710

Table 12: Clean accuracies for EfficientNets

Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

B1 21.314 77.863 16.860 77.950 14.220 77.296
B2 26.522 79.604 21.926 79.302 20.218 78.564
B3 30.700 81.430 26.526 81.064 25.164 80.678
B4 39.380 82.842 34.820 82.712 33.274 82.344
B5 42.012 83.744 38.002 83.628 36.764 83.424

Table 13: Comparison of FGSM and Random noise, Top-1 accuracy.

Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

FGSM Random FGSM Random FGSM Random

B1 47.767 93.663 39.758 93.681 38.54 93.582
B2 52.634 94.696 45.114 94.532 42.356 94.222
B3 56.612 95.650 50.478 95.484 48.448 95.282
B4 63.678 96.314 58.024 96.226 56.314 96.116
B5 67.620 96.740 62.750 96.708 61.226 96.626

Table 14: Comparison of FGSM and Random noise, Top-5 accuracy.

Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

B1 0.430 ±0.082 3.318 ±0.43 0.078 ±0.012 0.386 ±0.05 0.017 ±0.004 0.197 ±0.022
B2 0.618 ±0.102 3.092 ±0.52 0.064 ±0.006 0.340 ±0.07 0.012 ±0.002 0.218 ±0.04
B3 0.698 ±0.108 2.482 ±0.56 0.136 ±0.02 0.484 ±0.07 0.044 ±0.006 0.318 ±0.07
B4 0.590 ±0.08 2.112 ±0.4 0.054 ±0.009 0.470 ±0.08 0.018 ±0.004 0.380 ±0.05
B5 0.812 ±0.12 1.728 ±0.35 0.135 ±0.02 0.260 ±0.04 0.073 ±0.008 0.125 ±0.03

Table 15: Comparison of PGD attacks, top-1 and top-5 accuracy, with confidence intervals.

12

Net Type ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

B1 11.479 ±1.25 19.501 ±1.86 0.592 ±0.063 1.616 ±0.22 0.156 ±0.024 0.533 ±0.083
B2 13.902 ±1.74 22.421 ±1.54 0.878 ±0.122 2.208 ±0.37 0.153 ±0.024 0.589 ±0.028
B3 9.596 ±0.64 16.476 ±1.12 0.442 ±0.07 1.267 ±0.112 0.130 ±0.002 0.474 ±0.028
B4 12.045 ±1.54 19.192 ±2.05 0.377 ±0.042 1.104 ±0.17 0.091 ±0.008 0.377 ±0.042
B5 16.164 ±2.41 24.350 ±1.54 0.728 ±0.062 1.793 ±0.289 0.104 ±0.014 0.468 ±0.047

Table 16: Comparison of Angular attacks, top-1 and top-5 accuracy, with confidence intervals.

With the re-introduction of Batchnorm, the radial attack is again competitive and beats FGSM. We
re-perform the same procedure as for Resnets to determine statistical significance against FGSM.

13

F Ablations on resnets-18,34,50

We first check if the independence structure of latents grows more independent with depth by
examining the cross-diagonal average absolute correlation across block groups in Resnet-18. This is
seen to decay with depth.

Block count 1 2 3
Average off-diagonal coefficient (absolute) 0.41 0.32 0.19

Table 17: Comparing independence structures on Resnet-18 by comparing absolute value of cross-
diagonal correlations, across block groups.

Now, we present results that exhibit the variation in accuracies as the layers being attacked grow
further in the network. As a reminder, resnet-18 possesses 8 blocks divided into 4 groups as [2, 2, 2, 2]
while resnets 34 and 50 both possess 16 blocks divided as [3, 4, 6, 3]. We will use 1-based indexing
to denote the layer upto which we have access, and the last 2 layers upto which we have access will
provide the entire signal.

Table 18: Ablation on Resnet-18. Last 2 layers of the net granted access to are used to craft the attack.
Access till ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

5 47.55 ±2.2 71.09 ±3.2 12.6 ±1.2 27.8 ±2.1 3.38 ±0.4 8.28 ±0.6
6 22.57 ±1.4 39.82 ±1.2 2.12 ±0.3 6.55 ±0.4 0.60 ±0.1 1.81 ±0.3
7 7.84 ±0.83 16.58 ±0.76 0.18 ±0.03 1.44 ±0.16 0.13 ±0.02 0.54 ±0.12

Table 19: Ablation on Resnet-34. Last 2 layers of the net granted access to are used to craft the attack.
Access till ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

8 54.46 ±1.78 77.35 ±0.68 18.44 ±0.45 32.68 ±0.68 4.95 ±0.86 11.68 ±1.26
9 35.84 ±0.78 59.32 ±0.82 6.32 ±0.56 13.84 ±0.56 1.39 ±0.37 13.84 ±1.78

10 26.22 ±1.56 41.5 ±1.45 1.58 ±0.38 3.88 ±1.02 0.60 ±0.12 1.52 ±0.37
11 13.20 ±0.26 22.68 ±0.86 0.94 ±0.31 2.34 ±0.22 0.34 ±0.06 0.92 ±0.17
12 6.40 ±0.72 12.05 ±1.89 0.45 ±0.12 2.27 ±0.56 0.20 ±0.08 0.65 ±0.22

Table 20: Ablation on Resnet-50. Last 2 layers of the net granted access to are used to craft the attack.
Access till ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

9 53.06 ±1.89 72.74 ±2.76 14.48 ±1.74 25.52 ±1.29 2.16 ±0.48 5.84 ±0.62
10 38.10 ±1.44 54.3 ±0.57 6.44 ±0.42 12.24 ±0.82 1.08 ±0.24 2.24 ±0.45
11 24.55 ±1.22 42.78 ±1.04 2.84 ±0.32 8.44 ±0.18 0.14 ±0.06 2.04 ±0.28
12 8.56 ±1.08 14.08 ±1.78 1.76 ±0.035 3.22 ±0.83 0.55 ±0.12 1.55 ±0.37

14

G Baselines of targeted attacks and stronger random attacks

Here, we check if providing a latent, generated from an instance of a different label, as the initial
direction of ILAP is useful as opposed to using −||zi||. To be clear, in this case, ||zi − zj || is
minimized, where zj arises from an instance of a different label. Then, the initial deviation is
increased via ILAP.

We also construct an alternative random baseline, termed “naive ILAP". In this, an initial random
deviation of a random, not necessarily batchnormed layer (we select a random ReLU layer per
instance), is increased via ILAP, in the L2 norm.

We run these baselines for ϵ = 0.03, 0.06 as at 0.1 the values rapidly approach zero for any method.
It is apparent that the targeted method is roughly on par with ours and the naive method performs
worse. Hence, our method is basically as good as having these points to perturb towards, “for free"
just from the manifold structure.

Table 21: Targeted benchmark on all original Resnets
Net Type ϵ = 0.03 ϵ = 0.06

Top 1 Top 5 Top 1 Top 5

Resnet-18 25.16 42.58 1.46 5.85
Resnet-34 12.2 21.8 1.9 2.86
Resnet-50 13.55 30.97 0.65 5.16
Resnet-101 5.85 13.66 2.86 6.67
Resnet-152 9.68 16.77 1.29 3.87

Table 22: Naive ILAP on all original Resnets
Net Type ϵ = 0.03 ϵ = 0.06

Top 1 Top 5 Top 1 Top 5

Resnet-18 31.11 52.11 9.92 20.66
Resnet-34 19.57 37.59 6.34 15.15
Resnet-50 25.37 36.59 5.81 14.84
Resnet-101 25.37 37.56 5.71 14.29
Resnet-152 22.58 36.13 3.23 8.39

15

H Transfer results on CIFAR-10 and CIFAR-100

We show accuracies under the radial attack when Resnet-18,34,and 50 are subjected to it after transfer
learning on CIFAR-10 and CIFAR-100. We also show the corresponding baseline drops under FGSM,
PGD, random noise and no noise. For Resnets, the final block group (i.e. for example, Resnet-50 has
[3, 4, 6, 3] as its block groups, so the last 3) is tuned along with a linear classifier.

Network type Resnet-18 Resnet-34 Resnet-50
Clean accuracy (top-1) 89.380 89.500 91.210
Clean accuracy (top-5) 99.640 99.790 99.740

Table 23: Clean accuracies on CIFAR-10

Table 24: Results on CIFAR-10, Resnet-50
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 4.230 16.680 4.250 15.360 4.250 15.320
Random 83.930 99.480 71.730 98.520 59.180 83.220
FGSM 52.950 94.770 48.250 92.00 38.300 83.220

Angular 15.020 58.700 14.160 55.310 14.080 54.200

Table 25: Results on CIFAR-10, Resnet-34
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 2.88 13.74 2.81 8.67 2.84 7.97
Random 81.59 99.19 66.7 96.95 52.25 93.30
FGSM 47.00 92.08 42.77 89.58 30.79 83.18

Angular 10.29 54.79 9.4 52.17 8.940 52.100

Table 26: Results on CIFAR-10, Resnet-18
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 4.3 6.3 4.3 5.6 4.28 5.58
Random 84.10 99.25 73.69 98.05 68.22 97.08
FGSM 36.82 88.74 36.52 87.33 30.65 82.2

Angular 10.83 52.38 10.82 49.22 10.51 49.14

16

Network type Resnet-18 Resnet-34 Resnet-50
Clean accuracy (top-1) 67.410 69.500 71.170
Clean accuracy (top-5) 90.270 91.140 92.510

Table 27: Clean accuracies on CIFAR-100

Table 28: Results on CIFAR-100, Resnet-50
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 0.16 0.20 0.14 0.14 0.14 0.14
Random 64.42 88.18 53.1 79.76 38.63 66.23
FGSM 29.28 59.02 25.86 51.95 15.01 35.14

Angular 2.32 10.79 2.16 9.72 1.88 9.49

Table 29: Results on CIFAR-100, Resnet-34
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 1.16 1.38 1.13 1.2 1.14 1.22
Random 60.37 85.01 46.68 73.09 34.37 60.34
FGSM 25.97 52.32 25.27 48.92 20.08 40.94

Angular 1.63 7.55 1.440 6.22 1.39 6.16

Table 30: Results on CIFAR-100, Resnet-18
Method ϵ = 0.03 ϵ = 0.06 ϵ = 0.1

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PGD 0.0 0.0 0.0 0.0 0.0 0.0
Random 60.88 86.19 49.94 78.68 42.41 71.08
FGSM 13.28 36.48 15.88 37.77 13.84 32.8

Angular 2.17 8.57 1.57 7.04 1.34 6.48

17

I Visualizations

We show some visualizations of adversarial images created by the radial attack on Imagenet to
contrast to FGSM and PGD in table 31. As might be expected, the images sometimes look very
similar to the baseline images even at ϵ = 0.1, and sometimes have clear noise over them.

Now, has our method just rediscovered what FGSM and PGD do, or is it independent ? To answer
this, we checked the absolute L1 distance between various images at ϵ = 0.1. The results are as
follows :

• Average L1 distance of 15887.2 between FGSM and angular attacks
• Average L1 distance of 10282.5 between PGD and angular attacks
• Average L1 distance of 12866.4 between FGSM and PGD attacks
• Average L1 distance of 8968.8 between the clean image and the angular attack.

As can be seen, our method is not too similar to either FGSM or PGD and instead is closer to the
base image, indicating that PGD and angular attacks diverge in opposite directions from the original
image and do not merely copy each other. This is good as we are not just re-creating some other
method. Indeed the closeness of our method is more to PGD than to FGSM, which is a good sign,
because PGD is the superior attack.

18

Baseline FGSM Angular PGD

Table 31: Table of figures of adversarial images produced under FGSM, PGD, and our Angular
method on Imagenet with ϵ = 0.1, with Resnet18 being attacked.

19

	Introduction
	Previous attacks - FGSM, PGD and intermediate attacks
	Intermediate Level Attack Projection (ILAP)

	Angular attacks on hyperspherical representation spaces
	Where do hyperspherical latent spaces occur?

	Results
	Conclusion
	Appendix
	Loss details
	Original ResNets
	Baseline Performance

	Fixup ResNets
	Baseline Performance

	EfficientNets
	Baseline Performance

	Ablations on resnets-18,34,50
	Baselines of targeted attacks and stronger random attacks
	Transfer results on CIFAR-10 and CIFAR-100
	Visualizations

