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Abstract

Reliable machine learning requires robustness to unreliable and heterogeneous
data, a challenge that is particularly acute in Federated Learning (FL). Standard
optimization methods degrade under the combined effects of data heterogeneity
and partial client participation, while existing momentum variants introduce biased
updates that undermine reliability. We propose a novel Generalized Heavy-Ball
Momentum (GHBM), a principled optimization method that eliminates this bias
and provides convergence guarantees even under unbounded heterogeneity and
cyclic participation. We further develop adaptive, communication-efficient variants
that retain the efficiency of FEDAVG. Extensive experiments on vision and language
benchmarks confirm that GHBM substantially improves robustness and reliability
compared to state-of-the-art FL methods, particularly in large-scale settings with
limited participation. These results establish GHBM as a reliable foundation for
distributed learning in environments with imperfect data 2.

1 Introduction
Machine learning systems deployed in the real world must contend with unreliable data sources:
information is often heterogeneous across users, incomplete due to limited participation, and
subject to distribution shift or noise. Ensuring reliable training under such conditions is a key
challenge for the broader deployment of trustworthy ML.

Federated Learning (FL) [McMahan et al., 2017] provides a natural framework for this setting,
enabling a central server to train a shared model by orchestrating local training across decentralized
clients without requiring raw data sharing. While this setup offers important privacy advantages, it
also introduces severe reliability challenges. Local datasets reflect unique characteristics of each
client, and optimization restricted to personal data causes statistical heterogeneity, which in turn
leads to client drift when synchronization is infrequent [Karimireddy et al., 2020]. These issues
become even more acute under partial client participation, where only a fraction of clients contribute
updates at each round.

A variety of methods have been proposed to mitigate heterogeneity, such as control-variates in
SCAFFOLD [Karimireddy et al., 2020] or ADMM-based alignment in FEDDYN [Acar et al., 2021].
While theoretically well-motivated, these approaches often lack robustness in practice, exhibiting
instability or slow convergence under extreme heterogeneity, sparse participation, or large-scale
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deployments [Varno et al., 2022]. Momentum methods, which are widely effective in centralized
training, have also been adapted to FL [Hsu et al., 2019, Ozfatura et al., 2021, Xu et al., 2021,
Karimireddy et al., 2021]. However, while their advantages are established under full participation
[Cheng et al., 2024], we show that they become biased and unreliable in the presence of heterogeneity
and partial participation, preventing them from correcting client drift effectively.

Contributions. In this work, we address these limitations and advance the reliability of FL under
unreliable data sources:

• We propose a novel momentum formulation, Generalized Heavy-Ball Momentum (GHBM), which
eliminates the bias of classical momentum and yields communication-efficient variants that remain
robust in the presence of extreme heterogeneity.

• We establish non-convex convergence guarantees for GHBM under cyclic partial participation,
showing reliability even under unbounded data heterogeneity.

• Through extensive experiments on vision and language tasks, we demonstrate that existing methods
break down in unreliable data regimes, while GHBM consistently achieves faster convergence and
higher model quality, establishing it as a reliable foundation for federated learning in large-scale,
imperfect data environments.

2 Related works
The Problem of Statistical Heterogeneity. The detrimental effects of non-iid data in FL were
first observed by [Zhao et al., 2018], who proposed mitigating performance loss by broadcasting a
small portion of public data to reduce the divergence between clients’ distributions. Recognizing
weight divergence as a source of performance loss, FEDPROX [Li et al., 2020] adds a regularization
term to penalize divergence from the global model. Other works [Kopparapu and Lin, 2020, Zaccone
et al., 2022, Zeng et al., 2022, Caldarola et al., 2021] explored grouping clients based on their data
distribution to mitigate the challenges of aggregating divergent models.

SVRG and ADMM in FL. Stochastic variance reduction techniques have been applied in FL
[Chen et al., 2021, Li et al., 2019] with SCAFFOLD Karimireddy et al. [2020] providing for the first
time convergence guarantees for arbitrarily heterogeneous data. Besides doubling the communication
to exchange the control variates, and it has been experimentally proved not robust enough to handle
large-scale scenarios akin to cross-device FL [Reddi et al., 2021, Karimireddy et al., 2021]. Similarly,
SCAFFOLD-M [Cheng et al., 2024] integrates classical momentum into SCAFFOLD. However,
it still relies on variance reduction to tackle heterogeneity, inheriting and the same limitations of
SCAFFOLD, as the ineffectiveness of variance reduction in deep learning [Defazio and Bottou,
2019]. Other methods are based on the Alternating Direction Method of Multipliers [Chen et al.,
2022, Gong et al., 2022, Wang et al., 2022]. In particular, FEDDYN[Acar et al., 2021] dynamically
modifies the loss function such that the model parameters converge to stationary points of the global
empirical loss. Besides enjoying similar theoretical guarantees than SCAFFOLD, in practical cases
it has displayed problems in dealing with pathological non-iid settings [Varno et al., 2022].

Use of Momentum as Local Correction. As a first attempt, Hsu et al. [2019] adopted momentum at
server-side to reduce the impact of heterogeneity. However, it has been proven of limited effectiveness
under high heterogeneity, because the drift happens at the client level. This motivated later approaches
that apply server momentum at each local step [Ozfatura et al., 2021, Xu et al., 2021], and the more
general approach by Karimireddy et al. [2021] to adapt any centralized optimizer to cross-device FL.
Rather differently from previous works, we propose a novel formulation of momentum specifically
designed to take incorporate the descent information of clients selected at past τ rounds, which
generalizes the classical heavy-ball [Polyak, 1964]. Most notably, we prove that our GHBM
algorithm converges under arbitrary heterogeneity in cyclic partial participation - the first momentum
method achieving this result without relying on other mechanisms like variance reduction. Extended
discussion of related works is deferred to Appendix A.1.

3 Method
3.1 Setup
In FL a server and a set S of clients collaboratively solve a learning problem. At each round t ∈ [T ],
a fraction of C ∈ (0, 1] clients St ⊆ S is selected. Each client i ∈ St receives the server model
θt,0i ≡ θt−1, and performs J local optimization steps, using stochastic gradients g̃t,ji evaluated on
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local parameters θt,j−1
i and a batch di,j , sampled from its local dataset Di. In this work we formalize

the learning objective as a finite-sum optimization problem, where each function is the local clients’
loss function with only access to that client’s stochastic samples:

arg min
θ∈Rd

[
f(θ) :=

1

|S |
∑

i∈S
(fi(θ) := Edi∼Di

[fi(θ; di)])

]
(1)

3.2 Generalized Heavy-Ball Momentum (GHBM)
In this section, we introduce our novel formulation for momentum, which we call Generalized
Heavy-Ball Momentum (GHBM). First, we recall that classical momentum consists of a moving
average of past gradients, and it is commonly expressed as in Eq. (2), which can be equivalently
expressed in a version commonly referred to as heavy-ball momentum in Eq. (3) (see Lemma B.1):
HEAVY-BALL MOMENTUM (HBM)

m̃t ← βm̃t−1 + g̃t(θt−1;Dt) (2)

θt ← θt−1 − ηm̃t

m̃t ← (θt−1 − θt−2) (3)

θt ← θt−1 − ηg̃t(θt−1;Dt) + βm̃t

Overcoming the limitations of classical momentum in FL. The gradient referred to above as g̃t is
built from updates of clients i ∈ St, which are usually a small portion of all the clients participating
in the training. Consequently, at each round the momentum is updated using a direction biased
towards the distribution of clients selected in that round. The core idea behind GHBM is updating
the momentum term at each round with a reliable estimate of the gradient w.r.t. the global data
distribution of all clients, i.e. using the average gradient of clients selected in the last τ rounds at
current parameters θt−1, as in Eq. (4), and set τ such that this condition is realized.
DESIRED MOMENTUM UPDATE

m̃t ← βm̃t−1 +
1

τ

t∑

k=t−τ+1

g̃k(θt−1;Dk)

(4)

PRACTICAL MOMENTUM UPDATE

m̃t ← βm̃t−1 +
1

τ

t∑

k=t−τ+1

g̃k(θk−1;Dk)

(5)

Eq. (4) cannot be implemented in partial participation, but can be approximated by reusing old
gradients calculated at parameters θk−1, as shown in Eq. (5). The introduced lag due to staleness
which can be controlled in theory and that ultimately we show to be greatly compensated by the
achieve reduction in heterogeneity (see Fig. 6). With this idea in mind, our proposed formulation
consists of calculating the momentum term as the decayed average of past τ momentum terms,
instead of explicitly using the server pseudo-gradients at the last τ rounds, as shown in Eq. (6).
This formulation is close to the update rule sketched in Eq. (5) and has the additional advantage of
enjoying a heavy-ball form similar to Eq. (3) (see Lemma B.2), which will be useful for deriving
communication-efficient FL algorithms:

GENERALIZED HEAVY-BALL MOMENTUM (GHBM)

m̃t
τ ←

1

τ

τ∑

k=1

βm̃t−k
τ + g̃t(θt−1;Dt) (6)

θt ← θt−1 − ηm̃t
τ

m̃t
τ ←

1

τ

(
θt−1 − θt−τ−1

)
(7)

θt ← θt−1 − ηg̃t(θt−1;Dt) + βm̃t
τ

Trivially, GHBM with τ = 1 recovers the classical momentum, hence it can be considered as a
generalized formulation. The GHBM term is then embedded into local updates using the heavy-ball
form shown in Eq. (7), leading to the following update rule:

CLIENT STEP:CLIENT STEP:CLIENT STEP: θt,ji ← θt,j−1
i − ηlg̃

t,j
i (θt,j−1

i ; dt,ji ) +
β

τJ

(
θt−1 − θt−τ−1

)
︸ ︷︷ ︸

τ−GHBM

(8)

Discussion on τττ . The τ hyperparameter in GHBM controls the number of server pseudo-gradients
to average when estimating the update to the momentum term. Intuitively, when considering only the
effect on heterogeneity reduction, the optimal value would be the one that provides the average over
all clients i.e. τ = 1/C, which is the inverse of the client participation rate. As we demonstrate, this
is the key factor that allows GHBM to converge under arbitrary heterogeneity, achieving the same
convergence rate in cyclic partial participation as methods based on classical momentum attain in
full participation (see Sec. 4.1).
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3.3 Communication Complexity of GHBM and Efficient Variants
GHBM requires the server to additionally send the momentum term m̃t

τ , which introduces a commu-
nication overhead of 1.5× w.r.t. FEDAVG, as momentum is usually applied to all model parameters.
However, this overhead can be avoided by exploiting the fact that GHBM has an equivalent heavy-ball
form, and noting that if clients participate cyclically, clients had already received the previous model
θt−τ−1. This is still true on average under uniform client sampling, i.e., calling τi the sampling
period for client i, E [τi] = τ = 1/C. In practice, the additional requirement on communication can
be traded with persistent storage at the clients. In this algorithm, which we call LOCALGHBM, τi is
adaptive and determined stochastically by client participation. The space complexity is constant in the
size of model parameters for the clients and the communication complexity is the same as FEDAVG.
We empirically found that performance can be further improved by considering θti,j instead of θt−1

and θt−τi
i instead of θt−τi−1 when calculating m̃t

τi . This final communication-efficient update rule is
named FEDHBM. Although based on the same principle, our algorithms are suitable for different
scenarios, which we discuss more in detail in Appendix A.4.

4 Theoretical Discussion
Our results rely on notions of stochastic gradient with bounded variance (4.1) and the smoothness of
the clients’ objective functions (4.2), which are common in deep learning. We introduce the additional
assumption that clients participate following a cyclic pattern, which serves only as a technical detail
needed to deterministically quantify the contributions of the clients to the GHBM momentum term
(see discussion in Appendix A.3). Finally, Assumption 4.3 is introduced to facilitate comparisons
with other algorithms that require it, while it not used in the proof of our Thm. 4.6.

Assumption 4.1 (Unbiasedness and bounded
variance of stochastic gradient).

Edi∼Di
[g̃i(θ; di)] = gi(θ;Di)

Edi∼Di

[
∥g̃i(θ; di)− gi(θ;Di)∥2

]
≤ σ2

Assumption 4.2 (Smoothness of client’s objec-
tives). Let it be a constant L > 0, then for any
i, θ1, θ2 the following holds:

∥gi(θ1)− gi(θ2)∥2 ≤ L2 ∥θ1 − θ2∥2

Assumption 4.3 (Bounded Gradient Dissim-
ilarity). There exist a constant G ≥ 0 such
that, ∀i, θ:

1

|S |

|S |∑

i=1

∥gi(θ)− g(θ)∥2 ≤ G2

Assumption 4.4 (Cyclic Participation). Let St be
the set of clients sampled at any round t. A sam-
pling strategy is “cyclic“ with period p = 1/C if:

St = St−p ∀ t > p ∧
Sk ∩ St = ∅ ∀ k ∈ (t− p, t)

Remark 4.5. While Thm. 4.6 relies on Assumption 4.4, cyclic participation is not enforced in the
experiments, where we select clients randomly and uniformly. For a more comprehensive discussion
on the role of the cyclic participation assumption in our work, we refer the reader to Appendix A.3.

4.1 Convergence Guarantees
We provide the convergence rate for GHBM for non-convex functions in (cyclic) partial participation.
Comparison with recent related algorithms in Tab. 4. The proof is deferred to Appendix B.

Theorem 4.6. Under Assumptions 4.1, 4.2 and 4.4, if we take m̃0
τ = 0, and β, η and ηl as in

Eq. (119), then GHBM with τ = 1/C converges as:

1

T

T∑

t=1

E
[∥∥∇f(θt−1)

∥∥2
]
≲

L∆

T
+

√
L∆σ2

|S |JT

where ∆ := f(θ0)−minθ f(θ), ηl ≤ O (1/
√
τ) (see Eq. (119)) and ≲ absorbs numeric constants.

Discussion. The rate of GHBM shows two major improvements: (i) it does not rely on the BGD
assumption (4.3) and (ii) the dominant term on the right-hand side (RHS) scales with the size of all
client population |S |, instead of the clients selected in a single round |S |C, thanks to incorporating
old gradients. Further connection with centralized optimization and discussion on he use of cyclic
participation are deferred to Appendices A.2 and A.3.
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Figure 2: GHBM effectively counteracts the effects of heterogeneity: our momentum formulation
(τ > 1) is crucial for superior performance , with an optimal value τ = 1/C = 10, as predicted in the-
ory. Results on CIFAR-10 with CNN (left) and RESNET-20 (right), under worst-case heterogeneity.
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Figure 1: Comparison be-
tween FEDCM and GHBM
in cyclic participation on a lin-
ear regression problem (see
Appendix C.1 for details).
GHBM with τ = 1/C in cyclic
participation (C = 0.2) per-
forms similarly as FEDCM in
full participation (C = 1).

Comparison with FedCM. The best-known rate for FEDCM in
partial participation relies bounded gradient dissimilarity while in
full participation, Cheng et al. [2024] proved that FEDCM con-
verges under unbounded heterogeneity (see Tab. 4). We prove that
GHBM can achieve the same convergence rate even in cyclic partial
participation: indeed, as a validation, in Figure 1 we simulate a
cyclic participation setting, comparing GHBM with FEDCM, both
when selecting a subset of clients and when selecting them all. As
it is shown, the curve of GHBM with τ as prescribed by Thm. 4.6
approaches the one of FEDCM in full participation.

5 Experimental Results
Scenarios, Datasets and Models. For the controlled scenarios,
we employ CIFAR-10/100 as computer vision tasks, with RESNET-
20 and the same CNN similar to a LeNet-5 commonly used in
FL works [Hsu et al., 2020], and SHAKESPEARE dataset as NLP
task following [Reddi et al., 2021, Karimireddy et al., 2021]. For
simulating settings akin to cross-device FL, we adopt the large-scale GLDV2 and INATURALIST
datasets as CV tasks, with both a VIT-B\16 [Dosovitskiy et al., 2021] and a MOBILENETV2 [Sandler
et al., 2018] pretrained on ImageNet, and STACKOVERFLOW dataset as NLP task. Further details on
datasets, splits, models and hyperparameters are in Appendix C.

Metrics and Experimental protocol. We consider final model quality, as the average top-1 accuracy
over the last 100 rounds of training (Tabs. 1 and 2), and communication/computational efficiency,
evaluated by measuring the total amount of exchanged bytes (i.e. considering both the downlink/uplink
communication) and the wall-clock time spent by an algorithm to reach the performance of FEDAVG
(Tab. 3). All the experiments are conducted under random uniform client sampling.

5.1 The Effectiveness of GHBM Compared to Classical Momentum
In Fig. 2 we show the effectiveness of GHBM compared to classical momentum, which corresponds
to selecting τ = 1 in the update rule in Eq. (8), and simulate a scenario of extreme heterogeneity (i.e.
α = 0). Methods based on classical momentum [Xu et al., 2021, Ozfatura et al., 2021] fail to improve
upon FEDAVG, while, in contrast, as τ increases, GHBM exhibits a significant enhancement in both
convergence speed and final model quality. The optimal value of τ is experimentally determined to
be τ ≈ 1/C = 10, with larger sub-optimal values only slightly affecting performance (rightmost plot).

5.2 Comparison with the State-of-art
Results in Controlled Scenario. We compare GHBM with the most common FL methods, and in
particular with other momentum-based FL algorithms Results in Tab. 1 underscore that methods based
on classical momentum fail at improving FEDAVG under high heterogeneity and partial participation,
confirming the limitations outlined in Sec. 3.2. Conversely, our algorithms outperform FEDAVG
with an impressive margin of +20.6% and +14.4% on RESNET-20 and CNN under worst-case
heterogeneity, and consistently over less severe conditions (i.e. higher values of α in Fig. 3).

Results in Real-world Large-scale Scenarios. Extending the experimentation to settings charac-
terized by extremely low client participation, we test both our GHBM with τ tuned via a grid-search
and our adaptive FEDHBM, which exploits client participation to keep the same communication
complexity of FEDAVG. As discussed in Sec. 3.2, under such extreme client participation patterns
GHBM performs better because the trade-off between heterogeneity reduction and gradient lag is
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explicitly tuned by the choice of the best performing τ , while FEDHBM will likely adopt a subopti-
mal value. However, results in Tab. 2 show a stark improvement over the state-of-art for both our
algorithms, indicating that the design principle of our momentum formulation is remarkably robust
and provides effective improvement even when client participation is very low (e.g. C ≤ 1%).

Communication Efficiency. Results in Tab. 3 reveal that our proposed algorithms show faster
convergence and higher final model quality, with an average saving of respectively +55.9% and
+61.5%. In particular, in settings with extremely low client participation (e.g. GLDV2), GHBM is
more suitable for best accuracy, while FEDHBM is the best at lowering the communication cost.

Table 1: Comparison with state-of-art in controlled set-
ting (acc@10k-20k rounds for RESNET-20/CNN). NON-
IID (α = 0) and IID (α = 10.000). Best result in bold,
second best underlined. ✗ indicates non-convergence.

METHOD
CIFAR-100 (RESNET-20) CIFAR-100 (CNN) SHAKESPEARE

NON-IID IID NON-IID IID NON-IID IID

FEDAVG 24.7±1.2 58.6±0.4 38.3±0.3 49.7±0.2 47.3±0.1 47.1±0.2

FEDPROX 24.8±1.1 58.5±0.3 40.6±0.2 49.9±0.2 47.3±0.1 47.1±0.2

SCAFFOLD 30.7±1.3 58.0±0.6 45.5±0.1 49.4±0.4 50.2±0.1 50.1±0.1

FEDDYN 6.0±0.5 60.8±0.7 ✗ 51.9±0.2 50.7±0.2 50.8±0.2

ADABEST 8.4±2.0 55.6±0.3 35.6±0.3 49.7±0.2 47.3±0.1 47.1±0.2

MIME 26.8±2.1 59.0±0.3 45.3±0.4 50.9±0.4 48.3±0.2 48.5±0.1

FEDAVGM 24.8±0.7 58.7±0.9 42.1±0.3 50.7±0.2 50.0±0.0 50.4±0.1

FEDACG 25.7±0.5 58.7±0.3 43.5±0.4 51.3±0.3 50.9±0.1 51.0±0.1

SCAFFOLD-M 30.9±0.7 60.1±0.5 45.7±0.2 50.1±0.3 50.8±0.0 51.0±0.1

FEDCM (GHBM τ=1) 22.2±1.0 53.1±0.2 36.0±0.3 50.2±0.5 49.2±0.1 50.4±0.1

MIMEMOM 24.3±0.9 60.5±0.6 48.2±0.7 50.6±0.1 48.5±0.2 48.9±0.2

MIMELITEMOM 21.2±1.6 59.2±0.5 46.0±0.3 50.7±0.1 49.1±0.4 49.4±0.3

LOCALGHBM (ours) 38.2±1.0 62.0±0.5 50.3±0.5 51.9±0.4 51.2±0.1 51.1±0.3

FEDHBM (ours) 42.5±0.8 62.5±0.5 50.4±0.5 52.0±0.4 51.3±0.1 51.4±0.2
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Figure 3: Final model quality at dif-
ferent values of ααα (lower α → higher
heterogeneity) on CIFAR-10, with CNN
(top) and RESNET-20 (bottom).

Table 2: Test accuracy (%) comparison of best SOTA FL algorithms on large-scale and realistic
settings. GHBM is the best algorithm when client participation is extremely low, while FEDHBM
still improves the other competitors by a large margin. ✗ means that the algorithm did not converge.

METHOD
MOBILENETV2 VIT-B\16

GLDV2 INATURALIST GLDV2 INATURALIST STACKOVERFLOW

C ≈ 0.79% C ≈ 0.1% C ≈ 0.5% C ≈ 1% C ≈ 0.79% C ≈ 0.1% C ≈ 0.5% C ≈ 0.12%

FEDAVG 60.3±0.2 38.0±0.8 45.25±0.1 47.59±0.1 68.5±0.5 65.6±0.1 70.7±0.8 24.0±0.4

SCAFFOLD 61.0±0.1 ✗ ✗ ✗ 67.5±3.3 ✗ ✗ 24.8±0.4

FEDAVGM 61.5±0.2 41.3±0.4 46.0±0.1 48.4±0.1 70.0±0.5 66.0±0.2 71.4±0.5 24.1±0.3

MIMEMOM ✗ ✗ ✗ ✗ ✗ ✗ ✗ 24.9±0.6

GHBM - best τ (ours) 65.9±0.1 41.8±0.1 48.7±0.1 50.5±0.1 74.3±0.6 68.8±0.3 73.5±0.4 27.0±0.1

FEDHBM (ours) 65.4±0.2 41.6±0.2 47.3±0.0 49.8±0.0 73.1±0.9 66.7±0.7 72.1±0.5 24.5±0.4

Table 3: Total communication and computational cost for reaching the final model quality
of FEDAVG, across academic and real-world large-scale datasets (details in Appendix C.3). The
coloured arrows indicate respectively a reduction (↓) and an increase (↑) of comm./comp. cost.

METHOD
COMM.

OVERHEAD

TOTAL COMMUNICATION COST (BYTES EXCHANGED) TOTAL COMPUTATIONAL COST (WALL-CLOCK TIME HH:MM)

CIFAR-100 (α = 0) GLDV2 CIFAR-100 (α = 0) GLDV2

CNN RESNET-20 MOBILENETV2 VIT-B\16 CNN RESNET-20 MOBILENETV2 VIT-B\16

FEDAVG 1× 30.9 GB 10.3 GB 89.8 GB 483.7 GB 02:05 03:36 13:51 13:56
SCAFFOLD 2× 40.8 GB ↑ 32.0% 14.2 GB ↑ 37.8% 51.2 GB ↓ 43.0% 967.4 GB ↑ 100.0% 01:23 ↓ 34.0% 02:39 ↓ 26.4% 08:28 ↓ 38.9% 15:15 ↑ 9.4%

FEDAVGM 1× 21.0 GB ↓ 32.0% 9.1 GB ↓ 11.6% 73.6 GB ↓ 18.0% 403.1 GB ↓ 16.7% 01:25 ↓ 32.0% 03:10 ↓ 12.0% 11:22 ↓ 18.0% 11:37 ↓ 16.7%

MIMEMOM 3× 21.5 GB ↓ 30.4% 30.9 GB ↑ 200.0% 269.4 GB ↑ 200.0% 1.417 TB ↑ 200.0% 01:27 ↓ 30.4% 10:42 ↑ 197.8% 41:07 ↑ 197.8% 41:30 ↑ 197.8%

GHBM (ours) 1.5× 8.5 GB ↓ 72.5% 7.0 GB ↓ 32.5% 48.5 GB ↓ 46.0% 314.4 GB ↓ 35.0% 00:24 ↓ 80.8% 01:37 ↓ 55.0% 05:20 ↓ 61.5% 06:30 ↓ 53.3%

FEDHBM (ours) 1× 5.2 GB ↓ 83.0% 4.2 GB ↓ 59.2% 29.6 GB ↓ 67.0% 234.4 GB ↓ 51.5% 00:22 ↓ 82.0% 01:29 ↓ 59.0% 06:23 ↓ 54.0% 07:31 ↓ 46.0%

6 Conclusions
In this work, we propose Generalized Heavy-Ball Momentum (GHBM), a novel momentum-based
optimization method for FL that effectively mitigates the joint effect of statistical heterogeneity and
partial participation. We theoretically prove that GHBM converges under arbitrary heterogeneity in
cyclic partial participation, achieving the same rate classical momentum enjoys in full participation.
Extensive experiments, confirm that GHBM significantly outperforms state-of-the-art FL methods
in both convergence speed and final model quality, demonstrating its robustness in large-scale,
real-world heterogeneous FL scenarios.
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A Additional Discussion

A.1 Extended Related Works
Recently, similarly based on variance reduction as SCAFFOLD, [Mishchenko et al., 2022] propose
SCAFFNEW to achieve accelerated communication complexity in heterogeneous settings through
control variates, guaranteeing convergence under arbitrary heterogeneity in full participation. The
work by Mishchenko et al. [2024], under the assumption of second-order data heterogeneity, proposes
an algorithm which can reduce client drift by estimating the global update direction as well as
employing regularization. The proposed algorithm can be seen as a combination of FEDPROX with
SCAFFOLD/SCAFFNEW, and similarly relies on additional server control variates to correct the
drift, so the underlying principle is still variance reduction. Quite differently, GHBM is based on
momentum, properly modified to tackle heterogeneity and partial participation in FL. Similarly to the
already discussed MIME [Karimireddy et al., 2021], Karagulyan et al. [2024] propose the SPAM
algorithm and leverage momentum as a local correction term to benefit from second-order similarity.

Lowering Communication Requirements in FL. Researchers have studied methods to reduce
the memory needed for exchanging gradients in the distributed setting, for example by quantization
[Alistarh et al., 2017] or by compression [Mishchenko et al., 2019, Koloskova et al., 2020]. In the
context of FL, such ideas have been developed to meet the communication and scalability constraints
[Reisizadeh et al., 2020], and to take into account heterogeneity [Sattler et al., 2020]. With a similar
idea, quantization has been incorporated into a recent momentum-based FL approach [Das et al.,
2022] to limit the communication overhead, still requiring significantly more computation client-side.
Our work focuses on a novel formulation of momentum that takes into account the joint effects of
heterogeneity and partial participation, and that has a heavy-ball structure allowing efficient use of
the information already being sent in vanilla FEDAVG, so additional techniques to compress that
information remain orthogonal to our approach.

Comparison with FedACG [Kim et al., 2024]. We provide a comparison with the FedACG
algorithm based on: algorithmic design, theoretical guarantees and empirical results. Algorithmically,
it has two modifications w.r.t. FEDAVGM: (i) it uses the Nesterov Accelerated Gradient (NAG) to
broadcast a lookahead global model and (ii) adds a proximal local penalty similar to FEDPROX w.r.t.
this transmitted global model. The method has the same communication complexity as FedAvg,
because it does not exchange additional information. Our work proposes instead a novel formulation
of momentum, explicitly designed to provide an advantage in heterogeneous FL with partial client
participation. We propose both the main algorithm (GHBM), which has stateless clients but has 1.5×
the communication complexity of FedAvg, and communication efficient versions (e.g. FEDHBM),
that preserve the communication complexity as FedAvg, at the cost of using local storage. From
a theoretical perspective, the convergence rate of FedACG does not prove any advantage w.r.t.
heterogeneity, since it still relies on the bounded heterogeneity assumption. GHBM is proven to
converge under arbitrary heterogeneity in cyclic partial participation, recovering the same convergence
rate that Cheng et al. [2024] proved for FEDCM when in full participation. This is a significant
advantage that then reflects in significantly improved performance. From an empirical perspective,
simulation results are presented in Fig. 7. While it is faster than FedAvgM, it still falls short behind
our algorithms in heterogeneous scenarios. This is a consequence of the same issue we showed in
Sec. 3.2 for classical momentum.

A.2 Advantage of Local Steps and Connections to Incremental Gradient Methods.
Thm. 4.6 does not show an explicit benefit from the local steps, similar to the best-known theory for
momentum-based FL methods [Cheng et al., 2024]. However, GHBM offers a clear advantage w.r.t.
centralized methods for finite-sum optimization applied in FL (where clients represent functions),
referred to as incremental gradient methods. One algorithm of this family, the Incremental Aggregated
Gradient (IAG), removes the effect of functions heterogeneity by approximating a full gradient with
an aggregate of past gradients, assuming cyclic participation [Gürbüzbalaban et al., 2015]. However,
this holds only in standard distributed mini-batch optimization, where J = 1. GHBM shares a
similar intuition, but applying this logic to the momentum update rather than the gradient estimate
is crucial when local steps are involved. Simply extending IAG with local steps would not mitigate
client drift-induced heterogeneity as GHBM does. In fact, its convergence rate would be bounded by
that of FEDAVG in full participation, whose lower bound is known to be affected by heterogeneity
(see Thm. II of Karimireddy et al. [2020]).
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Figure 4: Illustration of cyclic client participation with a total of K = 9 clients. Thm. 4.6 holds
under the assumption of cyclic participation, which simply states that there is any fixed order (so
client shuffling methods like Shuffle-Once are compliant with the assumption) in which clients appear
across rounds in the training, i.e. each client is sampled every p = 1

C rounds. In the above image,
K · C = 3 clients are selected for training, i.e. each client is selected exactly once every p = 3
rounds.

A.3 On the Use of Cyclic Participation Assumption.

Algorithm 1: GHBM, LOCALGHBM and FEDAVG

Require: initial model θ0, K clients, C participation
ratio, T number of total round, η and ηl learning rates,
τ ∈ N+.

1: for t = 1 to T do
2: St ← subset of clients ∼ U(S,max(1,K · C))

3: Send θt−1, θt−τ−1 to all clients i ∈ St

4: for i ∈ St in parallel do
5: θt,0i ← θt−1

6: Retrieve θt−τi−1 from local storage

7: m̃t
τ ← 1

τJ
(θt−1 − θt−τ−1)

8: m̃t
τi ← 1

τiJ
(θt−1 − θt−τi−1) if θt−τi−1 is set

else 0

9: for j = 1 to J do
10: sample a mini-batch di,j from Di

11: θt,ji ← θt,j−1
i − ηlg̃

t,j
i +βm̃t

τ +βm̃t
τi

12: end for
13: Save model θt−1 into local storage
14: end for
15: g̃t ← 1

|St|
∑

i∈St

(
θt−1 − θt,Ji

)
16: θt ← θt−1 − ηg̃t

17: end for

The use of cyclic participation in the proof
of Thm. 4.6 allows precise control over the
clients’ contributions to the average of the
last τ pseudo-gradients. This ensures that the
τ -averaged pseudo-gradient used to update
the momentum is unaffected by heterogeneity,
which is the important point behind the proof
of Thm. 4.6. Under random uniform, due to
the non-zero probability of sampling the same
client within τ rounds, this condition is hardly
verified. Although one could technically en-
force this condition without cyclic sampling
— by explicitly tracking each client’s pseudo-
gradient and computing a uniform average
across the most recent one from each client
— this would be impractical. Such a design
would not be compliant with protocols like
Secure Aggregation, widely adopted in real-
world FL systems, thus posing a significant
practical limitation. Please note that in our
analysis convergence under unbounded het-
erogeneity is not a simple byproduct of the
assumption, but comes explicitly from the al-
gorithmic structure of GHBM (i.e. setting
τ = k

C , ∀k ∈ N+ is necessary). The best-
known analysis of FEDAVG under cyclic participation is provided by Cho et al. [2023], which proves
that in certain situations (e.g. clients run GD instead of SGD) there can be an asymptotic advantage
in the case we prospect with Assumption 4.4. However, it is important to notice that all the results
presented in Cho et al. [2023] rely on forms of bounded heterogeneity, and with this respect, the
results presented in this work are novel and advance state of the art.

A.4 Applicability of GHBM-based Algorithms in FL Scenarios.
Although based on the same principle, our algorithms are suitable for different scenarios. Similarly
to algorithms proposed for cross-device FL [Karimireddy et al., 2021], GHBM uses stateless clients,
with the main τ hyperparameter controlled by the server. This ensures that clients always apply a
momentum term consistent with the GHBM update rule, differently from algorithms that require
clients participating in multiple rounds to adhere to their formulation, such as SCAFFOLD and
FEDDYN. This is particularly important when the number of clients is large and a small portion of
them participates in each round, and it is why, in our large-scale setting, these methods fail to converge.
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Table 4: Comparison of convergence rates of FL algorithms. GHBM improves the state-of-art by attaining,
in cyclic partial participation, the same rate of classical momentum in full participation. Remind that L is
the smoothness constant of objective functions, ∆ = f(θ0) − minθ f(θ) is the initialization gap, σ2 is the
clients’ gradient variance, |S | is the number of clients, C is the participation ratio, J is the number of local steps
per round, and T is the number of communication rounds. ζ := supθ ∥∇f(θ)∥ and G are uniform bounds of
gradient norm and dissimilarity.

Algorithm Convergence Rate 1
T

∑T
t=1 E

[
∥∇f(θt)∥2

]
≲ Additional

Assumptions
Partial

participation?

FEDAVG
[Yang et al., 2021]

(
L∆σ2

|S |JT

)1/2
+ L∆

T Bounded hetero.1 ✗

[Yang et al., 2021]
(

L∆Jσ2

|S |CT

)1/2
+ L∆

T Bounded hetero.1 ✓

FEDCM
[Xu et al., 2021]

(
L∆(σ2+|S |CJζ2)

|S |CJT

)1/2
+

(
L∆(σ/

√
J+
√

|S |C(ζ+G)√
|S |CT

)2/3
Bounded grad.
Bounded hetero. ✓

[Cheng et al., 2024]
(

L∆σ2

|S |JT

)1/2
+ L∆

T − ✗

SCAFFOLD-M
[Cheng et al., 2024]

(
L∆σ2

|S |CJT

)1/2
+ L∆

T

(
1 + |S |2/3

|S |C

)
− ✓

GHBM (Thm. 4.6)
(

L∆σ2

|S |JT

)1/2
+ L∆

T Cyclic participation ✓

1 The local learning rate vanishes to zero when gradient dissimilarity is unbounded, i.e., G→∞.

These design choices make our algorithm in practice suitable for cross-device FL, where it offers
significant advantages, as experimentally validated in Sec. 5.2. On the other hand, FEDHBM and
LOCALGHBM take advantage of the fact that clients participate multiple times in the training process
to remove the need to send the momentum term from the server, recovering the same communication
complexity of FEDAVG. As a result, clients in these methods are stateful - requiring to maintain
variables across rounds [Kairouz et al., 2021] - and are therefore best suited for scenarios akin to
cross-silo FL.

A.5 Theoretical Comparison with other FL algorithms
Comparison with SCAFFOLD-M. Recently Cheng et al. [2024] proved that momentum ac-
celerates SCAFFOLD, preserving strong guarantees against heterogeneity in partial participation.
However, the resulting SCAFFOLD-M method is still based on variance reduction, i.e., it converges
under arbitrary heterogeneity thanks to variance reduction, not because it uses momentum. Our rate
additionally requires Assumption 4.4, but is faster and, most importantly, shows that momentum,
when modified according to our formulation, can by itself provide similar guarantees even when not
all clients participate.

A.6 Notes on Failure Cases of SOTA Algorithms
In this paper, we evaluated our approach using the large-scale FL datasets proposed by [Hsu et al.,
2020]. Notably, several recent state-of-the-art FL algorithms failed to converge on these datasets. For
SCAFFOLD this result aligns with prior works [Reddi et al., 2021, Karimireddy et al., 2021], since
it is unsuitable for cross-device FL with thousands of devices. Indeed, the client control variates can
become stale, and may consequently degrade the performance. For MIMEMOM [Karimireddy et al.,
2021], despite extensive hyperparameter tuning using the authors’ original code, we were unable
to achieve convergence. This finding is surprising since the approach has been proposed to tackle
cross-device FL. To our knowledge, this is the first work to report these failure cases, likely due to
the lack of prior evaluations on such challenging datasets. We believe these findings underscore the
need for further investigation into the factors contributing to algorithm performance in large-scale,
heterogeneous FL settings.
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B Proofs
Algorithms
To handle the proof, we analyze a simpler version of our algorithm, in which we use the update rule
in Eq. (5) instead of the one described in Eq. (6). The resulting Algorithm 3 we analyze is reported
along the plain GHBM (Algorithm 2) we used in the experiments. Both algorithms enjoy the same
underlying idea: use the gradients of a larger portion of the clients to estimate the momentum term.

Algorithm 2: GHBM (PRACTICAL VERSION)
Require: initial model θ0, K clients, C participation ratio, T number of total round, η and ηl learning rates,

τ ∈ N+.
1: for t = 1 to T do
2: St ← subset of clients ∼ U(S,max(1,K · C))
3: for i ∈ St in parallel do
4: θt,0i ← θt−1

5: for j = 1 to J do
6: sample a mini-batch di,j from Di

7: ut,j
i ← ∇fi(θt,j−1

i , di,j) + βm̃t
τ

8: θt,ji ← θt,j−1
i − ηlu

t,j
i

9: end for
10: end for
11: ut ← 1

|St|
∑

i∈St

(
θt−1 − θt,Ji

)
12: θt ← θt−1 − ηut

13: m̃t+1
τ ← 1

τJ

(
θt−τ − θt

)
14: end for

Algorithm 3: GHBM (THEORY VERSION)
Require: initial model θ0, K clients, C participation ratio, T number of total round, η and ηl learning rates,

τ ∈ N+.
1: for t = 1 to T do
2: St ← subset of clients ∼ U(S,max(1,K · C))
3: for i ∈ St in parallel do
4: θt,0i ← θt−1

5: for j = 1 to J do
6: sample a mini-batch di,j from Di

7: ut,j
i ← β∇fi(θt,j−1

i , di,j) + (1− β)m̃t
τ

8: θt,ji ← θt,j−1
i − ηlu

t,j
i

9: end for
10: end for
11: ut ← 1

ηl|St|J
∑

i∈St

(
θt−1 − θt,Ji

)
12: θ̄t ← θt−1 − ut + (1− β)m̃t

τ

13: m̃t+1
τ ← (1− β)m̃t

τ + 1
τ

(
θ̄t−τ − θ̄t

)
14: θt ← θt−1 − ηm̃t+1

τ

15: end for

In the following, we list the differences between the two:

1. Explicit use of τ -averaged gradients when updating the momentum term (line 13). This
can be implemented by keeping server-side an auxiliary sequence of models θ̄t, in which
the momentum added client side is subtracted server-side (line 12), such that taking the
difference of two models gives the sum of pseudo-grads.

2. Use of convex sum in local updates (line 7). This is done to align with the formulation of
momentum methods in Cheng et al. [2024], and more in general with the formulation of
momentum commonly analyzed in literature. There is no theoretical difference between the
two versions, as they only differ by a constant scaling [Liu et al., 2020].

3. Use of gradients averaged over local steps (line 11). This is done to align with the analysis
of Cheng et al. [2024], Xu et al. [2021], and it is equivalent to coupling server and client
learning rates (i.e. setting η = γJηl in Algorithm 3, where γ is the server learning rate we
would use in Algorithm 2).
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The two algorithms have similar performances, which are reported in Fig. 5
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Figure 5: Comparing the GHBM implementation analyzed in theory (Algorithm 3) with the one
proposed in the main paper (Algorithm 2). The plots show the convergence rate on CIFAR-10 (top)
and CIFAR-100 (bottom), in NON-IID (left) and IID (right) scenarios with RESNET-20 architecture.

Preliminaries

Our convergence proof for GHBM is based on the recent work of Cheng et al. [2024], which
offers new proof techniques for momentum-based FL algorithms. Throughout the proofs we use the
following auxiliary variables to facilitate the presentation:

Ut :=
1

|S |J

J∑

j=1

|S |∑

i=1

E
[∥∥∥θt,ji − θt−1

∥∥∥
2
]

(9)

Et := E
[∥∥∇f(θt−1)− m̃t+1

τ

∥∥2
]

(10)

ζt,ji := E
[
θt,j+1
i − θt,ji

]
(11)

Ξt :=
1

|S |

|S |∑

i=1

E
[∥∥∥ζt,0i

∥∥∥
2
]

Λt := E




∥∥∥∥∥∥


1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

g̃k,ji (θk,j−1
i )


− gtτ

∥∥∥∥∥∥

2

 (12)

γt := E
[∥∥gtτ −∇f(θt−1)

∥∥2
]

(13)

Additionally, here we report the bounded gradient heterogeneity assumption. It is used to quantify
the heterogeneity reduction effect of GHBM varying its τ hyperparameter. Notice that our main
claim does not depend on this assumption, as for the optimal value of τ = 1/C the assumption is not
needed (see Lemma B.4).

B.1 Momentum Expressions

In this section we report the derivation of the momentum expressions in Eq. (3) and (7) from the main
paper.

14



Lemma B.1 (Heavy-Ball Formulation of Classical Momentum). Let us consider the following
classical formulation of momentum:

m̃t = βm̃t−1 + g̃t(θt−1) (14)

θt = θt−1 − ηm̃t (15)
The same update rule can be equivalently expressed with the following, known as heavy-ball formula-
tion:

θt = θt−1 + β(θt−1 − θt−2)− ηg̃(θt−1) (16)

Proof. First derive the expression of m̃t from Eq. (15), both for time t and t− 1:

m̃t =

(
θt−1 − θt

)

η

m̃t−1 =

(
θt−2 − θt−1

)

η

Now plug these expressions into Eq. (14) to obtain (16):(
θt−1 − θt

)

η
= β

(
θt−2 − θt−1

)

η
+ g̃t(θt−1)

(
θt − θt−1

)
= β

(
θt−1 − θt−2

)
− ηg̃t(θt−1)

θt = θt−1 + β
(
θt−1 − θt−2

)
− ηg̃t(θt−1)

Lemma B.2 (Heavy-Ball formulation of generalized momentum). Let us consider the following
generalized formulation of momentum:

m̃t
τ =

1

τ

τ∑

k=1

βm̃t−k
τ + g̃t(θt−1) (17)

θt = θt−1 − ηm̃t
τ (18)

The same update rule can be equivalently expressed in an heavy ball form, which we call as
Generalized Heavy-Ball momentum (GHBM):

θt = θt−1 +
β

τ
(θt−1 − θt−τ−1)− ηg̃(θt−1) (19)

Proof. First derive the expression of m̃t
τ from Eq. (18), both for time t and t− 1:

m̃t
τ =

(
θt−1 − θt

)

η

m̃t−1
τ =

(
θt−2 − θt−1

)

η

Now plug these expressions into Eq. (17):
(
θt−1 − θt

)

η
=

β

τ

τ∑

k=1

(
θt−k−1 − θt−k

)

η
+ g̃t(θt−1)

(
θt − θt−1

)
=

β

τ

τ∑

k=1

(
θt−k − θt−k−1

)
− ηg̃t(θt−1)

θt = θt−1 +
β

τ

τ∑

k=1

(
θt−k − θt−k−1

)
− ηg̃t(θt−1)

θt = θt−1 +
β

τ
(θt−1 − θt−τ−1)− ηg̃t(θt−1)

Where the last equality (19) comes from telescoping the summation on the rhs.
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B.2 Technical Lemmas
Now we cover some technical lemmas which are useful for computations later on. These are known
results that are reported here for the convenience of the reader.
Lemma B.3 (relaxed triangle inequality). Let {v1, . . . ,vn} be n vectors in Rd. Then, the following
is true: ∥∥∥∥∥

n∑

i=1

vi

∥∥∥∥∥

2

≤ n

n∑

i=1

∥vi∥2

Proof. By Jensen’s inequality, given a convex function ϕ, a series of n vectors {v1, . . . ,vn} and a
series of non-negative coefficients λi with

∑n
i=1 λi = 1, it results that

ϕ

(
n∑

i=1

λivi

)
≤

n∑

i=1

λiϕ (vi)

Since the function v → ∥v∥2 is convex, we can use this inequality with coefficients λ1 = . . . =
λn = 1/n, with

∑n
i=1 λi = 1, and obtain that

∥∥∥∥∥
1

n

n∑

i=1

vi

∥∥∥∥∥

2

=
1

n2

∥∥∥∥∥
n∑

i=1

vi

∥∥∥∥∥

2

≤ 1

n

n∑

i=1

∥vi∥2

B.3 Proofs of Main Lemmas
In this section we provide the proofs of the main theoretical results presented in the main paper.
Lemma B.4 (Deviation of τ -averaged gradient from true gradient). Define Stτ := ∪τ−1

k=0St−k as the

set of clients selected in the last τ rounds, and gtτ := 1/|St
τ |
∑|St

τ |
i=1 gti(θ

t−1) as the average server
pseudo-gradient. The approximation of a gradient over the last τ rounds gtτ w.r.t. the true gradient
is quantified by the following:

E
[∥∥gtτ −∇f(θt−1)

∥∥2
]
≤ 8E

[(
|S | − |Stτ |
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

Proof of Lemma B.4 (Deviation of τ -averaged gradient from true gradient)

Let define Sd := S − Stτ and Si := S ∩ Stτ . Let us note that when all clients participate, i.e. Sd = ∅,
the claim is trivially true. For Sd ̸= ∅, we can expand the terms at the left-hand side using their
definitions as follows:

γt = E




∥∥∥∥∥∥
1

|Stτ |

|St
τ |∑

i=1

gti −
1

|S |

|S |∑

i=1

gti

∥∥∥∥∥∥

2

 (20)

= E




∥∥∥∥∥∥
∑

i∈Si

(
1

|Stτ |
− 1

|S |

)
gti −

∑

k∈Sd

1

|S |
gtk

∥∥∥∥∥∥

2

 (21)

lemma B.3
≤ 2



E




∥∥∥∥∥∥
∑

i∈Si

(
1

|Stτ |
− 1

|S |

)
gti

∥∥∥∥∥∥

2



︸ ︷︷ ︸
T3

+E




∥∥∥∥∥∥
∑

k∈Sd

1

|S |
gtk

∥∥∥∥∥∥

2



︸ ︷︷ ︸
T4




(22)

Let us consider first T3. We have:
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T3 = E




∥∥∥∥∥∥
∑

i∈Si

(
1

|Stτ |
− 1

|S |

)
gti

∥∥∥∥∥∥

2

 = E



(

1

|Stτ |
− 1

|S |

)2
∥∥∥∥∥∥
∑

i∈Si

gti

∥∥∥∥∥∥

2

 (23)

lemma B.3
≤ E



(

1

|Stτ |
− 1

|S |

)2

|Si|
∑

i∈Si

∥∥gti
∥∥2

 (24)

= E



(

1

|Stτ |
− 1

|S |

)2

|Si|
∑

i∈Si

∥∥gti −∇f(θt−1) +∇f(θt−1)
∥∥2

 (25)

lemma B.3
≤ 2E



(

1

|Stτ |
− 1

|S |

)2

|Si|
∑

i∈Si

(∥∥gti −∇f(θt−1)
∥∥2 +

∥∥∇f(θt−1)
∥∥2
)

 (26)

assumption 4.3
≤ 2E



(

1

|Stτ |
− 1

|S |

)2

|Si|


|Si|G2 +

∑

i∈Si

∥∥∇f(θt−1)
∥∥2



 (27)

Since the term∇f(θt−1) does not depend on the index i, we get

2E



(

1

|Stτ |
− 1

|S |

)2

|Si|


|Si|G2 +

∑

i∈Si

∥∥∇f(θt−1)
∥∥2



 (28)

= 2E

[(
1

|Stτ |
− 1

|S |

)2

|Si|
(
|Si|G2 + |Si|

∥∥∇f(θt−1)
∥∥2
)]

(29)

= 2E

[(
1

|Stτ |
− 1

|S |

)2

|Si|2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(30)

Now, note that Stτ ⊆ S =⇒ |Si| = |Stτ |. Therefore,

T3 ≤ 2E

[(
1

|Stτ |
− 1

|S |

)2

|Si|2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(31)

= 2E

[(
|S | − |Stτ |
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(32)
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Moving now to T4, we have:

T4 = E




∥∥∥∥∥∥
∑

k∈Sd

1

|S |
gtk

∥∥∥∥∥∥

2

 ≤ E



(

1

|S |

)2
∥∥∥∥∥∥
∑

k∈Sd

gtk

∥∥∥∥∥∥

2

 (33)

lemma B.3
≤ E



(

1

|S |

)2

|Sd|
∑

k∈Sd

∥∥gtk
∥∥2

 (34)

= E



(

1

|S |

)2

|Sd|
∑

k∈Sd

∥∥gtk −∇f(θt−1) +∇f(θt−1)
∥∥2

 (35)

lemma B.3
≤ 2E



(

1

|S |

)2

|Sd|
∑

k∈Sd

(∥∥gtk −∇f(θt−1)
∥∥2 +

∥∥∇f(θt−1)
∥∥2
)

 (36)

assumption 4.3
≤ 2E



(

1

|S |

)2

|Sd|


|Sd|G2 +

∑

k∈Sd

∥∥∇f(θt−1)
∥∥2



 (37)

=2E

[(
1

|S |

)2

|Sd|
(
|Sd|G2 + |Sd|

∥∥∇f(θt−1)
∥∥2
)]

(38)

=2E

[(
|Sd|
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(39)

(40)

Observing that |Sd| = |S | − |Stτ | we obtain:

T4 ≤ 2E

[(
|Sd|
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)
= E

[(
|S | − |Stτ |
|S |

)2
](

G2 +
∥∥∇f(θt−1)

∥∥2
)

(41)

Finally, by plugging (31) and (41) in (22) we obtain

ESt∼U(S )

[∥∥∥g(t)τ (θ)−∇f(θ)
∥∥∥
2
]
≤ 8ESt∼U(S )

[(
|S | − |Stτ |
|S |

)2
](

G2 + ∥∇f(θ)∥2
)

which concludes the proof.

Corollary B.5. Consider Lemma B.4 and further assume that, at each round of FL training, clients
are sampled according to a rule satisfying Assumption 4.4. Then, for any τ ∈

(
0, 1

C

]
:

E
[∥∥gtτ −∇f(θt−1)

∥∥2
]
≤ 8 (1− τC)

2
(
G2 +

∥∥∇f(θt−1)
∥∥2
)

Proof of Corollary B.5 This corollary follows from Lemma B.4, which states that

ESt∼U(S )

[∥∥∥g(t)τ (θ)−∇f(θ)
∥∥∥
2
]
≤ 8ESt∼U(S )

[(
|S | − |Stτ |
|S |

)2
](

G2 + ∥∇f(θ)∥2
)

To prove the results, we use (i) Assumption 4.4, (ii) the fact that |St| = |S |C ∀t and (iii) Stτ is union
of τ disjoint St sets. Using points (i)-(iii), and assuming τ ∈ [0, 1

C ], it follows that:
∥∥∥g(t)τ (θ)−∇f(θ)

∥∥∥
2

≤ 8 (1− τC)
2
(
G2 + ∥∇f(θ)∥2

)
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Lemma B.6 (Bounded Error of Momentum Update). Consider the update rule in Eq. (5), and
call g̃tτ = 1

τ

∑t
k=t−τ+1

1
|Sk|J

∑|Sk|
i=1

∑J
j=1 g̃

k,j
i (θk,j−1

i ) the server stochastic average pseudo-gradient
over the last τ global steps and the average server pseudo-gradient at current parameters as
gtτ := 1/|St

τ |
∑|St

τ |
i=1 gti(θ

t−1). Let also define the client drift Ut := 1
|S |J

∑J
j=1

∑|S |
i=1 E∥θ

t,j
i − θt−1∥2

and the error of server update Et := E∥∇f(θt−1)− m̃t+1
τ ∥2. Under Assumptions 4.1, 4.2 and 4.4, it

holds that:

E
[∥∥g̃tτ − gtτ

∥∥2
]
≤ 3

(
σ2

|Stτ |J
+

L2

τ

t∑

k=t−τ+1

Uk + 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1)

∥∥2
]
+ Ek

))

Proof of Lemma B.6 (Bounded error of delayed gradients)

Note that, by Assumption 4.4, |St| = |S |C ∀t, and that |S |Cτ = |Stτ |:

Λt = E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

g̃k,ji (θk,j−1
i )− gtτ

∥∥∥∥∥∥

2

 (42)

= E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
g̃k,ji (θk,j−1

i )− gi(θ
t−1)

)
∥∥∥∥∥∥

2

 (43)

= E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
g̃k,ji (θk,j−1

i )− gi(θ
k,j−1
i ) + gi(θ

k,j−1
i )− gi(θ

k−1) + gi(θ
k−1)− gi(θ

t−1)
)
∥∥∥∥∥∥

2



(44)
≤ 3 (T1 + T2 + T3)

T1 = E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
g̃k,ji (θk,j−1

i )− gi(θ
k,j−1
i )

)
∥∥∥∥∥∥

2



≤ 1

τ

σ2

|St|J
=

σ2

|Stτ |J
(45)

T2 = E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
gi(θ

k,j−1
i )− gi(θ

k−1)
)
∥∥∥∥∥∥

2

 (46)

≤ L2

|S |Jτ

t∑

k=t−τ+1

|S |∑

i=1

J∑

j=1

E
[∥∥θk,j−1 − θk−1

∥∥2
]

(47)

=
L2

τ

t∑

k=t−τ+1

Uk (48)

(49)
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T3 = E




∥∥∥∥∥∥
1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

(
gi(θ

k−1)− gi(θ
t−1)

)
∥∥∥∥∥∥

2

 (50)

≤ L2

|S |τ

t∑

k=t−τ+1

|S |∑

i=1

E
[∥∥θk−1 − θt−1

∥∥2
]

(51)

≤ L2

τ

t∑

k=t−τ+1

E
[∥∥θk−1 − θt−1

∥∥2
]

(52)

=
L2

τ

t∑

k=t−τ+1

(t− k)E
[∥∥θk − θk−1

∥∥2
]

(53)

≤ 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1

∥∥2
]
+ Ek

)
(54)

So, combining with lemma Lemmas B.8 and B.9 we have:

T∑

t=1

Λt ≤ 3

(
Tσ2

|Stτ |J
+ L2

T∑

t=1

Ut + 2L2η2(τ − 1)

T−1∑

t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]
+ Et

))
(55)

lemma B.8
= 3

(
Tσ2

|Stτ |J
+ 2L2η2(τ − 1)

T−1∑

t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]
+ Et

)
(56)

+ L2TJη2l β
2σ2

(
1 + 2J3η2l β

2L2
)

︸ ︷︷ ︸
T4

+2J2L2e2
T∑

t=1

Ξt)

)

lemma B.9
= 3

(
Tσ2

|Stτ |J
+ 2L2η2(τ − 1)

T−1∑

t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]
+ Et

)
(57)

+ T4 + 2J2L2e2
(
4η2l

(
(1− β)2 + e(βηLT )2

))
︸ ︷︷ ︸

α1

T−1∑

t=0

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2e2J2L2(2eη2l βτTGτ )︸ ︷︷ ︸
T5

)

= 3

(
Tσ2

|Stτ |J
+ T4 +

(
α1 + 2L2η2l (τ − 1)

)
︸ ︷︷ ︸

α2

T−1∑

t=1

(
E
[∥∥∇f(θt−1)

∥∥2
]
+ Et

)
+ T5

)
(58)

B.4 Convergence Proof

Lemma B.7 (Bounded variance of server updates). Under Assumptions 4.1 and 4.2, it holds that:

T∑

t=1

Et ≤
8

5β
E0 +

3

5

T−1∑

t=0

E
[∥∥∇f(θt−1)

∥∥2
]
+ 21β

σ2

|Stτ |J
T+ (59)

+
448

5
(ηlJL)

2(e3τT )Gτ + 6β

T∑

t=1

γt
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Proof.

Et := E
[∥∥∇f(θt−1)− m̃t+1

τ

∥∥2
]

(60)

= E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ ) + β(∇f(θt−1)− g̃tτ )
∥∥2
]

(61)

= E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ )
∥∥2
]
+ β2E

[∥∥(∇f(θt−1)− g̃tτ )
∥∥2
]

(62)

+ 2βE



〈
(1− β)(∇f(θt−1)− m̃t

τ ),∇f(θt−1)− 1

τ

t∑

k=t−τ+1

1

|Sk|J

|Sk|∑

i=1

J∑

j=1

gi(θ
k,j−1
i )

〉


(63)
Using the AM-GM inequality and Lemma B.3:

≤
(
1 +

β

2

)
E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ )
∥∥2
]
+ 2β2 (γt + Λt)+

+ 4βγt + 8β

(
L2

τ

t∑

k=t−τ+1

Uk + 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1)

∥∥2
]
+ Ek

))
(64)

lemma B.6
≤

(
1 +

β

2

)
E
[∥∥(1− β)(∇f(θt−1)− m̃t

τ )
∥∥2
]
+
(
2β2 + 4β

)
γt + 6β2 σ2

|Stτ |J
+ (65)

+
(
6β2 + 8β

)
(
L2

τ

t∑

k=t−τ+1

Uk + 2L2η2
t−1∑

k=t−τ+1

(
E
[∥∥∇f(θk−1)

∥∥2
]
+ Ek

))

︸ ︷︷ ︸
T1

≤ (1− β)2
(
1 +

β

2

)
E
[∥∥∇f(θt−2)− m̃t

τ +∇f(θt−1)−∇f(θt−2)
∥∥2
]
+ (66)

+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1

Applying the AM-GM inequality again:

≤ (1− β)2
(
1 +

β

2

)[(
1 +

β

4

)
E
[∥∥∇f(θt−2)− m̃t

τ

∥∥2
]
+ (67)

+

(
1 +

1

β

)
E
[∥∥∇f(θt−1)−∇f(θt−2)

∥∥2
] ]

+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1

assumption 4.2
≤ (1− β)2

(
1 +

β

2

)[(
1 +

β

4

)
Et−1+ (68)

+

(
1 +

1

β

)
L2E

[∥∥θt−1 − θt−2
∥∥2
] ]

+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1

≤ (1− β)2
(
1 +

β

2

)[(
1 +

β

4

)
Et−1+ (69)

+ 2

(
1 +

1

β

)
L2η2

(
E
[∥∥∇f(θt−2)

∥∥2
]
+ Et−1

)]
+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1

Where in the last inequality we used the fact that:
∥∥θt−1 − θt−2

∥∥2 ≤ 2η2
(∥∥∇f(θt−2)

∥∥2 +
∥∥∇f(θt−2)− m̃t

τ

∥∥2
)
.

Now notice that (1− β)2
(
1 + β

2

)(
1 + β

4

)
≤ (1− β) and that 2(1− β)2

(
1 + β

2

)(
1 + 1

β

)
≤ 2

β :

Et ≤ (1− β)Et−1 +
2

β
L2η2

(
E
[∥∥∇f(θt−2)

∥∥2
]
+ Et−1

)
+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1 (70)

=

(
1− β +

2

β
L2η2

)
Et−1 +

2

β
L2η2E

[∥∥∇f(θt−2)
∥∥2
]
+ 6β2 σ2

|Stτ |J
+ 6βγt + 14βT1 (71)

Define:
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• T2 := L2TJη2l β
2σ2

(
1 + 2J3η2l β

2L2
)

• T3 := 2e2J2L2(2eη2l βτTGτ )

• α1 := 2J2L2e2
(
4η2l

(
(1− β)2 + e(βηLT )2

))
+ 2L2η2l (τ − 1)

Summing up over T and substituting into T1 the expression for Ut:

T∑

t=1

Et ≤
(
1− β +

2

β
L2η2 + 14βα1

)

︸ ︷︷ ︸
α2

T−1∑

t=0

Et+ (72)

+

(
2

β
L2η2 + 14βα1

)

︸ ︷︷ ︸
α3

T−1∑

t=0

E
[∥∥∇f(θt−1)

∥∥2
]
+

+ 14β (T2 + T3)T + 6β2 σ2

|Stτ |J
T + 6β

T∑

t=1

γt

We now have that:

α2 :=

(
1− β +

2

β
L2η2 + 14β

[
2J2L2e2

(
4η2l

(
(1− β)2 + e(βηLT )2

))
+ 2L2η2l (τ − 1)

])

(73)

=

(
1− β +

2

β
L2η2 + 14β

[
8J2L2e2η2l

(
(1− β)2 + e(βηLT )2

)
+ 2L2η2l (τ − 1)

])
(74)

≤
(
1− β +

2

β
L2η2 + 112βe2(ηlJL)

2
[
(1− β)2 + (βηLT )2 + (τ − 1)

])
(75)

(76)

Now impose (ηlJL) ≤ (37
√
τβηLTe)

−1 and η ≤ β√
8L

. We have that:

α2 ≤
(
1− β +

2β

8
+

β

8

)
=

(
1− 5β

8

)
(77)

α3 ≤
3β

8
(78)

14βT2 = 14βL2TJη2l β
2σ2

(
1 + 2J3η2l β

2L2
)

(79)

= 14β3(ηlJL)
2

(
1

J
+ 2(ηlJLβ)

2

)
σ2T (80)

≤ 7β2 σ2

|Stτ |J
T (81)

Where in the last inequality we apply:

2β(ηlJL)
2

(
1

J
+ 2(ηlJLβ)

2

)
≤ 1

|Stτ |J

Plugging all the terms together we have:

T∑

t=1

Et ≤
(
1− 5

8β

) T−1∑

t=0

Et +
3β

8

T−1∑

t=0

E
[∥∥∇f(θt−1)

∥∥2
]
+ 13β2 σ2

|Stτ |J
T+ (82)

+ 56β(ηlJL)
2(e3τT )Gτ + 6β

T∑

t=1

γt

Rearranging the terms completes the proof.
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Lemma B.8. Under Assumptions 4.1 and 4.2, for Eq. (9) it holds that:

Ut ≤ 2J2e2Ξt + Jη2l β
2σ2(1 + 2J3η2l L

2β2) (83)
T∑

t=1

Ut ≤ TJη2l β
2σ2(1 + 2J3η2l β

2L2) + 2J2e2
T∑

t=1

Ξt (84)

Proof.

E
[∥∥∥θt,ji − θt−1

∥∥∥
2
]
≤ 2E



∥∥∥∥∥

j−1∑

k=0

ζt,ki

∥∥∥∥∥

2

+ 2jη2l β

2σ2 (85)

lemma B.3
≤ 2j

j−1∑

k=0

E
[∥∥∥ζt,ki

∥∥∥
2
]
+ 2jη2l β

2σ2 (86)

For any 1 ≤ k ≤ j − 1 ≤ J − 2, using ηL ≤ 1
βJ ≤

1
β(j+1) , we have:

E
[∥∥∥ζt,ki

∥∥∥
2
]
≤
(
1 +

1

j

)
E
[∥∥∥ζt,k−1

i

∥∥∥
2
]
+ (1 + j)E

[∥∥∥ζt,ki − ζt,k−1
i

∥∥∥
2
]

(87)

≤
(
1 +

1

j

)
E
[∥∥∥ζt,k−1

i

∥∥∥
2
]
+ (1 + j)η2l β

2L2

(
η2l β

2σ2 + E
[∥∥∥ζt,k−1

i

∥∥∥
2
])

(88)

≤
(
1 +

1

j

)
E
[∥∥∥ζt,k−1

i

∥∥∥
2
]
+ (1 + j)η4l β

4L2σ2 +
1

1 + j
E
[∥∥∥ζt,ki − ζt,k−1

i

∥∥∥
2
]

(89)

≤
(
1 +

2

j

)
E
[∥∥∥ζt,k−1

i

∥∥∥
2
]
+ (1 + j)η4l β

4L2σ2 (90)

(1+ 2
j )

j≤e2

≤ e2E
[∥∥∥ζt,0i

∥∥∥
2
]
+ 4j2η4l β

4L2σ2 (91)

So it holds that:

E
[∥∥∥θt,ji − θt−1

∥∥∥
2
]
≤ 2j2

(
e2E

[∥∥∥ζt,0i

∥∥∥
2
]
+ 4j2η4l L

2σ2

)
+ 2jη2l σ

2 (92)

= 2e2j2E
[∥∥∥ζt,0i

∥∥∥
2
]
+ 2jη2l σ

2β2(1 + 4j3η2l L
2β2) (93)

So, summing up over i and j:

Ut ≤
1

|S |J

|S |∑

i=1

J∑

j=1

2e2j2E
[∥∥∥ζt,0i

∥∥∥
2
]
+ 2jη2l σ

2β2(1 + 4j3η2l L
2β2) (94)

≤ 2J2e2Ξt + Jη2l β
2σ2(1 + 2J3η2l L

2β2) (95)

Finally, summing up over T :
T∑

t=1

Ut ≤ TJη2l β
2σ2(1 + 2J3η2l β

2L2)︸ ︷︷ ︸
T1

+2J2e2
T∑

t=1

Ξt (96)

≤ T1 + 2J2e2


4η2

(
(1− β)2 + e(βηLT )2

) T−1∑

t=1

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2eη2β2τTGτ︸ ︷︷ ︸
T2




(97)

≤ T1 + α1

T−1∑

t=1

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ α2T2 (98)
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Lemma B.9. Under Assumptions 4.1, 4.2 and 4.4, if 224e(ηlJL)2
(
(1− β)2 + e(βηLT )2

)
≤ 1, for

Eq. (11) it holds for t ≥ 0 that:

Ξt ≤
1

56eJ2L2

T−1∑

t=0

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2eη2l β
2τTGτ (99)

Proof. Note that ζt,0i = −ηl
(
(1− β)m̃t

τ + βgi(θ
t−1)

)
,

1

|S |

|S |∑

i=1

∥∥∥ζt,0i

∥∥∥
2

≤ 2η2l


(1− β)2

∥∥m̃t
τ

∥∥2 + β2

|S |

|S |∑

i=1

∥∥gi(θt−1)
∥∥2

 (100)

For any a > 0, considering each client participates to the train every τ = 1
C rounds:

E
[∥∥gi(θt−1)

∥∥2
]
= E

[∥∥gi(θt−1)− gi(θ
t−τ−1) + gi(θ

t−τ−1)
∥∥2
]

(101)

lemma B.3
≤ (1 + a)E

[∥∥gi(θt−τ−1)
∥∥2
]
+ (102)

+

(
1 +

1

a

)
E
[∥∥gi(θt−1)− gi(θ

t−τ−1)
∥∥2
]

≤ (1 + a)E
[∥∥gi(θt−τ−1)

∥∥2
]
+ (103)

+

(
1 +

1

a

)
L2E

[∥∥θt−1 − θt−τ−1
∥∥2
]

(104)

≤ (1 + a)E
[∥∥gi(θt−τ−1)

∥∥2
]
+ (105)

+ 2

(
1 +

1

a

)
L2η2τ

τ∑

k=1

(
Et−k + E

[∥∥∇f(θt−k−1)
∥∥2
])

(106)

≤ (1 + a)
t
τ E
[∥∥gi(θti−1)

∥∥2
]
+ (107)

+ 2

(
1 +

1

a

)
L2η2τ

t
τ∑

s=1

τ∑

k=1

(
Esτ−k + E

[∥∥∇f(θsτ−k)
∥∥2
])

(1 + a)
t
τ −s

≤ (1 + a)
t
τ E
[∥∥gi(θti−1)

∥∥2
]
+ (108)

+ 2

(
1 +

1

a

)
L2η2τ

t−1∑

k=1

(
Ek + E

[∥∥∇f(θk−1)
∥∥2
])

(1 + a)
t
τ

Where ti := mint∈[T ](t s.t. i ∈ St). Now take a = τ
t :

E
[∥∥gi(θt−1)

∥∥2
]
≤ eE

[∥∥gi(θti−1)
∥∥2
]
+ (109)

+ 2eη2L2τ

(
t

τ
+ 1

) t−1∑

k=1

(
Ek + E

[∥∥∇f(θk−1)
∥∥2
])
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So:
T∑

t=1

Ξt ≤
T∑

t=1

2η2l


2(1− β)2

(
Et−1 + E

[∥∥∇f(θt−2
∥∥2
])

+
β2

|S |

|S |∑

i=1

E
[∥∥gi(θt−1)

∥∥2
]

 (110)

≤
T∑

t=1

4η2l (1− β)2
(
Et−1 + E

[∥∥∇f(θt−2)
∥∥2
])

+ (111)

+ 2η2l β
2

T∑

t=1


 e

|S |

|S |∑

i=1

E
[∥∥gi(θti−1)

∥∥2
]
+ 2eη2l L

2τ

(
t

τ
+ 1

) t−1∑

k=1

(
Ek + E

[∥∥∇f(θt−1
∥∥2
])



≤ 4η2l (1− β)2
T∑

t=1

(
Et−1 + E

[∥∥∇f(θt−2)
∥∥2
])

+ (112)

+ 2η2l β
2

(
eT

τ∑

t=1

Gt + 2e(ηLT )2
T−1∑

t=1

(
Et + E

[∥∥∇f(θt−1)
∥∥2
]))

Let us define Gτ := maxt∈[1,τ ] Gt, with Gt :=
1

|St|
∑|St|

i=1 E
[∥∥gi(θt−1)

∥∥2
]
. We have that:

T∑

t=1

Ξt ≤ 4η2l
(
(1− β)2 + e(βηLT )2

) T−1∑

t=0

(
Et + E

[∥∥∇f(θt−1)
∥∥2
])

+ 2eη2l β
2τTGτ (113)

Applying the upper bound of ηl completes the proof.

Lemma B.10 (Cheng et al. [2024]). Under Assumption 4.2, if ηL ≤ 1
24 , the following holds for all

t ≥ 0:

E
[
f(θt)

]
≤ E

[
f(θt−1)

]
− 11η

24
E
[∥∥∇f(θt−1)

∥∥2
]
+

13η

24
Et (114)

Proof. Since f is L-smooth, we have:

f(θt) ≤ f(θt−1) +
〈
∇f(θt−1), θt − θt−1

〉
+

L

2

∥∥θt − θt−1
∥∥2 (115)

= f(θt−1)− η
∥∥∇f(θt−1

∥∥2 + η
〈
∇f(θt−1),∇f(θt−1)− m̃t+1

τ

〉
+

Lη2

2

∥∥m̃t+1
τ

∥∥2 (116)

Since θt = θt−1 − ηm̃t+1
τ , using Young’s inequality and imposing ηL ≤ 1

24 , we further have:

f(θt) ≤ f(θt−1)− η

2

∥∥∇f(θt−1)
∥∥2 + η

2

∥∥∇f(θt−1)− m̃t+1
τ

∥∥2 + (117)

+ Lη2
(∥∥∇f(θt−1)

∥∥2 +
∥∥∇f(θt−1)− m̃t+1

τ

∥∥2
)

≤ f(θt−1)− 11η

24

∥∥∇f(θt−1)
∥∥2 + 13η

24

∥∥∇f(θt−1)− m̃t+1
τ

∥∥2 (118)

Proof of Theorem 4.6 (Convergence rate of GHBM for non-convex functions)

Under Assumptions 4.1, 4.2 and 4.4, if we take:

m̃0
τ = 0, β = min

{
1,

√
|S |JL∆
σ2T

}
, η = min

{
1

24L
,

β√
8L

}
(119)

ηlJL ≲ min

{
1,

1

βηL
√
τT

,

√
L∆

β3τGτT
,

1√
β|S |

,

(
1

β3|S |J

) 1
4

}

then GHBM with optimal τ = 1
C converges as:

1

T

T∑

t=1

E
[∥∥∇f(θt−1)

∥∥2
]
≲

L∆

T
+

√
L∆σ2

|S |JT
(120)
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Proof. Combining the results of Lemmas B.7 and B.10, we have that:

T∑

t=1

(
E
[
f(θt

]
− E

[
f(θt−1

])
≤ −11η

24

T∑

t=1

E
[∥∥∇f(θt−1

∥∥2
]
+

13η

24

T∑

t=1

Et (121)

1

η
E
[
f(θt−1 − f(θ0)

]
≤ 26

30β
E0 −

1

15

T∑

t=1

E
[∥∥∇f(θt−1

∥∥2
]
+ 32β

σ2

|Stτ |J
T+ (122)

+
448

5
(ηlJL)

2(e3τT )Gτ + 6β

T∑

t=1

γt (123)

Imposing τ = 1
C , by Corollary B.5 we have that γt = 0 and Stτ = S ∀t. Also, noticing that m̃0

τ = 0

implies E0 ≤ 2L
(
f(θ0)− f∗) = 2L∆, we have that:

1

T

T∑

t=1

E
[∥∥∇f(θt−1)

∥∥2
]
≲

L∆

ηLT
+
E0
βT

+ (ηlJLβ)
2τGτ + β

σ2

|S |J
(124)

≲
L∆

T
+

2L∆

βT
+ (ηlJLβ)

2τGτ + β
σ2

|S |J
(125)

≲
L∆

T
+

2L∆

βT
+ β2

(
L∆

β3τGτT

)
τGτ + β

σ2

|S |J
(126)

≲
L∆

T
+

L∆

βT
+ β

σ2

|S |J
(127)

≲
L∆

T
+

√
L∆σ2

|S |JT
(128)

where the fourth inequality follows from applying the upper bound ηlJL ≤
√

L∆
β3τGτT

on the third
term of Eq. (125).
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C Experimental Setting
C.1 Datasets and Models
CIFAR-10/100. We consider CIFAR-10 and CIFAR-100 to experiment with image classification
tasks, each one respectively having 10 and 100 classes. For all methods, training images are
preprocessed by applying random crops, followed by random horizontal flips. Both training and test
images are finally normalized according to their mean and standard deviation. As the main model for
experimentation, we used a model similar to LENET-5 as proposed in [Hsu et al., 2020]. To further
validate our findings, we also employed a RESNET-20 as described in [He et al., 2015], following the
implementation provided in [Idelbayev, 2021]. Since batch normalization Ioffe and Szegedy [2015]
layers have been shown to hamper performance in learning from decentralized data with skewed label
distribution [Hsieh et al., 2020], we replaced them with group normalization [Wu and He, 2018],
using two groups in each layer. For a fair comparison, we used the same modified network also in
centralized training. We report the result of centralized training for reference in Table 5: as per the
hyperparameters, we use 64 for the batch size, 0.01 and 0.1 for the learning rate respectively for the
LENET and the RESNET-20 and 0.9 for momentum. We trained both models on both datasets for
150 epochs using a cosine annealing learning rate scheduler.

Table 5: Test accuracy (%) of centralized train-
ing over datasets and models used. Results are
reported in term of mean top-1 accuracy over the
last 10 epochs, averaged over 5 independent runs.

DATASET ACC. CENTRALIZED (%)

CIFAR-10 W/ LENET 86.48±0.22

CIFAR-10 W/ RESNET-20 89.05±0.44

CIFAR-100 W/ LENET 57.00±0.09

CIFAR-100 W/ RESNET-20 62.21±0.85

SHAKESPEARE 52.00±0.16

STACKOVERFLOW 28.50±0.25

GLDV2 74.03±0.15

Shakespeare. The Shakespeare language
modeling dataset is created by collating the col-
lective works of William Shakespeare and orig-
inally comprises 715 clients, with each client
denoting a speaking role. However, for this
study, a different approach was used, adopting
the LEAF [Caldas et al., 2019] framework to
split the dataset among 100 devices and restrict
the number of data points per device to 2000.
The non-IID dataset is formed by assigning each
device to a specific role, and the local dataset
for each device contains the sentences from that
role. Conversely, the IID dataset is created by randomly distributing sentences from all roles across
the devices.

For this task, we have employed a two-layer Long Short-Term Memory (LSTM) classifier, consisting
of 100 hidden units and an 8-dimensional embedding layer. Our objective is to predict the next
character in a sequence, where there are a total of 80 possible character classes. The model takes in a
sequence of 80 characters as input, and for each character, it learns an 8-dimensional representation.
The final output of the model is a single character prediction for each training example, achieved
through the use of 2 LSTM layers and a densely-connected layer followed by a softmax. This model
architecture is the same used by [Li et al., 2020, Acar et al., 2021].

We report the result of centralized training for reference in Table 5: we train for 75 epochs with
constant learning rate, using as hyperparameters 100 for the batch size, 1 for the learning rate, 0.0001
for the weight decay and no momentum.

StackOverflow. The Stack Overflow dataset is a language modeling corpus that comprises questions
and answers from the popular Q&A website, StackOverflow. Initially, the dataset consists of 342477
unique users but for, practical reasons, we limit our analysis to a subset of 40k users. Our goal is to
perform the next-word prediction on these text sequences. To achieve this, we utilize a Recurrent
Neural Network (RNN) that first learns a 96-dimensional representation for each word in a sentence
and then processes them through a single LSTM layer with a hidden dimension of 670. Finally, the
model generates predictions using a densely connected softmax output layer. The model and the
preprocessing steps are the same as in [Reddi et al., 2021]. We report the result of centralized training
for reference in Table 5: as per the hyperparameters, we use 16 for the batch size, 10−1/2 for the
learning rate and no momentum or weight decay. We train for 50 epochs with a constant learning rate.
Given the size of the test dataset, testing is conducted on a subset of them made by 10000 randomly
chosen test examples, selected at the beginning of training.

Large-scale Real-world Datasets. As large-scale real-world datasets for our experimentation, we
follow Hsu et al. [2020]. GLDV2 is composed of ≈ 164k images belonging to ≈ 2000 classes,
realistically split among 1262 clients. INATURALIST is composed of ≈ 120k images belonging to
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≈ 1200 classes, split among 9275 clients. These datasets are challenging to train not only because of
their inherent complexity (size of images, number of classes) but also because usually at each round
a very small portion of clients is selected. In particular, for GLDV2 we sample 10 clients per round,
while for INATURALIST we experiment with different participation rates, sampling 10, 50, or 100
clients per round. In the main paper, we choose to report the participation rate instead of the number
of sampled clients to better highlight that the tested scenarios are closer to a cross-device setting,
which is the most challenging for algorithms based on client participation, like SCAFFOLD and
ours. As per the model, for both datasets, we use a MobileNetV2 pretrained on ImageNet.

Details on the Experiment in Fig. 5. In the main text (see Sec. 4.1) we provide an experiment
to illustrate the convergence rate of GHBM (see Fig. 5). The learning problem consists in a linear
regression of the coefficients (a, b, c) ∈ R of a quadratic function f(x) = ax2+bx+c. The synthetic
dataset is made of 6400 observations of the above function (with a = 10, b = 5, c = −1) in the
range x ∈ [−10, 10]. The dataset is split among K = 50 clients each one having 128 samples, and
non-iidness is simulated by splitting the domain into equally big disjoint subsets, and having each
client the observation of that domain.

Table 6: Details about datasets’ split used for our experiments
CIFAR-10 CIFAR-100 SHAKESPEARE STACKOVERFLOW GLDV2 INATURALIST

Clients 100 100 100 40.000 1262 9275
Number of clients per round 10 10 10 50 10 {10, 50, 100}
Number of classes 10 100 80 10004 2028 1203
Avg. examples per client 500 500 2000 428 130 13
Number of local steps 8 8 20 27 13 2
Average participation (round no.) 1k 1k 25 1.5 40 {5, 27, 54}

C.2 Simulating Heterogeneity
For CIFAR-10/100 we simulate arbitrary heterogeneity by splitting the total datasets according to
a Dirichlet distribution with concentration parameter α, following Hsu et al. [2020]. In practice,
we draw a multinomial qi ∼ Dir(αp) from a Dirichlet distribution, where p describes a prior class
distribution over N classes, and α controls the heterogeneity among all clients: the greater α the
more homogeneous the clients’ data distributions will be. After drawing the class distributions qi, for
every client i, we sample training examples for each class according to qi without replacement.

C.3 Evaluating Communication and Computational Cost
In the main paper we showed a comparison in communication and computational cost of state-of-art
FL algorithms compared to our solutions GHBM and FEDHBM: in this section we detail how those
results in table Tab. 3 have been obtained. We follow a three-step procedure:

1. For each algorithm a, we calculate the minimum number of rounds ra to reach the perfor-
mance of FEDAVG, the total amount of bytes exchanged ba in the whole training budget
(number of rounds, as described in Appendix C.5) and the measure the corresponding total
training time ta. In this way, the different requirements in communication and computation
of each algorithm are taken into account for the next steps.

2. We calculate the actual communication and computational requirements as (tba = ba ·
sa, tta = ta · sa), where sa = ra

T is the speedup of the algorithm w.r.t. FEDAVG. For those
competitor algorithms that did not reach the target performance (e.g. MIMEMOM) in the
training budget T , we conservatively consider ra = T . In this way, the convergence speed
of each algorithm is taken into account for determining the actual amount of computation
needed.

3. We complement the above information with with a reduction/increase factor w.r.t. FEDAVG,
calculated as rtba =

(
1− tba

tbFEDAVG

)
and rtta =

(
1− tta

ttFEDAVG

)
and expressed as a percent-

age. A cost reduction (i.e. rtba > 0 or rtta > 0) is indicated with ↓, while a cost increase
(i.e. rtba < 0 or rtta < 0) is indicated with ↑. This gives a practical indication of how
much communication/computation have been saved in choosing the algorithm at hand as an
alternative for FEDAVG.
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Table 7: Hyper-parameter search grid for each combination of method and dataset (for α = 0). The
best values are indicated in bold.

METHOD HPARAM CIFAR-10/100 SHAKESPEARE STACKOVERFLOW

LENET RESNET-20

ALL FL wd [0.001, 0.0008, 0.0004] [0.0001, 0.00001] [0, 0.0001, 0.00001] [0, 0.0001, 0.00001]
B 64 64 100 16

FEDAVG
η [2, 1.5, 1, 0.5, 0.1] [1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [1, 0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FEDPROX
η [2, 1.5, 1, 0.5, 0.1] [1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [1, 0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
µ [1, 0.1, 0.01, 0.001] [1, 0.1, 0.01, 0.001] [0.1, 0.01, 0.001, 0.0001, 0.00001] [0.1, 0.01, 0.001, 0.0001]

SCAFFOLD η [1.5, 1, 0.5, 0.1] [1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FEDDYN
η [1.5, 1, 0.5, 0.1] [1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.1, 0.01, 0.005] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
α [0.1, 0.01, 0.001, 0.0001] [0.1, 0.01, 0.001, 0.0001] [0.1, 0.009, 0.001] [0.1, 0.009, 0.001]

ADABEST
η [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.1, 0.05, 0.01, 0.005] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
α [0.1, 0.01, 0.001, 0.0001] [0.1, 0.01, 0.001, 0.0001] [0.1, 0.009, 0.001] [0.1, 0.009, 0.001]

MIME
η [2, 1.5, 1, 0.5, 0.1] [2, 1.5, 1, 0.1] [1.5, 1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]

FEDAVGM
η [1, 0.5, 0.1, 0.05, 0.01] [1, 0.1, 0.05] [1, 0.5, 0.1] [1.5, 1, 0.5, 0.1]
ηl [0.5, 0.1, 0.05, 0.01, 0.005] [1, 0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.99, 0.9, 0.85, 0.8] [0.99, 0.9, 0.85, 0.8] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85]

FEDACG

η [1, 0.5, 0.1, 0.05, 0.01] [1, 0.1, 0.05] [0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.1]
ηl [0.5, 0.1, 0.05, 0.01, 0.005] [0.5, 0.1, 0.01] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
λ [0.99, 0.9, 0.85] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85]
β [0.1, 0.01, 0.001] [0.1, 0.01, 0.001] [0.1, 0.01, 0.001, 0.0001, 0.00001] [0.1, 0.01, 0.001, 0.0001]

MIMEMOM
η [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.3, 0.1, 0.05] [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.5, 0.1, 0.05, 0.03, 0.01, 0.005] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1, 0.05]
β [0.99, 0.95, 0.9, 0.85, 0.8] [0.99, 0.95, 0.9, 0.85, 0.8] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85]

MIMELITEMOM
η [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.3, 0.1] [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01, 0.005] [0.1, 0.05, 0.03, 0.01, 0.005] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.3, 0.1, 0.05]
β [0.99, 0.9, 0.85, 0.8] [0.99, 0.95, 0.9, 0.85, 0.8] [0.99, 0.9, 0.85] [0.99, 0.9, 0.85]

FEDCM
η [1, 0.5, 0.1, 0.05] [1.5, 1, 0.5, 0.1] [1, 0.5, 0.1, 0.05] -
ηl [1, 0.5, 0.1, 0.05] [1, 0.5, 0.1, 0.5] [1.5, 1, 0.5, 0.1] -
α [0.05, 0.1, 0.5] [0.05, 0.1, 0.5] [0.05, 0.1, 0.5] -

GHBM (ours)
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [0.9] [0.9] [0.9] [0.9]
τ [5, 10, 20, 40] [5, 10, 20, 40] [5, 10, 20, 40] [5, 10, 20, 40]

FEDHBM(ours)
η [1, 0.5, 0.1] [1, 0.1] [1, 0.5, 0.1] [1, 0.5, 0.1]
ηl [0.1, 0.05, 0.01] [0.1, 0.01] [1, 0.5, 0.1] [1, 0.5, 0.3, 0.1]
β [1, 0.99, 0.9] [1, 0.99, 0.9] [1, 0.99, 0.9] [1, 0.99, 0.9]

C.4 Hyperparameters
For ease of consultation, we report the hyper-parameters grids as well as the chosen values in Table 7.
For GLDV2 and INATURALIST we only test the best SOTA algorithms: FEDAVG and FEDAVGM as
baselines, SCAFFOLD and MIMEMOM.

MOBILENETV2. For all algorithms we perform E = 5 local epochs, and searched η ∈
{0.1, 1} and ηl ∈ {0.01, 0.1}, and found η = 0.1, ηl = 0.1 works best for FEDAVGM, while
η = 1, ηl = 0.1 works best for the others. For INATURALIST, we had to enlarge the grid
for SCAFFOLD and MIMEMOM: for both we searched η ∈ {10−3/2, 10−1, 10−1/2, 1} and
ηl ∈ {10−2, 10−3/2, 10−1, 10−1/2}.

VIT-B\16. For all algorithms we perform E = 5 local epochs, and searched η ∈ {0.1, 1} and
ηl ∈ {0.03, 0.01} following [Steiner et al., 2022], and found η = 0.1, ηl = 0.03 works best for
FEDAVGM, while η = 1, ηl = 0.03 works best for the others.

C.5 Implementation Details
We implemented all the tested algorithms and training procedures in a single codebase, using
PYTORCH 1.10 framework, compiled with CUDA 10.2. The federated learning setup is simulated by
using a single node equipped with 11 Intel(R) Core(TM) i7-6850K CPUS and 4 NVIDIA GeForce
GTX 1070 GPUS. For the large-scale experiments we used the computing capabilities offered by
LEONARDO cluster of CINECA-HPC, employing nodes equipped with 1 CPU Intel(R) Xeon
8358 32 core, 2,6 GHz CPUS and 4 NVIDIA A100 SXM6 64GB (VRAM) GPUS. The simulation
always runs in a sequential manner (on a single GPU) the parallel client training and the following
aggregation by the central server.

Practicality of Experiments. Under the above conditions, a single FEDAVG experiment on CIFAR-
100 takes ≈ 02:05 hours (CNN, with T = 20.000) and ≈ 03:36 hours (RESNET-20, with T =
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Figure 6: Reusing old gradients is beneficial, despite the introduced lag. The plot shows the
empirical measure of the deviation between (i) the average of the last τ server pseudo-gradient
(at different parameters) and (ii) the server-pseudo gradient calculated over all the clients (at the
same parameters), varying τ , on CIFAR-100 with RESNET-20, in non-iid (α = 0, left) and iid
(α = 10.000, right) settings.
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Figure 7: GHBM largely outperforms state-of-the-art methods: the plots show the test accuracy
(%) over rounds, with RESNET-20 on CIFAR-100, both in NON-IID (left) and IID (middle) settings,
and on STACKOVERFLOW (right). GHBM always displays much faster convergence and higher
accuracy, even when distributions are IID, confirming robustness w.r.t. heterogeneity and better
dependency on stochastic noise.

10.000). For SCAFFOLD we always use the "option II" of their algorithm [Karimireddy et al.,
2020] to calculate the client controls, incurring almost no overhead in our simulations. We found
that using "option I" usually degrades both final model quality and requires almost double the
training time, due to the additional forward+backward passes. Conversely, all MIME’s methods
incur a significant overhead due to the additional round needed to calculate the full-batch gradients,
taking ≈ 10:40 hours for CIFAR-100 with RESNET-20. On SHAKESPEARE and STACKOVERFLOW,
FEDAVG takes ≈ 22 minutes and ≈ 3.5 hours to run respectively T = 250 and T = 1500 rounds.

C.6 Additional Experiments
Table 8: Test accuracy (%) comparison of SOTA FL
algorithms in a controlled setting. Best result is in
bold, second best is underlined.

METHOD
CIFAR-10 (RESNET-20) CIFAR-10 (CNN)

NON-IID IID NON-IID IID

FEDAVG 61.0±1.0 86.4±0.2 66.1±0.3 83.1±0.3

FEDPROX 61.0±1.8 86.7±0.2 66.1±0.3 83.1±0.3

SCAFFOLD 71.8±1.7 86.8±0.3 74.8±0.2 82.9±0.2

FEDDYN 60.2±3.0 87.0±0.3 70.9±0.2 83.5±0.1

ADABEST 73.6±3.0 86.7±0.5 66.1±0.3 83.1±0.4

MIME 53.7±2.9 86.7±0.1 75.1±0.5 83.1±0.2

FEDAVGM 66.0±2.2 87.7±0.3 67.6±0.3 83.6±0.3

FEDCM(GHBM τ=1) 65.2±3.2 87.1±0.3 69.0±0.3 83.4±0.3

FEDADC(GHBM τ=1) 65.7±3.0 87.1±0.2 66.1±0.3 83.4±0.3

MIMEMOM 69.2±3.6 88.0±0.1 80.9±0.4 83.1±0.2

MIMELITEMOM 57.0±0.9 88.0±0.4 78.8±0.4 83.2±0.3

LOCALGHBM (ours) 80.6±0.3 88.8±0.1 81.1±0.3 83.7±0.1

FEDHBM (ours) 83.4±0.3 89.2±0.1 81.7±0.1 83.8±0.1

Experiments on CIFAR-10 Table 8 re-
ports the results of experiments analogous
to the ones presented in Tab. 1. For
the main paper, we report experiments on
CIFAR-100, as it is a more complex dataset
and often a more reliable testing ground
for FL algorithms. Indeed, sometimes al-
gorithms perform well on CIFAR-10 but
worse on CIFAR-100 (as for the already
discussed case of FEDDYN). Results in Tab.
8 confirm the findings of the main paper:
under extreme heterogeneity, some algo-
rithms behave inconsistently across CNN
and RESNET-20 (notice that FEDDYN and
MIMELITEMOM only with CNN improve
FEDAVG. Conversely, LOCALGHBM and
FEDHBM both consistently improve the
state-of-art by a large margin.

30



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Theoretical and experimental claims are reflected in sections 4 and 5

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Pros and cons of the proposed algorithm are discussed throughout the paper

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

31



3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] ,

Justification: Assumptions are stated in section 4 and full proofs are presented in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiments are fully reproducible, since formal algorithmic descriptions are
provided (see Algorithm 1), and full details about training (datasets, models, hyperparame-
ters) are detailed in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The link to code is attached to the manuscript. All datasets used are already
publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Full details in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are presented with measure of standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Complete details are provided in Appendix C.5

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:
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Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: The paper presents a new optimization algorithm for FL

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification:
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Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification:

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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