
Robust Federated Learning under Heterogeneous Data with Generalized Heavy-Ball Momentum

Riccardo Zaccone*

Politecnico di Torino

riccardo.zaccone@polito.it

Sai Praneeth Karimireddy

USC Viterbi School of Engineering

karimire@usc.edu

Carlo Masone

Politecnico di Torino

carlo.masone@polito.it

Marco Ciccone

Vector Institute

marco.ciccone@vectorinstitute.ai

Abstract

Reliable machine learning requires robustness to *unreliable* and *heterogeneous* data, a challenge that is particularly acute in Federated Learning (FL). Standard optimization methods degrade under the combined effects of data heterogeneity and partial client participation, while existing momentum variants introduce biased updates that undermine reliability. We propose a novel *Generalized Heavy-Ball Momentum* (GHBM), a principled optimization method that eliminates this bias and provides convergence guarantees even under *unbounded heterogeneity* and *cyclic participation*. We further develop adaptive, communication-efficient variants that retain the efficiency of FEDAVG. Extensive experiments on vision and language benchmarks confirm that GHBM substantially improves robustness and reliability compared to state-of-the-art FL methods, particularly in large-scale settings with limited participation. These results establish GHBM as a reliable foundation for distributed learning in environments with imperfect data².

1 Introduction

Machine learning systems deployed in the real world must contend with **unreliable data sources**: information is often **heterogeneous across users, incomplete due to limited participation, and subject to distribution shift or noise**. Ensuring **reliable training** under such conditions is a key challenge for the broader deployment of trustworthy ML.

Federated Learning (FL) [McMahan et al., 2017] provides a natural framework for this setting, enabling a central server to train a shared model by orchestrating local training across decentralized clients without requiring raw data sharing. While this setup offers important privacy advantages, it also introduces severe **reliability challenges**. Local datasets reflect unique characteristics of each client, and optimization restricted to personal data causes **statistical heterogeneity**, which in turn leads to *client drift* when synchronization is infrequent [Karimireddy et al., 2020]. These issues become even more acute under *partial client participation*, where only a fraction of clients contribute updates at each round.

A variety of methods have been proposed to mitigate heterogeneity, such as control-variates in SCAFFOLD [Karimireddy et al., 2020] or ADMM-based alignment in FEDDYN [Acar et al., 2021]. While theoretically well-motivated, these approaches often lack robustness in practice, exhibiting **instability or slow convergence under extreme heterogeneity, sparse participation, or large-scale**

*Corresponding author

²Code is available at <https://github.com/RickZack/GHBM>

deployments [Varno et al., 2022]. Momentum methods, which are widely effective in centralized training, have also been adapted to FL [Hsu et al., 2019, Ozfatura et al., 2021, Xu et al., 2021, Karimireddy et al., 2021]. However, while their advantages are established under full participation [Cheng et al., 2024], we show that they become biased and unreliable in the presence of heterogeneity and partial participation, preventing them from correcting client drift effectively.

Contributions. In this work, we address these limitations and advance the reliability of FL under unreliable data sources:

- We propose a novel momentum formulation, *Generalized Heavy-Ball Momentum* (GHBM), which eliminates the bias of classical momentum and yields communication-efficient variants that remain robust in the presence of extreme heterogeneity.
- We establish **non-convex** convergence guarantees for GHBM under cyclic partial participation, showing reliability even under unbounded data heterogeneity.
- Through extensive experiments on vision and language tasks, we demonstrate that existing methods break down in unreliable data regimes, while GHBM consistently achieves faster convergence and higher model quality, establishing it as a reliable foundation for federated learning in large-scale, imperfect data environments.

2 Related works

The Problem of Statistical Heterogeneity. The detrimental effects of non-iid data in FL were first observed by [Zhao et al., 2018], who proposed mitigating performance loss by broadcasting a small portion of public data to reduce the divergence between clients’ distributions. Recognizing weight divergence as a source of performance loss, FEDPROX [Li et al., 2020] adds a regularization term to penalize divergence from the global model. Other works [Kopparapu and Lin, 2020, Zaccone et al., 2022, Zeng et al., 2022, Calderola et al., 2021] explored grouping clients based on their data distribution to mitigate the challenges of aggregating divergent models.

SVRG and ADMM in FL. Stochastic variance reduction techniques have been applied in FL [Chen et al., 2021, Li et al., 2019] with SCAFFOLD Karimireddy et al. [2020] providing for the first time convergence guarantees for arbitrarily heterogeneous data. Besides doubling the communication to exchange the control variates, and it has been experimentally proved not robust enough to handle large-scale scenarios akin to cross-device FL [Reddi et al., 2021, Karimireddy et al., 2021]. Similarly, SCAFFOLD-M [Cheng et al., 2024] integrates classical momentum into SCAFFOLD. However, it still relies on variance reduction to tackle heterogeneity, inheriting and the same limitations of SCAFFOLD, as the ineffectiveness of variance reduction in deep learning [Defazio and Bottou, 2019]. Other methods are based on the Alternating Direction Method of Multipliers [Chen et al., 2022, Gong et al., 2022, Wang et al., 2022]. In particular, FEDDYN[Acar et al., 2021] dynamically modifies the loss function such that the model parameters converge to stationary points of the global empirical loss. Besides enjoying similar theoretical guarantees than SCAFFOLD, in practical cases it has displayed problems in dealing with pathological non-iid settings [Varno et al., 2022].

Use of Momentum as Local Correction. As a first attempt, Hsu et al. [2019] adopted momentum at server-side to reduce the impact of heterogeneity. However, it has been proven of limited effectiveness under high heterogeneity, because the drift happens at the client level. This motivated later approaches that apply server momentum at each local step [Ozfatura et al., 2021, Xu et al., 2021], and the more general approach by Karimireddy et al. [2021] to adapt any centralized optimizer to cross-device FL. Rather differently from previous works, we propose a novel formulation of momentum specifically designed to take incorporate the descent information of clients selected at past τ rounds, which generalizes the classical heavy-ball [Polyak, 1964]. Most notably, we prove that our GHBM algorithm converges under arbitrary heterogeneity in cyclic partial participation - the first momentum method achieving this result without relying on other mechanisms like variance reduction. Extended discussion of related works is deferred to Appendix A.1.

3 Method

3.1 Setup

In FL a server and a set \mathcal{S} of clients collaboratively solve a learning problem. At each round $t \in [T]$, a fraction of $C \in (0, 1]$ clients $\mathcal{S}^t \subseteq \mathcal{S}$ is selected. Each client $i \in \mathcal{S}^t$ receives the server model $\theta_i^{t,0} \equiv \theta^{t-1}$, and performs J local optimization steps, using stochastic gradients $\tilde{g}_i^{t,j}$ evaluated on

local parameters $\theta_i^{t,j-1}$ and a batch $d_{i,j}$, sampled from its local dataset \mathcal{D}_i . In this work we formalize the learning objective as a finite-sum optimization problem, where each function is the local clients' loss function with only access to that client's stochastic samples:

$$\arg \min_{\theta \in \mathbb{R}^d} \left[f(\theta) := \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} (f_i(\theta) := \mathbb{E}_{d_i \sim \mathcal{D}_i} [f_i(\theta; d_i)]) \right] \quad (1)$$

3.2 Generalized Heavy-Ball Momentum (GHBM)

In this section, we introduce our novel formulation for momentum, which we call *Generalized Heavy-Ball Momentum* (GHBM). First, we recall that classical momentum consists of a moving average of past gradients, and it is commonly expressed as in Eq. (2), which can be equivalently expressed in a version commonly referred to as *heavy-ball momentum* in Eq. (3) (see Lemma B.1):

HEAVY-BALL MOMENTUM (HBM)

$$\begin{aligned} \tilde{m}^t &\leftarrow \beta \tilde{m}^{t-1} + \tilde{g}^t(\theta^{t-1}; \mathcal{D}^t) \\ \theta^t &\leftarrow \theta^{t-1} - \eta \tilde{m}^t \end{aligned} \quad (2) \quad \begin{aligned} \tilde{m}^t &\leftarrow (\theta^{t-1} - \theta^{t-2}) \\ \theta^t &\leftarrow \theta^{t-1} - \eta \tilde{g}^t(\theta^{t-1}; \mathcal{D}^t) + \beta \tilde{m}^t \end{aligned} \quad (3)$$

Overcoming the limitations of classical momentum in FL. The gradient referred to above as \tilde{g}^t is built from updates of clients $i \in \mathcal{S}^t$, which are usually a small portion of all the clients participating in the training. Consequently, at each round the momentum is updated using a direction biased towards the distribution of clients selected in that round. The core idea behind GHBM is updating the momentum term at each round with a reliable estimate of the gradient w.r.t. the global data distribution of all clients, *i.e.* using the average gradient of clients selected in the last τ rounds at current parameters θ^{t-1} , as in Eq. (4), and set τ such that this condition is realized.

DESIRED MOMENTUM UPDATE

$$\tilde{m}^t \leftarrow \beta \tilde{m}^{t-1} + \frac{1}{\tau} \sum_{k=t-\tau+1}^t \tilde{g}^k(\theta^{t-1}; \mathcal{D}^k) \quad (4)$$

PRACTICAL MOMENTUM UPDATE

$$\tilde{m}^t \leftarrow \beta \tilde{m}^{t-1} + \frac{1}{\tau} \sum_{k=t-\tau+1}^t \tilde{g}^k(\theta^{k-1}; \mathcal{D}^k) \quad (5)$$

Eq. (4) cannot be implemented in partial participation, but can be approximated by reusing old gradients calculated at parameters θ^{k-1} , as shown in Eq. (5). The introduced *lag* due to staleness which can be controlled in theory and that ultimately we show to be greatly compensated by the achieve reduction in heterogeneity (see Fig. 6). With this idea in mind, our proposed formulation consists of calculating the momentum term as the decayed average of past τ momentum terms, instead of explicitly using the server pseudo-gradients at the last τ rounds, as shown in Eq. (6). This formulation is close to the update rule sketched in Eq. (5) and has the additional advantage of enjoying a heavy-ball form similar to Eq. (3) (see Lemma B.2), which will be useful for deriving communication-efficient FL algorithms:

GENERALIZED HEAVY-BALL MOMENTUM (GHBM)

$$\begin{aligned} \tilde{m}_\tau^t &\leftarrow \frac{1}{\tau} \sum_{k=1}^{\tau} \beta \tilde{m}_\tau^{t-k} + \tilde{g}^t(\theta^{t-1}; \mathcal{D}^t) \quad (6) \\ \theta^t &\leftarrow \theta^{t-1} - \eta \tilde{m}_\tau^t \end{aligned} \quad \begin{aligned} \tilde{m}_\tau^t &\leftarrow \frac{1}{\tau} (\theta^{t-1} - \theta^{t-\tau-1}) \\ \theta^t &\leftarrow \theta^{t-1} - \eta \tilde{g}^t(\theta^{t-1}; \mathcal{D}^t) + \beta \tilde{m}_\tau^t \end{aligned} \quad (7)$$

Trivially, GHBM with $\tau = 1$ recovers the classical momentum, hence it can be considered as a generalized formulation. The GHBM term is then embedded into local updates using the heavy-ball form shown in Eq. (7), leading to the following update rule:

$$\text{CLIENT STEP: } \theta_i^{t,j} \leftarrow \theta_i^{t,j-1} - \eta \tilde{g}_i^{t,j}(\theta_i^{t,j-1}; d_i^{t,j}) + \underbrace{\frac{\beta}{\tau J} (\theta^{t-1} - \theta^{t-\tau-1})}_{\tau-\text{GHBM}} \quad (8)$$

Discussion on τ . The τ hyperparameter in GHBM controls the number of server pseudo-gradients to average when estimating the update to the momentum term. Intuitively, when considering only the effect on heterogeneity reduction, the optimal value would be the one that provides the average over all clients *i.e.* $\tau = 1/C$, which is the inverse of the client participation rate. As we demonstrate, this is the key factor that allows GHBM to converge under arbitrary heterogeneity, achieving the same convergence rate in *cyclic partial participation* as methods based on classical momentum attain in *full participation* (see Sec. 4.1).

3.3 Communication Complexity of GHBM and Efficient Variants

GHBM requires the server to additionally send the momentum term \tilde{m}_τ^t , which introduces a communication overhead of $1.5 \times$ w.r.t. FEDAVG, as momentum is usually applied to all model parameters. However, this overhead can be avoided by exploiting the fact that GHBM has an equivalent heavy-ball form, and noting that if clients participate cyclically, clients had already received the previous model $\theta^{t-\tau-1}$. This is still true on average under uniform client sampling, *i.e.*, calling τ_i the sampling period for client i , $\mathbb{E}[\tau_i] = \tau = 1/C$. In practice, the additional requirement on communication can be traded with persistent storage at the clients. In this algorithm, which we call **LOCALGHBM**, τ_i is adaptive and determined stochastically by client participation. The space complexity is constant in the size of model parameters for the clients and the communication complexity is the same as FEDAVG. We empirically found that performance can be further improved by considering $\theta_{i,j}^t$ instead of θ^{t-1} and $\theta_i^{t-\tau_i}$ instead of $\theta^{t-\tau_i-1}$ when calculating $\tilde{m}_{\tau_i}^t$. This final communication-efficient update rule is named **FEDHBM**. Although based on the same principle, our algorithms are suitable for different scenarios, which we discuss more in detail in Appendix A.4.

4 Theoretical Discussion

Our results rely on notions of stochastic gradient with bounded variance (4.1) and the smoothness of the clients' objective functions (4.2), which are common in deep learning. We introduce the additional assumption that clients participate following a cyclic pattern, which serves only as a technical detail needed to deterministically quantify the contributions of the clients to the GHBM momentum term (see discussion in Appendix A.3). Finally, Assumption 4.3 is introduced to facilitate comparisons with other algorithms that require it, while it not used in the proof of our Thm. 4.6.

Assumption 4.1 (Unbiasedness and bounded variance of stochastic gradient).

$$\begin{aligned} \mathbb{E}_{d_i \sim \mathcal{D}_i} [\tilde{g}_i(\theta; d_i)] &= g_i(\theta; \mathcal{D}_i) \\ \mathbb{E}_{d_i \sim \mathcal{D}_i} \left[\|\tilde{g}_i(\theta; d_i) - g_i(\theta; \mathcal{D}_i)\|^2 \right] &\leq \sigma^2 \end{aligned}$$

Assumption 4.3 (Bounded Gradient Dissimilarity). There exist a constant $G \geq 0$ such that, $\forall i, \theta$:

$$\frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \|g_i(\theta) - g(\theta)\|^2 \leq G^2$$

Remark 4.5. While Thm. 4.6 relies on Assumption 4.4, **cyclic participation is not enforced in the experiments**, where we select clients randomly and uniformly. For a more comprehensive discussion on the role of the cyclic participation assumption in our work, we refer the reader to Appendix A.3.

4.1 Convergence Guarantees

We provide the convergence rate for GHBM for **non-convex** functions in (cyclic) partial participation. Comparison with recent related algorithms in Tab. 4. The proof is deferred to Appendix B.

Theorem 4.6. *Under Assumptions 4.1, 4.2 and 4.4, if we take $\tilde{m}_\tau^0 = 0$, and β, η and η_l as in Eq. (119), then GHBM with $\tau = 1/C$ converges as:*

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] \lesssim \frac{L\Delta}{T} + \sqrt{\frac{L\Delta\sigma^2}{|\mathcal{S}|JT}}$$

where $\Delta := f(\theta^0) - \min_\theta f(\theta)$, $\eta_l \leq \mathcal{O}(1/\sqrt{\tau})$ (see Eq. (119)) and \lesssim absorbs numeric constants.

Discussion. The rate of GHBM shows two major improvements: (i) it does not rely on the BGD assumption (4.3) and (ii) the dominant term on the right-hand side (RHS) scales with the size of all client population $|\mathcal{S}|$, instead of the clients selected in a single round $|\mathcal{S}|C$, thanks to incorporating old gradients. Further connection with centralized optimization and discussion on the use of cyclic participation are deferred to Appendices A.2 and A.3.

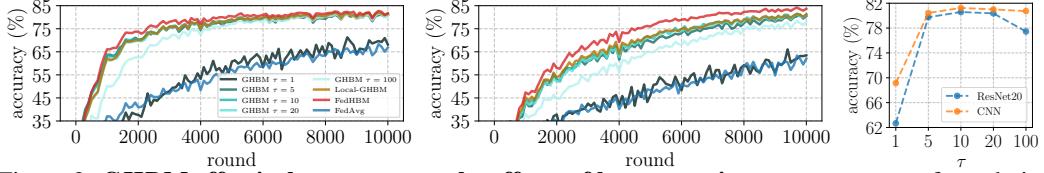


Figure 2: **GHBM effectively counteracts the effects of heterogeneity:** our momentum formulation ($\tau > 1$) is crucial for superior performance, with an optimal value $\tau = 1/C = 10$, as predicted in theory. Results on CIFAR-10 with CNN (left) and RESNET-20 (right), under worst-case heterogeneity.

Comparison with FedCM. The best-known rate for FedCM in partial participation relies bounded gradient dissimilarity while in *full participation*, Cheng et al. [2024] proved that FedCM converges under unbounded heterogeneity (see Tab. 4). We prove that GHBM can achieve the same convergence rate even in cyclic partial participation: indeed, as a validation, in Figure 1 we simulate a cyclic participation setting, comparing GHBM with FedCM, both when selecting a subset of clients and when selecting them all. As it is shown, the curve of GHBM with τ as prescribed by Thm. 4.6 approaches the one of FedCM in full participation.

5 Experimental Results

Scenarios, Datasets and Models. For the controlled scenarios, we employ CIFAR-10/100 as computer vision tasks, with RESNET-20 and the same CNN similar to a LeNet-5 commonly used in FL works [Hsu et al., 2020], and SHAKESPEARE dataset as NLP task following [Reddi et al., 2021, Karimireddy et al., 2021]. For simulating settings akin to *cross-device* FL, we adopt the large-scale GLDV2 and INATURALIST datasets as CV tasks, with both a VIT-B\16 [Dosovitskiy et al., 2021] and a MOBILENETV2 [Sandler et al., 2018] pretrained on ImageNet, and STACKOVERFLOW dataset as NLP task. Further details on datasets, splits, models and hyperparameters are in Appendix C.

Metrics and Experimental protocol. We consider *final model quality*, as the average top-1 accuracy over the last 100 rounds of training (Tabs. 1 and 2), and *communication/computational efficiency*, evaluated by measuring the total amount of exchanged bytes (*i.e.* considering both the downlink/uplink communication) and the wall-clock time spent by an algorithm to reach the performance of FedAvg (Tab. 3). **All the experiments are conducted under random uniform client sampling.**

5.1 The Effectiveness of GHBM Compared to Classical Momentum

In Fig. 2 we show the effectiveness of GHBM compared to classical momentum, which corresponds to selecting $\tau = 1$ in the update rule in Eq. (8), and simulate a scenario of extreme heterogeneity (*i.e.* $\alpha = 0$). Methods based on classical momentum [Xu et al., 2021, Ozfatura et al., 2021] fail to improve upon FedAvg, while, in contrast, as τ increases, GHBM exhibits a significant enhancement in both convergence speed and final model quality. The optimal value of τ is experimentally determined to be $\tau \approx 1/C = 10$, with larger sub-optimal values only slightly affecting performance (rightmost plot).

5.2 Comparison with the State-of-art

Results in Controlled Scenario. We compare GHBM with the most common FL methods, and in particular with other momentum-based FL algorithms. Results in Tab. 1 underscore that methods based on classical momentum fail at improving FedAvg under high heterogeneity and partial participation, confirming the limitations outlined in Sec. 3.2. Conversely, our algorithms outperform FedAvg with an impressive margin of **+20.6%** and **+14.4%** on RESNET-20 and CNN under worst-case heterogeneity, and consistently over less severe conditions (*i.e.* higher values of α in Fig. 3).

Results in Real-world Large-scale Scenarios. Extending the experimentation to settings characterized by extremely low client participation, we test both our GHBM with τ tuned via a grid-search and our adaptive FedHBM, which exploits client participation to keep the same communication complexity of FedAvg. As discussed in Sec. 3.2, under such extreme client participation patterns GHBM performs better because the trade-off between heterogeneity reduction and gradient lag is

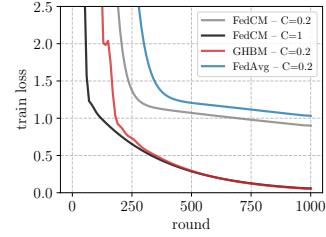


Figure 1: **Comparison between FedCM and GHBM** in *cyclic participation* on a linear regression problem (see Appendix C.1 for details). GHBM with $\tau = 1/C$ in *cyclic participation* ($C = 0.2$) performs similarly as FedCM in *full participation* ($C = 1$).

explicitly tuned by the choice of the best performing τ , while FEDHBM will likely adopt a suboptimal value. However, results in Tab. 2 show a stark improvement over the state-of-art for both our algorithms, indicating that the design principle of our momentum formulation is remarkably robust and provides effective improvement even when client participation is very low (e.g. $C \leq 1\%$).

Communication Efficiency. Results in Tab. 3 reveal that our proposed algorithms show faster convergence and higher final model quality, with an average saving of respectively $+55.9\%$ and $+61.5\%$. In particular, in settings with extremely low client participation (e.g. GLDV2), GHBH is more suitable for best accuracy, while FEDHBM is the best at lowering the communication cost.

Table 1: **Comparison with state-of-art in controlled setting** (acc@10k-20k rounds for RESNET-20/CNN). NON-IID ($\alpha = 0$) and IID ($\alpha = 10.000$). Best result in **bold**, second best underlined. \times indicates non-convergence.

METHOD	CIFAR-100 (RESNET-20)		CIFAR-100 (CNN)		SHAKESPEARE	
	NON-IID	IID	NON-IID	IID	NON-IID	IID
FEDAVG	24.7 ± 1.2	58.6 ± 0.4	38.3 ± 0.3	49.7 ± 0.2	47.3 ± 0.1	47.1 ± 0.2
FEDPROX	24.8 ± 1.1	58.5 ± 0.3	40.6 ± 0.2	49.9 ± 0.2	47.3 ± 0.1	47.1 ± 0.2
SCAFFOLD	30.7 ± 1.3	58.0 ± 0.6	45.5 ± 0.1	49.4 ± 0.4	50.2 ± 0.1	50.1 ± 0.1
FEDDYN	6.0 ± 0.5	60.8 ± 0.7	\times	51.9 ± 0.2	50.7 ± 0.2	50.8 ± 0.2
ADABEST	8.4 ± 2.0	55.6 ± 0.3	35.6 ± 0.3	49.7 ± 0.2	47.3 ± 0.1	47.1 ± 0.2
MIME	26.8 ± 2.1	59.0 ± 0.3	45.3 ± 0.4	50.9 ± 0.4	48.3 ± 0.2	48.5 ± 0.1
FEDAVGM	24.8 ± 0.7	58.7 ± 0.9	42.1 ± 0.3	50.7 ± 0.2	50.0 ± 0.0	50.4 ± 0.1
FEDACG	25.7 ± 0.5	58.7 ± 0.3	43.5 ± 0.4	51.3 ± 0.3	50.9 ± 0.1	51.0 ± 0.1
SCAFFOLD-M	30.9 ± 0.7	60.1 ± 0.5	45.7 ± 0.2	50.1 ± 0.3	50.8 ± 0.0	51.0 ± 0.1
FEDCM (GHBH $\tau=1$)	22.2 ± 1.0	53.1 ± 0.2	36.0 ± 0.3	50.2 ± 0.5	49.2 ± 0.1	50.4 ± 0.1
MIMEMOM	24.3 ± 0.9	60.5 ± 0.6	48.2 ± 0.7	50.6 ± 0.1	48.5 ± 0.2	48.9 ± 0.2
MIMELITEMOM	21.2 ± 1.6	59.2 ± 0.5	46.0 ± 0.3	50.7 ± 0.1	49.1 ± 0.4	49.4 ± 0.3
LOCALGHBH (ours)	38.2 ± 1.0	62.0 ± 0.5	50.3 ± 0.4	51.9 ± 0.4	51.2 ± 0.1	51.1 ± 0.3
FEDHBM (ours)	42.5 ± 0.8	62.5 ± 0.5	50.4 ± 0.5	52.0 ± 0.4	51.3 ± 0.1	51.4 ± 0.2

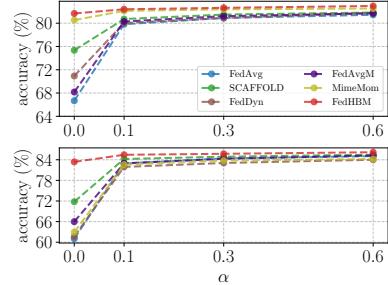


Figure 3: **Final model quality at different values of α** (lower $\alpha \rightarrow$ higher heterogeneity) on CIFAR-10, with CNN (top) and RESNET-20 (bottom).

Table 2: **Test accuracy (%) comparison of best SOTA FL algorithms on large-scale and realistic settings.** GHBH is the best algorithm when client participation is extremely low, while FEDHBM still improves the other competitors by a large margin. \times means that the algorithm did not converge.

METHOD	MOBILENETV2				ViT-B\16			
	GLDV2		INATURALIST		GLDV2		INATURALIST	
	$C \approx 0.79\%$	$C \approx 0.1\%$	$C \approx 0.5\%$	$C \approx 1\%$	$C \approx 0.79\%$	$C \approx 0.1\%$	$C \approx 0.5\%$	$C \approx 0.12\%$
FEDAVG	60.3 ± 0.2	38.0 ± 0.8	45.25 ± 0.1	47.59 ± 0.1	68.5 ± 0.5	65.6 ± 0.1	70.7 ± 0.8	24.0 ± 0.4
SCAFFOLD	61.0 ± 0.1	\times	\times	\times	67.5 ± 3.3	\times	\times	24.8 ± 0.4
FEDAVGM	61.5 ± 0.2	41.3 ± 0.4	46.0 ± 0.1	48.4 ± 0.1	70.0 ± 0.5	66.0 ± 0.2	71.4 ± 0.5	24.1 ± 0.3
MIMEOM	\times	24.9 ± 0.6						
GHBH - best τ (ours)	65.9 ± 0.1	41.8 ± 0.1	48.7 ± 0.1	50.5 ± 0.1	74.3 ± 0.6	68.8 ± 0.3	73.5 ± 0.4	27.0 ± 0.1
FEDHBM (ours)	65.4 ± 0.2	41.6 ± 0.2	47.3 ± 0.0	49.8 ± 0.0	73.1 ± 0.9	66.7 ± 0.7	72.1 ± 0.5	24.5 ± 0.4

Table 3: **Total communication and computational cost for reaching the final model quality of FEDAVG**, across academic and real-world large-scale datasets (details in Appendix C.3). The coloured arrows indicate respectively a reduction (\downarrow) and an increase (\uparrow) of comm./comp. cost.

METHOD	COMM. OVERHEAD	TOTAL COMMUNICATION COST (BYTES EXCHANGED)				TOTAL COMPUTATIONAL COST (WALL-CLOCK TIME HH:MM)			
		CIFAR-100 ($\alpha = 0$)		GLDV2		CIFAR-100 ($\alpha = 0$)		GLDV2	
		CNN	RESNET-20	MOBILENETV2	ViT-B\16	CNN	RESNET-20	MOBILENETV2	ViT-B\16
FEDAVG	1x	30.9 GB	10.3 GB	89.8 GB	483.7 GB	02:05	03:36	13:51	13:56
SCAFFOLD	2x	40.8 GB \uparrow 32.0%	14.2 GB \uparrow 37.8%	51.2 GB \downarrow 43.0%	967.4 GB \uparrow 100.0%	01:23 \downarrow 34.0%	02:39 \downarrow 26.4%	08:28 \downarrow 38.9%	15:15 \uparrow 9.4%
FEDAVGM	1x	21.0 GB \downarrow 32.0%	9.1 GB \downarrow 11.6%	73.6 GB \downarrow 18.0%	403.1 GB \downarrow 16.7%	01:25 \downarrow 32.0%	03:10 \downarrow 12.0%	11:22 \downarrow 18.0%	11:37 \downarrow 16.7%
MIMEOM	3x	21.5 GB \downarrow 30.4%	30.9 GB \uparrow 200.0%	269.4 GB \uparrow 200.0%	1.417 TB \uparrow 200.0%	01:27 \downarrow 30.4%	10:42 \uparrow 197.8%	41:07 \uparrow 197.8%	41:30 \uparrow 197.8%
GHBH (ours)	1.5x	8.5 GB \downarrow 72.5%	7.0 GB \downarrow 32.5%	48.5 GB \downarrow 46.0%	314.4 GB \downarrow 35.0%	00:24 \downarrow 80.8%	01:37 \downarrow 55.0%	05:20 \downarrow 61.5%	06:30 \downarrow 53.3%
FEDHBM (ours)	1x	5.2 GB \downarrow 83.0%	4.2 GB \downarrow 59.2%	29.6 GB \downarrow 67.0%	234.4 GB \downarrow 51.5%	00:22 \downarrow 82.0%	01:29 \downarrow 59.0%	06:23 \downarrow 54.0%	07:31 \downarrow 46.0%

6 Conclusions

In this work, we propose *Generalized Heavy-Ball Momentum* (GHBH), a novel momentum-based optimization method for FL that effectively mitigates the joint effect of statistical heterogeneity and partial participation. We theoretically prove that GHBH converges under arbitrary heterogeneity in *cyclic partial participation*, achieving the same rate classical momentum enjoys in *full participation*. Extensive experiments, confirm that GHBH significantly outperforms state-of-the-art FL methods in both convergence speed and final model quality, demonstrating its robustness in large-scale, real-world heterogeneous FL scenarios.

Funding

Riccardo Zaccone and Carlo Masone declare that financial support was received for the research, authorship, and/or publication of this article. This study was carried out within the project FAIR - Future Artificial Intelligence Research - and received funding from the European Union Next-GenerationEU [PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 COMONENTE 2, INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013 - CUP: E13C22001800001]. This manuscript reflects only the authors' views and opinions, neither the European Union nor the European Commission can be considered responsible for them. A part of the computational resources for this work was provided by hpc@polito, which is a Project of Academic Computing within the Department of Control and Computer Engineering at the Politecnico di Torino (<http://www.hpc.polito.it>). We acknowledge the CINECA award under the ISCRA initiative for the availability of high-performance computing resources. This work was supported by CINI.

References

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough, and Venkatesh Saligrama. Federated learning based on dynamic regularization. In *ICLR*, 2021.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization and encoding. In *NeurIPS*, 2017.

Debora Caldarola, Massimiliano Mancini, Fabio Galasso, Marco Ciccone, Emanuele Rodola, and Barbara Caputo. Cluster-driven graph federated learning over multiple domains. In *CVPR Workshop*, 2021.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. *arXiv preprint arXiv:1812.01097*, 2019.

Dawei Chen, Choong Seon Hong, Yiyong Zha, Yunfei Zhang, Xin Liu, and Zhu Han. Fedsvrg based communication efficient scheme for federated learning in mec networks. *IEEE Transactions on Vehicular Technology*, 2021.

Yicheng Chen, Rick S. Blum, and Brian M. Sadler. Communication efficient federated learning via ordered admm in a fully decentralized setting. In *CISS*, 2022.

Ziheng Cheng, Xinmeng Huang, Pengfei Wu, and Kun Yuan. Momentum benefits non-iid federated learning simply and provably. In *ICLR*, 2024.

Yae Jee Cho, Pranay Sharma, Gauri Joshi, Zheng Xu, Satyen Kale, and Tong Zhang. On the convergence of federated averaging with cyclic client participation. In *ICML*, 2023.

Rudrajit Das, Anish Acharya, Abolfazl Hashemi, sujay sanghavi, Inderjit S Dhillon, and ufuk topcu. Faster non-convex federated learning via global and local momentum. In *The 38th Conference on Uncertainty in Artificial Intelligence*, 2022.

Aaron Defazio and Leon Bottou. On the ineffectiveness of variance reduced optimization for deep learning. In *NeurIPS*, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2021.

Yonghai Gong, Yichuan Li, and Nikolaos M. Freris. Fedadmm: A robust federated deep learning framework with adaptivity to system heterogeneity. *arXiv preprint arXiv:2204.03529*, 2022.

Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo Parrilo. Convergence rate of incremental gradient and newton methods. *SIAM Journal on Optimization*, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. *arXiv preprint arXiv:1512.03385*, 2015.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-IID data quagmire of decentralized machine learning. In *ICML*, 2020.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribution for federated visual classification. *arXiv preprint arXiv:1909.06335*, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world data distribution. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm, editors, *ECCV*, 2020.

Yerlan Idelbayev. Proper ResNet implementation for CIFAR10/CIFAR100 in PyTorch, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In *ICML*, 2015.

Peter Kairouz et al. Advances and open problems in federated learning. *Found. Trends Mach. Learn.*, 2021.

Avetik Karagulyan, Egor Shulgin, Abdurakhmon Sadiev, and Peter Richtárik. Spam: Stochastic proximal point method with momentum variance reduction for non-convex cross-device federated learning. *arXiv preprint arXiv:2405.20127*, 2024.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In *ICML*, 2020.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U Stich, and Ananda Theertha Suresh. Breaking the centralized barrier for cross-device federated learning. In *NeurIPS*, 2021.

Geeho Kim, Jinkyu Kim, and Bohyung Han. Communication-efficient federated learning with accelerated client gradient. In *CVPR*, 2024.

Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi. Decentralized deep learning with arbitrary communication compression. In *ICLR*, 2020.

Kavya Kopparapu and Eric Lin. Fedfmc: Sequential efficient federated learning on non-iid data. *arXiv preprint arXiv:2006.10937*, 2020.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Feddane: A federated newton-type method. *Asilomar Conference on Signals, Systems, and Computers*, 2019.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. In *MLSys*, 2020.

Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with momentum. In *NeurIPS*, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with compressed gradient differences. *arXiv preprint arXiv:1901.09269*, 2019.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtarik. ProxSkip: Yes! Local gradient steps provably lead to communication acceleration! Finally! In *ICML*, 2022.

Konstantin Mishchenko, Rui Li, Hongxiang Fan, and Stylianos Venieris. Federated learning under second-order data heterogeneity, 2024. URL <https://openreview.net/forum?id=jkhVrI11Kg>.

Emre Ozfatura, Kerem Ozfatura, and Deniz Gündüz. Fedadc: Accelerated federated learning with drift control. In *2021 IEEE International Symposium on Information Theory (ISIT)*, 2021.

Boris Polyak. Some methods of speeding up the convergence of iteration methods. *Ussr Computational Mathematics and Mathematical Physics*, 1964.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. In *ICLR*, 2021.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization. In *AISTATS*, 2020.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Movenetv2: Inverted residuals and linear bottlenecks. In *CVPR*, 2018.

Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. Robust and communication-efficient federated learning from non-i.i.d. data. *IEEE Transactions on Neural Networks and Learning Systems*, 2020.

Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. *TMLR*, 2022.

Farshid Varno, Marzie Saghayi, Laya Rafiee Sevyeri, Sharut Gupta, Stan Matwin, and Mohammad Havaei. Adabest: Minimizing client drift in federated learning via adaptive bias estimation. In *ECCV*, 2022.

Han Wang, Siddartha Marella, and James Anderson. Fedadmm: A federated primal-dual algorithm allowing partial participation. *arXiv preprint arXiv:2203.15104*, 2022.

Yuxin Wu and Kaiming He. Group normalization. In *ECCV*, 2018.

Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated learning with client-level momentum. *arXiv preprint arXiv:2106.10874*, 2021.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation in non-IID federated learning. In *ICLR*, 2021.

Riccardo Zaccone, Andrea Rizzardi, Debora Calderola, Marco Ciccone, and Barbara Caputo. Speeding up heterogeneous federated learning with sequentially trained superclients. In *ICPR*, 2022.

Shenglai Zeng, Zonghang Li, Hongfang Yu, Yihong He, Zenglin Xu, Dusit Niyato, and Han Yu. Heterogeneous federated learning via grouped sequential-to-parallel training. In Arnab Bhattacharya, Janice Lee Mong Li, Divyakant Agrawal, P. Krishna Reddy, Mukesh Mohania, Anirban Mondal, Vikram Goyal, and Rage Uday Kiran, editors, *Database Systems for Advanced Applications*, 2022.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated learning with non-iid data. *arXiv preprint arXiv:1806.00582*, 2018.

A Additional Discussion

A.1 Extended Related Works

Recently, similarly based on variance reduction as SCAFFOLD, [Mishchenko et al., 2022] propose SCAFFNEW to achieve accelerated communication complexity in heterogeneous settings through control variates, guaranteeing convergence under arbitrary heterogeneity in full participation. The work by Mishchenko et al. [2024], under the assumption of second-order data heterogeneity, proposes an algorithm which can reduce client drift by estimating the global update direction as well as employing regularization. The proposed algorithm can be seen as a combination of FEDPROX with SCAFFOLD/SCAFFNEW, and similarly relies on additional server control variates to correct the drift, so the underlying principle is still variance reduction. Quite differently, GHBM is based on momentum, properly modified to tackle heterogeneity and partial participation in FL. Similarly to the already discussed MIME [Karimireddy et al., 2021], Karagulyan et al. [2024] propose the SPAM algorithm and leverage momentum as a local correction term to benefit from second-order similarity.

Lowering Communication Requirements in FL. Researchers have studied methods to reduce the memory needed for exchanging gradients in the distributed setting, for example by quantization [Alistarh et al., 2017] or by compression [Mishchenko et al., 2019, Koloskova et al., 2020]. In the context of FL, such ideas have been developed to meet the communication and scalability constraints [Reisizadeh et al., 2020], and to take into account heterogeneity [Sattler et al., 2020]. With a similar idea, quantization has been incorporated into a recent momentum-based FL approach [Das et al., 2022] to limit the communication overhead, still requiring significantly more computation client-side. Our work focuses on a novel formulation of momentum that takes into account the joint effects of heterogeneity and partial participation, and that has a heavy-ball structure allowing efficient use of the information already being sent in vanilla FEDAVG, so additional techniques to compress that information remain orthogonal to our approach.

Comparison with FedACG [Kim et al., 2024]. We provide a comparison with the FedACG algorithm based on: algorithmic design, theoretical guarantees and empirical results. Algorithmically, it has two modifications w.r.t. FEDAVGM: (i) it uses the Nesterov Accelerated Gradient (NAG) to broadcast a lookahead global model and (ii) adds a proximal local penalty similar to FEDPROX w.r.t. this transmitted global model. The method has the same communication complexity as FedAvg, because it does not exchange additional information. Our work proposes instead a novel formulation of momentum, explicitly designed to provide an advantage in heterogeneous FL with partial client participation. We propose both the main algorithm (GHBM), which has *stateless* clients but has $1.5 \times$ the communication complexity of FedAvg, and communication efficient versions (e.g. FEDHBM), that preserve the communication complexity as FedAvg, at the cost of using local storage. From a theoretical perspective, the convergence rate of FedACG does not prove any advantage w.r.t. heterogeneity, since it still relies on the bounded heterogeneity assumption. GHBM is proven to converge under arbitrary heterogeneity in cyclic partial participation, recovering the same convergence rate that Cheng et al. [2024] proved for FEDCM when in full participation. This is a significant advantage that then reflects in significantly improved performance. From an empirical perspective, simulation results are presented in Fig. 7. While it is faster than FedAvgM, it still falls short behind our algorithms in heterogeneous scenarios. This is a consequence of the same issue we showed in Sec. 3.2 for classical momentum.

A.2 Advantage of Local Steps and Connections to Incremental Gradient Methods.

Thm. 4.6 does not show an explicit benefit from the local steps, similar to the best-known theory for momentum-based FL methods [Cheng et al., 2024]. However, GHBM offers a clear advantage w.r.t. centralized methods for finite-sum optimization applied in FL (where clients represent functions), referred to as *incremental gradient methods*. One algorithm of this family, the Incremental Aggregated Gradient (IAG), removes the effect of functions heterogeneity by approximating a full gradient with an aggregate of past gradients, assuming cyclic participation [Gürbüzbalaban et al., 2015]. However, this holds only in standard distributed mini-batch optimization, where $J = 1$. GHBM shares a similar intuition, but applying this logic to the momentum update rather than the gradient estimate is crucial when local steps are involved. Simply extending IAG with local steps would not mitigate client drift-induced heterogeneity as GHBM does. In fact, its convergence rate would be bounded by that of FEDAVG in full participation, whose lower bound is known to be affected by heterogeneity (see Thm. II of Karimireddy et al. [2020]).

Cyclic participation with period $p=3$ for any round k s.t. $k \bmod p = 0$

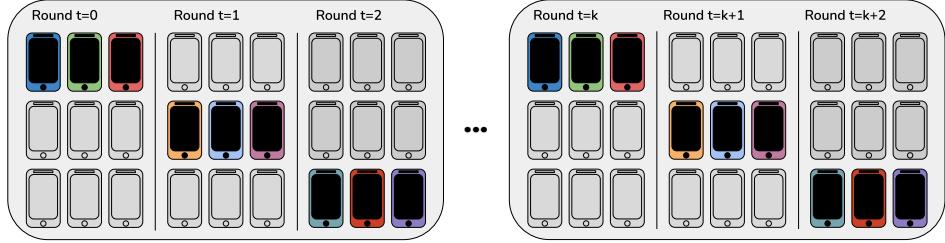


Figure 4: **Illustration of cyclic client participation with a total of $K = 9$ clients.** Thm. 4.6 holds under the assumption of cyclic participation, which simply states that there is any fixed order (so client shuffling methods like Shuffle-Once are compliant with the assumption) in which clients appear across rounds in the training, *i.e.* each client is sampled every $p = \frac{1}{C}$ rounds. In the above image, $K \cdot C = 3$ clients are selected for training, *i.e.* each client is selected exactly once every $p = 3$ rounds.

A.3 On the Use of Cyclic Participation Assumption.

Algorithm 1: GHBM, LOCALGHBM and FEDAVG

Require: initial model θ^0 , K clients, C participation ratio, T number of total round, η and η_l learning rates, $\tau \in \mathbb{N}^+$.

```

1: for  $t = 1$  to  $T$  do
2:    $\mathcal{S}^t \leftarrow$  subset of clients  $\sim \mathcal{U}(\mathcal{S}, \max(1, K \cdot C))$ 
3:   Send  $\theta^{t-1}, \theta^{t-\tau-1}$  to all clients  $i \in \mathcal{S}^t$ 
4:   for  $i \in \mathcal{S}^t$  in parallel do
5:      $\theta_i^{t,0} \leftarrow \theta^{t-1}$ 
6:     Retrieve  $\theta^{t-\tau_i-1}$  from local storage
7:      $\tilde{m}_\tau^t \leftarrow \frac{1}{\tau J}(\theta^{t-1} - \theta^{t-\tau-1})$ 
8:      $\tilde{m}_{\tau_i}^t \leftarrow \frac{1}{\tau_i J}(\theta^{t-1} - \theta^{t-\tau_i-1})$  if  $\theta^{t-\tau_i-1}$  is set
9:     else 0
10:    for  $j = 1$  to  $J$  do
11:      sample a mini-batch  $d_{i,j}$  from  $\mathcal{D}_i$ 
12:       $\theta_i^{t,j} \leftarrow \theta_i^{t,j-1} - \eta_l \tilde{g}_i^{t,j} + \beta \tilde{m}_\tau^t + \beta \tilde{m}_{\tau_i}^t$ 
13:    end for
14:    Save model  $\theta^{t-1}$  into local storage
15:  end for
16:   $\tilde{g}^t \leftarrow \frac{1}{|\mathcal{S}^t|} \sum_{i \in \mathcal{S}^t} (\theta^{t-1} - \theta_i^{t,J})$ 
17:   $\theta^t \leftarrow \theta^{t-1} - \eta \tilde{g}^t$ 
end for

```

known analysis of FEDAVG under cyclic participation is provided by Cho et al. [2023], which proves that in certain situations (*e.g.* clients run GD instead of SGD) there can be an asymptotic advantage in the case we prospect with Assumption 4.4. However, it is important to notice that all the results presented in Cho et al. [2023] rely on forms of bounded heterogeneity, and with this respect, the results presented in this work are novel and advance state of the art.

A.4 Applicability of GHBM-based Algorithms in FL Scenarios.

Although based on the same principle, our algorithms are suitable for different scenarios. Similarly to algorithms proposed for cross-device FL [Karimireddy et al., 2021], GHBM uses *stateless* clients, with the main τ hyperparameter controlled by the server. This ensures that clients always apply a momentum term consistent with the GHBM update rule, differently from algorithms that require clients participating in multiple rounds to adhere to their formulation, such as SCAFFOLD and FEDDYN. This is particularly important when the number of clients is large and a small portion of them participates in each round, and it is why, in our large-scale setting, these methods fail to converge.

The use of cyclic participation in the proof of Thm. 4.6 allows precise control over the clients' contributions to the average of the last τ pseudo-gradients. This ensures that the τ -averaged pseudo-gradient used to update the momentum is unaffected by heterogeneity, which is the important point behind the proof of Thm. 4.6. Under random uniform, due to the non-zero probability of sampling the same client within τ rounds, this condition is hardly verified. Although one could technically enforce this condition without cyclic sampling — by explicitly tracking each client's pseudo-gradient and computing a uniform average across the most recent one from each client — this would be impractical. Such a design would not be compliant with protocols like Secure Aggregation, widely adopted in real-world FL systems, thus posing a significant practical limitation. Please note that in our analysis convergence under unbounded heterogeneity is not a simple byproduct of the assumption, but comes explicitly from the algorithmic structure of GHBM (*i.e.* setting $\tau = \frac{k}{C}, \forall k \in \mathbb{N}^+$ is **necessary**). The best-

$\tau = \frac{k}{C}, \forall k \in \mathbb{N}^+$ is **necessary**).

Table 4: **Comparison of convergence rates of FL algorithms.** GHBM improves the state-of-art by attaining, in *cyclic partial participation*, the same rate of classical momentum in *full participation*. Remind that L is the smoothness constant of objective functions, $\Delta = f(\theta^0) - \min_\theta f(\theta)$ is the initialization gap, σ^2 is the clients' gradient variance, $|\mathcal{S}|$ is the number of clients, C is the participation ratio, J is the number of local steps per round, and T is the number of communication rounds. $\zeta := \sup_\theta \|\nabla f(\theta)\|$ and G are uniform bounds of gradient norm and dissimilarity.

Algorithm	Convergence Rate $\frac{1}{T} \sum_{t=1}^T \mathbb{E} [\ \nabla f(\theta^t)\ ^2] \lesssim$	Additional Assumptions	Partial participation?
FEDAVG [Yang et al., 2021]	$\left(\frac{L\Delta\sigma^2}{ \mathcal{S} JT}\right)^{1/2} + \frac{L\Delta}{T}$	Bounded hetero. ¹	✗
[Yang et al., 2021]	$\left(\frac{L\Delta J\sigma^2}{ \mathcal{S} CT}\right)^{1/2} + \frac{L\Delta}{T}$	Bounded hetero. ¹	✓
FEDCM [Xu et al., 2021]	$\left(\frac{L\Delta(\sigma^2 + \mathcal{S} CJ\zeta^2)}{ \mathcal{S} CJT}\right)^{1/2} + \left(\frac{L\Delta(\sigma/\sqrt{J} + \sqrt{ \mathcal{S} C}(\zeta+G))}{\sqrt{ \mathcal{S} CT}}\right)^{2/3}$	Bounded grad. Bounded hetero.	✓
[Cheng et al., 2024]	$\left(\frac{L\Delta\sigma^2}{ \mathcal{S} JT}\right)^{1/2} + \frac{L\Delta}{T}$	—	✗
SCAFFOLD-M [Cheng et al., 2024]	$\left(\frac{L\Delta\sigma^2}{ \mathcal{S} CJT}\right)^{1/2} + \frac{L\Delta}{T} \left(1 + \frac{ \mathcal{S} ^{2/3}}{C}\right)$	—	✓
GHBM (Thm. 4.6)	$\left(\frac{L\Delta\sigma^2}{ \mathcal{S} JT}\right)^{1/2} + \frac{L\Delta}{T}$	Cyclic participation	✓

¹ The local learning rate vanishes to zero when gradient dissimilarity is unbounded, *i.e.*, $G \rightarrow \infty$.

These design choices make our algorithm in practice suitable for cross-device FL, where it offers significant advantages, as experimentally validated in Sec. 5.2. On the other hand, FEDHBM and LOCALGHBM take advantage of the fact that clients participate multiple times in the training process to remove the need to send the momentum term from the server, recovering the same communication complexity of FEDAVG. As a result, clients in these methods are *stateful* - requiring to maintain variables across rounds [Kairouz et al., 2021] - and are therefore best suited for scenarios akin to *cross-silo* FL.

A.5 Theoretical Comparison with other FL algorithms

Comparison with SCAFFOLD-M. Recently Cheng et al. [2024] proved that momentum accelerates SCAFFOLD, preserving strong guarantees against heterogeneity in partial participation. However, the resulting SCAFFOLD-M method is still based on variance reduction, *i.e.*, it converges under arbitrary heterogeneity thanks to variance reduction, not because it uses momentum. Our rate additionally requires Assumption 4.4, but is faster and, most importantly, shows that momentum, when modified according to our formulation, can by itself provide similar guarantees even when not all clients participate.

A.6 Notes on Failure Cases of SOTA Algorithms

In this paper, we evaluated our approach using the large-scale FL datasets proposed by [Hsu et al., 2020]. Notably, several recent state-of-the-art FL algorithms failed to converge on these datasets. For SCAFFOLD this result aligns with prior works [Reddi et al., 2021, Karimireddy et al., 2021], since it is unsuitable for cross-device FL with thousands of devices. Indeed, the client control variates can become stale, and may consequently degrade the performance. For MIMEMOM [Karimireddy et al., 2021], despite extensive hyperparameter tuning using the authors' original code, we were unable to achieve convergence. This finding is surprising since the approach has been proposed to tackle cross-device FL. To our knowledge, this is the first work to report these failure cases, likely due to the lack of prior evaluations on such challenging datasets. We believe these findings underscore the need for further investigation into the factors contributing to algorithm performance in large-scale, heterogeneous FL settings.

B Proofs

Algorithms

To handle the proof, we analyze a simpler version of our algorithm, in which we use the update rule in Eq. (5) instead of the one described in Eq. (6). The resulting Algorithm 3 we analyze is reported along the plain GHBM (Algorithm 2) we used in the experiments. Both algorithms enjoy the same underlying idea: use the gradients of a larger portion of the clients to estimate the momentum term.

Algorithm 2: GHBM (PRACTICAL VERSION)

Require: initial model θ^0 , K clients, C participation ratio, T number of total round, η and η_l learning rates, $\tau \in \mathbb{N}^+$.

- 1: **for** $t = 1$ to T **do**
- 2: $\mathcal{S}^t \leftarrow$ subset of clients $\sim \mathcal{U}(\mathcal{S}, \max(1, K \cdot C))$
- 3: **for** $i \in \mathcal{S}^t$ **in parallel do**
- 4: $\theta_i^{t,0} \leftarrow \theta^{t-1}$
- 5: **for** $j = 1$ to J **do**
- 6: sample a mini-batch $d_{i,j}$ from \mathcal{D}_i
- 7: $u_i^{t,j} \leftarrow \nabla f_i(\theta_i^{t,j-1}, d_{i,j}) + \beta \tilde{m}_\tau^t$
- 8: $\theta_i^{t,j} \leftarrow \theta_i^{t,j-1} - \eta_l u_i^{t,j}$
- 9: **end for**
- 10: **end for**
- 11: $u^t \leftarrow \frac{1}{|\mathcal{S}^t|} \sum_{i \in \mathcal{S}^t} (\theta^{t-1} - \theta_i^{t,J})$
- 12: $\theta^t \leftarrow \theta^{t-1} - \eta u^t$
- 13: $\tilde{m}_\tau^{t+1} \leftarrow \frac{1}{\tau J} (\theta^{t-\tau} - \theta^t)$
- 14: **end for**

Algorithm 3: GHBM (THEORY VERSION)

Require: initial model θ^0 , K clients, C participation ratio, T number of total round, η and η_l learning rates, $\tau \in \mathbb{N}^+$.

- 1: **for** $t = 1$ to T **do**
- 2: $\mathcal{S}^t \leftarrow$ subset of clients $\sim \mathcal{U}(\mathcal{S}, \max(1, K \cdot C))$
- 3: **for** $i \in \mathcal{S}^t$ **in parallel do**
- 4: $\theta_i^{t,0} \leftarrow \theta^{t-1}$
- 5: **for** $j = 1$ to J **do**
- 6: sample a mini-batch $d_{i,j}$ from \mathcal{D}_i
- 7: $u_i^{t,j} \leftarrow \beta \nabla f_i(\theta_i^{t,j-1}, d_{i,j}) + (1 - \beta) \tilde{m}_\tau^t$
- 8: $\theta_i^{t,j} \leftarrow \theta_i^{t,j-1} - \eta_l u_i^{t,j}$
- 9: **end for**
- 10: **end for**
- 11: $u^t \leftarrow \frac{1}{m |\mathcal{S}^t| J} \sum_{i \in \mathcal{S}^t} (\theta^{t-1} - \theta_i^{t,J})$
- 12: $\bar{\theta}^t \leftarrow \theta^{t-1} - u^t + (1 - \beta) \tilde{m}_\tau^t$
- 13: $\tilde{m}_\tau^{t+1} \leftarrow (1 - \beta) \tilde{m}_\tau^t + \frac{1}{\tau} (\theta^{t-\tau} - \bar{\theta}^t)$
- 14: $\theta^t \leftarrow \theta^{t-1} - \eta \tilde{m}_\tau^{t+1}$
- 15: **end for**

In the following, we list the differences between the two:

1. Explicit use of τ -averaged gradients when updating the momentum term (line 13). This can be implemented by keeping server-side an auxiliary sequence of models $\bar{\theta}^t$, in which the momentum added client side is subtracted server-side (line 12), such that taking the difference of two models gives the sum of pseudo-grads.
2. Use of convex sum in local updates (line 7). This is done to align with the formulation of momentum methods in Cheng et al. [2024], and more in general with the formulation of momentum commonly analyzed in literature. There is no theoretical difference between the two versions, as they only differ by a constant scaling [Liu et al., 2020].
3. Use of gradients averaged over local steps (line 11). This is done to align with the analysis of Cheng et al. [2024], Xu et al. [2021], and it is equivalent to coupling server and client learning rates (*i.e.* setting $\eta = \gamma J \eta_l$ in Algorithm 3, where γ is the server learning rate we would use in Algorithm 2).

The two algorithms have similar performances, which are reported in Fig. 5

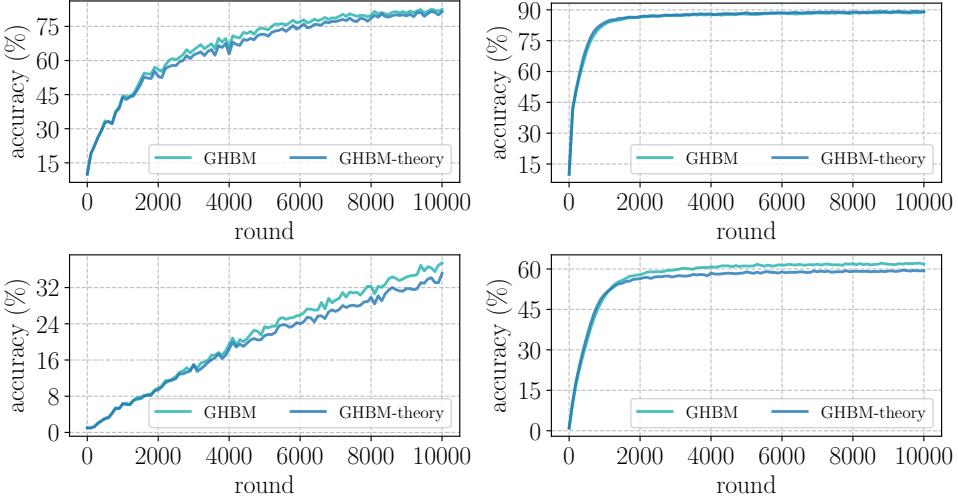


Figure 5: Comparing the GHBM implementation analyzed in theory (Algorithm 3) with the one proposed in the main paper (Algorithm 2). The plots show the convergence rate on CIFAR-10 (top) and CIFAR-100 (bottom), in NON-IID (left) and IID (right) scenarios with RESNET-20 architecture.

Preliminaries

Our convergence proof for GHBM is based on the recent work of Cheng et al. [2024], which offers new proof techniques for momentum-based FL algorithms. Throughout the proofs we use the following auxiliary variables to facilitate the presentation:

$$\mathcal{U}_t := \frac{1}{|\mathcal{S}|J} \sum_{j=1}^J \sum_{i=1}^{|\mathcal{S}|} \mathbb{E} \left[\left\| \theta_i^{t,j} - \theta^{t-1} \right\|^2 \right] \quad (9)$$

$$\mathcal{E}_t := \mathbb{E} \left[\left\| \nabla f(\theta^{t-1}) - \tilde{m}_\tau^{t+1} \right\|^2 \right] \quad (10)$$

$$\zeta_i^{t,j} := \mathbb{E} \left[\theta_i^{t,j+1} - \theta_i^{t,j} \right] \quad (11)$$

$$\Xi_t := \frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \mathbb{E} \left[\left\| \zeta_i^{t,0} \right\|^2 \right] \quad (12)$$

$$\Lambda_t := \mathbb{E} \left[\left\| \left(\frac{1}{\tau} \sum_{k=t-\tau+1}^t \frac{1}{|\mathcal{S}^k|J} \sum_{i=1}^{|\mathcal{S}^k|} \sum_{j=1}^J \tilde{g}_i^{k,j}(\theta_i^{k,j-1}) \right) - g^{t_\tau} \right\|^2 \right] \quad (13)$$

$$\gamma_t := \mathbb{E} \left[\left\| g^{t_\tau} - \nabla f(\theta^{t-1}) \right\|^2 \right] \quad (13)$$

Additionally, here we report the *bounded gradient heterogeneity* assumption. It is used to quantify the heterogeneity reduction effect of GHBM varying its τ hyperparameter. Notice that our main claim does not depend on this assumption, as for the optimal value of $\tau = 1/C$ the assumption is not needed (see Lemma B.4).

B.1 Momentum Expressions

In this section we report the derivation of the momentum expressions in Eq. (3) and (7) from the main paper.

Lemma B.1 (Heavy-Ball Formulation of Classical Momentum). *Let us consider the following classical formulation of momentum:*

$$\tilde{m}^t = \beta \tilde{m}^{t-1} + \tilde{g}^t(\theta^{t-1}) \quad (14)$$

$$\theta^t = \theta^{t-1} - \eta \tilde{m}^t \quad (15)$$

The same update rule can be equivalently expressed with the following, known as heavy-ball formulation:

$$\theta^t = \theta^{t-1} + \beta(\theta^{t-1} - \theta^{t-2}) - \eta \tilde{g}(\theta^{t-1}) \quad (16)$$

Proof. First derive the expression of \tilde{m}^t from Eq. (15), both for time t and $t-1$:

$$\tilde{m}^t = \frac{(\theta^{t-1} - \theta^t)}{\eta}$$

$$\tilde{m}^{t-1} = \frac{(\theta^{t-2} - \theta^{t-1})}{\eta}$$

Now plug these expressions into Eq. (14) to obtain (16):

$$\frac{(\theta^{t-1} - \theta^t)}{\eta} = \beta \frac{(\theta^{t-2} - \theta^{t-1})}{\eta} + \tilde{g}^t(\theta^{t-1})$$

$$(\theta^t - \theta^{t-1}) = \beta (\theta^{t-1} - \theta^{t-2}) - \eta \tilde{g}^t(\theta^{t-1})$$

$$\theta^t = \theta^{t-1} + \beta (\theta^{t-1} - \theta^{t-2}) - \eta \tilde{g}^t(\theta^{t-1})$$

□

Lemma B.2 (Heavy-Ball formulation of generalized momentum). *Let us consider the following generalized formulation of momentum:*

$$\tilde{m}_\tau^t = \frac{1}{\tau} \sum_{k=1}^{\tau} \beta \tilde{m}_\tau^{t-k} + \tilde{g}^t(\theta^{t-1}) \quad (17)$$

$$\theta^t = \theta^{t-1} - \eta \tilde{m}_\tau^t \quad (18)$$

The same update rule can be equivalently expressed in an heavy ball form, which we call as Generalized Heavy-Ball momentum (GHBM):

$$\theta^t = \theta^{t-1} + \frac{\beta}{\tau} (\theta^{t-1} - \theta^{t-\tau-1}) - \eta \tilde{g}(\theta^{t-1}) \quad (19)$$

Proof. First derive the expression of \tilde{m}_τ^t from Eq. (18), both for time t and $t-1$:

$$\tilde{m}_\tau^t = \frac{(\theta^{t-1} - \theta^t)}{\eta}$$

$$\tilde{m}_\tau^{t-1} = \frac{(\theta^{t-2} - \theta^{t-1})}{\eta}$$

Now plug these expressions into Eq. (17):

$$\frac{(\theta^{t-1} - \theta^t)}{\eta} = \frac{\beta}{\tau} \sum_{k=1}^{\tau} \frac{(\theta^{t-k-1} - \theta^{t-k})}{\eta} + \tilde{g}^t(\theta^{t-1})$$

$$(\theta^t - \theta^{t-1}) = \frac{\beta}{\tau} \sum_{k=1}^{\tau} (\theta^{t-k} - \theta^{t-k-1}) - \eta \tilde{g}^t(\theta^{t-1})$$

$$\theta^t = \theta^{t-1} + \frac{\beta}{\tau} \sum_{k=1}^{\tau} (\theta^{t-k} - \theta^{t-k-1}) - \eta \tilde{g}^t(\theta^{t-1})$$

$$\theta^t = \theta^{t-1} + \frac{\beta}{\tau} (\theta^{t-1} - \theta^{t-\tau-1}) - \eta \tilde{g}^t(\theta^{t-1})$$

Where the last equality (19) comes from telescoping the summation on the rhs. □

B.2 Technical Lemmas

Now we cover some technical lemmas which are useful for computations later on. These are known results that are reported here for the convenience of the reader.

Lemma B.3 (relaxed triangle inequality). *Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be n vectors in \mathbb{R}^d . Then, the following is true:*

$$\left\| \sum_{i=1}^n \mathbf{v}_i \right\|^2 \leq n \sum_{i=1}^n \|\mathbf{v}_i\|^2$$

Proof. By Jensen's inequality, given a convex function ϕ , a series of n vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ and a series of non-negative coefficients λ_i with $\sum_{i=1}^n \lambda_i = 1$, it results that

$$\phi \left(\sum_{i=1}^n \lambda_i \mathbf{v}_i \right) \leq \sum_{i=1}^n \lambda_i \phi(\mathbf{v}_i)$$

Since the function $\mathbf{v} \rightarrow \|\mathbf{v}\|^2$ is convex, we can use this inequality with coefficients $\lambda_1 = \dots = \lambda_n = 1/n$, with $\sum_{i=1}^n \lambda_i = 1$, and obtain that

$$\left\| \frac{1}{n} \sum_{i=1}^n \mathbf{v}_i \right\|^2 = \frac{1}{n^2} \left\| \sum_{i=1}^n \mathbf{v}_i \right\|^2 \leq \frac{1}{n} \sum_{i=1}^n \|\mathbf{v}_i\|^2$$

□

B.3 Proofs of Main Lemmas

In this section we provide the proofs of the main theoretical results presented in the main paper.

Lemma B.4 (Deviation of τ -averaged gradient from true gradient). *Define $\mathcal{S}_\tau^t := \cup_{k=0}^{\tau-1} \mathcal{S}^{t-k}$ as the set of clients selected in the last τ rounds, and $g^{t_\tau} := 1/|\mathcal{S}_\tau^t| \sum_{i=1}^{|\mathcal{S}_\tau^t|} g_i^t(\theta^{t-1})$ as the average server pseudo-gradient. The approximation of a gradient over the last τ rounds g^{t_τ} w.r.t. the true gradient is quantified by the following:*

$$\mathbb{E} \left[\|g^{t_\tau} - \nabla f(\theta^{t-1})\|^2 \right] \leq 8\mathbb{E} \left[\left(\frac{|\mathcal{S}| - |\mathcal{S}_\tau^t|}{|\mathcal{S}|} \right)^2 \right] (G^2 + \|\nabla f(\theta^{t-1})\|^2)$$

Proof of Lemma B.4 (Deviation of τ -averaged gradient from true gradient)

Let define $\mathcal{S}_d := \mathcal{S} - \mathcal{S}_\tau^t$ and $\mathcal{S}_i := \mathcal{S} \cap \mathcal{S}_\tau^t$. Let us note that when all clients participate, *i.e.* $\mathcal{S}_d = \emptyset$, the claim is trivially true. For $\mathcal{S}_d \neq \emptyset$, we can expand the terms at the left-hand side using their definitions as follows:

$$\gamma_t = \mathbb{E} \left[\left\| \frac{1}{|\mathcal{S}_\tau^t|} \sum_{i=1}^{|\mathcal{S}_\tau^t|} g_i^t - \frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} g_i^t \right\|^2 \right] \tag{20}$$

$$= \mathbb{E} \left[\left\| \sum_{i \in \mathcal{S}_i} \left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right) g_i^t - \sum_{k \in \mathcal{S}_d} \frac{1}{|\mathcal{S}|} g_k^t \right\|^2 \right] \tag{21}$$

$$\stackrel{\text{lemma B.3}}{\leq} 2 \left(\underbrace{\mathbb{E} \left[\left\| \sum_{i \in \mathcal{S}_i} \left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right) g_i^t \right\|^2 \right]}_{\mathcal{T}_3} + \underbrace{\mathbb{E} \left[\left\| \sum_{k \in \mathcal{S}_d} \frac{1}{|\mathcal{S}|} g_k^t \right\|^2 \right]}_{\mathcal{T}_4} \right) \tag{22}$$

Let us consider first \mathcal{T}_3 . We have:

$$\mathcal{T}_3 = \mathbb{E} \left[\left\| \sum_{i \in \mathcal{S}_i} \left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right) g_i^t \right\|^2 \right] = \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right)^2 \left\| \sum_{i \in \mathcal{S}_i} g_i^t \right\|^2 \right] \quad (23)$$

$$\stackrel{\text{lemma B.3}}{\leq} \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_i| \sum_{i \in \mathcal{S}_i} \|g_i^t\|^2 \right] \quad (24)$$

$$= \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_i| \sum_{i \in \mathcal{S}_i} \|g_i^t - \nabla f(\theta^{t-1}) + \nabla f(\theta^{t-1})\|^2 \right] \quad (25)$$

$$\stackrel{\text{lemma B.3}}{\leq} 2 \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_i| \sum_{i \in \mathcal{S}_i} (\|g_i^t - \nabla f(\theta^{t-1})\|^2 + \|\nabla f(\theta^{t-1})\|^2) \right] \quad (26)$$

$$\stackrel{\text{assumption 4.3}}{\leq} 2 \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_i| \left(|\mathcal{S}_i| G^2 + \sum_{i \in \mathcal{S}_i} \|\nabla f(\theta^{t-1})\|^2 \right) \right] \quad (27)$$

Since the term $\nabla f(\theta^{t-1})$ does not depend on the index i , we get

$$2 \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_i| \left(|\mathcal{S}_i| G^2 + \sum_{i \in \mathcal{S}_i} \|\nabla f(\theta^{t-1})\|^2 \right) \right] \quad (28)$$

$$= 2 \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_i| \left(|\mathcal{S}_i| G^2 + |\mathcal{S}_i| \|\nabla f(\theta^{t-1})\|^2 \right) \right] \quad (29)$$

$$= 2 \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_i|^2 \right] (G^2 + \|\nabla f(\theta^{t-1})\|^2) \quad (30)$$

Now, note that $\mathcal{S}_\tau^t \subseteq \mathcal{S} \implies |\mathcal{S}_i| = |\mathcal{S}_\tau^t|$. Therefore,

$$\mathcal{T}_3 \leq 2 \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}_\tau^t|} - \frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_i|^2 \right] (G^2 + \|\nabla f(\theta^{t-1})\|^2) \quad (31)$$

$$= 2 \mathbb{E} \left[\left(\frac{|\mathcal{S}| - |\mathcal{S}_\tau^t|}{|\mathcal{S}|} \right)^2 \right] (G^2 + \|\nabla f(\theta^{t-1})\|^2) \quad (32)$$

Moving now to \mathcal{T}_4 , we have:

$$\mathcal{T}_4 = \mathbb{E} \left[\left\| \sum_{k \in \mathcal{S}_d} \frac{1}{|\mathcal{S}|} g_k^t \right\|^2 \right] \leq \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}|} \right)^2 \left\| \sum_{k \in \mathcal{S}_d} g_k^t \right\|^2 \right] \quad (33)$$

$$\stackrel{\text{lemma B.3}}{\leq} \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_d| \sum_{k \in \mathcal{S}_d} \|g_k^t\|^2 \right] \quad (34)$$

$$= \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_d| \sum_{k \in \mathcal{S}_d} \|g_k^t - \nabla f(\theta^{t-1}) + \nabla f(\theta^{t-1})\|^2 \right] \quad (35)$$

$$\stackrel{\text{lemma B.3}}{\leq} 2 \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_d| \sum_{k \in \mathcal{S}_d} (\|g_k^t - \nabla f(\theta^{t-1})\|^2 + \|\nabla f(\theta^{t-1})\|^2) \right] \quad (36)$$

$$\stackrel{\text{assumption 4.3}}{\leq} 2 \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_d| \left(|\mathcal{S}_d| G^2 + \sum_{k \in \mathcal{S}_d} \|\nabla f(\theta^{t-1})\|^2 \right) \right] \quad (37)$$

$$= 2 \mathbb{E} \left[\left(\frac{1}{|\mathcal{S}|} \right)^2 |\mathcal{S}_d| \left(|\mathcal{S}_d| G^2 + |\mathcal{S}_d| \|\nabla f(\theta^{t-1})\|^2 \right) \right] \quad (38)$$

$$= 2 \mathbb{E} \left[\left(\frac{|\mathcal{S}_d|}{|\mathcal{S}|} \right)^2 \right] (G^2 + \|\nabla f(\theta^{t-1})\|^2) \quad (39)$$

(40)

Observing that $|\mathcal{S}_d| = |\mathcal{S}| - |\mathcal{S}_\tau^t|$ we obtain:

$$\mathcal{T}_4 \leq 2 \mathbb{E} \left[\left(\frac{|\mathcal{S}_d|}{|\mathcal{S}|} \right)^2 \right] (G^2 + \|\nabla f(\theta^{t-1})\|^2) = \mathbb{E} \left[\left(\frac{|\mathcal{S}| - |\mathcal{S}_\tau^t|}{|\mathcal{S}|} \right)^2 \right] (G^2 + \|\nabla f(\theta^{t-1})\|^2) \quad (41)$$

Finally, by plugging (31) and (41) in (22) we obtain

$$\mathbb{E}_{\mathcal{S}^t \sim \mathcal{U}(\mathcal{S})} \left[\left\| g^{(t)\tau}(\theta) - \nabla f(\theta) \right\|^2 \right] \leq 8 \mathbb{E}_{\mathcal{S}^t \sim \mathcal{U}(\mathcal{S})} \left[\left(\frac{|\mathcal{S}| - |\mathcal{S}_\tau^t|}{|\mathcal{S}|} \right)^2 \right] (G^2 + \|\nabla f(\theta)\|^2)$$

which concludes the proof. \square

Corollary B.5. *Consider Lemma B.4 and further assume that, at each round of FL training, clients are sampled according to a rule satisfying Assumption 4.4. Then, for any $\tau \in (0, \frac{1}{C}]$:*

$$\mathbb{E} \left[\left\| g^{t\tau} - \nabla f(\theta^{t-1}) \right\|^2 \right] \leq 8(1 - \tau C)^2 (G^2 + \|\nabla f(\theta^{t-1})\|^2)$$

Proof of Corollary B.5 This corollary follows from Lemma B.4, which states that

$$\mathbb{E}_{\mathcal{S}^t \sim \mathcal{U}(\mathcal{S})} \left[\left\| g^{(t)\tau}(\theta) - \nabla f(\theta) \right\|^2 \right] \leq 8 \mathbb{E}_{\mathcal{S}^t \sim \mathcal{U}(\mathcal{S})} \left[\left(\frac{|\mathcal{S}| - |\mathcal{S}_\tau^t|}{|\mathcal{S}|} \right)^2 \right] (G^2 + \|\nabla f(\theta)\|^2)$$

To prove the results, we use (i) Assumption 4.4, (ii) the fact that $|\mathcal{S}^t| = |\mathcal{S}|C \forall t$ and (iii) \mathcal{S}_τ^t is union of τ disjoint \mathcal{S}^t sets. Using points (i)-(iii), and assuming $\tau \in [0, \frac{1}{C}]$, it follows that:

$$\left\| g^{(t)\tau}(\theta) - \nabla f(\theta) \right\|^2 \leq 8(1 - \tau C)^2 (G^2 + \|\nabla f(\theta)\|^2)$$

\square

Lemma B.6 (Bounded Error of Momentum Update). *Consider the update rule in Eq. (5), and call $\tilde{g}^{t_\tau} = \frac{1}{\tau} \sum_{k=t-\tau+1}^t \frac{1}{|\mathcal{S}^k|J} \sum_{i=1}^{|\mathcal{S}^k|} \sum_{j=1}^J \tilde{g}_i^{k,j}(\theta_i^{k,j-1})$ the server stochastic average pseudo-gradient over the last τ global steps and the average server pseudo-gradient at current parameters as $g^{t_\tau} := 1/|\mathcal{S}_\tau^t| \sum_{i=1}^{|\mathcal{S}_\tau^t|} g_i^t(\theta^{t-1})$. Let also define the client drift $\mathcal{U}_t := \frac{1}{|\mathcal{S}|J} \sum_{j=1}^J \sum_{i=1}^{|\mathcal{S}|} \mathbb{E} \|\theta_i^{t,j} - \theta^{t-1}\|^2$ and the error of server update $\mathcal{E}_t := \mathbb{E} \|\nabla f(\theta^{t-1}) - \tilde{m}_\tau^{t+1}\|^2$. Under Assumptions 4.1, 4.2 and 4.4, it holds that:*

$$\mathbb{E} [\|\tilde{g}^{t_\tau} - g^{t_\tau}\|^2] \leq 3 \left(\frac{\sigma^2}{|\mathcal{S}_\tau^t|J} + \frac{L^2}{\tau} \sum_{k=t-\tau+1}^t \mathcal{U}_k + 2L^2\eta^2 \sum_{k=t-\tau+1}^{t-1} \left(\mathbb{E} [\|\nabla f(\theta^{k-1})\|^2] + \mathcal{E}_k \right) \right)$$

Proof of Lemma B.6 (Bounded error of delayed gradients)

Note that, by Assumption 4.4, $|\mathcal{S}^t| = |\mathcal{S}|C \forall t$, and that $|\mathcal{S}|C\tau = |\mathcal{S}_\tau^t|$:

$$\Lambda_t = \mathbb{E} \left[\left\| \frac{1}{\tau} \sum_{k=t-\tau+1}^t \frac{1}{|\mathcal{S}^k|J} \sum_{i=1}^{|\mathcal{S}^k|} \sum_{j=1}^J \tilde{g}_i^{k,j}(\theta_i^{k,j-1}) - g^{t_\tau} \right\|^2 \right] \quad (42)$$

$$= \mathbb{E} \left[\left\| \frac{1}{\tau} \sum_{k=t-\tau+1}^t \frac{1}{|\mathcal{S}^k|J} \sum_{i=1}^{|\mathcal{S}^k|} \sum_{j=1}^J \left(\tilde{g}_i^{k,j}(\theta_i^{k,j-1}) - g_i(\theta^{t-1}) \right) \right\|^2 \right] \quad (43)$$

$$= \mathbb{E} \left[\left\| \frac{1}{\tau} \sum_{k=t-\tau+1}^t \frac{1}{|\mathcal{S}^k|J} \sum_{i=1}^{|\mathcal{S}^k|} \sum_{j=1}^J \left(\tilde{g}_i^{k,j}(\theta_i^{k,j-1}) - g_i(\theta_i^{k,j-1}) + g_i(\theta_i^{k,j-1}) - g_i(\theta^{k-1}) + g_i(\theta^{k-1}) - g_i(\theta^{t-1}) \right) \right\|^2 \right] \quad (44)$$

$$\leq 3(\mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3)$$

$$\mathcal{T}_1 = \mathbb{E} \left[\left\| \frac{1}{\tau} \sum_{k=t-\tau+1}^t \frac{1}{|\mathcal{S}^k|J} \sum_{i=1}^{|\mathcal{S}^k|} \sum_{j=1}^J \left(\tilde{g}_i^{k,j}(\theta_i^{k,j-1}) - g_i(\theta_i^{k,j-1}) \right) \right\|^2 \right] \leq \frac{1}{\tau} \frac{\sigma^2}{|\mathcal{S}^t|J} = \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} \quad (45)$$

$$\mathcal{T}_2 = \mathbb{E} \left[\left\| \frac{1}{\tau} \sum_{k=t-\tau+1}^t \frac{1}{|\mathcal{S}^k|J} \sum_{i=1}^{|\mathcal{S}^k|} \sum_{j=1}^J \left(g_i(\theta_i^{k,j-1}) - g_i(\theta^{k-1}) \right) \right\|^2 \right] \quad (46)$$

$$\leq \frac{L^2}{|\mathcal{S}|J\tau} \sum_{k=t-\tau+1}^t \sum_{i=1}^{|\mathcal{S}|} \sum_{j=1}^J \mathbb{E} [\|\theta_i^{k,j-1} - \theta^{k-1}\|^2] \quad (47)$$

$$= \frac{L^2}{\tau} \sum_{k=t-\tau+1}^t \mathcal{U}_k \quad (48)$$

$$(49)$$

$$\mathcal{T}_3 = \mathbb{E} \left[\left\| \frac{1}{\tau} \sum_{k=t-\tau+1}^t \frac{1}{|\mathcal{S}^k|J} \sum_{i=1}^{|\mathcal{S}^k|} \sum_{j=1}^J (g_i(\theta^{k-1}) - g_i(\theta^{t-1})) \right\|^2 \right] \quad (50)$$

$$\leq \frac{L^2}{|\mathcal{S}| \tau} \sum_{k=t-\tau+1}^t \sum_{i=1}^{|\mathcal{S}|} \mathbb{E} \left[\|\theta^{k-1} - \theta^{t-1}\|^2 \right] \quad (51)$$

$$\leq \frac{L^2}{\tau} \sum_{k=t-\tau+1}^t \mathbb{E} \left[\|\theta^{k-1} - \theta^{t-1}\|^2 \right] \quad (52)$$

$$= \frac{L^2}{\tau} \sum_{k=t-\tau+1}^t (t-k) \mathbb{E} \left[\|\theta^k - \theta^{k-1}\|^2 \right] \quad (53)$$

$$\leq 2L^2 \eta^2 \sum_{k=t-\tau+1}^{t-1} \left(\mathbb{E} \left[\|\nabla f(\theta^{k-1})\|^2 \right] + \mathcal{E}_k \right) \quad (54)$$

So, combining with lemma Lemmas B.8 and B.9 we have:

$$\sum_{t=1}^T \Lambda_t \leq 3 \left(\frac{T\sigma^2}{|\mathcal{S}_\tau^t|J} + L^2 \sum_{t=1}^T \mathcal{U}_t + 2L^2 \eta^2 (\tau-1) \sum_{t=1}^{T-1} \left(\mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] + \mathcal{E}_t \right) \right) \quad (55)$$

$$\stackrel{\text{lemma B.8}}{=} 3 \left(\frac{T\sigma^2}{|\mathcal{S}_\tau^t|J} + 2L^2 \eta^2 (\tau-1) \sum_{t=1}^{T-1} \left(\mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] + \mathcal{E}_t \right) \right. \quad (56)$$

$$\left. + \underbrace{L^2 T J \eta_l^2 \beta^2 \sigma^2 (1 + 2J^3 \eta_l^2 \beta^2 L^2)}_{\mathcal{T}_4} + 2J^2 L^2 e^2 \sum_{t=1}^T \Xi_t \right) \quad (57)$$

$$\stackrel{\text{lemma B.9}}{=} 3 \left(\frac{T\sigma^2}{|\mathcal{S}_\tau^t|J} + 2L^2 \eta^2 (\tau-1) \sum_{t=1}^{T-1} \left(\mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] + \mathcal{E}_t \right) \right. \quad (57)$$

$$\left. + \mathcal{T}_4 + \underbrace{2J^2 L^2 e^2 (4\eta_l^2 ((1-\beta)^2 + e(\beta\eta_l T)^2))}_{\alpha_1} \sum_{t=0}^{T-1} (\mathcal{E}_t + \mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right]) \right. \\ \left. + \underbrace{2e^2 J^2 L^2 (2e\eta_l^2 \beta \tau T G_\tau)}_{\mathcal{T}_5} \right)$$

$$= 3 \left(\frac{T\sigma^2}{|\mathcal{S}_\tau^t|J} + \mathcal{T}_4 + \underbrace{(\alpha_1 + 2L^2 \eta_l^2 (\tau-1))}_{\alpha_2} \sum_{t=1}^{T-1} \left(\mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] + \mathcal{E}_t \right) + \mathcal{T}_5 \right) \quad (58)$$

□

B.4 Convergence Proof

Lemma B.7 (Bounded variance of server updates). *Under Assumptions 4.1 and 4.2, it holds that:*

$$\sum_{t=1}^T \mathcal{E}_t \leq \frac{8}{5\beta} \mathcal{E}_0 + \frac{3}{5} \sum_{t=0}^{T-1} \mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] + 21\beta \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} T + \quad (59)$$

$$+ \frac{448}{5} (\eta_l JL)^2 (e^3 \tau T) G_\tau + 6\beta \sum_{t=1}^T \gamma_t$$

Proof.

$$\mathcal{E}_t := \mathbb{E} \left[\|\nabla f(\theta^{t-1}) - \tilde{m}_\tau^{t+1}\|^2 \right] \quad (60)$$

$$= \mathbb{E} \left[\|(1-\beta)(\nabla f(\theta^{t-1}) - \tilde{m}_\tau^t) + \beta(\nabla f(\theta^{t-1}) - \tilde{g}^{t_\tau})\|^2 \right] \quad (61)$$

$$= \mathbb{E} \left[\|(1-\beta)(\nabla f(\theta^{t-1}) - \tilde{m}_\tau^t)\|^2 \right] + \beta^2 \mathbb{E} \left[\|\nabla f(\theta^{t-1}) - \tilde{g}^{t_\tau}\|^2 \right] \quad (62)$$

$$+ 2\beta \mathbb{E} \left[\left\langle (1-\beta)(\nabla f(\theta^{t-1}) - \tilde{m}_\tau^t), \nabla f(\theta^{t-1}) - \frac{1}{\tau} \sum_{k=t-\tau+1}^t \frac{1}{|\mathcal{S}_\tau^k|J} \sum_{i=1}^{|\mathcal{S}_\tau^k|} \sum_{j=1}^J g_i(\theta_i^{k,j-1}) \right\rangle \right] \quad (63)$$

Using the AM-GM inequality and Lemma B.3:

$$\leq \left(1 + \frac{\beta}{2}\right) \mathbb{E} \left[\|(1-\beta)(\nabla f(\theta^{t-1}) - \tilde{m}_\tau^t)\|^2 \right] + 2\beta^2 (\gamma_t + \Lambda_t) + \\ + 4\beta\gamma_t + 8\beta \left(\frac{L^2}{\tau} \sum_{k=t-\tau+1}^t \mathcal{U}_k + 2L^2\eta^2 \sum_{k=t-\tau+1}^{t-1} \left(\mathbb{E} \left[\|\nabla f(\theta^{k-1})\|^2 \right] + \mathcal{E}_k \right) \right) \quad (64)$$

$$\stackrel{\text{lemma B.6}}{\leq} \left(1 + \frac{\beta}{2}\right) \mathbb{E} \left[\|(1-\beta)(\nabla f(\theta^{t-1}) - \tilde{m}_\tau^t)\|^2 \right] + (2\beta^2 + 4\beta)\gamma_t + 6\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} + \\ + (6\beta^2 + 8\beta) \underbrace{\left(\frac{L^2}{\tau} \sum_{k=t-\tau+1}^t \mathcal{U}_k + 2L^2\eta^2 \sum_{k=t-\tau+1}^{t-1} \left(\mathbb{E} \left[\|\nabla f(\theta^{k-1})\|^2 \right] + \mathcal{E}_k \right) \right)}_{\mathcal{T}_1} \quad (65)$$

$$\leq (1-\beta)^2 \left(1 + \frac{\beta}{2}\right) \mathbb{E} \left[\|\nabla f(\theta^{t-2}) - \tilde{m}_\tau^t + \nabla f(\theta^{t-1}) - \nabla f(\theta^{t-2})\|^2 \right] + \\ + 6\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} + 6\beta\gamma_t + 14\beta\mathcal{T}_1 \quad (66)$$

Applying the AM-GM inequality again:

$$\leq (1-\beta)^2 \left(1 + \frac{\beta}{2}\right) \left[\left(1 + \frac{\beta}{4}\right) \mathbb{E} \left[\|\nabla f(\theta^{t-2}) - \tilde{m}_\tau^t\|^2 \right] + \right. \\ \left. + \left(1 + \frac{1}{\beta}\right) \mathbb{E} \left[\|\nabla f(\theta^{t-1}) - \nabla f(\theta^{t-2})\|^2 \right] \right] + 6\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} + 6\beta\gamma_t + 14\beta\mathcal{T}_1 \quad (67)$$

$$\stackrel{\text{assumption 4.2}}{\leq} (1-\beta)^2 \left(1 + \frac{\beta}{2}\right) \left[\left(1 + \frac{\beta}{4}\right) \mathcal{E}_{t-1} + \right. \\ \left. + \left(1 + \frac{1}{\beta}\right) L^2 \mathbb{E} \left[\|\theta^{t-1} - \theta^{t-2}\|^2 \right] \right] + 6\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} + 6\beta\gamma_t + 14\beta\mathcal{T}_1 \quad (68)$$

$$\leq (1-\beta)^2 \left(1 + \frac{\beta}{2}\right) \left[\left(1 + \frac{\beta}{4}\right) \mathcal{E}_{t-1} + \right. \\ \left. + 2 \left(1 + \frac{1}{\beta}\right) L^2\eta^2 \left(\mathbb{E} \left[\|\nabla f(\theta^{t-2})\|^2 \right] + \mathcal{E}_{t-1} \right) \right] + 6\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} + 6\beta\gamma_t + 14\beta\mathcal{T}_1 \quad (69)$$

Where in the last inequality we used the fact that:

$$\|\theta^{t-1} - \theta^{t-2}\|^2 \leq 2\eta^2 \left(\|\nabla f(\theta^{t-2})\|^2 + \|\nabla f(\theta^{t-2}) - \tilde{m}_\tau^t\|^2 \right).$$

Now notice that $(1-\beta)^2 \left(1 + \frac{\beta}{2}\right) \left(1 + \frac{\beta}{4}\right) \leq (1-\beta)$ and that $2(1-\beta)^2 \left(1 + \frac{\beta}{2}\right) \left(1 + \frac{1}{\beta}\right) \leq \frac{2}{\beta}$:

$$\mathcal{E}_t \leq (1-\beta)\mathcal{E}_{t-1} + \frac{2}{\beta} L^2\eta^2 \left(\mathbb{E} \left[\|\nabla f(\theta^{t-2})\|^2 \right] + \mathcal{E}_{t-1} \right) + 6\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} + 6\beta\gamma_t + 14\beta\mathcal{T}_1 \quad (70)$$

$$= \left(1 - \beta + \frac{2}{\beta} L^2\eta^2\right) \mathcal{E}_{t-1} + \frac{2}{\beta} L^2\eta^2 \mathbb{E} \left[\|\nabla f(\theta^{t-2})\|^2 \right] + 6\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} + 6\beta\gamma_t + 14\beta\mathcal{T}_1 \quad (71)$$

Define:

- $\mathcal{T}_2 := L^2 T J \eta_l^2 \beta^2 \sigma^2 (1 + 2J^3 \eta_l^2 \beta^2 L^2)$
- $\mathcal{T}_3 := 2e^2 J^2 L^2 (2e \eta_l^2 \beta \tau T G_\tau)$
- $\alpha_1 := 2J^2 L^2 e^2 (4\eta_l^2 ((1-\beta)^2 + e(\beta \eta L T)^2)) + 2L^2 \eta_l^2 (\tau - 1)$

Summing up over T and substituting into \mathcal{T}_1 the expression for \mathcal{U}_t :

$$\begin{aligned} \sum_{t=1}^T \mathcal{E}_t &\leq \underbrace{\left(1 - \beta + \frac{2}{\beta} L^2 \eta^2 + 14\beta \alpha_1\right)}_{\alpha_2} \sum_{t=0}^{T-1} \mathcal{E}_t + \\ &\quad + \underbrace{\left(\frac{2}{\beta} L^2 \eta^2 + 14\beta \alpha_1\right)}_{\alpha_3} \sum_{t=0}^{T-1} \mathbb{E} [\|\nabla f(\theta^{t-1})\|^2] + \\ &\quad + 14\beta (\mathcal{T}_2 + \mathcal{T}_3) T + 6\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t| J} T + 6\beta \sum_{t=1}^T \gamma_t \end{aligned} \quad (72)$$

We now have that:

$$\alpha_2 := \left(1 - \beta + \frac{2}{\beta} L^2 \eta^2 + 14\beta [2J^2 L^2 e^2 (4\eta_l^2 ((1-\beta)^2 + e(\beta \eta L T)^2)) + 2L^2 \eta_l^2 (\tau - 1)]\right) \quad (73)$$

$$= \left(1 - \beta + \frac{2}{\beta} L^2 \eta^2 + 14\beta [8J^2 L^2 e^2 \eta_l^2 ((1-\beta)^2 + e(\beta \eta L T)^2) + 2L^2 \eta_l^2 (\tau - 1)]\right) \quad (74)$$

$$\leq \left(1 - \beta + \frac{2}{\beta} L^2 \eta^2 + 112\beta e^2 (\eta_l J L)^2 [(1-\beta)^2 + (\beta \eta L T)^2 + (\tau - 1)]\right) \quad (75)$$

(76)

Now impose $(\eta_l J L) \leq (37\sqrt{\tau} \beta \eta L T e)^{-1}$ and $\eta \leq \frac{\beta}{\sqrt{8L}}$. We have that:

$$\alpha_2 \leq \left(1 - \beta + \frac{2\beta}{8} + \frac{\beta}{8}\right) = \left(1 - \frac{5\beta}{8}\right) \quad (77)$$

$$\alpha_3 \leq \frac{3\beta}{8} \quad (78)$$

$$14\beta \mathcal{T}_2 = 14\beta L^2 T J \eta_l^2 \beta^2 \sigma^2 (1 + 2J^3 \eta_l^2 \beta^2 L^2) \quad (79)$$

$$= 14\beta^3 (\eta_l J L)^2 \left(\frac{1}{J} + 2(\eta_l J L \beta)^2\right) \sigma^2 T \quad (80)$$

$$\leq 7\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t| J} T \quad (81)$$

Where in the last inequality we apply:

$$2\beta (\eta_l J L)^2 \left(\frac{1}{J} + 2(\eta_l J L \beta)^2\right) \leq \frac{1}{|\mathcal{S}_\tau^t| J}$$

Plugging all the terms together we have:

$$\begin{aligned} \sum_{t=1}^T \mathcal{E}_t &\leq \left(1 - \frac{5}{8\beta}\right) \sum_{t=0}^{T-1} \mathcal{E}_t + \frac{3\beta}{8} \sum_{t=0}^{T-1} \mathbb{E} [\|\nabla f(\theta^{t-1})\|^2] + 13\beta^2 \frac{\sigma^2}{|\mathcal{S}_\tau^t| J} T + \\ &\quad + 56\beta (\eta_l J L)^2 (e^3 \tau T) G_\tau + 6\beta \sum_{t=1}^T \gamma_t \end{aligned} \quad (82)$$

Rearranging the terms completes the proof. \square

Lemma B.8. Under Assumptions 4.1 and 4.2, for Eq. (9) it holds that:

$$\mathcal{U}_t \leq 2J^2 e^2 \Xi_t + J\eta_l^2 \beta^2 \sigma^2 (1 + 2J^3 \eta_l^2 L^2 \beta^2) \quad (83)$$

$$\sum_{t=1}^T \mathcal{U}_t \leq T J \eta_l^2 \beta^2 \sigma^2 (1 + 2J^3 \eta_l^2 \beta^2 L^2) + 2J^2 e^2 \sum_{t=1}^T \Xi_t \quad (84)$$

Proof.

$$\mathbb{E} \left[\left\| \theta_i^{t,j} - \theta^{t-1} \right\|^2 \right] \leq 2\mathbb{E} \left[\left\| \sum_{k=0}^{j-1} \zeta_i^{t,k} \right\|^2 \right] + 2j\eta_l^2 \beta^2 \sigma^2 \quad (85)$$

$$\stackrel{\text{lemma B.3}}{\leq} 2j \sum_{k=0}^{j-1} \mathbb{E} \left[\left\| \zeta_i^{t,k} \right\|^2 \right] + 2j\eta_l^2 \beta^2 \sigma^2 \quad (86)$$

For any $1 \leq k \leq j-1 \leq J-2$, using $\eta L \leq \frac{1}{\beta J} \leq \frac{1}{\beta(j+1)}$, we have:

$$\mathbb{E} \left[\left\| \zeta_i^{t,k} \right\|^2 \right] \leq \left(1 + \frac{1}{j} \right) \mathbb{E} \left[\left\| \zeta_i^{t,k-1} \right\|^2 \right] + (1+j) \mathbb{E} \left[\left\| \zeta_i^{t,k} - \zeta_i^{t,k-1} \right\|^2 \right] \quad (87)$$

$$\leq \left(1 + \frac{1}{j} \right) \mathbb{E} \left[\left\| \zeta_i^{t,k-1} \right\|^2 \right] + (1+j)\eta_l^2 \beta^2 L^2 \left(\eta_l^2 \beta^2 \sigma^2 + \mathbb{E} \left[\left\| \zeta_i^{t,k-1} \right\|^2 \right] \right) \quad (88)$$

$$\leq \left(1 + \frac{1}{j} \right) \mathbb{E} \left[\left\| \zeta_i^{t,k-1} \right\|^2 \right] + (1+j)\eta_l^4 \beta^4 L^2 \sigma^2 + \frac{1}{1+j} \mathbb{E} \left[\left\| \zeta_i^{t,k} - \zeta_i^{t,k-1} \right\|^2 \right] \quad (89)$$

$$\leq \left(1 + \frac{2}{j} \right) \mathbb{E} \left[\left\| \zeta_i^{t,k-1} \right\|^2 \right] + (1+j)\eta_l^4 \beta^4 L^2 \sigma^2 \quad (90)$$

$$\stackrel{(1+\frac{2}{j})^j \leq e^2}{\leq} e^2 \mathbb{E} \left[\left\| \zeta_i^{t,0} \right\|^2 \right] + 4j^2 \eta_l^4 \beta^4 L^2 \sigma^2 \quad (91)$$

So it holds that:

$$\mathbb{E} \left[\left\| \theta_i^{t,j} - \theta^{t-1} \right\|^2 \right] \leq 2j^2 \left(e^2 \mathbb{E} \left[\left\| \zeta_i^{t,0} \right\|^2 \right] + 4j^2 \eta_l^4 L^2 \sigma^2 \right) + 2j\eta_l^2 \sigma^2 \quad (92)$$

$$= 2e^2 j^2 \mathbb{E} \left[\left\| \zeta_i^{t,0} \right\|^2 \right] + 2j\eta_l^2 \sigma^2 \beta^2 (1 + 4j^3 \eta_l^2 L^2 \beta^2) \quad (93)$$

So, summing up over i and j :

$$\mathcal{U}_t \leq \frac{1}{|\mathcal{S}| J} \sum_{i=1}^{|\mathcal{S}|} \sum_{j=1}^J 2e^2 j^2 \mathbb{E} \left[\left\| \zeta_i^{t,0} \right\|^2 \right] + 2j\eta_l^2 \sigma^2 \beta^2 (1 + 4j^3 \eta_l^2 L^2 \beta^2) \quad (94)$$

$$\leq 2J^2 e^2 \Xi_t + J\eta_l^2 \beta^2 \sigma^2 (1 + 2J^3 \eta_l^2 L^2 \beta^2) \quad (95)$$

Finally, summing up over T :

$$\sum_{t=1}^T \mathcal{U}_t \leq \underbrace{T J \eta_l^2 \beta^2 \sigma^2 (1 + 2J^3 \eta_l^2 \beta^2 L^2)}_{\mathcal{T}_1} + 2J^2 e^2 \sum_{t=1}^T \Xi_t \quad (96)$$

$$\leq \mathcal{T}_1 + 2J^2 e^2 \left(4\eta^2 ((1-\beta)^2 + e(\beta\eta L T)^2) \sum_{t=1}^{T-1} (\mathcal{E}_t + \mathbb{E} \left[\left\| \nabla f(\theta^{t-1}) \right\|^2 \right]) + \underbrace{2e\eta^2 \beta^2 \tau T G_\tau}_{\mathcal{T}_2} \right) \quad (97)$$

$$\leq \mathcal{T}_1 + \alpha_1 \sum_{t=1}^{T-1} (\mathcal{E}_t + \mathbb{E} \left[\left\| \nabla f(\theta^{t-1}) \right\|^2 \right]) + \alpha_2 \mathcal{T}_2 \quad (98)$$

□

Lemma B.9. Under Assumptions 4.1, 4.2 and 4.4, if $224e(\eta_l JL)^2 \left((1 - \beta)^2 + e(\beta\eta_l LT)^2 \right) \leq 1$, for Eq. (11) it holds for $t \geq 0$ that:

$$\Xi_t \leq \frac{1}{56eJ^2L^2} \sum_{t=0}^{T-1} \left(\mathcal{E}_t + \mathbb{E} \left[\left\| \nabla f(\theta^{t-1}) \right\|^2 \right] \right) + 2e\eta_l^2\beta^2\tau TG_\tau \quad (99)$$

Proof. Note that $\zeta_i^{t,0} = -\eta_l \left((1 - \beta)\tilde{m}_\tau^t + \beta g_i(\theta^{t-1}) \right)$,

$$\frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \left\| \zeta_i^{t,0} \right\|^2 \leq 2\eta_l^2 \left((1 - \beta)^2 \left\| \tilde{m}_\tau^t \right\|^2 + \frac{\beta^2}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \left\| g_i(\theta^{t-1}) \right\|^2 \right) \quad (100)$$

For any $a > 0$, considering each client participates to the train every $\tau = \frac{1}{C}$ rounds:

$$\mathbb{E} \left[\left\| g_i(\theta^{t-1}) \right\|^2 \right] = \mathbb{E} \left[\left\| g_i(\theta^{t-1}) - g_i(\theta^{t-\tau-1}) + g_i(\theta^{t-\tau-1}) \right\|^2 \right] \quad (101)$$

$$\stackrel{\text{lemma B.3}}{\leq} (1 + a) \mathbb{E} \left[\left\| g_i(\theta^{t-\tau-1}) \right\|^2 \right] + \quad (102)$$

$$+ \left(1 + \frac{1}{a} \right) \mathbb{E} \left[\left\| g_i(\theta^{t-1}) - g_i(\theta^{t-\tau-1}) \right\|^2 \right] \leq (1 + a) \mathbb{E} \left[\left\| g_i(\theta^{t-\tau-1}) \right\|^2 \right] + \quad (103)$$

$$+ \left(1 + \frac{1}{a} \right) L^2 \mathbb{E} \left[\left\| \theta^{t-1} - \theta^{t-\tau-1} \right\|^2 \right] \quad (104)$$

$$\leq (1 + a) \mathbb{E} \left[\left\| g_i(\theta^{t-\tau-1}) \right\|^2 \right] + \quad (105)$$

$$+ 2 \left(1 + \frac{1}{a} \right) L^2 \eta_l^2 \tau \sum_{k=1}^{\tau} \left(\mathcal{E}_{t-k} + \mathbb{E} \left[\left\| \nabla f(\theta^{t-k-1}) \right\|^2 \right] \right) \quad (106)$$

$$\leq (1 + a)^{\frac{t}{\tau}} \mathbb{E} \left[\left\| g_i(\theta^{t_i-1}) \right\|^2 \right] + \quad (107)$$

$$+ 2 \left(1 + \frac{1}{a} \right) L^2 \eta_l^2 \tau \sum_{s=1}^{\frac{t}{\tau}} \sum_{k=1}^{\tau} \left(\mathcal{E}_{s\tau-k} + \mathbb{E} \left[\left\| \nabla f(\theta^{s\tau-k}) \right\|^2 \right] \right) (1 + a)^{\frac{t}{\tau} - s} \leq (1 + a)^{\frac{t}{\tau}} \mathbb{E} \left[\left\| g_i(\theta^{t_i-1}) \right\|^2 \right] + \quad (108)$$

$$+ 2 \left(1 + \frac{1}{a} \right) L^2 \eta_l^2 \tau \sum_{k=1}^{t-1} \left(\mathcal{E}_k + \mathbb{E} \left[\left\| \nabla f(\theta^{k-1}) \right\|^2 \right] \right) (1 + a)^{\frac{t}{\tau}}$$

Where $t_i := \min_{t \in [T]} (t \text{ s.t. } i \in \mathcal{S}^t)$. Now take $a = \frac{\tau}{t}$:

$$\begin{aligned} \mathbb{E} \left[\left\| g_i(\theta^{t-1}) \right\|^2 \right] &\leq e \mathbb{E} \left[\left\| g_i(\theta^{t_i-1}) \right\|^2 \right] + \\ &+ 2e\eta_l^2 L^2 \tau \left(\frac{t}{\tau} + 1 \right) \sum_{k=1}^{t-1} \left(\mathcal{E}_k + \mathbb{E} \left[\left\| \nabla f(\theta^{k-1}) \right\|^2 \right] \right) \end{aligned} \quad (109)$$

So:

$$\sum_{t=1}^T \Xi_t \leq \sum_{t=1}^T 2\eta_l^2 \left(2(1-\beta)^2 \left(\mathcal{E}_{t-1} + \mathbb{E} \left[\|\nabla f(\theta^{t-2})\|^2 \right] \right) + \frac{\beta^2}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \mathbb{E} \left[\|g_i(\theta^{t-1})\|^2 \right] \right) \quad (110)$$

$$\leq \sum_{t=1}^T 4\eta_l^2(1-\beta)^2 \left(\mathcal{E}_{t-1} + \mathbb{E} \left[\|\nabla f(\theta^{t-2})\|^2 \right] \right) + \quad (111)$$

$$+ 2\eta_l^2\beta^2 \sum_{t=1}^T \left(\frac{e}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|} \mathbb{E} \left[\|g_i(\theta^{t-1})\|^2 \right] + 2e\eta_l^2 L^2 \tau \left(\frac{t}{\tau} + 1 \right) \sum_{k=1}^{t-1} \left(\mathcal{E}_k + \mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] \right) \right)$$

$$\leq 4\eta_l^2(1-\beta)^2 \sum_{t=1}^T \left(\mathcal{E}_{t-1} + \mathbb{E} \left[\|\nabla f(\theta^{t-2})\|^2 \right] \right) + \quad (112)$$

$$+ 2\eta_l^2\beta^2 \left(eT \sum_{t=1}^{\tau} G_t + 2e(\eta L T)^2 \sum_{t=1}^{T-1} \left(\mathcal{E}_t + \mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] \right) \right)$$

Let us define $G_\tau := \max_{t \in [1, \tau]} G_t$, with $G_t := \frac{1}{|\mathcal{S}^t|} \sum_{i=1}^{|\mathcal{S}^t|} \mathbb{E} \left[\|g_i(\theta^{t-1})\|^2 \right]$. We have that:

$$\sum_{t=1}^T \Xi_t \leq 4\eta_l^2 ((1-\beta)^2 + e(\beta\eta L T)^2) \sum_{t=0}^{T-1} \left(\mathcal{E}_t + \mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] \right) + 2e\eta_l^2\beta^2\tau T G_\tau \quad (113)$$

Applying the upper bound of η_l completes the proof. \square

Lemma B.10 (Cheng et al. [2024]). *Under Assumption 4.2, if $\eta L \leq \frac{1}{24}$, the following holds for all $t \geq 0$:*

$$\mathbb{E} [f(\theta^t)] \leq \mathbb{E} [f(\theta^{t-1})] - \frac{11\eta}{24} \mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] + \frac{13\eta}{24} \mathcal{E}_t \quad (114)$$

Proof. Since f is L -smooth, we have:

$$f(\theta^t) \leq f(\theta^{t-1}) + \langle \nabla f(\theta^{t-1}), \theta^t - \theta^{t-1} \rangle + \frac{L}{2} \|\theta^t - \theta^{t-1}\|^2 \quad (115)$$

$$= f(\theta^{t-1}) - \eta \|\nabla f(\theta^{t-1})\|^2 + \eta \langle \nabla f(\theta^{t-1}), \nabla f(\theta^{t-1}) - \tilde{m}_\tau^{t+1} \rangle + \frac{L\eta^2}{2} \|\tilde{m}_\tau^{t+1}\|^2 \quad (116)$$

Since $\theta^t = \theta^{t-1} - \eta \tilde{m}_\tau^{t+1}$, using Young's inequality and imposing $\eta L \leq \frac{1}{24}$, we further have:

$$f(\theta^t) \leq f(\theta^{t-1}) - \frac{\eta}{2} \|\nabla f(\theta^{t-1})\|^2 + \frac{\eta}{2} \|\nabla f(\theta^{t-1}) - \tilde{m}_\tau^{t+1}\|^2 + \quad (117)$$

$$+ L\eta^2 \left(\|\nabla f(\theta^{t-1})\|^2 + \|\nabla f(\theta^{t-1}) - \tilde{m}_\tau^{t+1}\|^2 \right) \leq f(\theta^{t-1}) - \frac{11\eta}{24} \|\nabla f(\theta^{t-1})\|^2 + \frac{13\eta}{24} \|\nabla f(\theta^{t-1}) - \tilde{m}_\tau^{t+1}\|^2 \quad (118)$$

\square

Proof of Theorem 4.6 (Convergence rate of GHBM for non-convex functions)

Under Assumptions 4.1, 4.2 and 4.4, if we take:

$$\tilde{m}_\tau^0 = 0, \quad \beta = \min \left\{ 1, \sqrt{\frac{|\mathcal{S}|JL\Delta}{\sigma^2 T}} \right\}, \quad \eta = \min \left\{ \frac{1}{24L}, \frac{\beta}{\sqrt{8L}} \right\} \quad (119)$$

$$\eta_l JL \lesssim \min \left\{ 1, \frac{1}{\beta\eta L\sqrt{\tau T}}, \sqrt{\frac{L\Delta}{\beta^3\tau G_\tau T}}, \frac{1}{\sqrt{\beta|\mathcal{S}|J}}, \left(\frac{1}{\beta^3|\mathcal{S}|J} \right)^{\frac{1}{4}} \right\}$$

then GHBM with optimal $\tau = \frac{1}{C}$ converges as:

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E} \left[\|\nabla f(\theta^{t-1})\|^2 \right] \lesssim \frac{L\Delta}{T} + \sqrt{\frac{L\Delta\sigma^2}{|\mathcal{S}|JT}} \quad (120)$$

Proof. Combining the results of Lemmas B.7 and B.10, we have that:

$$\sum_{t=1}^T (\mathbb{E}[f(\theta^t)] - \mathbb{E}[f(\theta^{t-1})]) \leq -\frac{11\eta}{24} \sum_{t=1}^T \mathbb{E}[\|\nabla f(\theta^{t-1})\|^2] + \frac{13\eta}{24} \sum_{t=1}^T \mathcal{E}_t \quad (121)$$

$$\frac{1}{\eta} \mathbb{E}[f(\theta^{t-1} - f(\theta^0))] \leq \frac{26}{30\beta} \mathcal{E}_0 - \frac{1}{15} \sum_{t=1}^T \mathbb{E}[\|\nabla f(\theta^{t-1})\|^2] + 32\beta \frac{\sigma^2}{|\mathcal{S}_\tau^t|J} T + \quad (122)$$

$$+ \frac{448}{5} (\eta_l JL)^2 (e^3 \tau T) G_\tau + 6\beta \sum_{t=1}^T \gamma_t \quad (123)$$

Imposing $\tau = \frac{1}{C}$, by Corollary B.5 we have that $\gamma_t = 0$ and $\mathcal{S}_\tau^t = \mathcal{S} \ \forall t$. Also, noticing that $\tilde{m}_\tau^0 = 0$ implies $\mathcal{E}_0 \leq 2L(f(\theta^0) - f^*) = 2L\Delta$, we have that:

$$\frac{1}{T} \sum_{t=1}^T \mathbb{E}[\|\nabla f(\theta^{t-1})\|^2] \lesssim \frac{L\Delta}{\eta LT} + \frac{\mathcal{E}_0}{\beta T} + (\eta_l JL\beta)^2 \tau G_\tau + \beta \frac{\sigma^2}{|\mathcal{S}|J} \quad (124)$$

$$\lesssim \frac{L\Delta}{T} + \frac{2L\Delta}{\beta T} + (\eta_l JL\beta)^2 \tau G_\tau + \beta \frac{\sigma^2}{|\mathcal{S}|J} \quad (125)$$

$$\lesssim \frac{L\Delta}{T} + \frac{2L\Delta}{\beta T} + \beta^2 \left(\frac{L\Delta}{\beta^3 \tau G_\tau T} \right) \tau G_\tau + \beta \frac{\sigma^2}{|\mathcal{S}|J} \quad (126)$$

$$\lesssim \frac{L\Delta}{T} + \frac{L\Delta}{\beta T} + \beta \frac{\sigma^2}{|\mathcal{S}|J} \quad (127)$$

$$\lesssim \frac{L\Delta}{T} + \sqrt{\frac{L\Delta\sigma^2}{|\mathcal{S}|JT}} \quad (128)$$

where the fourth inequality follows from applying the upper bound $\eta_l JL \leq \sqrt{\frac{L\Delta}{\beta^3 \tau G_\tau T}}$ on the third term of Eq. (125). \square

C Experimental Setting

C.1 Datasets and Models

CIFAR-10/100. We consider CIFAR-10 and CIFAR-100 to experiment with image classification tasks, each one respectively having 10 and 100 classes. For all methods, training images are preprocessed by applying random crops, followed by random horizontal flips. Both training and test images are finally normalized according to their mean and standard deviation. As the main model for experimentation, we used a model similar to LENET-5 as proposed in [Hsu et al., 2020]. To further validate our findings, we also employed a RESNET-20 as described in [He et al., 2015], following the implementation provided in [Idelbayev, 2021]. Since batch normalization Ioffe and Szegedy [2015] layers have been shown to hamper performance in learning from decentralized data with skewed label distribution [Hsieh et al., 2020], we replaced them with group normalization [Wu and He, 2018], using two groups in each layer. For a fair comparison, we used the same modified network also in centralized training. We report the result of centralized training for reference in Table 5: as per the hyperparameters, we use 64 for the batch size, 0.01 and 0.1 for the learning rate respectively for the LENET and the RESNET-20 and 0.9 for momentum. We trained both models on both datasets for 150 epochs using a cosine annealing learning rate scheduler.

Shakespeare. The Shakespeare language modeling dataset is created by collating the collective works of William Shakespeare and originally comprises 715 clients, with each client denoting a speaking role. However, for this study, a different approach was used, adopting the LEAF [Caldas et al., 2019] framework to split the dataset among 100 devices and restrict the number of data points per device to 2000. The non-IID dataset is formed by assigning each device to a specific role, and the local dataset for each device contains the sentences from that

role. Conversely, the IID dataset is created by randomly distributing sentences from all roles across the devices.

For this task, we have employed a two-layer Long Short-Term Memory (LSTM) classifier, consisting of 100 hidden units and an 8-dimensional embedding layer. Our objective is to predict the next character in a sequence, where there are a total of 80 possible character classes. The model takes in a sequence of 80 characters as input, and for each character, it learns an 8-dimensional representation. The final output of the model is a single character prediction for each training example, achieved through the use of 2 LSTM layers and a densely-connected layer followed by a softmax. This model architecture is the same used by [Li et al., 2020, Acar et al., 2021].

We report the result of centralized training for reference in Table 5: we train for 75 epochs with constant learning rate, using as hyperparameters 100 for the batch size, 1 for the learning rate, 0.0001 for the weight decay and no momentum.

StackOverflow. The Stack Overflow dataset is a language modeling corpus that comprises questions and answers from the popular Q&A website, StackOverflow. Initially, the dataset consists of 342477 unique users but for, practical reasons, we limit our analysis to a subset of 40k users. Our goal is to perform the next-word prediction on these text sequences. To achieve this, we utilize a Recurrent Neural Network (RNN) that first learns a 96-dimensional representation for each word in a sentence and then processes them through a single LSTM layer with a hidden dimension of 670. Finally, the model generates predictions using a densely connected softmax output layer. The model and the preprocessing steps are the same as in [Reddi et al., 2021]. We report the result of centralized training for reference in Table 5: as per the hyperparameters, we use 16 for the batch size, $10^{-1/2}$ for the learning rate and no momentum or weight decay. We train for 50 epochs with a constant learning rate. Given the size of the test dataset, testing is conducted on a subset of them made by 10000 randomly chosen test examples, selected at the beginning of training.

Large-scale Real-world Datasets. As large-scale real-world datasets for our experimentation, we follow Hsu et al. [2020]. GLDV2 is composed of $\approx 164k$ images belonging to ≈ 2000 classes, realistically split among 1262 clients. INATURALIST is composed of $\approx 120k$ images belonging to

Table 5: **Test accuracy (%) of centralized training over datasets and models used.** Results are reported in term of mean top-1 accuracy over the last 10 epochs, averaged over 5 independent runs.

DATASET	ACC. CENTRALIZED (%)
CIFAR-10 w/ LENET	86.48 ± 0.22
CIFAR-10 w/ RESNET-20	89.05 ± 0.44
CIFAR-100 w/ LENET	57.00 ± 0.09
CIFAR-100 w/ RESNET-20	62.21 ± 0.85
SHAKESPEARE	52.00 ± 0.16
STACKOVERFLOW	28.50 ± 0.25
GLDV2	74.03 ± 0.15

≈ 1200 classes, split among 9275 clients. These datasets are challenging to train not only because of their inherent complexity (size of images, number of classes) but also because usually at each round a very small portion of clients is selected. In particular, for GLDV2 we sample 10 clients per round, while for INATURALIST we experiment with different participation rates, sampling 10, 50, or 100 clients per round. In the main paper, we choose to report the participation rate instead of the number of sampled clients to better highlight that the tested scenarios are closer to a cross-device setting, which is the most challenging for algorithms based on client participation, like SCAFFOLD and ours. As per the model, for both datasets, we use a MobileNetV2 pretrained on ImageNet.

Details on the Experiment in Fig. 5. In the main text (see Sec. 4.1) we provide an experiment to illustrate the convergence rate of GHBM (see Fig. 5). The learning problem consists in a linear regression of the coefficients $(a, b, c) \in \mathbb{R}$ of a quadratic function $f(x) = ax^2 + bx + c$. The synthetic dataset is made of 6400 observations of the above function (with $a = 10, b = 5, c = -1$) in the range $x \in [-10, 10]$. The dataset is split among $K = 50$ clients each one having 128 samples, and non-iidness is simulated by splitting the domain into equally big disjoint subsets, and having each client the observation of that domain.

Table 6: Details about datasets’ split used for our experiments

	CIFAR-10	CIFAR-100	SHAKESPEARE	STACKOVERFLOW	GLDV2	INATURALIST
Clients	100	100	100	40.000	1262	9275
Number of clients per round	10	10	10	50	10	$\{10, 50, 100\}$
Number of classes	10	100	80	10004	2028	1203
Avg. examples per client	500	500	2000	428	130	13
Number of local steps	8	8	20	27	13	2
Average participation (round no.)	1k	1k	25	1.5	40	$\{5, 27, 54\}$

C.2 Simulating Heterogeneity

For CIFAR-10/100 we simulate arbitrary heterogeneity by splitting the total datasets according to a Dirichlet distribution with concentration parameter α , following Hsu et al. [2020]. In practice, we draw a multinomial $q_i \sim \text{Dir}(\alpha p)$ from a Dirichlet distribution, where p describes a prior class distribution over N classes, and α controls the heterogeneity among all clients: the greater α the more homogeneous the clients’ data distributions will be. After drawing the class distributions q_i , for every client i , we sample training examples for each class according to q_i without replacement.

C.3 Evaluating Communication and Computational Cost

In the main paper we showed a comparison in communication and computational cost of state-of-art FL algorithms compared to our solutions GHBM and FEDHBM: in this section we detail how those results in table Tab. 3 have been obtained. We follow a three-step procedure:

1. For each algorithm a , we calculate the minimum number of rounds r_a to reach the performance of FEDAVG, the total amount of bytes exchanged b_a in the whole training budget (number of rounds, as described in Appendix C.5) and the measure the corresponding total training time t_a . In this way, the different requirements in communication and computation of each algorithm are taken into account for the next steps.
2. We calculate the actual communication and computational requirements as $(tb_a = b_a \cdot s_a, tt_a = t_a \cdot s_a)$, where $s_a = \frac{r_a}{T}$ is the speedup of the algorithm w.r.t. FEDAVG. For those competitor algorithms that did not reach the target performance (e.g. MIMEMOM) in the training budget T , we conservatively consider $r_a = T$. In this way, the convergence speed of each algorithm is taken into account for determining the actual amount of computation needed.
3. We complement the above information with a reduction/increase factor w.r.t. FEDAVG, calculated as $rtb_a = \left(1 - \frac{tb_a}{tb_{\text{FEDAVG}}}\right)$ and $rtt_a = \left(1 - \frac{tt_a}{tt_{\text{FEDAVG}}}\right)$ and expressed as a percentage. A cost reduction (i.e. $rtb_a > 0$ or $rtt_a > 0$) is indicated with \downarrow , while a cost increase (i.e. $rtb_a < 0$ or $rtt_a < 0$) is indicated with \uparrow . This gives a practical indication of how much communication/computation have been saved in choosing the algorithm at hand as an alternative for FEDAVG.

Table 7: Hyper-parameter search grid for each combination of method and dataset (for $\alpha = 0$). The best values are indicated in **bold**.

METHOD	HPARAM	CIFAR-10/100		SHAKESPEARE	STACKOVERFLOW
		LENET	RESNET-20		
ALL FL	wd	[0.001 , 0.0008, 0.0004]	[0.0001, 0.00001]	[0, 0.0001 , 0.00001]	[0 , 0.0001, 0.00001]
	B	[2, 1.5 , 1, 0.5, 0.1]	[1.5, 1, 0.1]	[1.5, 1 , 0.5, 0.1]	[1.5, 1 , 0.5, 0.1]
FEDAVG	η	[0.1, 0.05, 0.1 , 0.005]	[1, 0.5 , 0.1, 0.01]	[1.5, 1 , 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
	η_l	[2, 1.5 , 1, 0.5, 0.1]	[1.5, 1, 0.1]	[1.5, 1 , 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
FEDPROX	η	[0.1, 0.05, 0.01 , 0.005]	[1, 0.5 , 0.1, 0.01]	[1.5, 1 , 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
	η_l	[1, 0.1, 0.01 , 0.001]	[1, 0.1 , 0.01, 0.001]	[0.1, 0.01, 0.001, 0.0001]	[0.1, 0.01 , 0.001, 0.0001]
SCAFFOLD	η	[1.5, 1, 0.5, 0.1]	[1.5, 1, 0.1]	[1.5, 1 , 0.5, 0.1]	[1.5, 1 , 0.5, 0.1]
	η_l	[0.1, 0.05, 0.1 , 0.005]	[0.5, 0.1 , 0.01]	[1.5, 1 , 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
FEDDYN	η	[1.5, 1, 0.5, 0.1]	[1.5, 1, 0.1]	[1.5, 1 , 0.5, 0.1]	[1.5, 1 , 0.5, 0.1]
	η_l	[0.1, 0.05, 0.01 , 0.005]	[0.1, 0.01 , 0.005]	[1.5, 1 , 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
	α	[0.1, 0.01, 0.001 , 0.0001]	[0.1, 0.01, 0.001 , 0.0001]	[0.1, 0.009 , 0.001]	[0.1 , 0.009, 0.001]
ADABEST	η	[1.5, 1, 0.5, 0.1]	[1.5, 1, 0.5, 0.1]	[1.5, 1 , 0.5, 0.1]	[1.5, 1 , 0.5, 0.1]
	η_l	[0.1, 0.05, 0.01 , 0.005]	[0.1, 0.05, 0.01 , 0.005]	[1.5, 1 , 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
	α	[0.1, 0.01, 0.001 , 0.0001]	[0.1, 0.01, 0.001 , 0.0001]	[0.1, 0.009 , 0.001]	[0.1 , 0.009, 0.001]
MIME	η	[2, 1.5 , 1, 0.5, 0.1]	[2, 1.5, 1, 0.1]	[1.5, 1 , 0.5, 0.1]	[1.5, 1 , 0.5, 0.1]
	η_l	[0.1, 0.05, 0.01 , 0.005]	[0.5, 0.1 , 0.01]	[1.5, 1 , 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
FEDAVGM	η	[1, 0.5, 0.1, 0.05 , 0.01]	[1, 0.1 , 0.05]	[1.5, 1 , 0.5, 0.1]	[1.5, 1 , 0.5, 0.1]
	η_l	[0.5, 0.1 , 0.05, 0.01, 0.005]	[1, 0.5 , 0.1, 0.01]	[1.5, 1 , 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
	β	[0.99, 0.9, 0.85 , 0.8]	[0.99, 0.9, 0.85 , 0.8]	[0.99, 0.9 , 0.85]	[0.99, 0.9 , 0.85]
FEDACG	η	[1, 0.5, 0.1, 0.05 , 0.01]	[1, 0.1 , 0.05]	[0.5, 0.1 , 0.05]	[1.5, 1 , 0.5, 0.1]
	η_l	[0.5, 0.1 , 0.05, 0.01, 0.005]	[0.5, 0.1 , 0.01]	[1.5, 1 , 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
	λ	[0.99, 0.9 , 0.85]	[0.99, 0.9 , 0.85]	[0.99, 0.9 , 0.85]	[0.99, 0.9 , 0.85]
	β	[0.1, 0.01 , 0.001]	[0.1, 0.01 , 0.001]	[0.1, 0.01, 0.001, 0.0001]	[0.1 , 0.01 , 0.001, 0.0001]
MIMEMOM	η	[1, 0.5, 0.1 , 0.05]	[1.5, 1, 0.5, 0.3, 0.1, 0.05]	[1, 0.5, 0.1 , 0.05]	[1.5, 1 , 0.5, 0.1]
	η_l	[0.1, 0.05, 0.01 , 0.005]	[0.5, 0.1, 0.05, 0.03, 0.01 , 0.005]	[1.5, 1, 0.5, 0.1]	[1, 0.5, 0.3 , 0.1 , 0.05]
	β	[0.99, 0.95, 0.9 , 0.85, 0.8]	[0.99, 0.95, 0.9, 0.85 , 0.8]	[0.99, 0.9 , 0.85]	[0.99, 0.9 , 0.85]
MIMELITEMOM	η	[1, 0.5, 0.1 , 0.05]	[1.5, 1, 0.5, 0.3, 0.1]	[1, 0.5, 0.1 , 0.05]	[1.5, 1 , 0.5, 0.1]
	η_l	[0.1, 0.05, 0.01 , 0.005]	[0.1, 0.05, 0.03, 0.01 , 0.005]	[1.5, 1, 0.5, 0.1]	[1, 0.5, 0.3 , 0.1 , 0.05]
	β	[0.99, 0.9 , 0.85, 0.8]	[0.99, 0.95, 0.9, 0.85 , 0.8]	[0.99, 0.9 , 0.85]	[0.99, 0.9 , 0.85]
FEDCM	η	[1, 0.5, 0.1 , 0.05]	[1.5, 1, 0.5, 0.1]	[1, 0.5, 0.1 , 0.05]	-
	η_l	[1, 0.5, 0.1 , 0.05]	[1, 0.5, 0.1 , 0.5]	[1.5, 1, 0.5, 0.1]	-
	α	[0.5, 0.1 , 0.5]	[0.05, 0.1, 0.5]	[0.05, 0.1 , 0.5]	-
GHBM (ours)	η	[1, 0.5, 0.1]	[1, 0.1]	[1, 0.5, 0.1]	[1, 0.5, 0.1]
	η_l	[0.1, 0.05, 0.01]	[0.1, 0.01]	[1, 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
	β	[0.9]	[0.9]	[0.9]	[0.9]
	τ	[5, 10 , 20, 40]	[5, 10 , 20, 40]	[5, 10 , 20, 40]	[5, 10, 20 , 40]
FEDHBM(ours)	η	[1, 0.5, 0.1]	[1, 0.1]	[1, 0.5, 0.1]	[1, 0.5, 0.1]
	η_l	[0.1, 0.05, 0.01]	[0.1, 0.01]	[1, 0.5, 0.1]	[1, 0.5, 0.3 , 0.1]
	β	[1, 0.99, 0.9]	[1, 0.99, 0.9]	[1, 0.99, 0.9]	[1, 0.99, 0.9]

C.4 Hyperparameters

For ease of consultation, we report the hyper-parameters grids as well as the chosen values in Table 7. For GLDV2 and INATURALIST we only test the best SOTA algorithms: FEDAVG and FEDAVGM as baselines, SCAFFOLD and MIMEMOM.

MOBILENETV2. For all algorithms we perform $E = 5$ local epochs, and searched $\eta \in \{0.1, 1\}$ and $\eta_l \in \{0.01, 0.1\}$, and found $\eta = 0.1, \eta_l = 0.1$ works best for FEDAVGM, while $\eta = 1, \eta_l = 0.1$ works best for the others. For INATURALIST, we had to enlarge the grid for SCAFFOLD and MIMEMOM: for both we searched $\eta \in \{10^{-3/2}, 10^{-1}, 10^{-1/2}, 1\}$ and $\eta_l \in \{10^{-2}, 10^{-3/2}, 10^{-1}, 10^{-1/2}\}$.

ViT-B\16. For all algorithms we perform $E = 5$ local epochs, and searched $\eta \in \{0.1, 1\}$ and $\eta_l \in \{0.03, 0.01\}$ following [Steiner et al., 2022], and found $\eta = 0.1, \eta_l = 0.03$ works best for FEDAVGM, while $\eta = 1, \eta_l = 0.03$ works best for the others.

C.5 Implementation Details

We implemented all the tested algorithms and training procedures in a single codebase, using PYTORCH 1.10 framework, compiled with CUDA 10.2. The federated learning setup is simulated by using a single node equipped with 11 Intel(R) Core(TM) i7-6850K CPUs and 4 NVIDIA GeForce GTX 1070 GPUs. For the large-scale experiments we used the computing capabilities offered by LEONARDO cluster of CINECA-HPC, employing nodes equipped with 1 CPU Intel(R) Xeon 8358 32 core, 2.6 GHz CPUS and 4 NVIDIA A100 SXM6 64GB (VRAM) GPUS. The simulation always runs in a sequential manner (on a single GPU) the parallel client training and the following aggregation by the central server.

Practicality of Experiments. Under the above conditions, a single FEDAVG experiment on CIFAR-100 takes $\approx 02:05$ hours (CNN, with $T = 20.000$) and $\approx 03:36$ hours (RESNET-20, with $T =$

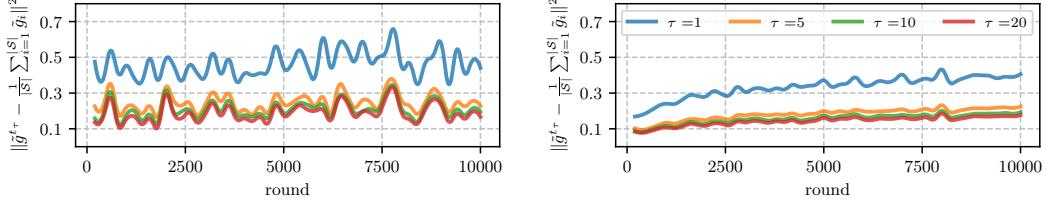


Figure 6: **Reusing old gradients is beneficial, despite the introduced lag.** The plot shows the empirical measure of the deviation between (i) the average of the last τ server pseudo-gradient (at different parameters) and (ii) the server-pseudo gradient calculated over all the clients (at the same parameters), varying τ , on CIFAR-100 with RESNET-20, in non-iid ($\alpha = 0$, left) and iid ($\alpha = 10,000$, right) settings.

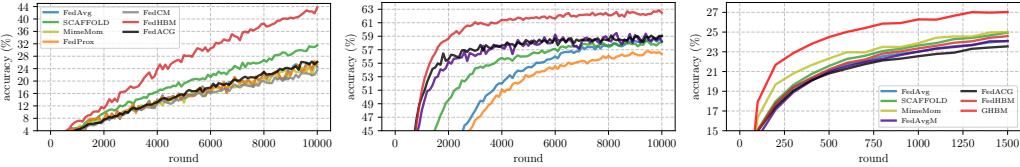


Figure 7: **GHBM largely outperforms state-of-the-art methods:** the plots show the test accuracy (%) over rounds, with RESNET-20 on CIFAR-100, both in NON-IID (left) and IID (middle), and on STACKOVERFLOW (right). GHBM always displays much faster convergence and higher accuracy, even when distributions are IID, confirming robustness w.r.t. heterogeneity and better dependency on stochastic noise.

10.000). For SCAFFOLD we always use the "option II" of their algorithm [Karimireddy et al., 2020] to calculate the client controls, incurring almost no overhead in our simulations. We found that using "option I" usually degrades both final model quality and requires almost double the training time, due to the additional forward+backward passes. Conversely, all MIME's methods incur a significant overhead due to the additional round needed to calculate the full-batch gradients, taking $\approx 10:40$ hours for CIFAR-100 with RESNET-20. On SHAKESPEARE and STACKOVERFLOW, FEDAVG takes ≈ 22 minutes and ≈ 3.5 hours to run respectively $T = 250$ and $T = 1500$ rounds.

C.6 Additional Experiments

Experiments on CIFAR-10 Table 8 reports the results of experiments analogous to the ones presented in Tab. 1. For the main paper, we report experiments on CIFAR-100, as it is a more complex dataset and often a more reliable testing ground for FL algorithms. Indeed, sometimes algorithms perform well on CIFAR-10 but worse on CIFAR-100 (as for the already discussed case of FEDDYN). Results in Tab. 8 confirm the findings of the main paper: under extreme heterogeneity, some algorithms behave inconsistently across CNN and RESNET-20 (notice that FEDDYN and MIMELITEMOM only with CNN improve FEDAVG. Conversely, LOCALGHBM and FEDHBM both consistently improve the state-of-art by a large margin.

Table 8: **Test accuracy (%) comparison of SOTA FL algorithms in a controlled setting.** Best result is in **bold**, second best is underlined.

METHOD	CIFAR-10 (RESNET-20)		CIFAR-10 (CNN)	
	NON-IID	IID	NON-IID	IID
FEDAVG	61.0 ± 1.0	86.4 ± 0.2	66.1 ± 0.3	83.1 ± 0.3
FEDPROX	61.0 ± 1.8	86.7 ± 0.2	66.1 ± 0.3	83.1 ± 0.3
SCAFFOLD	71.8 ± 1.7	86.8 ± 0.3	74.8 ± 0.2	82.9 ± 0.2
FEDDYN	60.2 ± 3.0	87.0 ± 0.3	70.9 ± 0.2	83.5 ± 0.1
ADABEST	73.6 ± 3.0	86.7 ± 0.5	66.1 ± 0.3	83.1 ± 0.4
MIME	53.7 ± 2.9	86.7 ± 0.1	75.1 ± 0.5	83.1 ± 0.2
FEDAVGM	66.0 ± 2.2	87.7 ± 0.3	67.6 ± 0.3	83.6 ± 0.3
FEDCM(GHBM $\tau=1$)	65.2 ± 3.2	87.1 ± 0.3	69.0 ± 0.3	83.4 ± 0.3
FEDADCGHBM $\tau=1$)	65.7 ± 3.0	87.1 ± 0.2	66.1 ± 0.3	83.4 ± 0.3
MIMEMOM	69.2 ± 3.6	88.0 ± 0.1	80.9 ± 0.4	83.1 ± 0.2
MIMELITEMOM	57.0 ± 0.9	88.0 ± 0.4	78.8 ± 0.4	83.2 ± 0.3
LOCALGHBM (ours)	80.6 ± 0.3	88.8 ± 0.1	81.1 ± 0.3	83.7 ± 0.1
FEDHBM (ours)	83.4 ± 0.3	89.2 ± 0.1	81.7 ± 0.1	83.8 ± 0.1

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [\[Yes\]](#)

Justification: Theoretical and experimental claims are reflected in sections 4 and 5

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [\[Yes\]](#)

Justification: Pros and cons of the proposed algorithm are discussed throughout the paper

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes] ,

Justification: Assumptions are stated in section 4 and full proofs are presented in the Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiments are fully reproducible, since formal algorithmic descriptions are provided (see Algorithm 1), and full details about training (datasets, models, hyperparameters) are detailed in Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.

- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: **[Yes]**

Justification: The link to code is attached to the manuscript. All datasets used are already publicly available.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: Full details in Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: All results are presented with measure of standard deviation.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: Complete details are provided in Appendix C.5

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification:

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA].

Justification: The paper presents a new optimization algorithm for FL

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA].

Justification:

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.

- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [\[Yes\]](#)

Justification:

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [\[NA\]](#)

Justification:

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [\[NA\]](#) .

Justification:

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA] .

Justification:

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification:

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.