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ABSTRACT

Diffusion models have achieved remarkable success in various generative tasks,
but training them remains highly resource-intensive, often with millions of im-
ages and GPU days of computation required. From a data-centric perspective
addressing the limitation, we study diffusion dataset condensation as a new chal-
lenging problem setting that aims at constructing a “synthetic” sub-dataset with
significantly fewer samples than the original dataset for training high-quality dif-
fusion models significantly faster. To the best of our knowledge, we are the first to
formally study the dataset condensation task for diffusion models, while conven-
tional dataset condensation focused on training discriminative models. For this
new challenge, we further propose a novel Diffusion Dataset Condensation (D?C)
framework, that consists of two phases: Select and Attach. The Select phase iden-
tifies a compact and diverse subset via a diffusion difficulty score and interval
sampling, upon which the Affach phase enhances conditional signals and informa-
tion of the selected subset by attaching rich semantic and visual representations.
Extensive experiments across dataset sizes, model architectures, and resolutions
demonstrate that our D*>C can train diffusion models significantly faster with dra-
matically fewer data while retaining high visual quality. Notably, for the SiT-XL/2
architecture, our D>C achieves a 100x acceleration, reaching a FID of 4.3 in just
40k steps using only 0.8% of the training data.
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Figure 1: D?C framework significantly accelerates diffusion model training with limited data.
(a) Overview of our DC pipeline, which consists of a Select phase that filters a compact and diverse
subset via diffusion difficulty score and interval sampling, and an Attach phase that enriches samples
with semantic and visual information. (b) D?C achieves over 100x faster convergence compared to
REPA and over 233 x faster than vanilla SiT-XL/2, reaching a FID of 4.3 at just 40k steps. (¢) Under
a strict 4% data budget (0.05M), our method achieves a FID of 2.7 at 180k iterations, demonstrating
its strong training efficiency and rapid convergence.

1 INTRODUCTION

Generative models, such as score-based (Song et al., [2023bfaj Ho et al., |2020) and flow-based (Liu
et al.| 2022} |Stability.ai, 2024)) approaches, have achieved remarkable success in various generative
tasks, producing high-quality and diverse data across domains (Karras et al.,[2022; Guo et al.,[2023)).
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However, these approaches are notoriously data and compute intensive to train, often requiring mil-
lions of samples and hundreds of thousands of iterations to capture complex high-dimensional dis-
tributions (Peebles & Xiel 2023 [Yu et al., [2025; [Ma et al., [2024). The resulting cost presents a
significant barrier to broader application and iteration within the AIGC community, making efficient
training increasingly important across both academic and industrial settings (L1 et al., [2023bj |Cui
et al., [2022). Recent efforts have improved diffusion training efficiency through various strategies,
such as architectural redesigns (Ma et al., 2024} Zheng et al.,[2023a} Peebles & Xie},[2023)), attention
optimization (Bolya & Hoffmanl [2023)), reweighting strategies (Li et al., 2025; |[Hang et al., |2023)),
and representation learning (Yu et al.| 2025; Wu et al.| 2025). In parallel, data-centric approaches
such as patch-based methods (Ding et al., 2024} Wang et al., 2023]), Infobatch (Qin et al.,|2023)) aim
to better exploit the potential of existing data. Despite these advances, building a relatively complete
“syntheti subset via dataset condensation (Wang et al.,|2018)) remains underexplored.

Dataset condensation (Wang et al.l 2018 2022; [Yin et al., 2023} [Shao et al., 2023)) aims to con-
struct a “synthetic” sub-dataset with significantly fewer samples than the original dataset, such that
a model trained from scratch on this subset achieves comparable performance to one trained on the
full dataset. Unlike data pruning or selection [Yang et al.[ (2023), which passively select existing
samples, condensation actively optimizes synthetic data, offering greater potential for aggressive
data reduction and training efficiency (Sun et al.,|2024). However, all existing methods are designed
for discriminative tasks. Compared to discriminative tasks, generative tasks are much more com-
plex and demand higher dataset quality (Manduchi et al., 2024). Applying popular methods (e.g.,
SRe?L (Yin et al.,[2023))) that have substantiated effective for discriminative tasks to diffusion mod-
els presents significant challenges, such as the failure to produce diverse, high-quality outputs with
structural and semantic fidelity, leading to degraded results and unstable convergence (see Sec. d).

We raise a key question: “Can we train diffusion models dramatically faster with significantly less
data, while retaining high generation quality?” The answer is affirmative. Answering this question
holds significant relevance for the further development of visually generative intelligence and is
therefore extremely worthwhile to explore. In this paper, we mainly made three contributions.

First, to the best of our knowledge, we are the first to formally study the dataset condensation task
for diffusion models, a new challenging problem setting that aims at constructing a “synthetic” sub-
dataset with significantly fewer samples than the original dataset for training high-quality diffusion
models significantly faster. We address a fundamental academic gap concerning the application of
dataset condensation in diffusion models. More specifically, our explorations with the diffusion
model provide the first insights into the challenges and potential solutions for applying dataset con-
densation to vision generation tasks. We note that while conventional dataset condensation made
great progress and sometimes use diffusion models to construct a subset, this line of research only
focused on training discriminative models instead of generative models.

Second,, we propose D?C, a novel two-stage dataset condensation framework tailored for training
diffusion models. Our framework addresses the challenges of dataset condensation for diffusion
models by decomposing the problem into two key aspects: the Select stage identifies an informative,
compact, and learnable subset by ranking samples using the diffusion difficulty score derived from a
pre-trained diffusion model; the Attach stage enriches each selected sample by adding semantic and
visual representations, further enhancing the training efficiency while preserving performance.

Third, extensive experiments demonstrate great empirical success that the proposed D?C can train
diffusion models significantly faster with dramatically fewer data while retaining high visual quality,
substantiating the effectiveness and scalability. Specifically, D*>C significantly outperforms random
sampling and several popular dataset selection and distillation algorithms (e.g., SRe2L (Yin et al.,
2023)) and K-Center) across data compression ratios of 0.8%, 4%, and 8%, at resolutions of 256 X256
and 512x512, and with both SiT (Ma et al., [2024) and DiT (Peebles & Xie) [2023) architectures.
In particular, D>C achieves a FID of 4.3 in merely 40k training steps (w/o classifier-free guidance
(CFG) (Ho & Salimans,[2021)) using SiT-XL/2 (Ma et al.,|2024)), demonstrating a 100 x acceleration
over REPA (Yu et al., 2025) and a 233 x speed-up compared to vanilla SiT. Furthermore, it further
improves to a FID of 2.7 using only 50k synthesized images with CFG (refer to Fig. [I](c)).

'Throughout this paper, “synthetic” subset refers to an artificially designed-and-enhanced subset: real sam-
ples are selected and augmented/attached with semantic and visual representations.
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2 PRELIMINARIES AND RELATED WORK

In this section, we briefly review diffusion models as well as dataset condensation.

Diffusion Models. We briefly introduce the standard latent-space noise injection formulation (Pee-
bles & Xiel 2023), which defines a forward process that gradually perturbs input data xo ~ go(x)
with Gaussian noise:

Qt(Xt | Xo) = N(Xt;atxo,afl), (D
where oy, 0 € R* are differentiable functions of ¢ with bounded derivatives. The choice for oy
and o, is referred to as the noise schedule of a diffusion model. After that, we need to train a neural
network €4(+, -, -) to approximate the reverse denoising process (i.e., predict the added noise ¢) for
sampling (see Appendix [B]for more details). The training objective is to minimize the mean squared
error between the predicted and the ground true noise:

2

Laitt = Exymgo (x),e~ N (0,1) t~ta[0,1] |ll€ — €6(xt, 8, €)[3] » 2)
Here, c is a conditional input, such as class labels or text embeddings. In some cases, the prediction
target is replaced with the v-prediction, which corresponds to flow matching.

Data-centric Efficient Training. Various model-side strategies have been proposed to accelerate
diffusion model, including architectural enhancements |Bolya & Hoffman| (2023); Peebles & Xie
(2023); Ma et al.| (2024), sampling refinements (Lu et al.| 2022b}; |[Zheng et al., [2023b}; |[Lu et al.,
2022a)), and representation-level techniques that leverage pretrained vision features(Wu et al.[(2025));
Yu et al.| (2025); [Li et al.| (2024). However, relatively little has been explored from a data-centirc
perspective. In data-centric model training, given an original dataset D = (X,Y) = {(x;, yl)}ﬂ,
where each g; is the label corresponding to sample X;, dataset compression aims to reduce the size
of training data while preserving model performance. Two primary strategies have been extensively
studied in this context: dataset pruning and dataset condensation.

1) Dataset Pruning. Dataset pruning selects an information-enrichment subset from the original
dataset, i.e., D" C D with |D"| < | D], and directly minimizes the training loss over the subset:

n/lojn E(X,y)N'DC‘)m [K((ybepcore (X)> y)} ) (3)

where £(-,-) denotes the empirical training loss, and ¢g_... is the model parameterized by Opecor.
Classical data pruning methods like random sampling, K-Center (Jones et al.l |2020), and Herd-
ing (Chen & Welling,2010) can be used with diffusion models, but they offer minimal performance
improvements.

2) Dataset Condensation. In contrast, dataset condensation aims to synthesize a small, compact,

and diverse synthetic dataset D% = (X,Y) = {(x;, yj)}‘jg? to replace the original dataset D.

The synthetic dataset D° is generated by a condensation algorithm C such that DS € C(D), with
|DS| < |D|. Each y; corresponds to the synthetic label for the sample x;.

The key motivation for dataset condensation is to create D° such that models trained on it can
achieve performance within an acceptable deviation 77 compared to models trained on D. This can
be formally expressed as:

sup { | (00, (%), 5) — 043 (%), )

where 60p is the parameter set of the neural network ¢ optimized on D: 6p =
arg ming E(x g)~p [((¢9(X),9)] . A similar definition applies to 63, which is optimized on the syn-
thetic dataset DS. Existing methods, such as RDED, MTT, SRe?L, and G-VBSM (Sun et al., 2024;
Yin et al.} |2023}; |Shao et al., [2023}; 12024; |Cazenavette et al., [2022), are primarily designed for dis-
criminative tasks. When applied to diffusion models, these methods generate synthetic images that
deviate from the original data distribution, leading to detrimental effects on model training. Visual-
ization of these synthesized images can be found at Appendix [J]

<mn, 4
}MND <n @)

3 DIFFUSION DATASET CONDENSATION

To enable data-centric efficient training of diffusion models under limited resources, we propose
Diffusion Dataset Condensation (D?C), the first unified framework that systematically condenses
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Figure 2: Overview of Diffusion Dataset Condensation (D>C). D’C employs a two-stage process:
Select and Attach. The Select stage identifies a compact and diverse subset by intervaling sampling
using the diffusion difficulty score derived from a pre-trained diffusion model. The Attach stage
further enriches each selected sample by adding semantic information and visual information.

training data for diffusion models. As illustrated in Fig.[2] this process produces a condensed dataset
suitable for efficient diffusion model training. D?>C consists of two stages: Select (Sec. , which
identifies a compact set of diverse and learnable real images using diffusion difficulty score and inter-
val sampling techniques; and Attach (Sec. [3.2)), which augments each selected image with semantic
and visual information to improve generation performance. Finally, we present the novel training
paradigm utilizing the condensed dataset generated by D?C (Sec. [3.3).

3.1 Select: DIFFICULTY-AWARE SELECTION

In this work, we focus on class-to-image (C2I) synthesis. However, we also show that our framework
is applicable to the text-to-image (T2I) setting with only minor changes, as detailed in Appendix

Given a class-conditioned dataset D = ngl D,, where D, = {z;} LZ?' denotes all samples of class
1y, our aim is to select a compact subset for efficient diffusion training. To achieve this, we propose
the diffusion difficulty score to quantify the denoising difficulty of each sample, followed by our
designed interval sampling to ensure diversity within the selected subset.

Diffusion Difficulty Score. The arrangement of samples from easy to hard is crucial for revealing
underlying data patterns and facilitating difficulty-aware selection. Recent work (Li et al.l [2023a)
demonstrates that diffusion models inherently encode semantic-related class-conditional probabil-
ity pg(c|x) through the variational lower bound (i.e., diffusion loss Eq. [2) of logpg(x|c) (Ho
et al.l 2020; |Song et al., [2023b). This conditional probability can be formulated as py(c|x) =

%. Intuitively, a larger py(c|x) indicates that sample x can be more confidently

identified as belonging to class c, thus suggesting lower learning difficulty. Given the signifi-
cant computational overhead of the full Bayesian formulation and our focus on estimating sam-
ple difficulty, we ignore the denominator part ), pg(x|€)p(€) of the calculation. Since the cat-
egory y ~ U{0,---,C} (C denotes the class number) is obtained by uniform sampling, and
assuming sup{|Ec[pg(x1|€)] — |Ee[po(x2]&)]|}x, xo~npx < 7 (DY denotes the all images in
the dataset), we define the diffusion difficulty score based on the class-conditional probability

po(clx) = % x po(x]c) (3. po(x|€) can be viewed as a constant):

sqiff(x) = —pe(clx) x —po(x|c) = —log (exp (_EeNN(O,I),tNM[O,l] [He — €9 (ux + o€, t, c)||§})) ,
©)

The higher the score sgifr(x), the more difficult it is, and the lower the score sgirt(X), the easier it is.
To simplify our presentation, we define the diffusion loss —pg(x|c) as the diffusion difficulty score.

By computing sgier() for all training samples, we construct a ranked dataset. As shown in Fig. 3]
these scores exhibit a skewed unimodal distribution. Selecting the easiest samples (Min) yields a
subset dominated by clean, background-simple images with high learnability but limited diversity.
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Figure 3: Overview of Diffusion Dataset Condensation (D2C). D’C employs a two-stage process:

Select and Attach. The Select stage identifies a compact and diverse subset by intervaling sampling
using the diffusion difficulty score derived from a pre-trained diffusion model. The Attach stage
further enriches each selected sample by adding semantic information and visual information.
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In contrast, selecting only the highest-score samples (Max) results in cluttered, noisy, and ambiguous
images that are difficult to optimize. Meanwhile, many samples lie in the middle range, offering
moderate learnability but richer contextual information. Selecting an appropriate value within this
range is therefore critical; we provide a more detailed discussion in Appendix [H.1}

Interval Sampling. To balance diversity and learnability, we propose an interval sampling strategy.
Specifically, we sort its images D,, within each class y in ascending order of sgsr(x) and select

samples at a fixed interval k: Dis = ngl {z(i) €D, | i€{0,k,2k,... }} where Dis denotes

the selected subset constructed by interval sampling, k is the fixed sampling interval, and z(*) is
the i-th sample in the sorted list (e.g., (%) corresponds to the sample with the lowest diffusion
difficulty score). Interval sampling with a larger interval k promotes diversity in the sampled data
while potentially hindering learnability. As shown in Fig. 3] (Left), this trade-off arises from a shift
in the sample distribution: a larger k£ leads to a reduction in the number of easy samples and a
corresponding increase in the representation of standard and difficult samples.

Extended Discussion. Training exclusively on the easiest (Min) or the hardest (Max) samples
is suboptimal. Instead, a balanced curriculum comprising easy, medium, and difficult examples
yields a training subset that is both learnable and diverse, ultimately leading to stronger generative
performance. We further offer more discussions and insights on interval sampling in Appendix

3.2 Attach: SEMANTIC AND VISUAL INFORMATION ENHANCEMENT

To further enhance the information richness of the selected data, we introduce the Affach phase that
augments each instance with semantic and visual information. While the Select phase generates
a compact and informative subset, the achievable performance ceiling based solely on this phase
remains limited. Consequently, we inject more comprehensive semantic and visual representations
into the selected subset to further bolster our method’s generalization capability.

Dual Conditional Embedding (DC-Embedding). Existing C2I synthesis methods (Peebles & Xie,
2023;|Ma et al., 2024)) commonly rely on class embeddings trained from scratch, which often fail to
effectively capture inherent semantic information (see Appendix[[.T)). We enrich the class embedding
by incorporating text representations derived from a pre-trained text encoder (e.g., TS5-encoder (N1
et al., [2021)). For each class ¢ € {1,...,C}, a descriptive prompt P(c) (e.g., “a photo of a cat™)
is encoded by a pre-trained text encoder fi.x, yielding its corresponding text embedding ¢. and text
mask pask:

te, tmask = ftext(P(c))a (6)

The resulting text embedding and text mask are stored on disk as attached text information alongside
the subset Dig generated in the preceding phase, ready for import during formal training. During the
formal training, as illustrated in Fig. EL the text embedding ¢. and the text mask ;s undergo a 1D
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convolution and are fused with a learnable class embedding e, using a residual MLP:

te = Convld(t, X tmask);, Yext = MLP(,) + . + e.. @)
This resulting vector y.x then serves as a semantic = =
conditioning token for the conditional diffusion model. Class Embedding’Mask Input
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Yoo Y2 N 7. utpu
2023))) extracts patch-level semantic representations: B Quiput
Yois = fuis(x) € RV Xdeex (8) Figure 5: Overview of DC-Embedding.

where IV is the number of image patches and dy, is the feature dimension. We retain the first i
(i.e., number of tokens in the diffusion transformer) tokens of ;s to form a compact representation
of the dominant structure: yyis = wyis|: b, :] € RF¥%ex, As outlined in REPA (Yu et al. , this
visual information provides a semantic prior for the diffusion model and thus significantly benefits
data-centric efficient training. Similar to the text information ¢, the visual information ;s is also
stored on disk as attached metadata alongside the selected subset Dys.

3.3 D?C TRAINING PROCESS

Here, we detail the training process of the diffusion model using our condensed dataset, which com-
prises a compact subset selected during the Select phase and subsequently enriched with semantic
and visual information during the Attach phase. Our goal is to fully leverage the information existed
within our condensed dataset to accelerate training without compromising performance.

We employ a conditional diffusion model Dy and, as an example, utilize the optimization objective
of score-based diffusion models: predicting the added noise € from the perturbed latent input x;
at time step t, conditioned on the text information gy and the class label y. The new denoising
loss is defined as L35 = Ex, g0 (x),e~ A (0,1),t~24[0,1] |/|€ = €0(X¢t, £, Y, Yiext) [[3], Where the specific
injected forms of y and yx can be found in Sec. @ Then, to maximize the utilization of visual
information, we adopt the same formulation as REPA 2025), which involves aligning the
encoder’s output (i.e., the decoder’s input) within the diffusion model with the visual representation
Yvis = {vi}?zl. Concretely, from a designated intermediate layer of the diffusion backbone, we
obtain token features {h; € R?}2_,. A projection head ¢ maps these tokens from R¢ to R%, and
we compute a semantic alignment loss:

()
Fpre = h = \oha)ll” lvill /-
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Table 1: Comparison of gFID-50K across various dataset condensation methods and data budgets
using DiT-L/2 and SiT-L/2 on ImageNet 256 x256. We use CFG=1.5 for evaluation. D?>C surpasses
other methods at all settings.

DiT-L/2 SiT-L/2
Random K-Center Herding‘ D?C | Random K-Center Herding‘ D*C

0.8% (10K) 100k | 35.86 50.77 40.75 420 | 435 14.77 22.96 3.98
0.8% (10K) 300k | 4.19 13.5 22.35 413 | 433 13.58 22.55 3.98

4.0% (50K) 100k | 36.78 69.86 32.38 | 14.81| 31.13 61.66 29.11 |11.21
4.0% (50K) 300k | 11.55 38.54 22.44 599 | 14.18 39.69 22.44 5.66

8.0% (100K) 100k | 41.02 71.31 36.37 | 22.55| 36.64 66.96 323 | 15.01
8.0% (100K) 300k | 11.49 37.35 15.23 6.49 | 12.56 39.08 16.17 5.65

Table 2: Comparison with a strict data budget 0.8% (10K) on ImageNet 512x512. We use CFG=1.5
for evaluation. D?C surpasses random sampling at all settings.

Data Budget Iter.

Model = Method Iter. gFID] SsFID| Inception Scoret Precisiont

DiT-L/2 Random 100k 248 119 74.3 0.65
DiT-L/2 D?C (Ours) 100k 14.8 6.9 109.2 0.63
DiT-L/2 Random 300k 17.1 128 130.6 0.64
DiT-L/2 D?C (Ours) 300k 5.8 15.1 318.9 0.77
SiT-L/2 Random 100k 133 228 197.1 0.69
SiT-L/2 D?>C (Ours) 100k 9.1 14.3 261.7 0.72
SiT-L/2 Random 300k 5.0 13.6 316.9 0.76
SiT-L/2 D?C (Ours) 300k 422 11.6 289.7 0.79

This loss encourages the model to align its encoder’s output with visual representations, promoting
localized realism and spatial consistency (Oquab et al.,|2023)) in generation.

Overall Training Objective. The final training loss combines the denoising objective and the se-
mantic alignment term (with the balance weight A is set to 0.5 by default):

Liotat = Laitt + MEx e Ar(0,1),t~4[0, 1], viexts v LLproj] - (10)

This unified training strategy enables D*C to effectively learn from limited yet enhanced data, offer-
ing a practical solution for efficient diffusion training under resource-constrained settings.

4 EXPERIMENTS

In this section, we validate the performance of D?>C and analyze the contributions of its components
through extensive experiments. In particular, we aim to answer the following questions:

1) Can D?C improve training speed and reduce data usage of diffusion models?
2) Does D°C generalize well across backbones, data scales, and resolutions?
3) How do D?C’s components and hyperparameter choices affect its overall effectiveness?

4.1 SETUP

Experiment settings. We conduct experiments on the ImageNet-1K dataset (Russakovsky et al.,
2013)), using subsets of 10K, 50K, and 100K images, corresponding to 0.8%, 4%, and 8% of the full
dataset, respectively. All images are center-cropped and resized to 256 x256 and 512x512 resolu-
tions using the ADM |Dhariwal & Nichol|(2021) preprocessing pipeline. Furthermore, we use [-]-L/2
and [-]-XL/2 architectures in both DiT |Peebles & Xie| (2023) and SiT |Ma et al.| (2024)) backbones,
following the standard settings outlined in Ma et al.| (2024). More details on implementation and
training can be found in Appendix

Evaluation and baselines. We train models from scratch on the collected subset and evaluate
them using gFID (Heusel et al.| 2017), sFID, Inception Score (Salimans et al., | 2016) and Precision,
adhering to standard evaluation protocols (Dhariwal & Nichol,2021;|Peebles & Xie}[2023; Ma et al.,
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Figure 6: Left: Interval-sampling ablation. Small k speeds early training. The best final gFID-
10K appears at k=96 for the 10K budget and k=16 for the 50K budget, roughly scaling with data
size. Right: DC-Embedding ablation at 10K. Combining text and class embeddings outperforms
either alone; “Only Class” denotes the baseline that injects class embeddings only.

2024)). We compare our method against REPA [Yu et al.| (2025), and various data condensation and
selection baselines, including SRe?L [Yin et al.| (2023), Herding, K-Center, and random sampling,
using SiT and DiT architectures (Ma et al., |2024; |Peebles & Xie, 2023)). Further details regarding
evaluation metrics and baseline methods can be found in Appendix [D|and [E]

4.2 MAIN RESULT

Training Performance and Speed. We evaluate D?C on SiT-XL/2 using 10K and 50K data bud-
gets, comparing its performance against REPA and a vanilla SiT model trained on the full Ima-
geNet dataset (a 1.28M data budget), as well as random selection with 10K and 50K data budgets.
As shown in Table [3] and Fig. [I] (b), our method achieves a gFID-50K of 4.23 at only 40K it-
erations with 10K training data. In contrast, REPA requires 4 million steps and the vanilla SiT
model needs 7 million steps to reach comparable performance, representing an acceleration of over
100x and 233 x, respectively. Under a 4% data budget (50K) with CFG set to 1.5, our method
achieves an FID of 2.78 at 180K steps, further demonstrating significant data and compute effi-
ciency (Fig. [I] (c)). Moreover, Fig. {] presents a visual comparison between random selection and
our D2C at 10K and 50K data sizes. Our method demonstrates superior visual quality compared
to the baseline and generates higher-quality images, even during the early iterations of training.

Table 3: Comparison of acceleration
algorithms on ImageNet-1K.

Comparison on ImageNet 256 x256. We compare D°C
with random sampling, Herding (Chen et al.| 2023), K-
Center (Jones et al, [2020), and SRe“L (Yin et al., 2023)

under various data budgets and backbones. As shown in MOdd Training Set  lter. gFID
Table D?C consistently achieves the lowest FID across D‘;gépi i%gﬁ 38811: %gg
all settings. For instance, using only 0.8% of the data and i DAC 0.05M 10k 1481
100K iterations with early stopping, our method achieves |, ¢ 0.0IM 10K 42
a gFID-50K of 4.20 on DiT-L/2 and 3.98 on SiT. These -

results demonstrate the superiority of our approach over Sﬂ};]lgpi }%gﬁ ‘7‘88112 lgi
existing methods. Notably, SRe’L, which performs well i DiC 0.0IM 80k 707
in classification task, fails on this generative task (see Ta- -

ble[) due to its focus on category-discriminative features. -31-11};])5(1]%2 }%gﬁ Zﬁ gg
Similarly, geomgtry—based method§ like Herdi'ng and K- 1+ DC 0.0IM 40Kk 43
Center, along with random sampling, prove inadequate  , p2¢ 0.05M 180k 278

for achieving efficient and high-performing training.

Comparison on ImageNet 512x512. As shown in Table 2| D?>C achieves a gFID of 5.8 on DiT-
L/2, a significant improvement over the 17.1 achieved by random sampling at 300k iterations under
the ImageNet 512x512 settings. On SiT-L/2, similar improvements are observed. These results
demonstrate that D°C generalizes well to higher resolutions.

4.3 ABLATION STUDY

Ablation on Select Phase. We investigate the impact of the interval value k in the Select phase, as
shown in Fig. [6] (Left). Using a small value accelerates early training by prioritizing min-loss sam-
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Table 4: D?C vs. SRe?L (Yin et al.,[2023) on ImageNet 256 x256 with a data budget 0.8% (10K).

Model  Method gFID| sFID] Inception Scoref Precision?

DiT-L/2  SRe’L 1042 20.2 14.1 0.20
DIiT-L/2 D?*C (Ours) 4.2 11.0 283.6 0.72
SiT-L/2  SRe’L 82.3 19.8 18.1 0.27
SiT-L/2 D’C (Ours) 3.9 10.7 289.7 0.73
Table 5(a) Ablation studies on the Select and Table 5(b) A breakdown of the computational overhead for
Attach phases. Sel.: Select. Vis.: Vision. sub-processes in D2C. Compared to the REPA baseline,2 the
Model Sel. DC Emb. Vis. Emb. gFID, adlelonal scoring time is negligible, demonstrating D“C’s
efficiency.
DiT-L2 X X X 37.07 Method Score Model Score Time Iter. Train Time gFIDJ
pDitL2 XV v 8.79 REPA N/A N/A  4M  750h 59
D’C
DIiT.L2 v X X 14.96 (wio select) N/A N/A  0.04M 7.4h 5.6
3 2
DitL2 v X v 1037 D C ooy FromScratch  19h  0.04M (7.4426.2)h 4.9
DIT-L2 v X 901 S setect
DiT.L2 v v v 7.62 (wi select) Pretrained 2.1h  0.04M 7.4h 4.3

ples, which are simpler and easier to learn. However, the limited diversity of such samples leads to
degraded performance in later stages, eventually being overtaken by settings with moderate interval
values. In contrast, large intervals or random selection introduce excessive max-loss or uncurated
samples, destabilizing training (Fig.[3). As k increases, we observe that gFID-10K first decreases
and then worsens, revealing an optimal trade-off between diversity and learnability. Empirically, the
best results are achieved with an interval of 96 for the 10K budget and 16 for 50K, approximately
following the ratio of data budgets (50K/10K). Table |5af further shows that using the Select stage
alone reduces gFID from 37.07 to 14.96, underscoring its effectiveness and usefulness.

Ablation on Attach Phase. We evaluate Artach from two angles. First, as shown in Fig. [f] (Right),
DC embedding consistently outperforms using either alone under a 10K budget, with text-only bet-
ter than class-only, indicating richer semantics from textual descriptions. Second, Table [5a] shows
steady gains from the injection modules: baseline gFID-10K is 14.96, adding only visual infor-
mation reaches 10.37, adding only DC embedding reaches 9.01, and combining both achieves the
best 7.62. Appendix [[.2] further ablates the visual encoder and demonstrates the robustness of our
approach.

Effect of pretrained diffusion models and wall-clock cost. Our D2C pipeline does not inherently
require a powerful pretrained model. As shown in Table [5b, when the scoring network is a strong
DiT-XL/2 with base gFID 2.27 from (Peebles & Xiel 2023)), D2C reaches an FID of 4.3; with a
weaker DiT-L/2 that we trained from scratch achieving a base gFID of 11.5, it reaches 4.9. Using
only the Attach stage, without Select, still reaches 5.6 and surpasses REPA at 5.9. In wall-clock
terms, the Aftach-only variant finishes in 7.4h, which is 0.99% of REPA’s 750h and about 101 x
faster. With a pretrained scorer, the end-to-end pipeline totals 9.5h, with 2.1h for scoring and 7.4h for
training; this is 1.27% of REPA and about 79 x faster. With a scorer trained from scratch, the pipeline
totals 35.5h, with 1.9h for scoring, 26.2h for training the scorer, and 7.4h for diffusion training; this
is 4.7% of REPA and about 21 x faster. These results show that whether the scorer is strong, weak,
or omitted, D?C consistently accelerates diffusion training while maintaining competitive quality.

5 CONCLUSION

In this paper, we introduce D?C, the first dataset condensation framework that significantly acceler-
ates diffusion model training for generative tasks. Our pipeline comprises two key phases, Select and
Attach. In the Select phase, we leverage a diffusion difficulty score and interval sampling to obtain
a subset that is both compact and diverse. In the Attach phase, we augment this subset with critical
semantic and visual information, yielding large training speedups and robust performance. As a
pioneering approach in this direction, D?C achieves 100-233 x faster training than strong baselines.
We believe this work will inspire and motivate further research in this promising area.
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A LLM USAGE STATEMENT

The manuscript text was polished with a large language model. The authors curated and verified all
factual content such as methods, key metrics, results and technical specifications. The model served
only as a writing aid to improve clarity, coherence and fluency, and it did not design methods, run
experiments, analyze results or draw conclusions. All content was reviewed and approved by the
authors to ensure accuracy.

B ADDITIONAL DESCRIPTIONS OF DIFFUSION MODELS

This section reviews the fundamentals of the Denoising Diffusion Probabilistic Model (DDPM) (Ho
et al.| 2020). The DDPM framework consists of a fixed forward process that incrementally perturbs
the input data with noise, and a learned reverse process trained to iteratively denoise the data, thereby
learning the target distribution. Specific architectural details of our implementation are summarized

in Appendix [B.2]
B.1 DENOISING DIFFUSION PROBABILISTIC MODEL (DDPM)

The DDPM framework models data generation via a discrete-time Markov chain that progressively
adds Gaussian noise to a data sample xg ~ p(x). The forward process is defined as:

gz | xp—1) = N(xe; /1 = Beap—1, Bid), (11)

where 3; € (0,1) are predefined variance schedule parameters controlling the noise level at each
time step ¢ € [1,2, ..., T}, and I is the identity matrix.

For simplicity, we define oy = 1 — f;, and denote the cumulative product &; = H§:1 «;. The
reverse process, which is learned by the model 6, can be defined as:

1
po(zi—1 | w) =N (xt—l; \/707)& (xt - \/lﬁ—tiatee(xt’t)) ,Ee(fﬂt’t)) ; (12)

where €g(zy,t) denotes the predicted noise from a neural network. The covariance ¥g(x¢,t) is
typically set to o1, where o7 can be either fixed (07 = ;) or learned through interpolation o =

(1 —ar)/(1 - a)B.

A simplified training objective minimizes the prediction error between true and estimated noise:

Limple = Eqg et [|l€ — €9 (Varzo + VI — aze,t) ||?] . (13)

In addition to the simple objective, improved variants include learning the reverse variance ¥g (¢, t)
jointly with the mean, which leads to a variational bound loss of the form:

Ly = exp (U log B + (1 —v) logﬁt) . (14)

Here, v is an element-wise weight across model output dimensions. When 7 is sufficiently large
and the noise schedule is carefully chosen, the terminal distribution p(z7) approximates an isotropic
Gaussian. Sampling is then performed by iteratively applying the learned reverse process to recover
the data sample from pure noise.

B.2 DIFFUSION TRANSFORMER ARCHITECTURE

Our model implementation closely follows the design of DiT (Peebles & Xiel [2023)) and SiT (Ma
et al., 2024), which extend the vision transformer (ViT) architecture (Dosovitskiy et al., [2020) to
generative modeling. An input image is first split into patches, reshaped into a 1D sequence of length
N, and then processed through transformer layers. To reduce spatial resolution and computational
cost, we follow prior work (Peebles & Xie, 2023} Ma et al.,2024)) and encode the image into a latent
tensor z = E/(x) using a pretrained encoder E from the stable diffusion VAE (Kingma) 2013).
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In contrast to the standard ViT, our transformer blocks include time-aware adaptive normalization
layers known as AdaIN-zero. These layers scale and shift the hidden state in each attention block
according to the diffusion timestep and conditioning signals. During training, we also add an auxil-
iary multilayer perceptron (MLP) head that maps the hidden state to a semantic target representation
space, such as DINOv2 (Oquab et al., 2023) or CLIP features (Radford et al., |2021). This head
is used only for training-time supervision in our alignment loss and does not affect sampling or
inference.

C HYPERPARAMETERS AND IMPLEMENTATION DETAILS

Select Phase Settings. In the Select phase, we adopt a pre-trained DiT-XL/2 model (Peebles & Xie,
2023) as the scoring network and use the diffusion loss (w.r.., mean squared error) as the scoring
metric. To construct subsets of different sizes, we apply interval sampling with k& = 96 for the 10K
subset, kK = 16 for the 50K subset, and k& = 10 for the 100K subset. Each subset is constructed in a
class-wise manner, selecting 10, 50, and 100 samples per class respectively.

Attach Phase Settings. In the Aftach phase, we implement dual conditional embeddings. For textual
conditioning, we use a TS5 encoder (Ni et al.,[2021) with captions truncated to 16 tokens, producing
embeddings of dimension 2048. For visual conditioning, we adopt DINOv2-B (Oquab et al., [2023])
as the visual encoder. The number of visual tokens h is set to 256, and each token has a feature
dimension of 768.

Training Settings. In the Training phase, we use the Adam optimizer with a fixed learning rate
of le-4 and (81, B2) = (0.9,0.999), without applying weight decay. We employ mixed-precision
(fp16) training with gradient clipping. Latent representations are pre-computed using the stable
diffusion VAE (Kingma, [2013)), and decoded via its native decoder. All experiments are conducted
on either 8§ NVIDIA A800 80GB GPUs or 8 NVIDIA RTX 4090 24GB GPUs. We use a batch
size of 256 with a 256 x 256 resolution in Fig.[I] and a 512 x 512 resolution in Table 2} All other
experiments use a batch size of 128 and a default image resolution of 256 x 256.

D EVALUATION DETAILS

We adopt several widely used metrics to evaluate generation quality and diversity:

* gFID (Heusel et al., 2017) computes the Fréchet distance between the feature distributions of
real and generated images. Features are extracted using the Inception-v3 network (Szegedy et al.,
2016).

* SFID (Nash et al., 2021)) extends FID by leveraging intermediate spatial features from the
Inception-v3 model to better capture spatial structure and style in generated images.

* IS (Salimans et al.| [2016) evaluates both the quality and diversity of generated samples by com-
puting the KL-divergence between the conditional label distribution and the marginal distribution
over predicted classes, using softmax-normalized logits.

* Precision and Recall (Kynkddnniemi et al.l 2019) respectively measure sample realism and
diversity, quantifying how well generated samples cover the data manifold and vice versa.

E BASELINE SETTING

We evaluate our method against two categories of baselines:

Diffusion models trained on selected or condensed subsets. These include SiT and DiT back-
bones trained from scratch on 10K, 50K, and 100K subsets obtained via the following strategies:

* Random Sampling. A naive baseline that randomly selects a fixed number of real samples
without any guidance.

* Herding (Chen & Welling, |2010). A geometry-based method that selects samples to approxi-
mate the global feature mean, ensuring representative coverage.
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* K-Center (Jones et al., |2020). A diversity-focused algorithm that iteratively selects samples
maximizing the minimum distance from the selected set, promoting broad coverage of the fea-
ture space.

» SRe2L (Yin et al.,[2023)). A dataset condensation method that synthesizes class-conditional data
through a multi-stage pipeline. Originally proposed for classification tasks, we adapt it to the dif-
fusion setting by applying class-wise condensation to real images and training a diffusion model
on the resulting synthetic subset. Visualizations of the synthesized samples and corresponding
training results are provided in Appendix [J]

Diffusion models trained on the full dataset. These baselines are trained with access to the entire
training set, without data reduction:

* SiT (Ma et al., 2024)). A transformer-based diffusion model that reformulates denoising as con-
tinuous stochastic interpolation, enabling faster training and improved efficiency under full-data
settings.

* REPA (Yu et al, 2025). A model-side regularization method that aligns intermediate features
of diffusion transformers with patch-wise representations from strong pretrained visual encoders
(e.g., DINOV2-B (Oquab et al., 2023), MAE (He et al.,|2022), MoCov3 (He et al.,2020)) using
a contrastive loss. It retains the full dataset and improves convergence and generation quality via
early-layer representation guidance.

F FRAMEWORK DESIGN AND IMPLEMENTATION

We introduce D?C, a framework for constructing compact yet effective training subsets for diffusion
models under stringent data budgets. Our approach is motivated by two complementary intuitions:
(1) that the contribution of training samples is non-uniform, as some are more informative than
others; and (2) that generative training benefits from semantically enriched conditioning. These
insights directly inform the two core stages of our framework. First, a Select stage ranks training
examples by a difficulty score computed via a pretrained class-conditional diffusion model. Second,
an Attach stage enriches the selected data by injecting textual and visual priors. The complete
pipeline is summarized in Algorithm T}

Algorithm 1 D2C: Diffusion Dataset Condensation

Require: Full dataset D = {(z;,¢;)} Y, interval k, text encoder fix, visual encoder fy;s
// Each x; is an image, and ¢; € {1,...,C'Y} is the class label.

. // Phase 1: Select

1

2: Compute difficulty score sq for all (z;, ¢;) € D

3: For each class ¢, sort D, = {z; | ¢; = ¢} by sqifr descending
4: Select every k-th sample (Interval Sampling) in sorted D, to form Dggjec
5: // Phase 2: Attach

6: for each (z,¢) € Dyeeer do

7: Generate class prompt P(c) (e.g., “a photo of a 1abel”)
8:  Extract text embedding: (t., tmask) < fiext(P(C))

9:  Extract visual feature: yyis < fyis()
10:  Store triplet (z, ¢, tc, tmask, Yyis) into D
11: end for

—_
[\

: Return enriched dataset D for diffusion model training

G EXPLORATION ON TEXT-TO-IMAGE GENERATION

We further examine the applicability of the D?C framework to text-to-image generation. The Select
phase requires only a minimal change: replace the class condition in Eq. 5| with a text condition, i.e.,
stett(z) = —pg(z | text). Using SDXL to score LAION text-image pairs, we observe a difficulty
distribution similar to the class-conditional case (Fig.[7} see also Fig.[3]and Fig.[§](right)). Low-score
samples tend to exhibit simple structures, high-score samples often contain complex or cluttered
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Figure 7: Distribution of diffusion difficulty score computed on LAION text—image pairs with a
pre-trained SDXL model. This distribution resembles that of C2I, which supports interval sampling
for selecting informative training pairs under T2I.

contexts, and the majority of samples fall in the middle range. Interval sampling remains effective
for identifying informative pairs. The Attach phase is also easy to transfer: semantic and visual
representations serve as soft supervisory signals for the selected subset.

As such, while our main experiments focus on class-to-image tasks for controlled benchmarking like
SiT 2024), the framework is generalizable and well suited to text-to-image generation.
We expect it to deliver practical gains in data efficiency and training speed in this setting, offering a
promising direction for future work.

H MORE DISCUSSIONS ABOUT SELECT

H.1 DETAILED ALGORITHM FOR COMPUTING DIFFUSION DIFFICULTY SCORE

The diffusion difficulty score, used to rank samples in the Select phase, is defined as the mean de-
noising loss over uniformly sampled timesteps, computed using a frozen pretrained diffusion model
(see Algorithm2).

Algorithm 2 Compute Diffusion Difficulty Score

Require: Image dataset D = {(z;,¢;)}Y,; pretrained VAE encoder E,; pretrained diffusion
model eg; timestep set 7 ; batch size n
// Each x; is animage; ¢; € {1,...,C} is the class label. Timesteps in T are sampled uniformly.
Models are frozen during scoring.
1: Initialize empty map S « {}
2: for mini-batch {(z;,¢;)}; C D do
3:  Encode to latent (if applicable): z; < Ey(x;)

4:  Initialize per-sample accumulator ¢; <— 0

5: forte T do

6: Sample € ~ N(0, I)

7: Perturb latent: z; < oy 2; + o4 €

8: Compute loss: £; < ¢; + |le — ep(z1,t, ¢;)||3
9:  end for

10:  s; < {;/|T| #/ Mean denoising loss across timesteps

11: S[I'Z] — S;

12: end for

13: Return S // Image-to-score mapping for difficulty-aware selection
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H.2 PRACTICAL INSIGHTS ON INTERVAL SAMPLING

Diffusion Difficulty Score
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Figure 8: Left: gFID-10K across training steps under different interval values & for a 50K data
budget. Moderate intervals (e.g., K = 16) achieve superior performance by balancing learnability
and diversity. Right: Distributional discrepancy (gFID-10K) between ranked training subsets and
the validation set. Both extremely low and high diffusion difficulty score lead to higher FID, while
mid-range segments show better alignment.

While Section 4.3 has covered a detailed ablation study on the choice of interval & in Select phase,
we provide additional insights into how diffusion difficulty score relate to distributional coverage.

The right panel in Fig. [§] presents the gFID-10K scores of subsets sampled from different portions
of the difficulty-ranked dataset. We partition the training set into consecutive 10K segments ordered
by the diffusion difficulty score (e.g., the first 10K samples with lowest scores as “Min”, followed
by 10-20K, 20-30K, and so on), and measure each segment’s discrepancy from the full validation
distribution using gFiD. Interestingly, we observe a clear U-shaped curve: subsets consisting of
extremely low or high difficulty samples exhibit significantly worse distributional alignment, while
those centered around moderate difficulty levels show substantially lower FID scores. This result
aligns well with our hypothesis that very easy samples (e.g., simple textures, clean backgrounds)
and extremely hard samples (e.g., ambiguous, noisy structures) both fail to reflect the global data
distribution.

These observations provide an empirical justification for our interval sampling strategy. Specifically,
under a 50K dataset budget with & = 16, each class contributes samples selected at regular intervals
from its difficulty-sorted list. Given that each class typically contains around 1,200 images, this
strategy naturally samples from approximately the first 800 positions in the ranked list. As a result,
the selected data span both the easy and moderately difficult regions, while avoiding the extremes at
both ends. This balanced coverage across the difficulty spectrum promotes better generalization and
faster convergence, as evidenced by the results in Fig. [§] (Left) and discussed in Sectiond.3] In this
way, our strategy yields a compact yet effective dataset that enables the model to converge rapidly
while maintaining strong generation quality.

I MORE DISCUSSION ABOUT ATTACH

1.1 DUAL CONDITIONAL EMBEDDING

Most diffusion models condition on class identifiers represented as integer IDs or one-hot vectors,
which are mapped to class embeddings trained from scratch. This ignores semantic relationships
between categories, resulting in unstructured embeddings as shown in Fig. 0] (Left).In contrast, text
embeddings derived from class-specific prompts (e.g., “a photo of a dog”) via a pre-trained language
encoder naturally encode semantic priors and cluster related classes (Fig. 9] Right). We propose a
dual conditional embedding that fuses the text embedding with a learnable class embedding (i.e., a
traditional class token trained from scratch), as defined in Eq. This hybrid strategy combines
semantic structure with symbolic distinctiveness, and leads to significantly improved generation
quality. As shown in Fig. [6] (Right), using both branches achieves lower FID than using either one
alone.

17



Under review as a conference paper at ICLR 2026

One-hot Class Embedding Text Embedding

Figure 9: T-SNE visualization of class embeddings. Each point represents a class in the dataset.
Left: One-hot class embeddings show no semantic structure. Right: Text embeddings naturally
cluster semantically related classes. Samples from semantically related classes, such as different
dog breeds, tend to form distinct clusters in feature space. Leveraging this semantic prior is highly
effective for accelerating the convergence of diffusion model training.

1.2 VISUAL INFORMATION INJECTION

Recent studies (Wu et all, 2025}, [Yu et all, [2023) have shown that Taple 6: Ablation of the vi-
relying solely on diffusion models to learn meaningful representa-  gyal encoder.

tions from scratch often results in suboptimal semantic features. In
contrast, injecting high-quality visual priors, especially those de- .
rived from strong self-supervised encoders like DINOv2 Vision Encoder  FID}
[2023), can significantly improve both training efficiency and ~ N/A (baseline)  37.07

generation quality. In our case, we incorporate a frozen visual en- MAE-L 923
coder (DINOV2) to provide external patch-level visual features dur-  MoCov3-L 8.78
ing training. These external features serve as semantically rich an- ¢ [p_L, 8.59
chors, particularly beneficial at early layers, allowing the model to  yyNOV2-LL 7.62

focus on generation-specific details in later stages. Empirically, vi-
sual supervision improves feature alignment and accelerates convergence under limited data, as
shown in Tables[T} 2] 5a] and[6] All tested encoders outperform the no-encoder baseline, indicating
that our method is robust to the choice of visual encoder.

J VISUALIZATION OF SRE?L IN GENERATIVE TASKS

Sre’L Samples
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Figure 10: Top: images synthesized directly by SRe?L, a popular dataset condensation method orig-
inally designed for discriminative tasks. Bottom: images generated by a diffusion model trained
on the SRe’L dataset. As exemplified by SRe’L, such methods often struggle in generative set-
tings—producing blurry, low-fidelity outputs that are poorly aligned with the true data distribution.
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K IMAGENET 512x512 EXPERIMENT

As shown in Table D?C consistently outperforms random sampling under a strict 10K (0.8%) data
budget across both DiT-L/2 and SiT-L/2 backbones. Visual samples in Fig. [IT] further confirm the
high fidelity and diversity of generations at 512x 512 resolution, demonstrating that D>C generalizes
effectively to high-resolution settings.

Figure 11: Generated samples on ImageNet 512x512 from SiT-L/2 trained with D’C using a 10K
dataset (CFG=1.5).
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L VISUALIZATION

Figure 12: Generated samples of SiT-L/2 trained with D’C using a 50K dataset (CFG=1.5). Class
label = "macaw”(88)

atilk e ! ek

Figure 13: Generated samples of SiT-L/2 trained with D’C using a 50K dataset (CFG=1.5). Class
label = "arctic wolf’(270)
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Figure 14: Generated samples of SiT-L/2 trained with D?C using a 50K dataset (CFG=1.5). Class
label = "jaguar”(290)

Figure 15: Generated samples of SiT-L/2 trained with D?C using a 50K dataset (CFG=1.5). Class
label = "otter”’(360)

Figure 16: Generated samples of SiT-L/2 trained with D’C using a 50K dataset (CFG=1.5). Class
label = "lesser panda”(387)

21



Under review as a conference paper at ICLR 2026

- - \ | > AN

Figure 17: Generated samples of SiT-L/2 trained with D’C using a 50K dataset (CFG=1.5). Class
label = ’panda”(388)

bl N —= | = B = -
') T ol i — ——

Figure 18: Generated samples of SiT-L/2 trained with D?C using a 50K dataset (CFG=1.5). Class
label = fire truck”(555)

Figure 19: Generated samples of SiT-L/2 trained with D’C using a 50K dataset (CFG=1.5). Class
label = cheeseburger”(933)
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Figure 20: Generated samples of SiT-L/2 trained with D?C using a 50K dataset (CFG=1.5). Class
label = "lake shore”(975)

Figure 21: Generated samples of SiT-L/2 trained with D?C using a 50K dataset (CFG=1.5). Class
label = ”volcano(980)
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