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Abstract

The most effective domain adaptation (DA) technique involves the decomposition of data
representation into a domain-independent representation (DIRep) and a domain-dependent
representation (DDRep). A classifier is trained by using the DIRep on the labeled source
images. Since the DIRep is domain invariant, the classifier can be “transferred” to make
predictions for the target domain with no (or few) labels. However, information useful for
classification in the target domain can “hide” in the DDRep. Current DA algorithms, such
as Domain-Separation Networks (DSN), do not adequately address this issue. DSN’s weak
constraint to enforce the orthogonality of DIRep and DDRep allows this hiding effect and
can result in poor performance. To address this shortcoming, we develop a new algorithm
wherein a stronger constraint is imposed to minimize the information content in DDRep to
create a DIRep that retains relevant information about the target labels and, in turn, results
in a better invariant representation. By using synthetic datasets, we show explicitly that
depending on the initialization, DSN, with its weaker constraint, can lead to sub-optimal
solutions with poorer DA performance. In contrast, our algorithm is robust against such
perturbations. We demonstrate the equal-or-better performance of our approach against
DSN and other recent DA methods by using several standard benchmark image datasets. We
further highlight the compatibility of our algorithm with pre-trained models for classifying
real-world images and showcase its adaptability and versatility through its application in
network intrusion detection.

1 Introduction

Labeling data for machine learning can be a difficult and time-consuming process. If we have a set of labels
for data drawn from a source domain, it is desirable to use the source data and labels to aid in classifying
data from a similar but different target domain with no (or few) labels. Transferring the ability to classify
data from one domain to another is called Domain Adaptation (DA).

Humans looking at pictures of huskies and wolves in the wild often notice the background of the animal to
aid in classification. For example, images of wolves often depict the animals in wild settings, which are rarely
associated with images of huskies. However, when the source domain comprises images of wolves and huskies
in their natural habitats, and the target domain consists of them in veterinary clinics, the contextual cues
present in the source domain are no longer available in the target domain. As a result, the contextual clues
can be thought of as domain-specific information or “spurious information” since the physical characteristics
of either animal provide the necessary clues to distinguish them. The loss of domain-specific information
poses significant challenges to accurate classification across domains, as neural networks can become overly
reliant on such information to infer labels during training (Zewe, 2021). Our goal is to ensure that neural
networks use domain-independent information to produce effective DA.

Our general intuition, largely consistent with previous work (Stojanov et al., 2021; Bousmalis et al., 2016), is
that effective DA can occur if two requirements are met:

1. A representation of the input can be formed that is independent of the domain, which we call a
Domain-Independent Representation (DIRep).
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2. The DIRep contains all the relevant information for the classification in the target domain.

A well-known approach to address requirement 1 is using adversarial techniques such as generative adversarial
networks (GANs) (Ganin et al., 2016; Singla et al., 2020; Tzeng et al., 2017). These adversarial techniques
ensure that from the DIRep, one cannot determine which domain the original data came from. However, the
GAN alone does not guarantee that the learned DIRep will have any relevant information for predicting the
label in the target domain (Stojanov et al., 2021).

To satisfy requirement 2, one strategy is to put all the data information (in both domains) into the
representation by using an autoencoder approach. However, this can not be done with the DIRep alone, as it
is not supposed to contain domain-dependent information. To circumvent this problem, a Domain-Dependent
Representation (DDRep) can be introduced as in previous methods such as Domain-Separation-Networks
(DSN) (Bousmalis et al., 2016). The data is represented by the DIRep and DDRep, which can be used
together to reconstruct the data in the autoencoder. We adopt the same approach in our study but with a
different way of decomposing the DDRep and DIRep from that used in DSN.

One of the main challenges in DA is determining what goes into the DIRep and what goes into the DDRep.
Our approach, called MaxDIRep, uses a KL divergence constraint between the DDRep and a standard normal
distribution to ensure that the bare minimum of information goes into the DDRep. We thus ensure that the
DIRep contains as much relevant information as possible, consistent with requirement 1, which is achieved
using adversarial techniques. The only information required in the DDRep is the information about what
domain it comes from, which is not useful in classification. This differs from DSN, which only constrains
DDRep to be orthogonal with DIRep. As a result, useful information for classifying the target domain may
end up in the DDRep and cannot be used for classifying the target data.

The rest of our paper is structured as follows. After discussing related work in Section 2, we present details
of our approach and contrast it to the closely related DANN (Ganin et al., 2016) and DSN (Bousmalis
et al., 2016) algorithms in Section 3. In Section 4, we give results on a synthetic benchmark we designed to
elucidate the issues impacting previous methods, an ablation study that further illustrates the advantage of
our approach versus DSN, and the performance of our algorithm versus other DA methods across a set of
standard image benchmark datasets. Finally we show the superior results of our approach on a non-image
classification task. In Section 5, we discuss the intuitive reason for the better performance of our approach
and possible future directions for further improvements.

2 Related work

Transfer learning is an active research area that has been covered by several survey papers (Liu et al., 2022;
Zhang & Gao, 2022; Zhang, 2021; Zhuang et al., 2020; Liu et al., 2019; Wang & Deng, 2018). Here, we briefly
describe previous methods focusing on those that are closely related to ours.

The domain adversarial neural network (DANN) (Ganin et al., 2016) uses three network components, namely
a feature extractor, a label predictor, and a domain classifier. The generator is trained in an adversarial
manner to maximize the loss of the domain classifier by reversing its gradients. The generator is trained at the
same time as the label predictor to create a DIRep that contains domain-invariant features for classification.
The adversarial discriminative domain adaptation (ADDA) (Tzeng et al., 2017) approach adopts similar
network components with a learning process that involves multiple stages in training the three components
of the model. Singla et al. (2020) has proposed a hybrid version of the DANN and ADDA where the
generator is trained with the standard GAN loss function (Goodfellow et al., 2020). We refer to this as the
GAN-based method (Singla et al., 2020). None of these methods (DANN, ADDA, and GAN-based) includes
the auto-encoder and thus does not have a DDRep.

The Domain-Specific Adversarial Network (DSAN) (Stojanov et al., 2021) makes use of domain-specific
information, but it is used by the encoding function, in addition to the input data, to infer the DIRep. In
contrast, our approach learns the DIRep without incorporating the domain-specific information as the input.
The closest approach to ours is the Domain-Separation-Networks (DSN) (Bousmalis et al., 2016). The key
distinction between DSN and our method is the different constraints used in the decomposition of the data
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representation into DIRep and DDRep. In DSN, the DDRep and DIRep have the same shape, and a linear
“soft subspace orthogonality constraint between the private and shared representation of each domain” was
used to ensure that the DIRep and DDRep are different. In our approach, a stronger constraint to minimize
information content in DDRep is used. Details are described in Section 3.3.

Other work shows how to take advantage of more than one target (Peng et al., 2019), or more than one
source domain (Pei et al., 2018; Park & Lee, 2021). Some authors have evaluated the quality of cross-
domain representation disentanglement on image-to-image translation and image retrieval tasks such as
the Interaction Information Auto-Encoder (IIAE) (Hwang et al., 2020). The Variational Disentanglement
Network (VDN) (Wang et al., 2022) attempts to generalize from a source domain without access to a target.
These methods either focus on different problem settings (Peng et al., 2019; Pei et al., 2018; Park & Lee,
2021; Wang et al., 2022) (instead of one source domain and one target domain) or utilize non-adversarial
training techniques to learn domain-invariant features (Hwang et al., 2020). These works are less related to
our approach and will thus not be discussed in-depth in this paper.

3 The MaxDIRep algorithm for domain adaptation
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Figure 1: Architecture of MaxDIRep.

In this section, we describe the details of our method
(MaxDIRep), which is summarized in Figure 1. To
achieve an effective adaptation, our goal is to con-
strain the DIRep extraction to ensure it retains
the “maximal” amount of information about the
target labels. Specifically, MaxDIRep achieves this
by enforcing the minimal information content in the
DDRep during the data generation process from
both DDRep and DIRep. We measure the KL diver-
gence on DDRep with respect to a standard normal
distribution (which is considered as the baseline dis-
tribution that has little information). Including this
KL divergence in the overall loss function allows us
to constrain the information content in DDRep. Since DDRep corresponds to minimal information specific to
each domain, this forces DIRep to retain maximal information about the target labels. DIRep is also subject
to a GAN-like discriminator ensuring that the classification information is domain-invariant. Details of the
MaxDIRep method are described below:

(1) Networks. There are five neural networks (by neural network, we mean the network architecture and
all its parameters) in the algorithm: 1) G is the generator; 2) D is the discriminator; 3) C is the classifier; 4)
E is the encoder; 5) F is the decoder.

(2) Inputs and outputs. The data is given by (x, l, d) where x is the input; we use the notation xs and
xt to respectively represent the source and target data samples, when necessary to distinguish them. l is the
label of sample x (if any), and d is the domain identity (e.g., it can be as simple as one bit of 0 for the source
domain and 1 for the target domain). In the zero-shot or few-shot DA settings, l is available for all source
data samples, but none or only a few labels are known for the target samples. x is the input given to both
encoder (E) and generator (G). The DDRep and DIRep correspond to the intermediate outputs of E and G,
respectively:

DDRep = E(x), DIRep = G(x), (1)
which then serve as the inputs for the downstream networks decoder (F ), discriminator (D), and classifier
(C). In particular, DIRep serves as the input for D and C, and both DIRep and DDRep serve as the inputs
for F . The outputs of these three downstream networks are x̂ from the decoder F , d̂ from the discriminator
D, and l̂ from the classifier C:

x̂ = F(E(x), G(x)), d̂ = D(G(x)), l̂ = C (G(x)), (2)

where we explicitly list the dependence of the outputs on the corresponding networks.
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(3) Loss functions. Some measures of the differences between the predictions from the networks, i.e.,
(x̂, d̂, l̂) and their actual values (x, d, l) are used to construct the loss functions. Typically, a loss function
would take two arguments: a prediction and the actual label/value. We use the name of the loss function
without specifying the arguments and do so for the discriminator, generator, classification and reconstruction
losses. All the loss functions with their dependence on specific neural networks are given explicitly here:

1. Classification loss: Lc = Lc(l̂, l) = Lc(C(G(x), l)).

2. Discriminator loss: Ld = Ld(d̂, d) = Ld(D(G(x), d).

3. Generator loss: Lg = Lg(d̂, 1 − d) = Ld(D(G(x)), 1 − d).

4. Reconstruction loss: Lr = Lr(x̂, x) = Lr(F (G(x), E(x)), x).

5. KL loss for DDRep: Lkl = DKL(Pr(E(x)) ∥ N (0, I)).

For the reconstruction loss Lr, we use the L2-norm. For Ld, Lg, Lc, we use cross entropy. A more detailed
formulation of the loss functions is given in the Appendix A.

The first four loss functions (Lc, Ld, Lg, and Lr) are similar to those used in other GAN-based algorithms
such as DSN. The most important and unique feature of our algorithm is the KL divergence loss function
Lkl(E) for the DDRep (E). Lkl is introduced to create a DDRep that has little information so that DIRep
has to play a major role in the decoder when reconstructing the data, which, in turn, forces DIRep to include
sufficient information for target classification.

(4) The back-prop based learning. The gradient descent based learning dynamics for updating the five
neural networks are described by the following equations:

∆G = −αG

(
λ

∂Lg

∂G
+ β

∂Lc

∂G
+ γ

∂Lr

∂G

)
, ∆C = −αC

∂Lc

∂C
, ∆D = −αD

∂Ld

∂D
,

∆E = −αE

(
∂Lkl

∂E
+ µ

∂Lr

∂E

)
, ∆F = −αF

∂Lr

∂F
,

where αC,D,E,F,G are the learning rates for different neural networks. In our experiments, we often set them to
the same value, but they can be different in principle. The other hyperparameters, namely λ, β, γ, and µ, are
the relative weights of the loss functions. These hyperparameters are also useful to understand the different
algorithms. As easily seen from the equations above, when γ = 0, the GAN-based algorithm decouples from
the VAE-based constraints.

3.1 The explicit DDRep algorithm

From the results of the full MaxDIRep algorithm, we found that the DDRep contains a small amount
of information as measured by the KL divergence, which is consistently small in all the experiments, see
Table 13. Inspired by this observation, we introduce a simplified MaxDIRep algorithm without the encoder
E wherein the DDRep is set explicitly to be just the domain label (bit) d, i.e., DDRep = d. We call this
simplified MaxDIRep algorithm the explicit DDRep algorithm. The motivation is that d is the simplest
possible domain-dependent information that could serve to filter out the domain-dependent information from
the DIRep.

Besides its simplicity, the explicit DDRep algorithm is also highly interpretable. One particularly useful
feature of the explicit DDRep algorithm is that it allows us to check the effect of the DDRep directly by
flipping the domain bit (d → 1−d). We know that the domain bit is effective in filtering out domain-dependent
information from the DIRep if the reconstructed image x̃ = F(DIRep, 1 − d) resembles an image from the
other domain (see Section 4.1.1 for details and Figure 3a for examples of reconstructed images).

In the experiments, the explicit DDRep algorithm has the same performance as the full MaxDIRep model in
some simpler cases (see Section 4.1.1). However, the full MaxDIRep model performs better in more complex
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cases (Sections 4.1.2, 4.3 and 4.4). Therefore, we use the full MaxDIRep model with Lkl for all cases as it is
more general except in the experiments in Section 4.1.1 where the explicit DDRep algorithm works just as
well but also provides a direct interpretation of the algorithm (See Figure 3a).

3.2 Comparing MaxDIRep to DANN: insights from domain adaptation theory

We now give a theoretical understanding of MaxDIRep based on the domain adaptation theory established
in Theorem 1 from Ben-David et al. (2010). While deriving the explicit target error bound for MaxDIRep
turns out to be formidable, we provide some insights into why MaxDIRep yields better adaptability than
DANN, grounded in Theorem 1. These insights will be empirically validated through experiments presented
in Subsection 4.1.1.

Theorem 1. (Ben-David et al. (2010)). Let H be the hypothesis space and Es(h), Et(h) be the error of
hypothesis h ∈ H on the source domain Xs and the target domain Xt, respectively. Then for any classifier
h ∈ H, the error on the target domain is bounded by,

Et(h) ≤ Es(h) + dH∆H(Xs, Xt) + λ, (3)

where dH∆H is the H∆H distance measuring domain shift and λ is the error of an ideal joint hypothesis
defined as h∗ = arg minh∈H Es(h) + Et(h), such that

λ = Es(h∗) + Et(h∗) (4)

In DANN, training the discriminator on the DIRep bounds the H∆H distance while training the feature
extractor and the classifier on the source labeled data minimizes the error on the source domain (Es(h))(see the
proof in Ganin et al. (2016)). The third term, λ, is assumed to be sufficiently small in their analysis. However,
as previous work has shown (Liu et al., 2019; Chen et al., 2019), the error of the ideal joint hypothesis h∗,
especially for the target domain Et(h∗), can not be overlooked in DANN. We present a reasonable explanation
for this. In an unsupervised DA task, where the target data lacks labels, the classifier tends to take advantage
of source-specific information that helps with source classification. Consequently, information that could be
beneficial for classifying the target data may be omitted from the DIRep, leading to an increased Et(h∗).

MaxDIRep addresses this pitfall by (1) decomposing the full representation into DIRep and DDRep, ensuring
that together they encompass all necessary information to reconstruct the original data, and simultaneously
(2) aligning the DDRep distribution with a standard normal distribution to minimize its information content.
(3) extracting domain invariant features by using adversarial techniques. By doing so, the DIRep can capture
more relevant domain-invariant features useful for target classification, as the information in DDRep is
minimized. The improved target representation can lower the generalization error on the target domain,
hence reducing Et(h∗). As a result, the third term λ is further bounded in our approach, yielding a lower
bound for Et(h) than DANN. We will justify this in Section 4.1.1 (See Figure 3b for the error rate of an ideal
joint hypothesis trained using representations learned by DANN, DSN, and MaxDIRep).

3.3 Comparing MaxDIRep to DSN: MaxDIRep has a stronger constraint than DSN

Both DSN and MaxDIRep are based on decomposing the data representation into DIRep and DDRep. The
main difference1 is that instead of using Lkl to force the DDRep to contain minimal information as in
MaxDIRep, DSN uses a linear orthogonality constraint between the private and shared representations of each
domain. Formally, The constraint (Ldiff ) is achieved by minimizing the dot products of DDRep (DDS/T )
and DIRep (DI) of source (S) and target (T ) data respectively: Ldiff =

∥∥DI · DDS∥∥2 +
∥∥DI · DDT∥∥2 .

However, the orthogonality constraint does not always lead to a unique and optimal decomposition. For
example, a different but also orthogonal or nearly orthogonal decomposition into DDRep and DIRep would
be to minimize the domain-invariant information in DIRep with most image details contained in the DDRep.
This decomposition, as discussed in Subsection 4.2, leads to poor DA performance but is not ruled out in
the DSN algorithm due to its weaker linear orthogonality constraint.

1DSN also uses different neural networks to create the DDRep from their source and target.

5



Under review as submission to TMLR

To gain intuition about the difference between DSN and MaxDIRep, we looked at a 3-D geometrical analogy
of a representation decomposition as shown in Figure 2. The source (S) and target (T) data represented
in this analogy by vectors in 3D space are decomposed into the sum of DIRep (DI ) and DDRep (DD):
S = DI x+DDS

x , T = DI x+DDT
x where the subscript x represents the DSN (D) and MaxDIRep (V) algorithms,

respectively. In DSN, the linear orthogonality constraint, DID · DDS,T
D = 0, enforces DID ⊥ DDS,T

D , which
can be satisfied by any points on the blue circle in Figure 2. In MaxDIRep, however, the size of DDRep’s,
i.e., ||S − DI || + ||T − DI || is minimized, leading to a unique solution DIV (red dot in Figure 2), which
not only satisfies the orthogonality constraint (DIV ⊥ DDS,T

V ) but also maximizes the magnitude of DIRep
(||DIV || ≥ ||DID||) (see Appendix J for proof details).
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Figure 2: Schematic comparison between DSN and
MaxDIRep. See text and Appendix J for explanation.

This 3D geometric analogy suggests that the orthog-
onality constraint is weaker than minimizing the size
of DDRep. Depending on the initialization, the sys-
tem with only the orthogonality constraint can result
in a sub-optimal solution (any point on the circle
other than the MaxDIRep solution DI V ) that has
poorer DA performance. For example, as shown in
Figure 2, the origin, i.e., DI D = 0, is a valid solution
for DSN that satisfies the orthogonality constraint.
Obviously, this extreme case solution with a minimal
(zero) DIRep can not be used for DA at all.

We expect the DA performance to become progres-
sively worse as the DSN solution moves away from the solution obtained by MaxDIRep. Indeed, as we
demonstrate later in Section 4.2 in a set of “mutual ablation” experiments in a realistic setting, if we perturb
the DSN system by running DSN with a KL loss LDI

kl applied to its DIRep for a certain time, DSN will find
solutions that are consistent with the orthogonality constraint of DSN but have poorer DA performance.
Furthermore, as we increase the strength of this perturbation, the DSN performance decreases, indicating the
existence of many sub-optimal solutions for DSN, which is consistent with the geometric analogy (Figure 2).
However, the opposite is not true, i.e., if we perturb the MaxDIRep system by applying a negative Ldiff to
make the DIRep and DDRep less orthogonal, MaxDIRep can still find the optimal solution with the same
good DA performance.

4 Experiments

We evaluate MaxDIRep across different adaptation settings. In Subsection 4.1, we first construct synthetic
datasets to explicitly demonstrate the advantage of MaxDIRep over DANN and DSN, which can use
information specific to the source domain for classification and thus lead to poor DA performance. Specifically,
we introduce “cheating information” that can be used easily for classification in the source domain but not in
the target domain. This cheating information (or spurious correlation) could encourage a system to create a
DIRep that is domain-invariant but does not have sufficient information about the target labels, leading to
poor DA performance.

Next, in Subsection 4.2, we design a set of mutual ablation experiments between MaxDIRep and DSN to
show that the key reason for the better performance of MaxDIRep than DSN is due to its stronger constraint
of minimizing irrelevant domain-specific information than the orthogonality constraint of DSN.

In Subsection 4.3, we compare the performance of MaxDIRep on a set of standard benchmark datasets
including MNIST (LeCun et al., 1998), MNIST-M (Ganin et al., 2016), Street View House Number (Netzer
et al., 2011), synthetic digits (Ganin et al., 2016) and Office-31 (Saenko et al., 2010). We also assess MaxDIRep
using the challenging Office-Home datasets (Venkateswara et al., 2017), which consist of four distinct domains,
each containing 65 classes. Although the primary focus of this work is to compare our method with DANN
and DSN, we also include comparisons with several recent methods on the Office-31 and Office-Home datasets
to illustrate the practical value of our approach. Overall, our approach achieves better or similar results
across standard DA benchmark datasets.
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Finally, in Subsection 4.4, we demonstrate the application of MaxDIRep in training network intrusion
detectors, building on the GAN-based algorithm by Singla et al. (2020), which successfully addressed the
label scarcity issue in this domain using DA. Our findings show that MaxDIRep consistently improves the
GAN-based results from Singla et al. (2020) and outperforms the performance of DSN and DANN, which
highlights the versatility of MaxDIRep for non-image classification tasks.

4.1 Synthetic benchmarks and training methods

4.1.1 Synthetic benchmark based on Fashion-MNIST

Fashion-MNIST is a well-known dataset that we use as the source domain. We construct a target domain by
flipping the original images by 180o. To add the cheating information, we add a one-hot vector to the source
dataset that contains the correct classification (label). We call that information cheating bits. Specifically,
each source image is reshaped into a 1 × N vector, where N represents the total number of pixels. The
cheating bits (a one-hot vector of its label) are then appended to this image data vector. To the target
dataset, we also add some bits to the flattened image data vector. The cheating bits in the target data have
the same distribution as those in the source data, but they are not the labels of the target data. The idea
is that if an algorithm were to use the cheating bits to classify the data, it would perform perfectly in the
source data but poorly in the target data. We used two different ways of implementing the cheating bits in
the target data: one is to use a random label (random cheating); and the other is to use the next label from
the correct label (shift cheating).

Benchmark algorithms We compare our method against the following adversarial learning-based DA
algorithms: GAN-based approach (Singla et al., 2020), Domain-Adversarial Neural networks (DANN) (Ganin
et al., 2016) and Domain-Separation-Networks (DSN) (Bousmalis et al., 2016). We implemented both
MaxDIRep and the explicit DDRep algorithm in the zero-shot setting. The explicit DDRep algorithm and
the non-explicit DDRep achieve almost identical performance. We also provide two baselines: a classifier
trained on the source domain samples without DA (which gives us the lower bound on target classification
accuracy) and a classifier trained on the target domain samples (which gives us the upper bound on target
classification accuracy). We compare the mean accuracy of our approach and the other DA algorithms on the
target test set in Table 1. The z-scores of the comparison of our method with other methods are shown in
Table 7 in the Appendix. More details of the topology, learning rate, hyper-parameters setup and results
analysis are provided in Appendix B.

Table 1: Mean classification accuracy (%) of different adversarial learning-based DA approaches on the
synthetic Fashion-MNIST benchmark.

Model No
cheating

Shift
cheating

Random
cheating

Source-only 20.0 11.7 13.8
GAN-based (Singla et al., 2020) 64.7 58.2 54.8
DANN (Ganin et al., 2016) 63.7 58.0 53.6
DSN (Bousmalis et al., 2016) 66.8 63.6 57.1
MaxDIRep/Explicit DDRep 66.9 66.8 61.6
Target-only 88.1 99.8 87.9

The effect of single-bit DDRep One particularly useful feature of the explicit DDRep algorithm is that
it allows us to check the effect of the DDRep directly by flipping the domain bit (d → 1 − d). This feature is
highlighted in Figure 3a in the case of rotated Fashion-MNIST classification. The original images for the
source and target domains are shown in columns 1 and 4, respectively. The reconstructed images are shown
as columns 2 and 6 with the domain bit d set to reflect their corresponding domains, i.e., d = 0 for column 2,
d = 1 for column 6. Remarkably, by flipping the domain bit (d → 1 − d) while keeping the DIRep unchanged,
the resulting images (columns 3 and 5) resemble images from the other domain, which clearly demonstrates
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the effectiveness of the minimal domain-specific information in DDRep (domain bit in the explicit DDRep
model).

Source test set Target test set 

Original Original

(a) Effects of flipping the domain bit. Columns 1 and 4 are
the original images; columns 2 and 6 show reconstructions
of originals; columns 3 and 5 show reconstructions with the
domain bit flipped.
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(b) The error rate of the ideal joint hypothesis trained
using representations learned by DANN, DSN, and
MaxDIRep.

Figure 3: Comparison of the reconstruction effect and the error of the ideal joint hypothesis.

The error of an ideal joint hypothesis We follow the same approach in the literature to find the ideal
joint hypothesis (Chen et al., 2019; Liu et al., 2019) on this dataset. Specifically, we train a new MLP classifier
using the DIReps learned by DANN, DSN and MaxDIRep, respectively. The MLP classifier is trained on
both source and target training data with labels, while each DA model is fixed. The target labels are only
used for evaluating the error of the ideal joint hypothesis and are not involved in training the DA models.
We then obtain the error rate of the trained MLP classifier on the source test set and target test set and
calculate the average error rate. The results in Figure 3b show that MaxDIRep achieves the lowest error rate
for the ideal joint hypothesis across both domains, thereby establishing a lower error bound for the target
domain as indicated by Theorem 1.

4.1.2 Synthetic benchmark based on CIFAR-10

We are interested in more natural DA scenarios where the source and target images might be captured with
different sensors and thus have different wavelengths and colors. To address this use case, we create another
cheating benchmark based on CIFAR-10 with different color planes. We introduce the cheating color plane,
where the choice of the color planes in the source data has a spurious correlation with the labels, while such
correlation is absent in the target domain. Specifically, we create a source set with cheating color planes by
encoding CIFAR-10 labels (0-9). For odd labels, only the blue channel is retained with probability (p), and
either the blue or red channel is kept randomly for the rest. For even labels, only the red channel is retained
with probability (p), and either the red or blue channel is kept randomly for the rest. The parameter (p)
controls the spurious correlation strength between image color and label. In the target domain, only the
green channel is retained for each CIFAR-10 image. We compare our approach with others using (p) values
from {0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0}, where a larger (p) indicates a higher spurious correlation, making domain
adaptation more challenging.

Table 2 presents the mean accuracy of MaxDIRep and the baseline algorithms on the target test set in a
zero-shot setting. We used the full MaxDIRep model due to its better performance. The z-scores of the
comparison of our method with other methods are shown in Table 11 in the Appendix. We observe similar
performance degradation for the DANN, DSN and GAN-based approaches on this benchmark, suggesting
that the adaptation difficulties of previous methods and the better results achieved by our method are not
limited to a particular dataset. Due to space limits, the details of the experiments are given in Appendix D.
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Table 2: Averaged classification accuracy (%) of different adversarial learning-based DA approaches on the
synthetic CIFAR-10 dataset with a spectrum of bias.

Model 0% bias 20% bias 40% bias 60% bias 80% bias 90% bias 100% bias
Source-only 10.0 10.0 10.0 10.0 10.0 10.0 10.0
GAN-based (Singla et al., 2020) 63.0 62.5 61.4 56.9 53.2 44.5 30.1
DANN (Ganin et al., 2016) 62.7 62.0 61.0 56.5 52.2 42.9 29.1
DSN (Bousmalis et al., 2016) 68.7 67.9 67.3 67.5 64.5 61.7 32.2
MaxDIRep 70.4 69.8 69.8 69.7 68.2 64.1 34.2
Target-only 78.9 78.9 78.9 78.9 78.9 78.9 78.9

As an additional experiment, we evaluate MaxDIRep and other approaches in a few-shot setting: the model
is provided with a majority of unlabeled target data and a small amount of labeled target data. The results
are shown in Figure 6 in the Appendix, and the training setup is described in Appendix D.3. We found that
while the methods benefit from a small number of target labeled samples, MaxDIRep improves the most,
surpassing DNS and GAN-based results by 12% and 25%, respectively, with only a total of 50 target labels.

4.2 The mutual ablation experiment between DSN and MaxDIRep

In DSN, the orthogonality constraint is enforced by a difference loss (Ldiff ), while minimizing the information
content of DDRep in MaxDIRep is enforced by a KL loss (Lkl) for the DDRep. To demonstrate the difference
between DSN and MaxDIRep, we designed mutual ablation experiments to answer the following questions:

• If we add a negative difference loss (−Ldiff ) to MaxDIRep, would the performance of MaxDIRep
decrease?

• On the other hand, if we add a KL loss for the DIRep (LDI
kl ) in DSN, which acts as the opposite of

the KL loss for the DDRep as in MaxDIRep, how would that affect the performance of DSN?

In the two sets of ablation experiments (shaded blue and yellow respectively in Table 3), we perturb the
systems by adding the KL loss for DIRep (λpLDI

kl ) and the inverse difference loss (−λpLdiff ) to DSN and
MaxDIRep, respectively. Here, λp represents the strength of the perturbation. We use one large and one
small value of λp = 0.001, 0.1 (rows 2&4 for DSN, and rows 7&9 for MaxDIRep in Table 3) to explore the
dependence on the perturbation strength. We then turn off these perturbations and continued the training
until convergence to investigate if the systems can recover their original DA performance (rows 3&5 for DSN,
and rows 8&10 for MaxDIRep in Table 3). For reference, we also list the performance when using the source
data alone, DSN, and MaxDIRep in rows 1, 6, and 11, respectively in Table 3.

Table 3: Results of the ablation experiments conducted on the synthetic benchmark based on Fashion-MNIST.
See the text for a detailed description.

Methods No cheating Shift cheating Random cheating
1. Source only 20.0 11.7 13.8
2. DSN + λpLDI

kl (λp = 0.001) 61.2 59.5 53.8
3. DSN* from 2 62.7 60.3 55.9
4. DSN + λpLDI

kl (λp = 0.1) 18.3 12.7 12.1
5. DSN* from 4 32.6 29.7 14.0
6. DSN 66.8 63.6 57.1
7. MaxDIRep −λpLdiff (λp = 0.001) 66.8 66.8 60.1
8. MaxDIRep* from 7 66.9 66.8 60.2
9. MaxDIRep −λpLdiff (λp = 0.1) 63.6 63.6 60.1
10. MaxDIRep* from 9 65.5 65.5 60.3
11. MaxDIRep 66.9 66.8 61.6
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The findings in row 2 of Table 3 indicate that when we minimize the information content in DIRep during
DSN training, DDRep and DIRep maintain orthogonality as evidenced by Ldiff = 0 in the experiment (see
Table 8 in the Appendix). However, even this weak perturbation results in a worse DA performance than the
original DSN. The results also show that even after this perturbation is removed (row 3), the optimal DA is
not regained. This is consistent with the geometric analogy (Figure 2), which shows that many solutions
satisfy the orthogonal constraint, but not all are equally good in DA. Here, DSN finds a sub-optimal solution
from the initiation of weights reached by a weak “ablation” perturbation. Additionally, if we apply a stronger
perturbation (row 4 in Table 3), the DSN algorithm becomes equivalent to a source-only DA scheme. Notably,
the values for reconstruction loss and difference loss do not increase, and the classification loss on the source
data is minimal (see the reported loss values in Table 8). This implies that DIRep predominantly carries the
label information for the source and random information for the target, while DDRep retains the information
necessary for reconstruction. Another important observation is that the KL losses on DIRep in the ablation
experiments for DSN (rows 2&3) with the smaller perturbation strength (λp = 0.001) are significantly larger
than those with the stronger perturbation (λp = 0.1, rows 4&5) (the loss values are reported in in Table 8).
This confirms that a better DA is achieved with a higher information content in DIRep.

On the contrary, the performance of MaxDIRep is largely unaffected by the perturbation regardless of its
strength (rows 7-10 in Table 3). This is because minimizing the information content of DDRep in MaxDIRep
imposes a much stronger constraint, which contains the weaker orthogonal constraint imposed by Ldiff . This
is additionally supported by the observation that Ldiff = 0 in the ablation experiments for MaxDIRep (see
Table 9 in the Appendix).

4.3 Standard DA image benchmarks

There are two types of standard benchmark datasets: type-1 datasets that present the same information in a
different form, perhaps changing color or line width; type-2 datasets that contain additional information in one
domain, like the presence of the background of the object, which is absent in the other. It is clear that type-2
datasets are prone to cheating while type- datasets are not. We apply MaxDIRep in three representative
benchmark datasets: the digits dataset (type-1 ), the Office-31 dataset (type-2 ), and the Office-Home dataset
(type-2 ). We find that MaxDIRep has a good performance comparable with other adversarial learning-based
DA algorithms for the type-1 dataset, while it outperforms other methods for the type-2 dataset. We believe
that outside of the setting of benchmarks, there are many more type-2 datasets where MaxDIRep has a clear
advantage.

Digits datasets In this experiment, we use three DA pairs: 1) MNIST → MNIST-M, 2) Synth Digits →
SVHN, and 3) SVHN → MNIST. Example images from all four datasets are provided in Appendix E. The
architecture and hyper-parameter settings are also provided in Appendix E. Since the digits datasets are
small datasets, we include the results in Table 12 in the Appendix, which shows the results on the digits
datasets in the zero-shot setting. In summary, MaxDIRep outperforms all the other approaches we compare
in all three DA scenarios.

Office-31 dataset The most commonly used dataset for DA in object classification is Office-31 (Saenko
et al., 2010). The Office dataset has 4110 images from 31 classes in three domains: Amazon (2817 images),
Webcam (795 images) and DSLR (498 images). The three most challenging domain shifts reported in previous
works are DSLR to Amazon (D → A), Webcam to Amazon (W → A) and Amazon to DSLR (A → D). In
D → A and W → A are the cases with the least labels in the source domain.

We follow previous work (Tzeng et al., 2017; Chen et al., 2020), which uses a pretrained ResNet-50 on
ImageNet (Deng et al., 2009) as a base. We present the results for four zero-shot adaptation tasks in Table 4.
We use the full MaxDIRep model due to its better performance. MaxDIRep is competitive on this adaptation
task, matching the performance of Long et al. (2018) in A → D and W → D, and outperforming all the
approaches in all other tasks. However, it is worth noting that Long et al. (2018) utilizes a conditional
discriminator conditioned on the cross-covariance of domain-specific feature representations and classifier
predictions, which has the potential to improve our results further. We leave exploring this possibility for
future work. Our approach shows the most significant performance improvements in scenarios such as D → A

10
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Table 4: Mean classification accuracy (%) of different baseline approaches on the Office-31 dataset. The
results are cited from each study when available. The results of MCD (Saito et al., 2018) is cited from (Ma
et al., 2021). We present our DSN replication results on the Office-31 dataset, which had not been evaluated
by DSN.

Model D → A W → A W → D A → D
Source-only 62.5 60.7 98.6 68.9
DANN (Ganin et al., 2016) 68.2 67.4 99.2 79.7
ADDA (Tzeng et al., 2017) 69.5 68.9 99.6 77.8
CDAN (Long et al., 2018) 70.1 68.0 100.0 89.8
GTA (Sankaranarayanan et al., 2018) 72.8 71.4 99.9 87.7
SimNet (Pinheiro, 2018) 73.4 71.8 99.7 85.3
MCD (Saito et al., 2018) 71.0 67.2 98.4 84.1
GPDA (Kim et al., 2019) 72.3 68.8 100 85.5
AFN (Xu et al., 2019) 69.8 69.7 99.8 87.7
Chadha et al. (Chadha & Andreopoulos, 2019) 62.2 - - 80.9
IFDAN-1 (Deng et al., 2021) 69.2 69.4 99.8 80.1
DSN (Bousmalis et al., 2016) 67.2 67.5 98.0 82.0
MaxDIRep 73.8 72.5 100.0 89.0

Table 5: Averaged accuracy (%) of different DA approaches on the Office-Home dataset. The results of
DANN (Ganin et al., 2016) and CDAN (Long et al., 2018) are cited from (Long et al., 2018). The results of
MCD (Saito et al., 2018) and GPDA (Kim et al., 2019) are cited from (Ma et al., 2021).

Methods Ar-Cl Ar-Pr Ar-Rw Cl-Ar Cl-Pr Cl-Rw Pr-Ar Pr-Cl Pr-Rw Rw-Ar Rw-Cl Rw-Pr Avg
Source-only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN (Ganin et al., 2016) 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CDAN (Long et al., 2018) 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8
MCD (Saito et al., 2018) 45.6 60.9 69.2 50.8 60.7 60.5 46.2 44.0 74.7 62.6 53.8 77.5 58.6
GPDA (Kim et al., 2019) 47.1 62.0 70.4 53.6 62.3 60.9 49.7 47.2 72.3 63.7 54.0 78.6 60.2
MaxDIRep 53.5 71.1 78.9 54.9 66.0 68.8 59.5 48.7 78.6 69.5 56.6 80.8 65.6

and W → A, in which background information is present within the D and W domains while being absent in
the A domain.

Office-Home dataset Office-Home - a more difficult dataset than Office-31, consists of 15,500 images
in 65 object classes, forming four extremely dissimilar domains (see Figure 8 in the Appendix for example
images): Artistic images (Ar), Clip Art (Cl), Product images (Pr), and Real-World images (Rw). We use
the same ResNet-50 network with the same training protocols and the hyperparameters from CDAN (Long
et al., 2015). More details can be found in Appendix G.

Strong results are also achieved on the Office-Home dataset as reported in Table 5 for the full MaxDIRep.
In the evaluation of 12 transfer tasks, MaxDIRep consistently outperforms DANN (Ganin et al., 2016),
CDAN (Long et al., 2018), MCD (Saito et al., 2018), and GPDA (Kim et al., 2019). We cannot find published
results for ADDA and DSN on this benchmark. The classification accuracy of the Office-Home dataset is
lower compared to the Office-31 dataset. The four domains in Office-Home have more categories and greater
visual dissimilarity, making DA more difficult.

4.4 Application in Network Intrusion Detection (NID)

We also evaluate MaxDIRep in a non-image classification task, specifically in training network intrusion
detectors. The NID datasets comprise network features extracted from both malicious and benign network
traffic flows. A NID detector is then trained on these data to predict whether an incoming network flow is
benign or originates from a network attack. However, most of the data is typically unlabeled and requires
domain experts to analyze and label the traffic manually.
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Figure 4: Mean classification accuracy on UNSW-
NB15 test-set in few-shot setting.

The GAN-based method proposed by Singla et al. (2020)
addresses label scarcity in NID datasets via DA. It trans-
fers knowledge from a labeled source NID dataset to a
target NID dataset that contains a few labeled samples
and many unlabeled data. These datasets can be created
for different network types using various network proto-
cols. An illustrative use case involves an organization
that maintains a labeled source dataset comprising attack
samples originating from its internal WiFi network. The
organization then collects a limited set of attack samples to
establish a target dataset specific to its Internet of Things
(IoT) network. The organization applies DA techniques
to utilize the source and target datasets for training an
NID model for identifying attack traffic within the IoT
network.

Following their experimental design, we use NSL-
KDD (Ahmed et al., 2009) as the source dataset and
UNSW-NB15 (Moustafa & Slay, 2015) as the target
dataset. The model is trained in a few-shot setting, utiliz-
ing all labeled source samples and a small amount of labeled target data. We replicate the experimental setup
described in their paper and compare the performance of DANN, DSN, and MaxDIRep with implementation
details provided in Appendix I. The results are reported in Figure 4, where we provide labels for 50, 100, 200,
300, 500 and 1000 target samples per class (benign and attack) during training. All methods improve with
more target labels, maintaining the performance order: MaxDIRep > DSN > GAN-based > DANN.

5 Discussion, conclusion and future work

What is the intuitive reason for the better performance of MaxDIRep compared to previous methods, such
as DSN, which shares the basic architecture? Neural networks are “lazy” as they tend to find the easiest
solution (Chizat et al., 2020). Without the discriminator, the generator would be forced by the classifier to
put the simplest information in DIRep to train the classifier for the source data, e.g., the snowy background in
pictures of wolves or the “cheating” bit in our synthetic Fashion-MNIST dataset. Such a source-only classifier
performs poorly in the target domain, as expected. A discriminator was introduced in previous methods,
such as DANN, to solve this problem. However, as shown in this paper, having a discriminator is not enough.
Specifically, the generator can evade the discriminator by generating random (spurious) information in the
DIRep for the target data with the same distribution as the source data but does not correlate with the target
label. An extreme case corresponds to the scenario where the DIRep contains only the correct labels for
source data and random labels for target data, and the DDRep contains the rest of the information needed
for reconstruction. This extreme case scenario leads to a poor solution, which is not prevented in the DSN
algorithm due to its weak orthogonality constraint. On the contrary, our MaxDIRep algorithm, with its new
loss function, minimizes information specific to each domain to rule out such poor solutions and creates a
DIRep with sufficient information for good DA performance.

The general intuition described above is verified by using ablation experiments on a synthetic dataset and
making a geometrical analogy. Indeed, by creating a maximal DIRep that contains genuine domain-independent
information, MaxDIRep performs better than previous methods across all the standard benchmark datasets
we tested. The hidden information effect is more likely to appear in complex datasets, e.g., we see more of its
impact in CIFAR-10 than in Fashion-MNIST. The hidden information effect is also likely to appear when there
is a drift in data, making classification more difficult. We adapt MaxDIRep and DSN for network intrusion
detection using source and target datasets from different networks with significant data drift. MaxDIRep
consistently outperforms both previous results and DSN.

An interesting future work direction is related to the use of pseudo-labeling, a powerful technique using
pseudo-labels to provide noisy but sufficiently accurate labels for target data with which to progressively
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update the model (Chen et al., 2020; Zou et al., 2018). Although the use of pseudo-labels is not considered in
this work, it would be interesting to adopt this technique in our model. Since the initial estimate of the target
label based on MaxDIRep is better than other algorithms, it is reasonable to expect that the more accurate
initialization of pseudo-labeling, facilitated by our loss functions, should further improve the DA performance.
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A More details on loss functions

Our code is available at (https://anonymous.4open.science/r/Maximal-Domain-Independent-Representations-
Improve-Transfer-Learning-A422/README.md).

We provide the details of all the loss functions mentioned in Section 3 of the main paper. Recall that the data
is given by (x, l, d) where x is the input, with xs and xt representing the source and target data, respectively.
l is the label of the sample, and d is the domain identity.

In unsupervised DA, the classification loss applies only to the source domain, and it is defined as follows:

Lc = −
Ns∑
i=1

ls
i · logl̂s

i (5)

where Ns represents the number of samples from the source domain, ls
i is the one-hot encoding of the label

for the source input xs
i , and l̂s

i is the softmax output of C(G(xs
i )).

The discriminator loss trains the discriminator to predict whether the DIRep is generated from the source
or the target domain. Nt represents the number of samples from target domain and d̂i is the output of
D(G(xi)).
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Ld = −
Ns+Nt∑

i=1

{
dilogd̂i + (1 − di)log(1 − d̂i)

}
(6)

The generator loss is the GAN loss with inverted domain truth labels:

Lg = −
Ns+Nt∑

i=1

{
(1 − di)logd̂i + dilog(1 − d̂i)

}
(7)

For the reconstruction loss, we use the standard mean squared error loss calculated from both domains:

Lr =
Ns∑
i

||xs
i − x̂s

i ||22 +
Nt∑
i

||xt
i − x̂t

i||22 (8)

where x̂s
i = F (G(xs

i ), E(xs
i )) and x̂t

i = F (G(xt
i), E(xt

i))

Finally, the KL-divergence loss measures the distance between the distribution of DDRep, which we assume
comes from a normal distribution with mean E(DDRep) and variance V(DDRep) and the standard normal
distribution.

Lkl = DKL(Pr(DDRep) ∥ N (0 , I )) = −1
2(1 + log[V(DDRep)] − V(DDrep) − E(DDRep)2 )

B Experiment details on Fashion-MNIST

B.1 Network architecture

All the methods are trained using the Adam optimizer with the learning rate of 2e − 4 for 10, 000 iterations.
We use batches of 128 samples from each domain for a total of 256 samples. When training with our model
(MaxDIRep), the label prediction pipeline (generator and classifier) has eight fully connected layers (fc1,
. . . , fc7, fc_out). The number of neurons in fc1-4 is 100 for each layer. fc5 is a 100-unit layer that
generates DIRep, followed by two 400-unit layers (fc6-7). fc_out is the output layer for label prediction.
The discriminator and decoder each have four layers with 400 hidden units, followed by the domain prediction
layer and reconstruction layer, respectively. The encoder has two layers with 400 units, followed by 100-unit
z_mean, 100-unit z_variance, and sampling layer. Each of the 400-unit layers uses a ReLU activation
function.

All the other models have the same architecture as MaxDIRep when applicable. For the GAN-based approach
and DANN, we turn off the decoder and corresponding losses. For the DSN, we keep the same network
architecture for common networks and use Lg for the similarity loss. Furthermore, we implement the shared
and private encoders with the same shape output vectors (Bousmalis et al., 2016).

B.2 Hyperparameters

As suggested in previous work (Ganin et al., 2016), the coefficient of the loss, which encourages domain
invariant representation, should be initialized as 0 and changed to 1. We use the following schedule for the
coefficient of Lg in all the experiments where t is the training iteration:

λ = 2
1 + exp(−t) − 1 (9)

The increasing coefficient allows the discriminator to be less sensitive to noisy signals at the early stages of
the training procedure. For other hyperparameters, we used β = 0.1, γ = 0.15, µ = 0.1 (the hyperparameters
were not tuned using validation samples).

17



Under review as submission to TMLR

We closely follow the setup of weights of the loss functions used in the DSN paper (Bousmalis et al., 2016)
and DANN paper (Ganin et al., 2016). To boost the performance of DSN, we set the coefficient of Lrecon to
0.15 and the coefficient of Ldiff to 0.05, tuned parameter values determined by Bousmalis et al. (2016) using
a validation set of target labels. To make a fair comparison, we use the same schedule for the coefficient of
Lg and set the coefficient of Lc to 0.1 in DSN.

B.3 Results and analysis

Table 6 summarizes the mean classification accuracy of different approaches for three cheating scenarios. In
the no cheating scenario, we use the original Fashion-MNIST as the source and flip the Fashion-MNIST for
the target. We report the z-score of the comparison of the mean classification accuracy of our method with
the mean classification accuracy of other methods over five independent runs (see Table 7). The higher the
z-score, the more statistical confidence we should have that our method outperforms the other methods. A
z-score of 2.33 corresponds to 99% confidence that our method is superior.

Table 6: Mean classification accuracy (%) of different adversarial learning-based DA approaches on the
constructed Fashion-MNIST dataset.

Model No
cheating

Shift
cheating

Random
cheating

Source-only 20.0 11.7 13.8
GAN-based (Singla et al., 2020) 64.7 58.2 54.8
DANN (Ganin et al., 2016) 63.7 58.0 53.6
DSN (Bousmalis et al., 2016) 66.8 63.6 57.1
MaxDIRep 66.9 66.8 61.6
Target-only 88.1 99.8 87.9

Table 7: Z-test score value comparing MaxDIRep to other models on the constructed Fashion-MNIST dataset.
z>2.3 means the probability of MaxDIRep being no better is ≤0.01.

Model No
cheating

Shift
cheating

Random
cheating

GAN-based (Singla et al., 2020) 1.55 3.28 3.68
DANN (Ganin et al., 2016) 2.26 4.17 4.33
DSN (Bousmalis et al., 2016) 0.16 2.60 3.18

In the no cheating scenario, MaxDIRep outperforms GAN-based and DANN and matches the result of DSN.
The performance of GAN-based and DANN results in a 5% accuracy drop for the shift cheating and a 10%
drop for the random cheating. This validates our concern: the source cheating bits can be picked up in
the DIRep as they represent an easy solution for the classifier trained only with source samples. If so, the
cheating generator will perform poorly for the target domain, which has different cheating bits. Our method
has only 0.1% and 5% accuracy drop respectively. As a reconstruction-based method, DSN performs better in
the presence of cheating bits. In the shift and random cheating, our approach significantly outperforms DSN
with a z-score of 2.60 and 3.18, respectively, which shows the correctness of our intuition that minimizing the
information content of DDRep can result in transferring as much information as possible to the DIRep. In
the explicit DDRep algorithm, the DDRep is minimal as it only contains the domain label. Given a richer
DIRep, our method improves DA performance on the target data.

C Loss values in the mutual ablation study

We provide the details of the loss values in the mutual ablation experiment in Section 4.2. Table 8 shows the
effect of KL loss for DIRep λpLDI

kl on DSN’s loss functions. Table 9 shows the effect of the inverse difference
loss −λpLdiff to MaxDIRep’s loss functions. We made the following observations:
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• From both tables, we do not observe any significant increase in other loss values compared to the
regular DSN (line 6 in Table 8) and MaxDIRep (line 11 in Table 9).

• When we reduce the DIRep during DSN training, Ldiff is always 0, which implies that DDRep and
DIRep maintain orthogonality.

• Ldiff loss is always zero in Table 9. This implies the orthogonality between DIRep and DDRep in
MaxDIRep.

• In lines 2 and 3, the KL losses on DIRep are significantly larger than in lines 4 and 5. If we look at
Table 3 in the main text, 2 and 3 also achieve much better DA, which shows that a DIRep with more
information improves DA performance.

Table 8: Effect of KL loss for DIRep λpLDI
kl to DSN’s loss functions. The loss values reported here are the

average data from both the source and the target.

No cheating Shift cheating Random cheating
Methods LDI

kl Lrecon Ldiff LDI
kl Lrecon Ldiff LDI

kl Lrecon Ldiff

2. DSN + λpLDI
kl (λp = 0.001) 29.7 0.04 0 19.7 0.04 0 25.8 0.05 0

3. DSN* from 2 41.5 0.04 0 48.6 0.04 0 30.6 0.05 0
4. DSN + λpLDI

kl (λp = 0.1) 1.725 0.05 0 1.65 0.05 0 2.04 0.06 0
5. DSN* from 4 16 0.05 0 14.3 0.04 0 11.9 0.06 0
6. DSN N/A 0.04 0 N/A 0.04 0 N/A 0.05 0

Table 9: Effect of the inverse difference loss −λpLdiff to MaxDIRep’s loss functions. The loss values reported
here are the average data from both the source and the target.

No cheating Shift cheating Random cheating
Methods Lkl Lrecon Ldiff Lkl Lrecon Ldiff Lkl Lrecon Ldiff

7. MaxDIRep −λpLdiff (λp = 0.001) 0 0.07 0 0 0.07 0 0 0.07 0
8. MaxDIRep* from 7 0 0.07 0 0 0.07 0 0 0.07 0
9.MaxDIRep −λpLdiff (λp = 0.1) 0 0.07 0 0 0.07 0 0 0.07 0
10. MaxDIRep* from 9 0 0.07 0 0 0.07 0 0 0.07 0
11. MaxDIRep 0 0.07 N/A 0 0.07 N/A 0 0.07 N/A

D Experiment details on CIFAR-10

The source set with cheating color planes is constructed as follows. First, we encode labels in CIFAR-10 with
values between 0 and 9. Then, for each CIFAR-10 image, if its label is odd, we keep only the B channel with
prob p and randomly keep the B or the R channel for the rest. Similarly, if the label is even, with prob p, the
image has only the R color channel, and either the R or B channel is kept for the rest. For example, when
p = 1, all images with odd labels have only the B channel, and all images with even labels have only the R
channel. We call p the bias since it controls the strength of the spurious correlation between the image’s color
and its label. In the target domain, for each CIFAR-10 image, we keep only the G channel regardless of the
label. We compare our approach and the others with p, taking values from the set {0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0}.
A larger value of p indicates a higher level of spurious correlation in the source data and, thus, a more
challenging DA task.

In this “cheating-color-plane” setting, the GAN-like algorithms might cheat by leveraging the correlation
between the presence or absence of the color planes and the image’s label to create an easier classification
scheme for the labeled source data. Consequently, the DIRep would include false cheating clues, which can
degrade performance on the target data where the cheating clues lead to the wrong answer.
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Figure 5: CIFAR-10 training architecture; inspired by the classical ResNet-20 (He et al., 2016)

D.1 Network architecture and training procedure

When training with our approach, we implement the network components as deep residual neural networks
(ResNets) with short-cut connections (He et al., 2016). ResNets are easier to optimize and sometimes gain
accuracy from increased depth. For our approach, we implemented the full MaxDIRep. The architecture is
shown in Figure 5. The label prediction pipeline is adopted from the ResNet 20 for CIFAR-10 in He et al.
(2016). For the generator, the first layer is 3 × 3 convolutions. Then, we use a stack of 6 layers with 3 × 3
convolutions on the feature maps of size 32. The number of filters is 16. The architecture of the classifier
consists of a stack of 6 × 2 layers with 3 × 3 convolutions on the feature maps of sizes {16, 8} respectively. To
maintain the network complexity, the number of filters is {32, 64}. The classifier ends with a global average
pooling and a fully connected layer with softmax.

For the discriminator, the network inputs are 32 × 32 × 16 domain invariant features. The first layer is 3 × 3
convolutions. Then we use a stack of 6 × 3 layers with 3 × 3 convolutions on the feature maps of sizes 32, 16,
and 8, respectively, with 6 layers for each feature map size. The numbers of filters is {16, 32, 64} respectively.
The discriminator ends with a global average pooling, a 2-way fully connected layer, and softmax.

The encoder has 4 convolutional layers: three 3 × 3 filters, two 3 × 3 filters, two 3 × 3 filters (z mean) and
two 3 × 3 filters (z variance) respectively. A sampling layer is also implemented, which outputs the DDRep
from the latent distribution z. The decoder learns to reconstruct an input image using its DIRep and DDRep
together. The configuration of the decoder is the inverse of that of the generator.

We implemented the same ResNet-based architecture for all other approaches (when applicable). We use a
weight decay of 0.0001 and adopt the BN (Ioffe & Szegedy, 2015) for all the experiments. We use the same
schedule in Section B.2 for the coefficient of Lg in all the experiments. For other hyperparameters, we used
β = 1, γ = 1, µ = 1/2000 in MaxDIrep and set the coefficient of Lrecon to 0.15, the coefficient of Ldiff to 0.05,
and the coefficient of Lc to 1 in DSN.

D.2 Results and analysis

We report the mean accuracy of different DA methods and our approach on the target test set in Table 10.
The z-scores of comparing our method with other methods are shown in Table 11.

For all the DA tasks with varying biases, we observe that our approach outperforms the other approaches in
terms of accuracy in the target test set. This improvement is most pronounced when the source set has 60%
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Table 10: Averaged classification accuracy (%) of different adversarial learning-based DA approaches on the
constructed CIFAR-10 dataset with a spectrum of bias.

Model 0% bias 20% bias 40% bias 60% bias 80% bias 90% bias 100% bias
Source-only 10.0 10.0 10.0 10.0 10.0 10.0 10.0
GAN-based (Singla et al., 2020) 63.0 62.5 61.4 56.9 53.2 44.5 30.1
DANN (Ganin et al., 2016) 62.7 62.0 61.0 56.5 52.2 42.9 29.1
DSN (Bousmalis et al., 2016) 68.7 67.9 67.3 67.5 64.5 61.7 32.2
MaxDIRep 70.4 69.8 69.8 69.7 68.2 64.1 34.2
Target-only 78.9 78.9 78.9 78.9 78.9 78.9 78.9

Table 11: z-test score value comparing MaxDIRep to other models on the constructed CIFAR-10 dataset.
z>2.3 means the probability of MaxDIRep being no better than the other models is ≤0.01.

Model 0% bias 20% bias 40% bias 60% bias 80% bias 90% bias 100% bias
GAN-based (Singla et al., 2020) 5.23 3.20 5.93 12.8 11.31 7.20 4.58
DANN (Ganin et al., 2016) 5.44 3.42 6.22 13.2 12.02 7.79 5.70
DSN (Bousmalis et al., 2016) 2.68 3.00 3.95 3.47 7.43 3.78 2.23

and 80% bias levels, which means that over half of the source data has a spurious correlation between their
color planes and labels. The poor performance of the GAN-based and DANN approaches is another example
of how the generator in these approaches learns a DIRep that depends on the spurious correlation. This false
representation leads to an effect similar to over-fitting, where the model performs well on the source data but
does not generalize well on the target data where the same correlation does not exist. In the DSN approach,
the shared representation contains some domain-independent information other than the cheating clues which
helps classification in the target domain.

D.3 Few-shot DA

As an additional experiment, we also evaluated the proposed algorithm in a few-shot DA setting on the
constructed CIFAR-10 dataset. The model is provided with a majority of unlabeled target data and a small
amount of labeled target data. In our setting, we revealed 1, 5, 10, 20, 50 and 100 labels per class, which we
then used to contribute to the classification loss through the label prediction pipeline. We also provided
the same number of labels for the GAN-based and DSN methods. We skipped the DANN method since its
performance is very similar to that of the GAN-based approach. More importantly, we ask the following
question: How much does each algorithm gain from a small labeled target training set for different biases?
The classification loss on the target ensures that the generator does not get away with learning a DIRep that
contains only the cheating clue, which could cause a high classification loss on the target.

We select the four most representative biases and show the results in Figure 6. For 40%, 60% and 80% biases,
the classification accuracy does improve, but not significantly, as the number of target labels increases. The
performance order of MaxDIRep > DSN > GAN-based is preserved. When the bias is equal to 100%, the
performance curves are quite different. All of them increase significantly with the number of target labels
while the order of performance is preserved. While all three algorithms benefit from a small number of target
labeled samples, MaxDIRep improves the most, surpassing DNS and GAN-based results by 12% and 25%
respectively, with only a total of 50 target labels (note that it corresponds to 5 labels/class in Figure 6).

E SVHN, MNIST, MNIST-M and Synth Digits

We evaluate the empirical performance of MaxDIRep on four widely used DA benchmarks: MNIST (LeCun
et al., 1998), MNIST-M (Ganin et al., 2016), Street View House Number (Netzer et al., 2011) and synthetic

2We present the results from our replication of DSN using regular MSE loss, which match the values reported in the DSN
paper. However, our attempts to replicate their results using scale-invariant MSE were unsuccessful. Other attempts (fungtion,
2024) at replication were less successful than ours. Nonetheless, comparing results using the same reconstruction loss provides
the most accurate and fair comparison.
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Figure 6: Mean classification accuracy on CIFAR-10 with the few-shot setting for three different DA algorithms.
Overall, a few target labels improve classification accuracy. The improvement is significant in a 100% bias
setting.

Source: MNIST

Target: MNIST-M

Source: Synth Digits

Target: SVHN

Source: SVHN

Target: MNIST

Figure 7: Example images from four DA benchmark datasets for three scenarios.

digits (Ganin et al., 2016). We use three DA pairs: 1) MNIST → MNIST-M, 2) Synth Digits → SVHN,
and 3) SVHN → MNIST. Example images from all four datasets are provided in Figure 7. We implemented
our CNN topology based on the ones used in (Bousmalis et al., 2016) and (Ganin et al., 2016). We used
Adam with the learning rate of 0.0002 for 25, 000 iterations. The batch size is 128 for each domain. We did
not use validation samples to tune hyperparameters. To make fair comparisons, we follow the instructions
in Bousmalis et al. (2016) and activate the Lg after 20,000 training steps. For other hyperparameters, we
used β = 1, γ = 1, and µ = 1.

MNIST to MNIST-M. We use the MNIST dataset as the source domain and a variation of MNIST
called MNIST-M as the target. MNIST-M was created by blending digits from the original MNIST set over
patches randomly extracted from color photos from BSDS500 (Arbelaez et al., 2010).

Synthetic Digits to SVHN. This scenario is widely used to demonstrate the algorithm’s effectiveness
when training on synthetic data and testing on real data. We use synthetic digits as the source and Street-View
House Number (SVHN) as the target.

SVHN to MNIST. In this experiment, we further increase the gap between the two domains. The digit
shapes in SVHN are quite distinct from those handwritten digits in MNIST. Furthermore, SVHN contains
significant image noise, such as multiple digits in one image and a blurry background.

Table 12 shows the results on the digits datasets in the zero-shot setting. We skipped the explicit DDRep
because the full MaxDIRep model performs better. In summary, MaxDIRep outperforms all the other
approaches we compared in all three DA scenarios.

F Office-31 dataset

Office-31 dataset comprises three distinct domains: Amazon, DSLR, and Webcam. Example images from
all four datasets are provided in Figure 8. We used the ResNet-50 architecture pretrained on the ImageNet
dataset as the generator, following a common approach in recent DA studies (Tzeng et al., 2017; Chen et al.,
2020). This choice allowed us to leverage the knowledge gained from ImageNet’s large-scale dataset and apply
it to our DA task. We used Adam with the learning rate of 0.0002. The batch size is 16 for each domain. We
did not use validation samples to tune hyperparameters and set them to be the same values as in previous
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Table 12: Mean classification accuracy (%) of different adversarial learning-based DA approaches on the
digits datasets. The results are cited from each study when available.

Methods MNIST to
MNIST-M

Synth Digits
to SVHN

SVHN to
MNIST

Source-only 56.6 86.7 59.2
DANN (Ganin et al., 2016) 76.6 91.0 73.8
ADDA (Tzeng et al., 2017) 80.0 - 76.0
DSN2 (Bousmalis et al., 2016) 80.4 89.0 79.5
MaxDIRep 82.0 91.2 85.8

Art

Clip art

Product

Real 
world

Office-Home adaptationOffice-31 adaptation

Amazon

DSLR

Webcam

Figure 8: Example images from different domains in Office-31 and Office-Home.

works (Bousmalis et al., 2016; Ganin et al., 2016) when available. We used λ = 0.1, β = 1, γ = 0.05, and
µ = 1/2000.

G Office-Home dataset

The office-Home dataset comprises four extremely dissimilar domains: Artistic images, Clip Art, Product
images, and Real-World images. Example images from all four datasets are provided in Figure 8. We follow
the standard protocols for unsupervised DA (Long et al., 2018; Bousmalis et al., 2016). Similar to the
setup in Office-31, we opted to utilize the ResNet-50 architecture pretrained on the ImageNet dataset as the
generator. We used Adam with the learning rate of 0.0002. The batch size is 16 for each domain. We set the
hyperparameters to be the same as the ones used in (Long et al., 2018; Bousmalis et al., 2016): we activate
the Lg after 25 epochs of training and set λ = 0.1 after 25 epochs. We use β = 1, γ = 0.05, µ = 1/2000.

H KL divergence analysis

We reported the KL divergence from some of our experiments in Table 13.

I Network intrusion detection dataset

For this evaluation, we use NSL-KDD as the source dataset and UNSW-NB15 as the target dataset. We
remove the specific categories of attacks from the datasets and model this as a binary classification problem,
i.e., predicting whether the current record belongs to the attack or benign category. Since the source and
target datasets have different numbers of features, we apply PCA to both datasets to transform them into
datasets with 100 features each before training.
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Table 13: We report the KL divergence (Lkl) from our experiments, calculated as the average over data from
both the source and target domains.

Task KL
divergence (Lkl)

Task KL
divergence (Lkl)

Fashion-MNIST (no cheating) 9.53e-07 Office-31 (W → A) 0.03
Fashion-MNIST (shift cheating) 1.25e-06 Office-31 (W → D) 0.03
Fashion-MNIST (random cheating) 1.13e-06 Office-31 (A → D) 0.05
CIFAR-10 (40% bias) 4.80e-06 Office-Home (Ar → Cl) 0.13
CIFAR-10 (60% bias) 3.20e-06 Office-Home (Ar → Rw) 0.10
Office-31 (D → A) 0.07 Office-Home (Rw → Cl) 1

We use the same network topologies for MaxDIRep and all other approaches mentioned in Appendix B.1. All
the methods are trained using the Adam optimizer with the learning rate of 2e − 4 for 10, 000 iterations. We
use batches of 128 samples from each domain for a total of 256 samples. We directly used the reported result
from Singla et al. (2020) for the GAN-based method.

To avoid noises during the early stages of training, we activate the Lg after 5000 epochs of training and set
λ = 0.1 for the remaining training steps. For other hyper-parameters, we used β = 1, γ = 0.1 and µ = 1/2000
(the hyperparameters were not tuned using validation samples).

To make a fair comparison with DSN, we set the coefficient of Lrecon to 0.1 and the coefficient of Ldiff to
0.001. We use the same schedule for the coefficient of Lg and set the coefficient of Lc to 1 in DSN. For DANN,
We use the same schedule for the Lg and set the coefficient of Lc to 1.

J The geometrical interpretation of MaxDIRep versus DSN

To understand the difference between DSN and MaxDIRep, we looked at a 3-D geometrical interpretation of
representation decomposition as shown in Figure 2 in the main text. Here, we show that all points on the
blue circle satisfy the orthogonal condition, i.e., DID ⊥ DDS,T

D .
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𝐷𝐷"#
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𝑆 𝐷𝐼! : DIRep in MaxDIRep
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𝑆: source data
𝑇: target data

origin 𝑂 𝑉

𝐷

𝜃

ℬ𝒜

Figure 9: Schematic comparison between DSN and MaxDIRep.

The source and target data are represented by two vectors S = #   ‰

OS, T = #    ‰

OT where O is the origin, as shown
in Figure 9. We assume the source and target vectors have equal amplitude | #   ‰

OS| = | #    ‰

OT |. Let us define the
plane that passes through the triangle O − S − T as plane-A (the gray plane in Figure 9). The mid-point
between S and T is denoted as V . Let us draw another plane (the blue plane-B) that passes through the line
OV and is perpendicular to the plane-A. The blue circle is on the blue plane-B with a diameter given by
OV . Denote an arbitrary point on the blue circle as D with the angle ∠DVO = θ. Let us define the plane
that passes through the triangle D − S − T as plane-C (not shown in Figure 9).
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Since the blue plane-B is the middle plane separating S and T, we have ST ⊥ OV and ST ⊥ DV (note that
XY represents the line between the two points X and Y ). Therefore, the line ST is perpendicular to the
whole plane-B: ST ⊥ B, which means that ST is perpendicular to any line on plane-B. Since the line DV is
on the plane-B, we have OD ⊥ ST . Since OV is the diameter of the blue circle, we have OD ⊥ DV . Since
DV and ST span the plane-C, we have OD is perpendicular to the whole plane-C: OD ⊥ C, which means
that OD is perpendicular (orthogonal) to any line on plane-C including DS and DT . Therefore, we have
proved: OD ⊥ DS, OD ⊥ DT .

Note that with the notation given here, we can express the DIRep and DDRep for MaxDIRep (V) and DSN
(D) as

DIV = #    ‰

OV , DDS
V = #   ‰VS , DDT

V = #    ‰VT .

DID = #    ‰OD, DDS
D = #   ‰DS , DDT

D = #    ‰

DT.

Since we have proved that OD ⊥ DS, OD ⊥ DT for any point D on the blue circle, this means that any
point on the blue circle satisfies the orthogonality constraint DID ⊥ DDS,T

D .

In MaxDIRep, the size of DDRep’s, i.e.,

||S − DI || + ||T − DI || = (|| #   ‰VS ||2 + || #    ‰

DV ||2 )1/2 + (|| #    ‰VT ||2 + || #    ‰

DV ||2 )1/2

is minimized leading to an unique solution DIV shown as the red dot (point V ) in Figure 9, which satisfies
the orthogonality constraint (DIV ⊥ DDS,T

V ) as it is on the blue circle. More importantly, the MaxDIRep
solution is unique as it maximizes the magnitude of DIRep (||DIV || ≥ ||DID||). This can be seen easily as
follows. Given the angle ∠DVO = θ, we have ||DID|| = ||DIV || sin θ ≤ ||DIV ||.
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