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Abstract

We consider the problem of explaining a class
of tractable deep probabilistic model, the Sum-
Product Networks (SPNs) and present an algorithm
EXSPN to generate explanations. We define
the notion of a context-specific independence
tree(CSI-tree) and present an iterative algorithm
that converts an SPN to a CSI-tree. The resulting
CSI-tree is both interpretable and explainable to
the domain expert. We achieve this by extracting
the conditional independencies encoded by the
SPN and approximating the local context specified
by the structure of the SPN.

1 Introduction
Tractable Deep Probabilistic Models (TDPMs) exploit
the efficiency of deep learning (Goodfellow et al. [2016])
while abstracting the representation of the underlying
model. TDPMs abstract the underlying representation by
implementing a composition of probability distributions
over domain features, which can be discrete, continuous,
graphical, or even unstructured. We consider the specific
formulation of SPNs and pose the following question –
can SPNs with their multiple layers be explained using
existing tools inside probabilistic modeling? To achieve
this, we move beyond the traditional notions of conditional
independencies that can be read off an SPN and instead
focus on context-specific independencies (CSI, Boutilier
et al. [1996]). CSIs provide a more in-depth look at the
relationships between two variables when affecting the
third variable. Specifically, we define the notion of a
CSI-tree that is used as a visual tool to explain SPNs.
We present an algorithm (EXSPN ) that grows a CSI-
tree iteratively. We show clearly that the constructed CSI-
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tree can recover the full SPN structure. Once a tree is
constructed, we then approximate the CSIs by learning
a supervised model to fit the CSIs. The resulting feature
importances can then be used to further approximate the
tree. Our evaluations against association rule mining clearly
demonstrate that the recovered CSI-trees indeed are shorter
and more interpretable.

We make the following key contributions: (1) We
develop CSI-trees that focus on the explanation. These trees
are built on the earlier successes inside graphical models
and we use them in the context of TDPMs. (2) We develop
an iterative procedure that constructs a CSI-tree given an
SPN. The resulting tree is a complete representation of the
original SPN. We present an approximation heuristic that
compresses these trees further to enhance the explainability
of the model. One key aspect of EXSPN is that it is
independent of the underlying SPN learning algorithm.
Any SPN that is complete and consistent (as defined
in the next section) can be used as input for EXSPN
. 1 (3) We perform extensive experiments on synthetic,
multiple standard data sets and a real clinical data set. Our
evaluation demonstrates that the final model induces smaller
rules/models compared to the original SPN.
A note on interpretability: There is no unique definition
of interpretability (Lipton [2018],Doshi-Velez and Kim
[2017]). By interpretable models we mean representations
whose random variables, dependencies(structure) and pa-
rameters are interpretable by humans (Towell and Shavlik
[1991], Montavon et al. [2017]). CSI-trees do not introduce
any latent variables, unlike SPNs(Peharz et al. [2017]), and
their parameters are logical statements comprising observed
variables, thus satisfying the criterion for interpretability.

2 EXSPN - Explaning SPNs
Before we outline our procedure for explaining SPNs,
we briefly explain the notion of Context-specific indepen-

1Code: github.com/saurabhmathur96/ExSPN



dence(CSI) (Boutilier et al. [1996]).
CSI is a generalization of the concept of statistical inde-

pendence of random variables. CSI-relations have been stud-
ied extensively over the last three decades (Boutilier et al.
[1996], Nyman et al. [2014], Tikka et al. [2019], Nyman
et al. [2016]). They can be used to speed-up probabilistic
inference, improve structure learning and explain graphi-
cal models that are learnt from data. We propose a novel
algorithm to extract these CSI-relations from SPNs and
empirically demonstrate that the extracted CSI-relations are
interpretable. CSIs can be directly extracted from the data by
computing conditional probabilities (Shen et al. [2020]) with
context using parameterized functions such as neural net-
works(Kingma and Welling [2013]). While the literature on
rule learning is vast (Fürnkranz and Kliegr [2015]), we note
that our objective is explaining SPNs and not rule learning.
Additionally, we note that the relationship between SPNs
and BNs (Zhao et al. [2015]), and that between SPNs and
multi-layer perceptrons (Vergari et al. [2019]) is well es-
tablished. However, unlike our work, these methods do not
explicitly attempt to explain SPNs through a compact rep-
resentation of CSIs. The algorithm to convert SPNs to BNs
presented by Zhao et. al.(Zhao et al. [2015]) introduces un-
observed hidden variables into the BN. It generates a BN
with a directed bipartite structure with a layer of hidden
variables pointing to a layer of observable variables. In this
case, the BN associates each sum node in the SPN to a hid-
den variable in BN. We argue that the introduction of these
hidden variables renders the resulting BN uninterpretable.

To construct meaningful explanations, we define a
compact and interpretable representation of CSIs called
CSI-tree.
DEFINITION 2.1. (CSI-tree): A CSI-tree τ is a 4-tuple
(G,ψcsi, χ, ζ) where G is a tree with a set of variables
V ⊆ X, scope function ψcsi, partition function χ and edge
labels ζ.

DEFINITION 2.2. (Partition function): A partition function
χψ : N → 2|ψ(N)| is a mapping from a node to a set C of
disjoint sets Pi ⊆ ψ(N) under a given scope function ψ
such that ∪i∈|C|Pi = ψ(N).

Each node, N , of a CSI-tree has a scope ψcsi(N) ⊆ X.
The partition function divides the variables within the scope
of each node into disjoint subsets such that the union of
these subsets is ψcsi(N). The edges are labeled with a
conjunction ζ over a subset of X. An example of an edge
label is (Xi ≥ 0.5 ∧ Xj ≤ 1). Essentially, the edge label
narrows the scope of the context from parent to child node.
Example CSI-tree: The right side of the Figure 1
shows a CSI-tree defined over the binary variables
〈Write, Study, Pass〉. The set of variables inscribed
within each node represent the scope of that node. For exam-
ple, the scope of the root node is 〈Write, Study, Pass〉.
The edge label confines the context by conditioning on
a set of variables (on a singleton set in this example).
The variables in the scope of a node that are condition-

ally independent when conditioned on the context are sep-
arated into subsets (denoted by a vertical bar). It is the
output of the partition function for that node. For exam-
ple, the right child of the root node specifies a partition
〈〈Write〉, 〈Study, Pass〉〉 of the scope of that node.

The left child of the root node induces a CSI-relation
Write ⊥⊥ Study ⊥⊥ Pass|¬Write. Similarly, the right
child of the root node induces two CSI-relations Write ⊥⊥
Study|Write and Write ⊥⊥ Pass|Write. To summarize,
the subsets of variables within the scope of a node, as defined
by the partition function, are independent of each other
when conditioned on the proposition specified in the label
of the edge connecting that node to its parent. Note that
reading this CSI-tree is significantly easier than a SPN on
the left, due to the internal nodes entirely comprising of
observed variables, and thus allows for a more explainable
and interpretable representation. Now, we formally define
our goal:

Given: SPN S = (G,ψ,w, θ), data D
To Do: Extract CSI-tree τ = (Gcsi, ψcsi, χ, ζ)

The left side of Figure 1 shows an SPN learnt over
the variables Write, Study, Pass. The root node N0 is
a sum node, implying that Write, Study, Pass are not
independent of each other in the context of the entire dataset.
Now, consider the left child of the root node N1, which
is a product node with three leaf nodes as its children.
It implies that Write ⊥⊥ Study ⊥⊥ Pass|φ(N1). In
other words, the Write, Study, Pass are independent of
each other in the context of φ(N1). While the context of
φ(N1) accurately explains the conditional independence
induced by the product node, it requires 2|ψ(N1)| parameters
to fully parameterize the context which renders the CSI
specified under φ(N1) uninterpretable. Therefore, we need
to approximate this context in order to ensure interpretability
of these CSI-relations. Additionally, while the instantiation
of a subset of ψ(N1) that is consistent with φ(N1) can be
used to define the context for a particular CSI, this method
would be highly sensitive to noise.

To address these issues, we propose to first learn a dis-
criminative model f in the supervised learning paradigm to
predict if a data point belongs to φ(N1) and use the notion
of feature importance to approximate the context. We
identify a set I ⊆ ψ(N1) of the most important features as
determined by the feature importance scores for ψ(N1) w.r.t
f and approximate the context to a proposition of the form
∧i∈I . For this example, we choose f to be a decision tree
and the mean decrease in impurity as the measure of feature
importance and obtain (¬Write) as the approximated con-
text. So, the original CSI Write ⊥⊥ Study ⊥⊥ Pass|φ(N1)
is approximated to Write ⊥⊥ Study ⊥⊥ Pass|¬Write.

2.1 EXSPN Algorithm For simplicity, we present our
approach with binary variables. However, in our experi-
ments, we demonstrate that our method can be applied
to continuous and multi-class discrete variables as well.



Figure 1: A normal SPN (left) and its corresponding CSI-Tree (right). The independencies induced by the product node are represented
in the partitioned leaf node of the CSI-tree. The context in which these independencies hold is approximated to ¬Write.

Algorithm 1: EXSPN
input :D, X, S = (G = (N,E), ψ, w, θ), λ
output :CSI-tree τ = (Gcsi, ψcsi, χ, ζ)

1 Convert S to a normal-spn Snormal

2 Infer φ using alg. 2
3 Initialize Gcsi = Gnormal, ψcsi = ψnormal, τ =

(Gcsi, ψcsi, χ, ζ)
4 st = [Gcsi.root]
5 while st is not empty do
6 Ncurrent = st.pop()
7 if Ncurrent is not the root node then
8 if Ncurrent is a leaf node then
9 Add ψ(Ncurrent) to χ(pa(Ncurrent))

10 end
11 if Ncurrent is a sum node then
12 Delete Ncurrent from Gcsi Add

ψ(Ncurrent) to χ(pa(Ncurrent))
13 Connect parents and children of Ncurrent

14 Duplicate children with multiple parents
and ensure tree-structure

15 end
16 end
17 Add ch(Ncurrent) to st
18 end
19 τ = ComputeLabels(τ,D, φ, λ)
20 return τ

We now outline our approach to infer CSI-trees from SPNs.
The steps involved in converting an SPN into a CSI-tree are:

1. Convert S into a normal-SPN Snormal.
2. Infer the instance function φ.
3. Create a CSI-tree τunlabeled with no edge labels using φ.
4. Compute edge labels for τunlabeled, and create CSI-tree τ .
5. Optionally, compress τ into τcompressed by pruning τ .

Algorithm 1 presents EXSPN : Explaining Sum-
Product Networks. It infers a CSI-tree τ , given an SPN S,
data D, set of random variables X and feature importance
score threshold λ.

The five steps involved in EXSPN are pre-
sented below briefly. We provide a detailed de-
scription of each step in Appendix A.1. (Step 1:)

First, it converts S into a normal-spn Snormal =
(Gnormal, ψnormal, wnormal, θnormal)[line 1] using the
conversion scheme proposed by Zhao et. al. (Zhao et al.
[2015]). Any arbitrary SPN S can be converted into a nor-
mal SPN Snormal that represents the same joint probability
over variables and |Snormal| = O(|S|2).
(Step 2:) It then infers the instance function for Snormal.
This algorithm is similar to the algorithm proposed in Poon
and Domingos [2011] for approximating most probable
explanation(MPE) inference in arbitrary SPNs. It involves
an upward pass to compute values of each sub-SPN in
Snormal followed by a downward pass to select children of
sum nodes with the highest weighted contribution to their
respective parent nodes. The algorithm is presented in detail
in algorithm 2 in the appendix.
(Step 3:) Next, it performs a depth-first search(DFS) on the
computational graph Gnormal associated with Snormal and
constructs the tree-structured graph Gcsi associated with
τ [lines 4-19]. The CSI-tree is initialized with the SPN’s
computational graph and scope. Each SPN is then deleted
and its parents and children are connected with a directed
edge while maintaining a tree structure [lines 12-17]. The
scope of the leaf nodes is added to the partition function of
its parents.
(Step 4:) For each edge, it first computes class labels to
indicate if a data point in the instance function of the
parent node also belongs to the child node. Then it trains
a discriminative model f . Finally it computes a set of
important features I for f using any feature importance
measure. The edge label is then the conjunction of the
features in I .
(Step 5:) The labeled CSI-tree τ created in the previous step
might be too large in some cases and the CSIs induced by τ
at a product node N may be supported by a small number
of examples given by |φ(N)|. To avoid these two issues,
we propose deleting the sub-tree induced by a product
node N for which |φ(N)| < mininstances. This heuristic
significantly reduces the size of the CSI-tree while retaining
CSIs induced by product nodes closer to the root node of
the SPN, as demonstrated in our experiments.



Properties of CSI-tree: τ , corresponding to an SPN S
obtained through EXSPN has the following properties: (1)
Num nodes in Gcsi = num product nodes in Gnormal + 1.
(2) The context induced by a product node Np in S requires
2|ψ(Np)| parameters to be sufficiently expressed, while
the approximate context from EXSPN has < |ψ(Np)|
parameters. Additionally, the structure of a tree-structured
normal-SPN can be retrieved from its corresponding CSI-
tree in time linear in the size of the SPN.

THEOREM 2.1. The CSI-tree inferred from an SPN,
Snormal, using EXSPN can infer G′

normal, and ψ′
normal

which encodes the same CSIs as Snormal.

We present the proof in Appendix A.2.
3 Experimental Evaluation
We explicitly answer the following questions: (Q1: Cor-
rectness) Does EXSPN recover all the CSIs encoded in
an SPN? (Q2: Compression) Can the CSIs be compressed
further? (Q3. Baseline) How do the CSIs extracted using
EXSPN compare with a strong rule learner? (Q4. Real
data) Does EXSPN extract reasonable CSIs in a real
clinical study? System: We implemented EXSPN using
SPFlow library (Molina et al. [2019]). We assume that the
instance function is computed during the training process.
For experiments where the instance function is computed
separately after training, see Table 6 in the appendix. Since
Decision Trees can be represented as a set of decision rules,
we used the Classification and Regression Trees (CART,
Breiman et al. [1984]) algorithm as the explainable function
approximator. We used scikit-learn’s DecisionTreeClassifier
(Pedregosa [2011]) to implement CART. The hyperparame-
ter configuration of these algorithms is shown in Table 3 in
the Appendix.

Baseline: To evaluate the CSIs extracted by EXSPN
, we compared them with the association rules mined using
the Apriori algorithm (Agrawal et al. [1994]). We used the
Mlxtend library (Raschka [2018]) to implement this base-
line. Since the Apriori algorithm requires binary features,
we discretized the continuous variables in the datasets into
5 categories and one-hot encoded the categorical variables.

Datasets: We evaluated EXSPN on 11 datasets – one
synthetic, 9 benchmark, and one real clinical study. We
present the details on the datasets used in Appendix A.3.

Metrics: We defined the following metrics on the CSIs
- min_precision (mp), min_recall (mr), and n_instances
(ni). mp and mr of a CSI are the minimum values of
precision and recall respectively for each of the decision
rules that approximate the context. ni of a CSI is the number
of training instances in that context. We used thresholds on
these metrics to obtain a reduced set of CSIs (0.7 for mp
and mr, and 5 × min_instances_slice for ni). We
quantified this reduction as the Compression Ratio (CR),
which is the fraction of the total number of CSI rules
in reduced set to the total number of rules. To compare
association rules, we use mean antecedent length (mean
|A|) and mean consequent length (mean |C|).

3.1 Results (Q1: Correctness) Table 1 summarizes the
SPNs, the full set of CSI rules extracted by EXSPN , and
the reduced set of CSI rules. For each dataset in the table,
the number of CSIs extracted by EXSPN (NR) is exactly
equal to the number of product nodes of the SPN(NP). A
visualization of the learned SPN and the corresponding CSI-
tree is provided in the Appendix. Hence, Q1 is answered
affirmatively.

(Q2: Compression) We can also infer from Table 1 that
filtering the CSI rules using min_precision, min_recall and
n_instances results in high compression ratios for all but
the MSNBC dataset. This is because the MSNBC dataset
already had 8 rules and all of the rules satisfied the threshold
conditions. Hence, Q2 is answered strongly affirmatively.

(Q3. Baseline) Table 1 summarizes the association rules
extracted from the data using the Apriori algorithm, and the
mean confidence of the rules on the test set. Comparing the
number of rules and the mean antecedent and consequent
length from Table 1 allows us to answer Q3. We can infer
that while the CSI rules extracted by EXSPN are longer
than the rules extracted by the Apriori algorithm, the set of
CSI rules is much smaller.

(Q4. Are the explanations correct?) Figure 2 shows
the first two levels of the CSI-tree extracted by EXSPN
from the nuMoM2b dataset. The first split of the CSI-tree
is on the target variable oDM . While the BMI variable
is independent of other variables when oDM 6= 1, it is
dependent on Age,Race,Education for the case when
oDM = 1. Many of the CSIs in our tree are validated
by an earlier learned model (Karanam et al. [2021]). These
independencies are valdiated by our domain experts and
can be easily checked with related publications. This clearly
demonstrates the potential of explaining a joint model such
as SPN in a real clinically relevant domain.
4 Discussion and Conclusion
We considered the challenging problem of explaining SPNs
by defining a CSI-tree that captures the CSIs that exist in the
data. We presented an iterative procedure for inducing the
CSI-tree from a learned SPN by approximating the context
induced by a product node using supervised learning. We
then presented an algorithm for recovering an SPN that
encodes the same CSIs as the original SPN from the CSI-
tree thus establishing the correctness of the conversion. Our
experiments in synthetic, benchmarks and a real clinical
study demonstrate the effectiveness of the approach by
identifying the correct CSIs from the data. As far as we are
aware, this is the first work on explaining joint distributions
using the lens of CSI. Validating our method on more
relevant clinical studies, allowing for domain experts to
interact with our learned model, extending the algorithm
to work on the broader class of distributions in general and
TDPMs in particular, including more type of explanations,
and finally, scaling the algorithm to large number of features
remain interesting directions.
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Table 1: Summary statistics for the CSI rules extracted from SPNs by EXSPN and the association rules by Apriori algorithm. NP - #
Product Nodes, NR - # Rules, MA - Mean Antecedent length, MC - the Mean Consequent length, and CR - Compression Ratio.

SPN All CSIs Reduced CSIs Association Rules

Dataset NP NR MA MC NR MA MC CR NR MA MC

Synthetic 7 7 2.29 2.57 3 1.33 2.67 2.33 12 1.25 1.25
Mushroom 39 39 5.90 8.54 14 4.79 7.93 2.79 10704 2.87 2.43
Plants 342 342 9.60 9.61 23 6.22 7.09 14.87 1043 1.72 1.40
NLTCS 74 74 9.84 3.32 19 6.32 4.05 3.89 165 1.96 1.28
MSNBC 8 8 4.12 5.75 8 4.12 5.75 1.00 16 2.38 1.00
Abalone 194 194 11.31 7.00 4 4.25 2.00 48.50 730 2.15 1.71
Adult 263 263 14.49 4.02 19 7.37 2.74 13.84 917 2.24 1.72
Wine quality 236 236 12.45 6.76 5 3.60 2.60 47.20 337 1.99 1.56
Car 18 18 5.22 2.50 14 5.21 2.64 1.29 19 1.58 1.00
Yeast 181 181 16.20 3.26 10 7.90 2.30 18.10 50 1.52 1.52
nuMoM2b 104 104 10.60 2.33 31 6.55 2.19 3.35 21 1.29 1.14
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Figure 2: First two levels of the CSI-tree for the nuMoM2b dataset. Here, oDM is a boolean variable that represents whether or not the
person has Gestational Diabetes. Race is a categorical variable having 8 categories namely, Non-Hispanic White (1), Non-Hispanic Black
(2), Hispanic (3), American Indian (4), Asian (5), Native Hawaiian (6), Other (7), and Multiracial (8). Smoked3Months and SmokedEver
are boolean variables representing tobacco consumption.
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A Appendix
A.1 Details on EXSPN The steps involved in converting an
arbitrary SPN into a CSI-tree is illustrated in figure 3.

The five steps involved in EXSPN are described below:
(Step 1:) First, it converts S into a normal-spn Snormal =

(Gnormal, ψnormal, wnormal, θnormal)[line 1] using the conversion
scheme proposed by Zhao et. al. (Zhao et al. [2015]). Any arbitrary SPN
S can be converted into a normal SPN Snormal that represents the same
joint probability over variables and |Snormal| = O(|S|2).
(Step 2:) It then infers the instance function for Snormal. This algorithm,
presented in 2, is similar to the algorithm proposed in Poon and Domingos
[2011] for approximating most probable explanation(MPE) inference in
arbitrary SPNs. For each instance Dj ∈ D it first performs an upward
pass from leaf nodes to the root node and computes Smax

i (Dj) for each
node Ni as follows:

• if Ni is a sum node, then

Smax
i (Dj) = maxk∈ch(Ni)

wik.S
max
j (Dj)

• otherwise Smax
i (Dj) = Si(Dj)

Then the algorithm backtracks from the root to the leaves, appending Dj

to the instance function associated with each child of a sum node that led
to Smax

i (Dj) and to the instance function associated with all product
nodes along the path from the root to a leaf node.
(Step 3:) Next, it performs a depth-first search(DFS) on the computa-
tional graph Gnormal associated with Snormal and constructs the tree-
structured graph Gcsi associated with τ [lines 4-19]. Gcsi is initialized
withG and the scope of root ofGcsi, ψ(Gcsi.root) is added to the value
of the partition function associated with τ [line 5]. EXSPN maintains
a stack st that is initialized with the root of Gcsi[line 4]. The current
node selected in DFS, Ncurrent, is popped from the stack st[line 7].
It then considers three cases: 1. Ncurrent is a leaf node 2. Ncurrent

is a sum node 3. Ncurrent is a product node[lines 9-16]. If Ncurrent

is a leaf node, its scope ψ(Ncurrent) is added to the partition function
of its parent node χ(pa(Ncurrent))[lines 9-10]. If Ncurrent is a sum
node, its scope ψ(Ncurrent) is added to the partition function of its par-
ent node χ(pa(Ncurrent)), edges are added to Gcsi to connect the par-
ent of Ncurrent, pa(Ncurrent), to each child of Ncurrent, and delet-
ing Ncurrent and all edges e in Gcsi of the form e(α,Ncurrent) or
e(Ncurrent, α)[line 12-16]. IfNcurrent is a product node, it is ignored.
It then continues DFS over Gcsi by adding all the children of Ncurrent

to st[line 19]. Note that the CSI-tree τ is unlabeled.
(Step 4:) Algorithm 3 presents the procedure to train a model f , compute
a set of important features I , and finally compute the edge labels ζ. For
each edge e(Nfrom, Nto), it first computes class labels y to indicate if an
instance Dj ∈ φ(Nfrom) belongs to φ(Nto). Then it computes a set of
important features I for f using a suitable feature importance computation
technique based on the choice of f and a threshold for feature importance
score λ. The edge label for e is then the conjunction of the features in I .
(Step 5:) The labeled CSI-tree τ created in the previous step might be too
large in some cases and the CSIs induced by τ at a product nodeN may be
supported by a small number of examples given by |φ(N)|. To avoid these
two issues, we propose deleting the sub-tree induced by a product nodeN
for which |φ(N)| < mininstances. This heuristic significantly reduces
the size of the CSI-tree while retaining CSIs induced by product nodes
closer to the root node of the SPN, as demonstrated in our experiments.
Computational Complexity of EXSPN : The computational complex-
ity of EXSPN algorithm depends on the complexity of each of its con-
stituent 5 steps. The size (#nodes + #edges) of the normal-SPN S′

obtained from the original SPN S has a space-complexity of O(|S|2), as
mentioned in line 400 of the original manuscript. This conversion can be
done is time linear in the size of the normal-SPN (Zhao et al. [2015]).
The generation of instance function for the CSI-tree involves MAX infer-
ence for each of D data points which can be performed in O(|D||S′|)
(Poon and Domingos [2011]). The generation of unlabeled CSI-tree has
a time-complexity of O(|S′|). Generating edge labels involves training a
discriminative model which can be performed in O(|D||θD|) for a uni-

Figure 3: Flowchart illustrating the steps involved in
converting an arbitrary SPN into a more interpretable
CSI-tree.

Algorithm 2: InferInstanceFunction
input :D, X, normal SPN S
output :Instance function φ

1 for Each instance Dj ∈ D do
2 Perform upward pass for D and compute Smax

N (Dj)
for each node N

3 Perform a downward pass, appending Dj to the
φ(Nch) of a child Nch of a sum node that led to
Smax(Dj) and to φ(Nproduct) for all product
nodes Nproduct along the path from the root to a
leaf node

4 end
5 return φ

Algorithm 3: ComputeLabels
input :τ = (G,ψ, χ,NULL),D, φ, λ
output :Labeled CSI-tree τ = (G,ψ, χ, ζ)

1 for Each edge e(Nfrom, Nto) in G do
2 Compute class labels y
3 f = TrainModel(D, φ(Nfrom),y)
4 Compute a set of important features I for f
5 ζ(e) = ∧i∈I i thresholded by λ
6 end
7 return τ = (G,ψ, χ, ζ)

versal approximator such as neural network with parameters θD . Here
|Nsum| is the number of sum nodes in the network and |X| is the num-
ber of variables. Finally the compression can be performed in time linear
in the size of the network. This gives us an overall time complexity of
O(max(|θ|, |X|)|S|2|D|).

A.2 Proofs

THEOREM A.1. The CSI-tree τ = (Gcsi, ψcsi, χ, ζ), inferred from an
SPN, Snormal = (Gnormal, ψnormal, wnormal, θnormal), using
EXSPN can infer G′

normal, and ψ′
normal which encodes the same

CSIs as Snormal.

Proof. Algorithm 4 that retrieves Gnormal and ψnormal associated
with Snormal, given τ provides the proof. It performs DFS over
Gnormal and identifies two main cases of Ncurrent: 1. A node where
the length of the partition function χ(Ncurrent) is equal to length of the
scope function Ncurrent[line 6] 2. A node where that’s not the case[line
10]. In the first case, it replaces Ncurrent with a product node Np such
that ψ(Np) = ψcsi(Ncurrent) and adds |χ(Ncurrent)| number of leaf
nodes. In the second case, it iterates over the subsets in χ(Ncurrent),
adds a leaf node if that subset k is a singleton set and adds an intermedi-
ate sum node Ns for all other children associated with a subset k[lines



Algorithm 4: RetrieveSPN
input :CSI-tree τ = (Gcsi, ψcsi, χ, ζ)
output :Gnormal, ψnormal

1 initialize: Gnormal = Gcsi, ψnormal = ψcsi

2 st = [Gnormal.root]
3 while st is not empty do
4 Ncurrent = st.pop()
5 if Ncurrent has not been visited and is not the root

node then
6 if |χ(Ncurrent)| = |ψcsi(Ncurrent)| then
7 Replace Ncurrent with Np

8 Append |χ(Ncurrent)| leaf nodes
9 if |χ(Ncurrent)| 6= |ψcsi(Ncurrent)| then

10 for k in χ(Ncurrent) do
11 if |k| = 1 then
12 Append Nl s.t. ψ(Nl) = k
13 if |k| 6= 1 then
14 Append Ns s.t. ψ(Ns) = k for c

in ch(Ncurrent) do
15 Append Np to Ns if

ψcsi(c) = k
16 end
17 end
18 Add ch(Ncurrent) to st
19 end
20 return Gnormal, ψnormal

10-17]. Then, it returns computational graph G and scope function ψ. Al-
though this algorithm retrieves onlyGnormal andψnormal which define
the structure of the SPN, the parameters of the SPN wnormal and θ can
also be retrieved by modifying EXSPN to produce a CSI-tree that stores
these parameters in the leaf nodes of the CSI-tree alongside the scopeψcsi

and the partition χ. This modification is trivial and does not improve the
interpretability. Hence, we do not consider it.

A.3 Details on datasets used We generated the synthetic
dataset by sampling 10,000 instances each from 3 multivariate Gaussians.
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We used 8 datasets from the UCI repository and the National Long Term
Care Survey (NLTCS, Lowd and Davis [2010]) data from CMU StatLib
(http://lib.stat.cmu.edu/datasets/). The 8 datasets from
the UCI machine learning repository were Mushroom, Plants, MSNBC,
Abalone, Adult, Wine quality, Car, and Yeast. In MSNBC and Plants, we
used the rows which had at least two items present. For Wine quality, we
concatenated the red wine and white wine tables. In addition, we used Nul-
liparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nu-
MoM2b, Haas et al. [2015]) study data. Our subset has 8 variables - oDM,
Age, Race, Education, BMI, Gravidity, Smoked3Months,and SmokedEver.
Of these, oDM is the boolean representing Gestational Diabetes (0/1).
We split each dataset into a train set having 75% of the examples and a
test set having the remaining 25%. To ensure a balanced split, we strati-

fied the splits on the target variable for the classification datasets. Table 2
summarizes the datasets.

A.4 Additional Experimental Results Table 4 presents the
mean log-likelihood over the test set for the SPNs trained on each of the
datasets.

Figure 4 shows the SPN learnt from the synthetic data and the CSI-
tree extracted from that SPN using EXSPN . The structure of the CSI-
tree closely resembles the structure of the SPN and the CSI-tree, in this
case, is smaller than the original SPN. Also, the internal parameters of
the CSI-tree are logical statements comprising of the observed variables
V 0, V 1, V 2, V 3. These properties of the CSI-tree make it interpretable
when presented to a domain expert.



Table 2: Dataset details.

Dataset Type |X| Train Test

Synthetic Continuous 4 22,500 7,500
Mushroom Categorical 23 4,233 1,411
Plants Binary 70 17,411 5,804
NLTCS Binary 16 16,180 5,394
MSNBC Binary 17 291,325 97,109
Abalone Mixed 9 3,132 1,045
Adult Mixed 15 33,916 11,306
Wine quality Continuous 12 4,872 1,625
Car Categorical 7 1,296 432
Yeast Mixed 9 1,113 371
nuMoM2b Categorical 8 8,832 388

Table 3: Hyperparameter configurations.

Component Hyperparameter Value

SPN rows GMM
min_instances_slice (mis) 1% of |Train|

5% of |Train| (Synthetic)
1% of |TrainoDM=1| (nuMoM2b)

DT max_depth 2
min_impurity_decrease 0.1
class_weight balanced

EXSPN min_precision 0.7
min_recall 0.7
n_instances 5×mis

mis (Synthetic)
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Figure 4: The sum-product network (left) trained on the synthetic data set and its corresponding CSI-tree extracted by EXSPN (right).
Each edge in the CSI-tree corresponds to an edge from a sum node to a product node in the SPN. All other edges are collapsed. Clearly,
the CSI-tree encodes all the CSIs represented in the sum-product network.

Table 4: The mean log-likelihood over the test set (LL) for
the SPNs trained on each of the datasets.

Dataset LL

Synthetic 2.83
Mushroom -8.98
Plants -14.03
NLTCS -6.3
MSNBC -6.68
Abalone 18.99
Adult -5.52
Wine quality -3.55
Car -7.92
Yeast 46.28
nuMoM2b -6.92

Table 5: The Minimum Support (MS) and Minimum Confi-
dence (MC) parameters used for the apriori algorithm and
the mean confidence of the association rules over the test
set (TC).

Dataset TC MS MC

Synthetic 0.94 0.5 0.7
Mushroom 0.91 0.5 0.7
Plants 0.84 0.15 0.7
NLTCS 0.83 0.25 0.7
MSNBC 0.75 0.01 0.7
Abalone 0.87 0.25 0.7
Adult 0.85 0.5 0.7
Wine quality 0.86 0.5 0.7
Car 0.93 0.1 0.7
Yeast 0.9 0.5 0.7
nuMoM2b 0.87 0.5 0.7



Table 6: Summary statistics for the case where the instance function is inferred after training. The columns are the same as Table 1.

SPN All CSIs Reduced CSIs

Dataset NP NR MA MC NR MA MC CR

Synthetic 7 7 2.29 2.57 3 1.33 2.67 2.33
Mushroom 39 39 5.90 8.54 13 5.08 8.38 3.00
Plants 342 342 8.33 9.61 32 4.62 6.72 10.69
NLTCS 74 74 9.74 3.32 19 6.32 4.05 3.89
MSNBC 8 8 4.12 5.75 8 4.12 5.75 1.00
Abalone 194 157 9.61 6.85 8 5.75 2.00 19.63
Adult 263 244 11.27 3.89 12 6.17 3.08 20.33
Wine 236 235 9.18 6.78 6 3.50 2.50 39.17
Car 18 18 5.22 2.50 14 5.21 2.64 1.29
Yeast 181 181 13.06 3.26 10 6.60 2.30 18.10
nuMoM2b 104 98 9.64 2.29 35 6.97 2.17 2.80
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