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ABSTRACT

In this paper, we introduce a novel contrastive self-supervised method, namely
Self-GenomeNet, for nucleotide genome representation learning. To the best of
our knowledge, Self-GenomeNet is the first self-supervised framework that learns
a representation of nucleotide genomic data, using domain-specific characteris-
tics. Our proposed method learns and parameterizes the latent space by leverag-
ing the reverse-complement of genomic sequences. During the training proce-
dure, we force our framework to capture semantic representations with a novel
context network on top of features extracted by an encoder network. The network
is trained with an unsupervised contrastive loss. Extensive experiments with dif-
ferent datasets show that our method with self-supervised and semi-supervised
settings outperforms state-of-the-art deep learning methods. Furthermore, we
show that the learned representations generalize well and can be transferred to
new datasets and tasks. The source code of Self-GenomeNet and all experiments
are provided as supplementary material.

1 INTRODUCTION

In bioinformatics, learning from unlabeled data can reduce development costs in many deep learning
applications, since it reduces the number of required annotated samples that often require manual
experimental validation, such as the functional annotation of genes (Gligorijević et al., 2021) or
chromatin effects of single nucleotide polymorphisms (SNPs) (Zhou and Troyanskaya, 2015). Self-
supervised learning is amongst the most promising approaches for learning from limited amounts of
labeled data and is an attractive approach in bioinformatics due to the availability of large quantities
of unlabeled sequence data. In contrast to supervised methods, these techniques learn a represen-
tation of the data without relying on human annotation. Early self-supervised methods focused on
solving a pretext task (Devlin et al., 2018) that allows utilizing the data itself to generate labels,
and use supervised methods to solve unsupervised problems. The representations learned by per-
forming this task can be used as a starting point for downstream supervised tasks such as taxonomic
prediction or gene annotation. Several different self-supervised representation learning methods
were proposed e.g. in the fields of natural language processing (NLP) and computer vision (CV).
However, self-supervised learning has not yet seen such widespread adoption in bioinformatics and
remains an important and challenging endeavor for the representation of genome data.

Existing methods for representation learning for omics-data tends to use methods from NLP or CV
with slight architecture adjustments and additional preprocessing (e.g. Rives et al., 2021; Lu et al.,
2020; Ciortan and Defrance, 2021). However, these methods so far do not take many biological char-
acteristics into account. In particular, the genome sequence embodied by one strand on the DNA
molecule is always accompanied by another strand going in the opposite direction with comple-
mentary nucleotides. This means that both the forward and the so-called reverse-complement (RC)
sequences are valid DNA sequences and equally correspond to several properties of the genome,
such as regulatory and taxonomical characteristics. Therefore, machine learning models developed
to distinguish different aspects of genomic sequences ideally take the RC into account, for example
by being equivariant with respect to it (Mallet and Vert, 2021; Zhou et al., 2021). Our proposed
Self-GenomeNet uses a context network that learns representations that also take advantage of the
RC.
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Figure 1: Illustration of our proposed Self-GenomeNet. Conceptually, our method splits a sequence
S into two subsequences si, sj and uses the reverse-complement sj of the second subsequence. The
subsequences are fed into a representation block composed of the encoder network fθ, followed by
the context network Cφ to produce the embeddings zi, zj . Each of the two embeddings predicts
the other one, against embeddings of other sequences in the same batch, using an unsupervised
contrastive loss.

We propose a simple contrastive self-supervised algorithm for learning representations of
nucleotide-level genomic sequences (Figure 1). Our method divides a sequence into two non-
intersecting subsequences, where one of them is transformed to its RC. Then, the contextual rep-
resentations of these subsequences are required to distinguish each other from the representations
of other, random sequences. We exploit the inherent symmetry in the genome sequence implied by
the RC to achieve a natural simplification over possible methods that do not take it into account, all
while encoding RC-awareness in our architecture. Moreover, we train our network with varying-
length subsequences both for the input and the target subsequence. Because, genome sequences
can have semantic structure at varying ranges of length, representations that respect both local and
global structures are preferable. For this, the context network makes use of a recurrent neural net-
work layer, which makes the computationally efficient training based on all used length scales within
a single step possible. Our self-supervised method utilizes contrastive loss to maximize the simi-
larity between representations of subsequence and its RC while minimizing the similarity between
representations derived from unrelated sequences.

Contributions: We present the first self-supervised framework tailored specifically to DNA se-
quence data. Our main findings and contributions can be summarized as follows: (1) We intro-
duce a contrastive self-supervised method that is specialized for nucleotide-level genomics data. (2)
We propose a context-aware network that makes use of inherent symmetries in genomics data in
the form of the reverse-complement and improves the quality of learning representation. (3) Self-
GenomeNet is evaluated in self-supervised and semi-supervised settings on bioinformatic bench-
marks and datasets and achieved superior performance in several tasks. (4) We show the learned
representations generalize well when transferred to a new dataset and task.

2 RELATED WORK AND BACKGROUND

Self-supervised learning Deep learning models based on self-supervised learning have become a
standard method of choice in natural language processing (NLP). Powerful models such as GPT-
3 (Brown et al., 2020) and BERT (Devlin et al., 2018) are pre-training in a self-supervised manner
on a large text corpus. They are then often fine-tuned for various tasks using smaller task-specific
datasets, where they show performance that is superior to purely supervised methods. Recently, self-
supervised visual representation learning (Chen et al., 2020) outperformed supervised methods and
achieved state-of-the-art performance on ImageNet (Deng et al., 2009). Self-supervised contrastive
learning is one of the most successful methods where it maximizes the agreement of learned repre-
sentations between differently augmented views of the same example (Chen et al., 2020; Oord et al.,
2018). Motivated by this, we propose a novel contrastive self-supervised model similar to (Oord
et al., 2018) but differing in network architecture, representation learning strategy, and with applica-
tions specifically in bioinformatics.

Self-supervised learning in bioinformatics Existing self-supervised learning techniques applied on
sequential RNA and protein data are adopted from other application fields of deep learning. (Rives
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et al., 2021) adopted BERT (Devlin et al., 2018) as a pre-trained model for predicting masked amino
acids and achieved superior performance on sequence prediction task. Contrastive-sc (Ciortan and
Defrance, 2021) is a method adapted from computer vision for cell clustering based on single-cell
RNA sequencing data. Contrastive-sc creates two copies of sequences with randomly masked nu-
cleotides and trained the network using a contrastive loss. As a downstream task, self-supervised
embeddings are used for clustering with K-Means algorithm (Hartigan and Wong, 1979). All these
methods for self-supervision described so far have in common that they rely on randomly mask-
ing part of their input to create a pretext task. This differs from Contrastive Predictive Coding
(CPC) (Oord et al., 2018), which splits the input into parts such as image patches or subsequences,
and predicts the representation of some of the parts, contrastively, from the representation of other
parts. CPCProt (Lu et al., 2020) adapted the CPC model for protein data.Similarly, Self-GenomeNet
is trained by the contrastive loss in which the positive pairs include the input sequence and a reverse-
complement of the sequence. Unlike previous works, our network is trained with varying-length
targets to explore both local and global structures of sequences.

Deep learning methods for genome sequences In genomics, many deep learning architectures
use convolutional layers to capture local patterns in data, whereas recurrent layers learn long-range
dependencies in the sequences (Eraslan et al., 2019). Zhou and Troyanskaya (2015) created the
DeepSEA dataset for predicting chromatin effects of sequence alterations, and used it to train a
model consisting of multiple convolutional layers. Later, DanQ (Quang and Xie, 2016) improved
the deep learning framework of DeepSEA using a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) unit on top of a convolutional layer. iDeepS (Pan et al., 2018), DeepBind (Alipanahi et al.,
2015), and DeeperBind (Hassanzadeh and Wang, 2016) use a sequence CNNs and RNNs to predict
RNA binding proteins sites. DeepDNA (Wang et al., 2019) uses an LSTM layer on top of a CNN
layer to compress human mitochondrial genome data. Instead of recurrent layers, it is also possible
to use dilated convolutional layers to model long-range dependencies in genome data, such as done
in Basenji (Kelley et al., 2018), which is used to predict cell-type–specific epigenetic and transcrip-
tional profiles in large mammalian genomes. Trabelsi et al. (2019) performed a comprehensive study
on network architecture where the ECBLSTM network, composed of an embedding layer, CNNs,
and LSTM layer outperformed other networks on several genomic tasks. Here, we also used the
DeepSEA dataset to compared the performance of our method with several other self-supervision
techniques. The architecture of Self-GenomeNet requires a recurrent layer for it to create repre-
sentations of varying-length subsequences, and is therefore based off the DanQ-architecture (Quang
and Xie, 2016), which has shown good performance on the DeepSEA task.

Reverse Complement DNA molecules in living organisms always occur as a double strand, where
both strands have opposite directions and consist of nucleotides that are complementary to each
other. The sequence on one strand is therefore accompanied by its reverse complement (RC) on the
other: The sequence in reverse, and with the A, C, G, T nucleotides replaced by T, G, C, A respec-
tively. Since both forward and reverse-complement sequences are found in the structure, they are
equally responsible for several properties of the genome, such as regulatory and taxonomical char-
acteristics. However, next-generation sequencing techniques (NGS) output sub-sequences randomly
drawn from both strands, since it usually involves breaking the genome into a collection of small
DNA fragments that are sequenced individually. Therefore, both the original sequence data and the
RC of this sequence are valid inputs to the machine learning models developed to work on NGS
datasets (Shrikumar et al., 2017; Zhou et al., 2021). In this paper, we exploit this genome-specific
feature in contrastive self-supervised learning framework helps to improve the learning representa-
tion in several genomic tasks.

3 METHOD

We first describe the motivation of our proposed method before explaining its details in Section 3.2.

3.1 MOTIVATION

Most successful self-supervised learning approaches are built for computer vision or NLP and are
therefore not optimal for bioinformatics data. For example, the self-supervision task of CPC (Oord
et al., 2018) or generative language models (Dai and Le, 2015) are based on predicting the repre-
sentation of a short, constant length subsequence or a single token, which could be an N-gram or a
single nucleotide. We hypothesize single-length short sequence targets hinder the model from learn-
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Figure 2: Implementation of Self-GenomeNet. Multiple representations zi of subsequences of dif-
ferent lengths are created in a single step using the sequence-output of the recurrent context net-
work Cφ(·) which follows the encoder network fθ(·). The same process happens to the reverse-
complement of the given sequence, creating zi. Different prediction layers qm are used to predict
representations that are a different number of patches apart.

ing global semantics effectively. We therefore propose training representations that are based on
target subsequences whose lengths are varying. While predicting future observations of constant se-
quence length from input sequences which are changing in length is common for methods like CPC
and single character models, predicting representations of varying length sequences is a novelty in
this area. Similar to Oord et al. (2018), we use a recurrent context network on top of an encoding
network that encodes to constant-size patches. However, we use the output of the context network
to predict the output of the same context network applied to other patches, as opposed to predicting
only the output of the encoding network. The fact that the RC of an input sequence is a valid genome
sequence as well simplifies this approach: instead of having to fit both one forward and one reverse
context network that predict each other, only a single context-network is trained that is both applied
to the forward as well as to the RC sequence.

3.2 SELF-GENOMENET

The Self-GenomeNet architecture learns representations of varying-length genome sequences by
encoding them in both convolutional and recurrent neural network layers, which are trained using
a contrastive loss. The architecture enforces the symmetry implied by the RC while also making
training more efficient. As depicted in Fig. 1, our proposed method initially creates two subsequen-
ces from an input sequence. The subsequences are taken by a representation network composed
of the encoder network (fθ) and the context network (Cφ). Later, on top of the embedding repre-
sentation, the linear prediction layer (qm) estimates the embedding of the other subsequence using
a contrastive loss against random other subsequences. More specifically, given are an unlabeled
genome sequence of nucleotides S1:N = [s1, s2, . . . , sN ] and its RC SN :1 = [sN , sN−1, . . . , s1],
where si ∈ {A,C,G,T} and si gives the complementary nucleotide, e.g. A = T. We aim to pro-
duce an embedding of a subsequence S1:t that contrastively predicts the embedding of the RC of
the remaining subsequence, SN :t′ for some t′ > t. Predicting SN :t′ , i.e. the RC of St′:N , instead
of just the reverse of St′:N , has the benefit that it is possible to use the same embedding and context
network for both the first and the second subsequence, as SN :t′ is a valid genome sequence, whereas
SN :t′ is not. We use a recurrent layer to build the representations of both S and S, so representations
of different length subsequences are calculated at once by using the hidden state of the recurrent unit
at different points in the sequence. This makes it possible to contrastively predict subsequences of
varying lengths against each other efficiently in a single training step. This has an advantage over
using two forward sequences S1:t and St′:N , where using different starting point values t′ in one step
would be much more computationally demanding, since the values of recurrent units would have to
be calculated fresh for every t′. The entire procedure is symmetric since our model learns sequence
and the RC of sequence. This symmetry provides the possibility to use a context network as well
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as the prediction networks with shared weights both when reading the subsequence in forward di-
rection as in the left subsequence in Fig. 2 as well as when reading the reverse-complement of the
sequence on the right. This is visualized in Fig. 3 in Appendix. (i) The same recurrent context net-
work is used for predicting and target subsequences, (ii) the target subsequence can also predict the
predicting subsequence, (iii) the same prediction network(s) used for predictions of the target sub-
sequences from the predicting subsequences can also be used for the predictions of the predicting
subsequences from the target subsequences. In other words, with the help of the symmetry induced
by RC, substantial weight sharing is provided.

To produce the representation, the sequence is first divided into P overlapping patches Sp(j) with
p(j) = (j · a + 1):(j · a + l), where l is the patch-length and a the patch stride length, and where
a < l for overlapping patches. Patches are first encoded with a convolutional neural network fθ(·).
The resulting sequence of vectors [fθ(Sp(0)), fθ(Sp(1)), . . . , fθ(Sp(P−1))] is fed into a recurrent
context network Cφ(·), giving rise to embeddings zi = Cφ

(
{fθ(Sp(u))}u<i

)
for 1 ≤ i ≤ P .

Patches of the RC, Sp(j) = [sj·a+l, . . . , sj·a+1] are equally fed into first fθ then Cφ, giving rise
to zi = Cφ

(
{fθ(Sp(u))}u≥i

)
. zi is then a representation of S1:((i−1)·a+l); likewise, zi represents

SN :(i·a+1).

Training the encoder and context networks consists of predicting zi+m from zi, with m > 0, con-
trastively against corresponding embeddings from other, negative example sequences S(k)−, i.e.
against z(k)−i+m (note: m is the stride length between the patches). For this, a linear prediction layer
qm is used, and the Noise Contrastive Estimation or InfoNCE loss (Gutmann and Hyvärinen, 2010),
which maximizes the mutual information shared between forward sequence and its matching RC
sequence, is used:

Li,m = − log
exp

(
zTi+mqm(zi)

)
exp

(
zTi+mqm(zi)

)
+
∑
k exp

((
z
(k)−
i+m

)T
qm(zi)

) . (1)

Negative samples z(k)−i+m are efficiently produced by comparing against representations of other se-
quences loaded in the same mini-batch. Note that every sequence in the minibatch produces two
negative examples for other sequences, giving 2(B − 1) negative samples when using minibatch
size B: The embedding of the RC of the last (P − i − m) patches starting from path (i + m) –
i.e., the analog to zi+m coming from other sequences – and the embedding of the first (P − i−m)
patches of the normal forward-sequence, so the analog to zP−i−m. This is because of the invariance
of the training method with respect to the RC. Embeddings are, however, always only contrasted
with embeddings of sequences that have the same length as the positive example. This is to prevent
the network from learning to encode the represented length directly to gain an advantage, which
would not be an intrinsically interesting feature for downstream tasks.

One loss term is introduced for each index i, denoting the number of patches represented by zi.
Furthermore, because it is possible to skip a different number of patches m between the represen-
tations being matched, one can sum over multiple values of m, each with its individual weights for
predictor qm. Because of the symmetry of the setup, the model is both predicting zi+m from zi as
described above, as well as zi from zi+m. The corresponding loss Li,m then uses negative examples
with the same length as zi. The ultimate loss for each individual sequence S is therefore:

L =
∑
i,m

(
Li,m + Li,m

)
. (2)

It was proven by (Oord et al., 2018), optimizing a contrastive loss by predicting future patches Sp(j)
maximizes the lower bound of mutual information between the patches and the embeddings. The
theoretical proof regarding how we maximize the lower bound of mutual information between the
embeddings zi and varying-length reverse-complement targets {Sp(u)}u≥j for several values of j is
straight-forward by exchanging {Sp(u)}u≥j and Sp(j) (they use xk+t as notation) in the equations
of the proof derived by Oord et al. (2018). By adopting the equations accordingly, we derive,

I({Sp(u)}u≥j , zi) ≥ log(N)− L (3)
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where I({Sp(u)}u≥j , zi) is the mutual information between the learned representation zi and the
reverse-complement of the consecutive sequence {Sp(u)}u≥j . N is the number of random samples
in the contrastive pretraining and L is the loss function given in the Eq.2. Note that in our method,
differently from CPC (Oord et al., 2018), as the value of j changes, the number of patches in the set
and therefore the total length of the targeted patches vary. By doing this, we maximize the mutual
information between varying-length targets and the learned representations.

4 EXPERIMENT SETUP

Datasets and Tasks We evaluate our method with the following datasets:

(1) DeepSEA dataset: introduced by Zhou and Troyanskaya (2015), contains around 5 million hu-
man genome sequences, where each data sample contains 1000 nucleotides as input and a label
vector for 919 binary chromatin features. We evaluated our model with the DeepSEA dataset be-
cause it is a dataset often used by genomic deep learning methods for evaluation (e.g. Zhou and
Troyanskaya, 2015; Quang and Xie, 2016; Kelley et al., 2018). It represents the task of identifying
the class of certain regions within a genome sequence.

(2) Virus dataset: We downloaded all publicly available viral genomes from GenBank (Sayers et al.,
2021). We allocated the FASTA files into training, validation, and test sets by approximate ratios
of 70%, 20%, and 10%. We divided the dataset into two taxonomical classes as a classification
task: bacteriophages vs. viruses that are not bacteriophages, based on provided annotations. The
bacteriophage class contained approximately 1.0 billion nucleotides, the non-phage virus dataset
approximately 0.5 billion nucleotides. The Virus dataset is a machine learning task that is comple-
mentary to it: instead of regions of a genome, the class of the whole sequence should be determined,
based on a given subsequence of fixed length. Species classification tasks often arise in metage-
nomics, where NGS is used to analyse DNA found in environmental samples (Pust and Tümmler,
2021). NGS typically produces 150nt samples (Quail et al., 2012), therefore a sequence length of
150nt is used with this dataset, which is drawn from the sequences at random. The length of 150nt
would therefore allow a direct application of our model in metagenomics.

(3) Bacteria dataset: We downloaded all publicly available bacteria genomes from GenBank, com-
prising approximately 83 billion nucleotides, similarly to how we collected the Virus dataset. This
dataset was only used for unsupervised pre-training for transfer learning, so no supervised task was
defined. The sequence length was set to 1000 nt, to compare the capabilities of the methods for
different sequence lengths.

(4) T6SS effector protein dataset: We performed experiments on T6SS dataset that publicly avail-
able bacteria dataset (SecReT6, Li et al. 2015) to demonstrate that our method works well for a
real-world dataset with actual label scarcity. Here the task is the identification of effector proteins.
We used T6SS effector proteins as the positive samples to identify, whereas T6SS immunity pro-
teins, T6SS regulators, and T6SS accessory proteins are negative samples. We divided the training,
validation, and test set by approximate ratios of 60%, 20%, and 20%. The sequence length is 1000nt
in all experiments. We provide more details for pre-processing and motivation of the datasets in
Appendix B.

Network architecture As mentioned in Section 3, Self-GenomeNet composed of a representation
block followed by an embedding layer and a prediction network. The representation block includes
encoder network fθ(·) and context network Cφ(·). For the self-supervised training on the Virus
dataset, the encoder network is a convolution layer with 1024 filters, a kernel size of 24, and a
stride of 6. Only a single CNN-layer is used, so the kernel parameters directly correspond to patch
parameters described above, i.e. l = 24 and a = 6. The context network is an LSTM layer with a
hidden layer size of 512. For the DeepSEA benchmark, we followed the DanQ network architecture
by Quang and Xie (2016). The encoder network has an additional max-pooling layer followed by a
dropout layer.

For each value of m, a different fully connected layer is used as the prediction layer qm. In any self-
supervised pretraining, the default choice is to have only one prediction network q1 due to longer
pretraining time when multiple prediction layers are used. Therefore the default is estimating the
neighbor subsequence of the predicting subsequence without any skipped nucleotide between them.
However, we additionally test pretraining with multiple prediction networks and therefore estimate
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even further subsequences for the DeepSEA dataset. The reported results are the best performance
of Self-GenomeNet. We provide more information in Appendix A.

Optimization We used Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.999 and a
learning rate of 0.0001 for all experiments except the DeepSEA dataset that we used the RMSprop
optimizer. The dropout rate of 0.2 and 0.5 are used respectively for the dropout layers as in the DanQ
model (Quang and Xie, 2016). For all datasets, we used the default Keras weight initialization,
which is the Glorot uniform initialization (Glorot and Bengio, 2010). During the self-supervised
pre-training, we used the largest fitting minibatch size (power of 2) that worked in a GeForce RTX
2080 Ti, which was 512 for the virus dataset and 128 for the Bacteria and DeepSEA datasets.

For the baselines experiments, we used the same hyperparameter settings for all our experiments
such as Adam hyperparameters or learning rate. When not applicable, we followed the recommen-
dations in the papers of the baseline methods regarding the hyperparameter selection. We provided
more detail on optimization in Appendix B.

Evaluation For all experiments, we report the performance in terms of F1 score. However, We
use Receiver Operating Characteristics (ROC) Area Under Curve (AUC) and Precision-Recall (PR)
AUC for DeepSEA dataset for all 919 binary outputs, as these metrics are used by Quang and Xie
(2016). In this paper, it was also shown that the sparsity of positive binary targets(∼ 2%) in the
dataset inflated the ROC AUC, and that PR AUC is a better indicator of performance since it does
not take the number of true negatives into account. We macro-averaged recall RecallM (Sokolova
and Lapalme (2009)), which is equivalent to balanced accuracy, and F1 score for dataset evaluations
on Virus.

5 RESULTS

We compare our proposed Self-GenomeNet with CPC (Oord et al., 2018) as the CPC is the clos-
est self-supervision method to our method which can also be applied in different application fields
of deep learning. Moreover, we provide comparison with Contrastive-sc (Ciortan and Defrance,
2021) and generative language model since these methods originally proposed for computer vision
or natural language processing respectively but applied in bioinformatics several times. Both single
nucleotides, denoted as (single nt), and 3-gram targets are predicted for pretraining using a language
model (See Fig. 4).We follow the standard evaluation protocol for self-supervised learning and eval-
uate the unsupervised learned representation with a linear classification and semi-supervised tasks,
as well as using transfer learning to different datasets and different tasks (Henaff, 2020).

Linear Evaluation The common evaluation protocol for self-supervised learning is based on freez-
ing the representation networks (both base-encoder and context network) after unsupervised pre-
training and then train a supervised linear classifier on top of them. The linear classifier is a fully
connected layer followed by softmax-classification using cross-entropy loss, which is plugged on
top of the context network after removing the prediction layer. Table 1 shows the comparison of our
model against the baselines under the linear evaluation on Virus and DeepSEA dataset.

Dataset DeepSEA Virus

Metric ROC AUC PR AUC RecallM F1

CPC 0.734 0.094 58.7 0.607
Language Model (single nt) 0.699 0.069 58.8 0.598
Language Model (3-gram) - - 61.8 0.626
Contrastive-sc 0.682 0.056 54.9 0.462
Self-GenomeNet 0.757 0.120 69.1 0.709

Table 1: Mean values of ROC AUC and PR AUC metrics for the 919 outputs defined for the
DeepSEA dataset and Macro-averaged recall (in %) and F1 for Virus under linear evaluation.

Semi-supervised Learning We evaluate the performance of our models on a semi-supervised learn-
ing task. In this task, we pretrain our model on unlabeled datasets and fine-tune a classification
or prediction model using a subset of datasets with labels. Differently from the linear evaluation
protocol, the pretrained base network is also fine-tuned. We follow the semi-supervised protocol
of (Henaff, 2020) and use the same fixed splits of respectively 1% and 10% of labeled training data
in DeepSEA and Virus datasets.
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Dataset DeepSEA Virus
Labeled 1% 10% 1% 10%

Metric ROC PR ROC PR RecallM F1 RecallM F1

Supervised 0.776 0.119 0.865 0.239 69.3 0.694 72.4 0.732
CPC 0.780 0.125 0.863 0.236 69.4 0.700 74.4 0.753
Language Model (single nt) 0.774 0.116 0.859 0.232 71.5 0.727 75.5 0.760
Language Model (3-gram) - - - - 72.0 0.732 76.3 0.766
Contrastive-sc 0.764 0.105 0.848 0.222 70.3 0.706 73.2 0.742
Self-GenomeNet 0.795 0.138 0.865 0.235 75.3 0.751 78.2 0.785

Table 2: Performance of the self-supervision techniques under semi-supervised learning protocol
using 1% and 10% of the labels in DeepSEA and Virus datasets. Supervised training performance
without any pretraining is also reported as a baseline. Reported metrics are in line with Table 1.

Transfer to Other Tasks We further assess the generalization capacity of the learned representa-
tion on viral detection by pre-training Self-GenomeNet on the Bacteria datasets. Our motivation for
transfer learning is to take advantage of abundant bacterial data, which are much better described and
studied than their viral counterparts, and optimize the model for tasks on viruses(such as viral identi-
fication or taxonomic classifications). We also used the T6SS dataset to demonstrate that our method
works well for a real-world dataset with actual label scarcity. To this end, the Self-GenomeNet is
trained in self-supervised fashion on the bacteria dataset and then we train in a supervised manner us-
ing the phage and non-phage labels on the virus dataset and evaluate the performance on this dataset.
Table 3 provides a comparison of transfer learning performance of our self-supervised approach for
the task of classification of viruses.

Dataset Virus T6SS
Base Network Fine-tuned Fixed Fine-tuned Fixed

Metric RecallM F1 RecallM F1 RecallM F1 RecallM F1

Supervised 92.0 0.938 - - 58.2 0.624 - -
CPC 95.5 0.966 76.1 0.812 81.8 0.855 72.3 0.725
LM (single nt) 92.6 0.944 67.9 0.735 79.1 0.825 72.5 0.752
Contrastive-sc 93.4 0.950 56.4 0.578 74.3 0.775 62.0 0.627
Self-GenomeNet 96.7 0.974 82.1 0.861 83.4 0.857 79.3 0.796

Table 3: The achieved performance terms of Macro-averaged recall (in %) and F1 score under
transfer learning evaluation on virus dataset (Column 2-5) and T6SS (Column 6-9). We evaluated
the results when base networks are fine-tuned and fixed. Here, the base network is trained in self-
supervised way on the big bacteria dataset. Supervised training performance without any pretraining
is also reported as a baseline.

6 ABLATION STUDIES AND DISCUSSIONS

We present multiple ablation studies on Self-GenomeNet to give an intuition of its behavior and
performance: (1) the impact of reverse-complement targets against other potential targets; (2) pre-
dicting varying-length targets against single-length targets; (3) robustness of our algorithm in the
low-data regime. All the ablation study is performed on the virus dataset under linear evaluation
setting.

Learning from the reverse complement of sequences Self-GenomeNet uses the embedding rep-
resentation of a context network for downstream tasks which learns by predicting the reverse com-
plement of neighbor subsequence S̄N :t′ as a target for its predictions. We investigated the effect of
using target embeddings derived by RC of neighbor subsequences against two other potential ways
of creating embeddings derived from varying-length targets. To this end, besides our method, we
performed two other experiments where the recurrent context network reads the ”target” subsequen-
ces in different ways: in forward and reverse directions. In forward setting, the context network
reads the target subsequence St′:N in the same direction as it reads the predicting subsequence S1:t;
whereas reverse direction refers to reading the target sequence other way around, as in SN :t′ . Table 4
compares the performance of our trained network in these ways.
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Forward Reverse Reverse-Complement

0.7048±0.0025 0.6952±0.0003 0.7089± 0.0008

Table 4: The achieved performance in terms of F1 score for virus dataset under linear evaluation
setting with fixed pre-trained weights.

Predicting varying-length targets We investigate the effect of having varying-length target sub-
sequences by comparing our method against the constant-length target subsequences. As mentioned,
having non-varying length targets is indeed a common feature for self-supervision techniques such
as CPC or language models. Nevertheless, we would like to investigate the effect of varying-length
targets, when other features of Self-GenomeNet is unchanged. To create nonvarying-length target
subsequences we divide the sequences into two nearly equal-in-size subsequences. Specifically, we
split the sequences of 150 into 72 and 78, so that subsequences with length 72 and 78 predicts the
embeddings derived from the reverse-complement of each other. In the Self-GenomeNet however,
for the given architecture, subsequences with length x ∈ {24, 30, 36, ...126} predicts a subsequence
with length 150−x. 72 and 78 was chosen because they are the two closest values that can be inves-
tigated using our previous architecture without any padding (splitting into 2 subsequence with 75 is
not possible due to stride value of 6). We observed for linear evaluation setting on the virus dataset
the performance dropped from 69.1% to 64.9% (macro-averaged recall), when only same-size tar-
gets are predicted. A straight-forward explanation to this is that maximizing the mutual information
between the learned embeddings and varying-length target subsequences (both short and long) helps
the machine learning model to learn more comprehensive range of semantics and therefore boosts
the performance in the downstream supervised tasks.

Data efficient We study and compare the performance of Self-GenomeNet with other methods in
the low-data regime. We created label-scarcity artificially on the Virus and DeepSEA datasets by
subsetting the number of labeled training samples down to 0.1%. We train the models shown in
Table 5 using 0.1% of the dataset after pretraining on the whole dataset in self-supervised way. The
reported results are when the base networks are fine-tuned. Based on the results reported in Table 5,
our method outperforms other methods by substantial margin in the low-data regime.

Dataset DeepSEA Virus

Metric ROC AUC PR AUC RecallM F1

Supervised 0.715 0.074 56.4 0.505
CPC 0.732 0.089 59.2 0.621
Language Model (single nt) 0.729 0.081 61.8 0.645
Language Model (3-gram) - - 62.9 0.634
Contrastive-sc 0.726 0.073 61.8 0.623
Self-GenomeNet 0.753 0.115 67.2 0.700

Table 5: Comparison of the methods in performance when they are pretrained using the whole
dataset in self-supervised manner, followed by supervised training on 0.1% of the dataset. Super-
vised baseline is not pretrained.

7 CONCLUSION

In this paper, we presented Self-GenomeNet, a framework for contrastive learning of nucleotide-
level genomic data. Self-GenomeNet is composed of an encoding network followed by a context
network and uses a prediction layer for training. The network extracts compact latent representations
by predicting representations of the reverse complement of future observations. Self-GenomeNet is
optimized end-to-end using unsupervised contrastive loss. We tested the learned representations by
linear evaluation, semi-supervised learning, and transfer to other tasks and achieved better perfor-
mance on the four public bioinformatics benchmarks compared to other self-supervision methods.
Moreover, we showed the ability of our method for training in the low-data regime, tested the ef-
fect of predicting varying-length target subsequences, and the effect of estimating the output of the
context network which reads the predicted subsequence in forward or reverse direction compared to
reading reverse-complement of the subsequences.

Reproducibility Statement: The source code is available in the supplementary material.
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APPENDIX A PREDICTION NETWORK

Single prediction network or multiple prediction networks: For the pretraining in DeepSEA
dataset, we trained the network with only one prediction network q1 (qm where m = 1) as well as
with multiple prediction networks m ∈ {1, 4, 7, 10, 13, 16} for DeepSEA. As mentioned in the
manuscript, multiple prediction networks are used when further subsequences are predicted, in
addition to the closest subsequence to the predicting subsequence. We report the results of Self-
GenomeNet when only one single network is used in the tables 6, 7, 8. Only single prediction
network is used during the pretraining stage of the other datasets.

Dataset DeepSEA

Metric ROC AUC PR AUC

CPC 0.734 0.094
Language Model 0.699 0.069
Contrastive-sc 0.682 0.056
Self-GenomeNet - m ∈ {1} 0.757 0.116
Self-GenomeNet - m ∈ {1, 4, 7, 10, 13, 16} 0.757 0.120

Table 6: Mean values of ROC AUC and PR AUC metrics for the 919 outputs defined for the
DeepSEA dataset under linear evaluation protocol.

Dataset DeepSEA
Labeled 1% 10%

Metric ROC AUC PR AUC ROC AUC PR AUC

Supervised 0.776 0.119 0.865 0.239
CPC 0.780 0.125 0.863 0.236
Language Model 0.774 0.116 0.859 0.232
Contrastive-sc 0.764 0.105 0.848 0.222
Self-GenomeNet - m ∈ {1} 0.795 0.135 0.862 0.234
Self-GenomeNet - m ∈ {1, 4, 7, 10, 13, 16} 0.795 0.138 0.865 0.235

Table 7: Performance of the self-supervision techniques under semi-supervised learning protocol
using 1% and 10% of the labels in DeepSEA dataset. Supervised baseline without any pretraining is
also reported as a baseline. Reported metrics are in line with Table 1.

Dataset DeepSEA

Metric ROC AUC PR AUC

Supervised 0.715 0.074
CPC 0.732 0.089
Language Model 0.729 0.081
Contrastive-sc 0.726 0.073
Self-GenomeNet - m ∈ {1} 0.750 0.103
Self-GenomeNet - m ∈ {1, 4, 7, 10, 13, 16} 0.753 0.115

Table 8: Comparison of the methods in performance when they are pretrained using the whole
dataset in self-supervised manner, followed by supervised training on 0.1% of the dataset. Super-
vised baseline is not pretrained.

Here we also report the pretraining time in hours in Table 9 for our method and the baselines on
DeepSEA dataset using a GeForce RTX 2080 Ti. One can immediately see, the pretraining time for
the simplest version of Self-GenomeNet with one prediction network (m = 1) is shorter than or
comparable to the pretraining time of the other self-supervision methods, whereas the performance
is superior.
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Dataset DeepSEA

Method Pretraining Time (hours)

Supervised 0
CPC 73
Language Model 30
Contrastive-sc 14
Self-GenomeNet - m ∈ {1} 25
Self-GenomeNet - m ∈ {1, 4, 7, 10, 13, 16} 158

Table 9: Comparison of the methods in performance when they are pretrained using the whole
dataset in self-supervised manner, followed by supervised training on 0.1% of the dataset. Super-
vised baseline is not pretrained.

APPENDIX B PROCESSING OF DATASETS AND FILES

For virus-bacteria dataset, data samples are created by reading consecutive samples taken from ran-
dom regions of FASTA files. Compared to division of FASTA files into same-length non-intersecting
sequences, this technique increases number of samples that can be created out of FASTA files. In
order to provide randomness, either maximum 90% and 10% of the file is processed for virus files
and bacteria files respectively, or maximum 64 data samples are created from a file, before next
FASTA file is processed.

For phage/non-phage classification on virus dataset, we set the sequence length to 150. The mo-
tivation to limit the input length to 150 nt in some of our evaluations is to be close to a potential
application, since this is a typical read length that gets produced during Next Generation Sequencing
which is frequently used. The length of 150 nt, therefore, allows a direct application of the sequenc-
ing output to perform model predictions that can be built using pre-trained models as presented in
our work. We also evaluate some experiments with a sequence length of 1,000 nt, because this is a
meaningful length of the output of genome assemblers, where these 150 nt long reads are assembled
together using overlap information or mapping to reference sequences to produce longer fragments.

The short sequence length can be justified to build neural networks directly on the read output of a
sequencer (150 nt), rather than on the output of the assembling process since the latter comes with
several limitations. it requires (i) computational resources and often (ii) the presence of reference
genomes, which are often absent when an environmental sample is sequenced; furthermore (iii)
assembling Softwares perform poorly on repetitive regions of bacterial genomes that are of particular
interest to study since these often belong to the bacterial defense system. Therefore, traditional
bioinformatics software is taking raw read input rather than preprocessed contigs.

APPENDIX C OPTIMIZATION OF SELF-SUPERVISED METHODS

For all architectures and all our experiments, we used the same encoder and context models for a
fair comparison. Moreover, we took most hyperparameters as given in the original method.

As depicted in Fig 5, we adopted the Henaff (2020) implementation of CPC for 1-dimensional data
and use an RNN (LSTM) and a single fully connected layer on top of LSTM layer for prediction
as in Oord et al. (2018). It is shown by (Oord et al., 2018) that the performance for the baseline
models decreases significantly when the span of predicted future observations is too short, however
it decreases slightly when they are too long. To this extend, the predicted span for the patches are
selected to be not too short as well as not too long compared to the full length of the sequence. For
pretraining on the virus dataset, every second feature from 4th to 10th derived by encoder network
is predicted with different linear layers. Thus, the representations derived from the following 60 nu-
cleotides are predicted, when the full sequence length is 150. For bacteria pretraining, the following
2nd to 10th features are predicted, making the prediction span of 200 nucleotides for the sequence
length of 1000 nucleotides. For the DeepSEA dataset, every second feature from 3rd to 20th features
are predicted, making the span up to 260 nucleotides for the sequence length of 1000.
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Figure 3: How is Self-GenomeNet inherently symmetrical? The context network and the prediction
network with the shared weights are used both for predicting the subsequence on the right from the
left one as well as the left subsequence from the the right one.

For Contrastive-sc (Ciortan and Defrance, 2021) (Fig. 5), we used the masking rate of 0.9 as recom-
mended by the paper and did not use additional linear layer on top of the final outputs of LSTM.

For the language modelling (Fig. 4), we followed different strategy for different datasets. For the
virus and bacteria dataset, the model predicts the following 60 and 200 nucleotides respectively,
which are taken from outside of the sequence. For DeepSEA, the nucleotides outside the sequence
is not provided within the dataset. Thus, the last 260 nucleotides are estimated from the first 740
nucleotides during pretraining. Please note that the span of predicted observations is the same for
the CPC and the language modelling.

In the supervised training of virus datasets, we firstly train only the final linear layer while the
pretrained base model is frozen. Once this layer is optimized, starting from this point, we tune the
whole network. For DeepSEA dataset, we directly optimize the whole model for both freezed and
unfreezed base-networks.

C.1 ADDITIONAL EXPERIMENTAL RESULTS

In this section we further compare our proposed Self-GenomeNet with the baseline methods for lin-
ear evaluation (Fig. 6), semi-supervised learning (Fig. 8, Fig. 9), transfer learning (Fig. 10,Fig. 11),
and data efficiency (Fig. 7).
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(a)

(b)

Figure 4: Illustration of Language Model using 3-gram as targets (on the top), followed by Language
Model using single nucleotides as targets (in the bottom); In language modeling, future nucleotides
are predicted using cross-entropy loss. In (a) the nucleotides are one-hot encoded as a group of 3
nucleotides into a vector of 64, whereas in (b) each nucleotide is one-hot encoded seperately as a
vector of 4.
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(a)

(b)

Figure 5: Illustration of CPC (on the top) and Contrastive-sc (in the bottom); CPC predicts the out-
put representations obtained from the encoder network for the future patches using the contrastive
loss, where the negative samples are representations of other patches. Contrastive-sc takes a se-
quence and copy of sequence and mask the input sequence randomly. Then, the agreement between
embedding of two masked copies are maximized using the contrastive loss, where negative samples
are embeddings of other masked sequences.
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Figure 6: Linear evaluation

Figure 7
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Figure 8: Semi-supervised learning

Figure 9
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Figure 10

Figure 11: Transfer Learning
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