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ABSTRACT

Proper initialisation strategy is of primary importance to mitigate gradient explo-
sion or vanishing when training neural networks. Yet, the impact of initialisa-
tion parameters still lacks a precise theoretical understanding for several well-
established architectures. Here, we propose a new initialisation for networks with
sinusoidal activation functions such as SIREN, focusing on gradients control, their
scaling with network depth, their impact on training and on generalization. To
achieve this, we identify a closed-form expression for the initialisation of the pa-
rameters, differing from the original SIREN scheme. This expression is derived
from fixed points obtained through the convergence of pre-activation distribution
and the variance of Jacobian sequences. Controlling both gradients and targeting
vanishing pre-activation helps preventing the emergence of inappropriate frequen-
cies during estimation, thereby improving generalization. We further show that
this initialisation strongly influences training dynamics through the Neural Tan-
gent Kernel framework (NTK). Finally, we benchmark SIREN with the proposed
initialisation against the original scheme and other baselines on function fitting
and image reconstruction. The new initialisation consistently outperforms state-
of-the-art methods across a wide range of reconstruction tasks, including those
involving physics-informed neural networks.

1 INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Implicit neural representations (INRs) have become a prevalent tool for approximating functions in
diverse applications, including signal encoding (Strümpler et al., 2022; Dupont et al., 2021), signal
reconstruction (Park et al., 2019; Mildenhall et al., 2020), and solutions of partial differential equa-
tions (PDEs) (Raissi et al., 2019). A central challenge in these neural approximations is to recover
the frequency spectrum of a target signal within reasonable training time and from limited data. In
this context, standard multi-layer perceptrons (MLPs) used for INRs often suffer from spectral bias,
whereby low-frequency components are preferentially learned compared to high-frequency details
(Rahaman et al., 2019; Li et al., 2024). This bias can hinder performance, either by slowing train-
ing or by reducing precision, when the signal of interest contains significant high-frequency content
(fine textures, details . . . ). To mitigate this issue, several architectures have been proposed, such as
positional encoding (Tancik et al., 2020) or networks with sinusoidal activation functions (SIREN,
(Sitzmann et al., 2020)), which enable faster learning of high-frequency components. However,
increasing network depth in these methods has been empirically observed to introduce in the re-
constructed function spurious high-frequency components absent from the target one (see, e.g., (Ma
et al., 2025)), leading to noisy representations and degraded generalization (i.e., the ability to inter-
polate the signal correctly).

In this work, we propose an initialisation strategy for SIREN that bypasses two opposing pitfalls: (i)
slow training and poor recovery of high-frequency details due to spectral bias in standard MLPs, and
(ii) rapid training in deeper SIREN, which comes at the cost of spurious high-frequency artifacts
and degraded generalization. Finding the right balance between these two extremes corresponds
to locating the frontier between vanishing-gradient and exploding-gradient regimes. Operating in
this regime, where gradients remain stable, is often referred to as computing at the edge of chaos
(Yang & Schoenholz, 2017; Seleznova & Kutyniok, 2022), a concept from dynamical systems the-
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ory (Kelso et al., 1986; Langton, 1986). Building on this idea, we introduce an explicit initialisation
scheme for SIREN. Our method ensures that inputs and parameters gradients neither vanish nor
explode with depth enabling both stable and expressive learning dynamics. With appropriate tun-
ing of the pre-activation statistics it allows to impose a finite range of frequency at initialisation,
allowing the network to capture high-frequency contents without introducing spurious components.

10−4 10−3 10−2 10−1 100

SIREN (Proposed)

SIREN (σa = 1)

SIREN (Sitzmann)

Wire

Finer

Tanh (Fourier-Xavier)

ReLU (PE)

Figure 1: Generalization error over different prob-
lems averaged over different architecture depths for 1d,
2d and 3d multi-scaled function approximation. The
results are displayed for different state-of-the-art ar-
chitectures including the one proposed in this work
(SIREN Proposed). See Appendix B.6.3 for details.
In standard deviation of the error is colored in light
gray.

To better understand the critical role of
the initialisation in INRs, we complement
our theoretical analysis with experiments
based on the neural tangent kernel (NTK)
framework (Jacot et al., 2018; Li et al.,
2024). We find that controlling gradient
propagation at initialisation strongly influ-
ences the NTK eigenvalues, which deter-
mine the training speed of the frequencies
associated with the corresponding eigen-
vectors.

Beyond the NTK framework, our initial-
isation prevents the degradation of deep
neural network performance with increas-
ing depth. We illustrate this property
across several function fitting problem in
Figure 1where a comparison of the per-
formance of our initialisation against the
original SIREN scheme and other base-
lines is presented.

1.2 RELATED WORK

Frequency representation. Our study will be based on the work of (Sitzmann et al., 2020), which
introduced the SIREN architecture, a neural network with sinuosidal activation functions designed
to effectively learn high-frequency functions by using a tunable parameter w0 that controls the fre-
quency range of the network. Architecturally, this approach is closely related to positional-encoding
and Random Fourier feature, which also address the challenge of learning high-frequency signals
(Tancik et al., 2020; Wang et al., 2021). However, SIREN requires careful tuning of w0 depending
on both the network architecture and the dataset (de Avila Belbute-Peres & Kolter, 2023). Moreover,
the effect of network depth on performance remains poorly understood and has so far been studied
mostly through empirical and observational analyses (Cai et al., 2024; Tancik et al., 2020). To the
best of our knowledge, there is currently no work connecting theoretical gradient scaling with depth
to the performance of such architectures.

Neural Tangent Kernel. The NTK framework provides a theoretical foundation for understanding
the training dynamics of neural networks, and how the initialisation properties affect the learning
process (Jacot et al., 2018; Li et al., 2024; Yüce et al., 2022). Some works have already focused
on the frequency learning aspect of the NTK, either for the Fourier Features (Wang et al., 2021) or
the SIREN architecture (de Avila Belbute-Peres & Kolter, 2023). These works have shown how the
network architecture can be tailored to bypass the spectral bias. However they did not provide a
full understanding of the impact of network depth on the networks properties and did not tackle the
vanishing or exploding gradient impact on the learning dynamics.

initialisation. Our focus on initialisation is closely related to the work of Glorot & Bengio (2010)
and He et al. (2015), which introduced the now widely used Xavier and Kaiming initialisation meth-
ods, respectively. Both approaches aim to maintain stable activation and gradient distributions across
layers. Xavier initialisation was developed for saturating nonlinearities such as hyperbolic tangent
(Tanh), and is motivated by theoretical insights into variance preservation, though its derivation
assumes an approximate linearization. Kaiming initialisation was later introduced for rectified lin-
ear units (ReLU), which allows for exact variance calculations. Although commonly applied to
smoother activation functions such as GeLU or SiLU, its theoretical justification in those cases is
only approximate. In the context of SIREN, tailored initialisations have been proposed (Sitzmann
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et al., 2020; de Avila Belbute-Peres & Kolter, 2023) to control the distribution of pre-activations
layer by layer. However, these initialisations are only approximate and fail to offer stability guaran-
tees for deep SIREN architectures, where gradient growth remains uncontrolled, as we shall see later
in this work. We also note the recent work of Novello et al. (2025), which identified the same issues
and proposed an empirical method to control a network’s spectrum. However, their approach does
not provide principled control of either the frequency spectrum or the network gradients, leading to
significant adaptation effort for each problem.

Edge of Chaos (EOC). EOC is the critical initialisation regime where two key conditions are met:
forward pre-activation variances remain stable, and backward gradients neither explode nor vanish.
In the infinite-width mean-field limit, these properties follow from coupled recursions for layer-
wise variance and inter-sample correlations under the initialisation distribution, whose fixed points
determine both activation and gradient stability (Poole et al., 2016; Schoenholz et al., 2017). Yang
& Schoenholz (2017) showed that placing conventional networks near the EOC improves training
performance. While prior work has applied these ideas to INRs (Hayou et al., 2019; Seleznova &
Kutyniok, 2022; Hayou et al., 2022), the case of sine activation functions has not been considered.

1.3 CONTRIBUTIONS

This works brings a deeper understanding over INR initialisation for signal representation and train-
ing dynamic, with the following main contributions:

• An explicit derivation of the initialisation for the SIREN architecture, which allows us
to have an invariant distribution of the gradients across the layers and a possibly depth-
independant fourier spectrum. This is done by calculating the fixed point for the layer-wise
gradient and the network output distribution, in the limit of infinite width and infinite depth.

• The understanding of the key concepts for controlled frequency learning using w0, and how
the initialisation properties, through the NTK, shape the training dynamics of the network,
leading to a controlled spectrum of the learned function.

• A series of experiments presented in Appendix B demonstrates the effectiveness of the
proposed initialisation scheme on multi-dimensional and multi-frequency function approx-
imation, including audio signals, image denoising, and video reconstruction on the ERA-5
atmospheric reanalysis dataset. We further investigate the impact of this initialisation in the
context of PDE solving using physics-informed neural networks.

Although our motivation comes from INRs, the proposed closed-form initialisation for sine networks
at the edge of chaos is not specific to this setting. Because it stabilizes gradient propagation in
deep architectures with periodic activations, it may also benefit broader applications where periodic
features are desirable but have been limited by unsuitable initialisation schemes.

2 PRELIMINARIES

2.1 GENERALITIES ON IMPLICIT REPRESENTATION OF FUNCTIONS

Implicit neural representations have been introduced to find an approximation of a function f : Ω 7→
Rd from a dataset D = {(xi,yi)i∈I | yi = f(xi)} . The goal is then to build a parametrized function
Ψθ : Ω 7→ Rd. When this parametrized function is a neural network, it is commonly referred to as
implicit neural representation (INR), Neural Fields (NerF), or Neural Implicit Functions.

In this work, we formally denote the involved neural network Ψθ, which can be written as the
composition of L layers:

Ψθ = hθL ◦ · · · ◦ hθ1 (1)
where each layer ℓ ∈ {1, . . . , L} is composed of nℓ neurons, parameterized by a set of parameters
θℓ = (Wℓ,bℓ) where Wℓ ∈ Rnℓ×nℓ−1 are the weights and bℓ ∈ Rnℓ the bias, and n0 denotes
the input dimension of the network. Each layer also relies on an activation function σℓ applied
element-wise. The ℓ-th layer is thus defined by

hθℓ = σℓ ⊙
(
Wℓ ·+bℓ

)
. (2)
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For an input x ∈ Rd, the preactivation refers to

zℓ = Wℓhℓ−1 + bℓ where hℓ−1 = hθℓ−1
◦ . . . ◦ hθ1(x). (3)

The estimation of the parameters θ = {θℓ}ℓ∈{1,...,L} relies on the minimization of a loss L over a
dataset D = {(xi,yi)i∈I}:

min
θ

L(θ) := 1

|I|
∑

i∈I
∥Ψθ(xi)− yi∥22. (4)

The main challenges when considering INRs include selecting an appropriate architecture (i.e.,
parametrization and activation function), choosing a suitable initialization to insure output stability,
and determining and efficient optimization strategy. In this work, we will focus on SIREN archithec-
tures (described in the next section). Regarding minimization strategy, we focus on gradient-based
methods, leaving alternative minimization strategies outside the scope of our study.

2.2 CHOICE OF THE ARCHITECTURE

This work focuses on the so called SIREN architecture, which stands for Sinusoidal Representation
Network and introduced by Sitzmann et al. (2020). SIREN is a particular instance of equations 1-2
with a final linear layer:

Ψθ(x) = WL sin
(
WL−1 sin(. . . sin(W1x+ b1)) + bL−1

)
+ bL. (5)

This architecture enables the estimation of natural frequency decompositions in a broad range of
problems while ensuring differentiability. The latter property is particularly important for PDE-
related applications, such as physics-informed neural networks, where accurate derivatives are often
essential (Raissi et al., 2019).

3 WEIGHT INITIALIZATION

In the original SIREN initialization (Sitzmann et al., 2020), the weights and biases were chosen as

Wℓ ∼




U
(
−ω0

n0
, ω0

n0

)
, ℓ = 1,

U
(
−

√
6√
N
,

√
6√
N

)
, ℓ ∈ {2, . . . , L},

bℓ ∼ U
(
− 1√

N
, 1√

N

)
, ℓ ∈ {1, . . . , L}, (6)

where N ≡ nℓ is the number of neurons per hidden layer, assumed to be the same across all
layers, L − 1 is the number of hidden layers, and U denotes the uniform distribution. ω0 is an
important tunable parameter, originally chosen to be 30. It must be adjusted according to the network
architecture and the Nyquist frequency of the signal to be reconstructed (de Avila Belbute-Peres &
Kolter, 2023).

Sitzmann et al. (2020) argued that the pre-activation of the ℓ-th layer, defined in equation 3, fol-
lows the distribution zℓ ∼ N (0, 1), when the network is initialized following equation 6. In this
regime, most of the signal is sufficiently small to propagates through the quasi-linear range of the
sine activation function, while still preserving a meaningful nonlinear contribution. This has been
emphasized as a key feature of the SIREN architecture. However, the initialization choice relied on
approximate computations, did not provide constraints on gradients, and it has been observed that
estimation quality decreases in the large-depth limit under such initialization (Cai et al., 2024). To
address this, we propose the refined initialization:

Wℓ ∼




U
(
−ω0

n0
, ω0

n0

)
, ℓ = 1,

U
(
− cw√

N
, cw√

N

)
, ℓ ∈ {2, . . . , L},

bℓ ∼ N (0, c2b), ℓ ∈ {1, . . . , L}, (7)

with N (0, c2b) the normal distribution of zero mean and variance c2b . This initialization introduces
two parameters, cw and cb, which we set by enforcing constraints on the variance of pre-activations
and the rescaled layer-to-layer Jacobian:

σa =
√

Var[zℓ]ℓ,N→∞ and σg =

√
NVar[

∂hℓ+1

∂hℓ
]ℓ,N→∞.
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Using explicit computations to guarantee a normalized gradient flow across the network in the mean-
field limit, namely σg = 1, we will demonstrate in next sections that cb must lie on a curve parame-
terized by cw:

cb =

√
1− c2w

3
− 1

2
log

(
6

c2w
− 1

)
. (8)

We now derive two particular initialization choices along this curve. The first is the Sitzmann-
inspired choice, obtained by enforcing σa = 1, which was only approximately realized in Sitzmann
et al. (2020) and which we will later show does not produce the desired spectral behaviour. The
second, which we adopt as our proposed initialization, sets σa = 0 and will be shown to provide
much better spectral control (see Section 3.3). The corresponding parameter pairs are

σa = 1 : (cw, cb) =
√

6
1+e−2

(
1, e−1

√
3

)
, σa = 0 (Proposed) : (cw, cb) = (

√
3, 0), (9)

We illustrate the effect of these two initialization schemes on an image fitting problem in Fig. 2
and on several additional reconstruction tasks (see Appendix B). Across all depths L, the proposed
initialization with σa = 0 consistently yields more stable networks than the standard SIREN (Sitz-
mann) architecture initialized with Eq. equation 6 and other state-of-the-art approaches. In partic-
ular, as depth increases, most competing methods exhibit gradient explosion, which manifests as
spurious, noisy high-frequency artifacts in the reconstructed high-resolution images. We also find
that the σa = 1 initialization produces slightly noisier outputs for deep networks than the σa = 0
scheme, a behaviour explained in Section 3.3 and motivating our preference for the proposed initial-
ization.

Figure 2: Comparison of several INR architectures and initializations on an image-fitting problem
using an L = 10 hidden-layer neural network of width N = 256. We train the model on a set
(xi, yi)i∈I where xi is a location taken on a |I| = 128×128 uniformly spaced grid on Ω = [−1, 1]2

and yi is the associated image value at this location. The top row shows the fitted 128× 128 image.
The middle row shows the estimation on an augmented resolution (512× 512) to assess the model’s
generalization and the last row provides a zoom on part of the image. In all case, we use ADAM
optimizer with learning rate 10−4 for 10000 epochs. The state-of-the-art architecture considered in
this experiment are: SIREN (see (Sitzmann et al., 2020)), FINER (see (Liu et al., 2024)), WIRE (see
(Saragadam et al., 2022)), Tanh(FX) with Fourier features and Xavier initialization (see (Tancik
et al., 2020)), and the traditional ReLU with Positional Encoding (see (Nair & Hinton, 2010)). We
used for the SIREN based architectures the previously discussed schemes. We observe that the
proposed strategies (SIREN (σa = 0 and σa = 1) lead to significant improvement in the model
estimation with respect to other methods. For instance, it preserves sharp features compared to other
SOTA method such as Wire, Finer, that yields extremely poor results for deep neural networks.

3.1 PRE-ACTIVATION DISTRIBUTION

In the following, we derive the exact form of the pre-activation distribution in the limit of infinitely
wide and deep neural networks, explicitly accounting for the influence of the bias term, which turns

5
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out to be crucial. More precisely, we show that, for any initialization in the parameter space (cw, cb),
the pre-activation distribution converges to a fixed point. The proof is provided in Appendix A.1.
Theorem 3.1 (Pre-activation distribution of SIREN). Considering SIREN network described in
equation 5 where, for some cw, cb ∈ R+, and for every layer ℓ ∈ {2, . . . , L}, the weight matrix
Wℓ is initialized as a random matrix sampled from U(−cw/

√
N, cw/

√
N), W1 is sampled from

U(−w0/n0, w0/n0), the bias bℓ is initialized as a random vector sampled from N (0, c2b). Let
(zℓ)ℓ∈{1...,L} the pre-activation sequence defined in equation 3 and relying on an input x ∈ Rn0 .
Then, in the limits N,L → ∞, the pre-activation sequence (zℓ)ℓ∈N converges in distribution to
N (0, σ2

a) with

σ2
a = c2b +

c2w
6

+
1

2
W0

(
−c2w

3
e−

c2w
3 −2c2b

)
, (10)

where W0 is the principal real branch of the Lambert function. The sequence associated to the
variance of the pre-activation

(
Var(zℓ)

)
ℓ∈N converges to a fixed point σa, which is exponentially

attractive for all values of cw ̸=
√
3. For cw =

√
3 the convergence will be of rate O( 1ℓ ).

Remark 3.1. While the bias distribution is different in our initialization and in the original SIREN
scheme, the choice cw =

√
6 for the weight initialization can be recovered as a special case of

equation 10 by imposing σa = 1, assuming cb = 0, and by neglecting the correction term introduced
by the Lambert function. Using the expansion W0(x) = x + O

(
x2

)
, this correction term can be

estimated as ∼ e−2, which is small but not negligible1. Accounting for this correction term enables
more precise control over the pre-activation variance σa.

Remark 3.2. As stated in Theorem 3.1, the pre-activation variance converges exponentially fast to
σa as the depth L increases whenever cw ̸=

√
3. In that case, even relatively shallow networks

already have pre-activations that are effectively Gaussian with variance very close to the fixed point
σa. When cw =

√
3, this convergence becomes much slower. For our proposed choice σa = 0, this

means that the pre-activation variance decays toward zero only gradually with depth.

Deriving the fixed points of the pre-activation distribution is a necessary first step toward character-
izing the layer-wise gradient distribution and for establishing the optimal initialization value for cw
and cb, which we discuss in the next subsection.

3.2 GRADIENT DISTRIBUTION AND STABILITY

The distribution of Jacobian entries is another important property of neural networks that must
be carefully controlled during initialization to avoid gradient vanishing (He et al., 2015; Yang &
Schoenholz, 2017). In this work, we show that a tractable derivation is possible for the sine activa-
tion function. This result is described in Theorem 3.2. Combined with Theorem 3.1 it will enable
us to propose a principled initialization strategy provided in Proposition 3.1.
Theorem 3.2 (Jacobian distribution of SIREN). Let Jℓ = ∂hℓ/∂hℓ−1 denote the Jacobian of the
ℓ-th layer. Considering SIREN network described in equation 5, we have

Jℓ = diag(cos (zℓ)) Wℓ.

Under the same assumptions as Theorem 3.1, and maintaining the limit of large N , each entry of Jℓ

has zero mean and a variance σ̃2
ℓ , such that the sequence (Nσ̃2

ℓ )ℓ∈N converges to

lim
ℓ,N→∞

(Nσ̃2
ℓ ) = σg =

c2w
6

(
1 + e−2σ2

a
)
. (11)

For a given network, with input x and output Ψθ(x), Theorem 3.2 can be used to analyze the scaling
behavior of gradients with respect to both the network parameters θ and the input coordinates x. We
denote by ∂θℓΨ the gradient of the network output with respect to the parameters θℓ of layer ℓ, and
by ∂xΨ the gradient with respect to the input x. By applying the chain rule, we have :

∂Ψθ(x)

∂θℓ
=

∂Ψθ

∂hL−1
· · · ∂hℓ+1

∂hℓ

∂hℓ(x)

∂θℓ
,

∂Ψθ(x)

∂x
=

∂Ψθ(x)

∂hL−1
· · · ∂h2

∂h1

∂h1(x)

∂x
. (12)

1A more precise estimate of this correction term can be obtained using equation 30, to be derived later.
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These relations can be used to obtained scaling of the gradients variances with the network depth
and width (see Appendix A.4 for a derivation):

Var(∂θℓΨθ(x)) ∝ N−1
(
σ2
g

)L−ℓ−1
and Var(∂xΨθ(x)) ∝ ω2

0

(
σ2
g

)L−2
. (13)

From equation 13, we see that gradients in parameter space vanish or explode exponentially with
network depth L, unless the scaling factor Nσ2

g is close to 1. To conclude the analysis of the
statistical properties of SIREN networks and derive the initialization schemes provided in equations
7-9, we identify the values of cw and cb allowing to control the scaling of gradients i.e. σg = 1.
Proposition 3.1. Under the same assumptions as in Theorem 3.1, setting σg = 1 leads to the
weight–bias variance curve cb(cw) defined in equation 8. Furthermore, choosing σa = 0 (our
proposed initialization) or σa = 1 determines a specific pair (cw, cb) given in equation 9.

Figure 3: Experimental standard deviation
of the pre-activation distribution (left) and
of the layer-wise Jacobian entries distribu-
tion (right), as a function of the parame-
ters (cw, cb). The plain and dashed black
lines indicate the theoretical predictions
for σa = 1 and σg = 1, following The-
orems 3.1 and 3.2, respectively. The black
and red dots indicates the initialization
provided in Proposition 3.1, the Pytorch
dots corresponds to the default weight and
bias initialization, and the green dots to
the Sitzmann initialization.

The proof is given in Appendix A.3. We verified the validity of this theoretical analysis, involving
careful calculations of the Jacobian and pre-activation distributions, through numerical experiments
displayed in figure 3. These experiments were done 20 times using a SIREN neural network of width
N = 256 of depth L = 10, with input dimension n0 = 1, and output dimension nd = 1, w0 = 1,
and following the initialization scheme in equations 7-9. The neural network is then evaluated using
|I| = 500 input points xi uniformly spaced between [−1, 1] to obtain the studied distributions.

In the next section, we explain why choosing σa = 0 rather than σa = 1 provides better control over
the network’s frequency spectrum.

3.3 FOURIER SPECTRUM AND ALIASING

The need to constrain the Fourier spectrum of sinusoidal neural networks to prevent high-frequency
aliasing was noted in (Yüce et al., 2022), and a closed-form expression for the spectrum of sine-
based networks was later derived in (Novello et al., 2025, Thm. 3), showing that each additional layer
redistributes energy across Fourier modes. Since composing sine activations inherently broadens the
spectrum with depth, controlling this growth requires either limiting the depth or enforcing σa = 0.
In the latter case, deep layers are almost linear, because for zℓ ∼ N (0, σ2

a) we have sin(zℓ) ≈ zℓ
as σa → 0. Empirically, our initialization with σa = 0 indeed suppresses the emergence of higher
frequencies: as shown in Fig. 4, spectral broadening with depth is strongly reduced, and most of
the energy remains confined below w0, yielding a meaningful, depth-independent cutoff around w0.
The slow decay of σℓ toward zero described in Theorem 3.1 appears to compensate the nonlinearities
just enough to avoid both explosion and collapse of the spectrum, even in very deep networks, a
behaviour that remains unexplained and calls for further investigation.

In contrast, for σa = 1, and even more so under the Sitzmann initialization, the spectrum clearly
broadens with depth, and substantial energy appears beyond w0. This excess energy is exactly what
causes aliasing when the network input is discretized. For the PyTorch initialization, the opposite
behavior occurs: the spectrum collapses rapidly with depth, reflecting a vanishing-signal regime
caused by unnormalized gradients. Overall, this analysis supports our proposed initialization, which
constrains σa = 0 and motivates choosing w0 as the Nyquist frequency for sampled inputs. This
ensures that the network can represent all frequencies present in the data while avoiding aliasing in
the early stages of training.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: One-dimensional Fourier spectra of Ψθ for multiple depths L ∈ {4, 8, 16, 32}, driving
frequencies w0 ∈ {100, 1000} (rows), and initialization schemes (columns). Each curve shows the
magnitude of the discrete Fourier transform of Ψθ evaluated on an equispaced grid; colors encode
the depth L. The red vertical line marks w0/2π which corresponds to the input frequency encoded
by the first layers and the black vertical line marks w0. The colored backgrounds group the different
initializations (from left to right: proposed SIREN with σa = 0, SIREN with σa = 1, the initializa-
tion of (Sitzmann et al., 2020), and the default PyTorch initialization).

4 SCALING OF THE NEURAL TANGENT KERNEL WITH DEPTH AND
SIMPLIFIED LEARNING DYNAMICS

The Neural Tangent Kernel (NTK) framework is a linearized description of the training dynamics
around initialization, allowing one to study how the network evolves in the early phase of training
(Jacot et al., 2018). When training neural networks, we typically use gradient descent to minimize
the loss function, with updates θt+1 = θt − dt∇θL(θt), where dt is the learning rate and θt the
parameter vector at iteration t.

To simplify we restrict ourselves to a scalar output neural network (i.e., d = 1). Then, we have
for the mean-squared error loss L(θ) = ∑

i∈I ∥Ψθ(xi)− yi∥2/|I|, and in the continuous-time limit
dt → 0, the residuals u(xi, t) = Ψθt(xi)− yi satisfy

du(t)

dt
= Kθtu(t), Kθt,i,j = ∇θΨθt(xi) · ∇θΨθt(xj), (14)

where u(t) = (u(x1, t), . . . , u(x|I|, t)) and Kθt is the NTK matrix. Assuming the NTK remains
constant during training (Kθt ≡ Kθ0 ), the residuals evolve as

u(t) = exp(−tKθ0)u(0) =

|I|∑

i=1

e−tλi⟨u(0),vi⟩vi, (15)

where (λi,vi) are the eigenpairs of the initialized NTK Kθ0 , ordered so that λ1 ≥ · · · ≥ λ|I| > 0,
and ⟨·, ·⟩ the Euclidean scalar product. Thus, the early training dynamics is fully determined by the
spectral properties of the NTK at initialization.

Frequency bias in the NTK framework. Equation 15 shows that modes associated with large
eigenvalues decay quickly, while those with small eigenvalues decay slowly, with characteristic
timescale 1/λi. As illustrated in Fig. 5 for the 1D case, and as observed in related settings (see
e.g. (Wang et al., 2021)), the leading eigenmodes (small i) of the NTK can be identified with low-
frequency Fourier modes, whereas higher-frequency components (large i) correspond to smaller
eigenvalues λi. Figure 5 provides an overview of this behavior. This illustrates the spectral bias
of neural networks in the lazy training regime (i.e., nearly constant NTK) and emphasizes the im-
portance of controlling the spectrum {λi}|I|i=1 to accurately capture all relevant target frequencies.
A more detailed study of the overlap between NTK and Fourier modes, for different initialisation
schemes, is presented in Appendix B.2.2.

Empirical scaling of NTK eigenvalues and network gradients. To highlight the importance of
initialization in the large depth limit, we conducted an experiment comparing the original SIREN
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v0

−1 0 1
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−1 0 1

v2

−1 0 1

v3

−1 0 1

v4

−1 0 1

v5

x

First 6 eigenvectors of the NTK of a SIREN

Figure 5: The first six eigenvectors v0, . . . ,v5 of the NTK matrix Kθ0 , ordered by decreasing
eigenvalue λ0 > λ1 > · · · > λ5. The NTK matrix was computed numerically on a uniform grid
of |I| = 500 points over the interval Ω = [−1, 1] using a SIREN network of width N = 512 and
of depth L = 8 and using ω0 = 1. The eigenvectors exhibit increasingly oscillatory behavior as
the mode index grows, consistent with their interpretation as Fourier-like modes. This observation
confirms the spectral structure predicted by our analysis and highlights the tendency of the NTK to
prioritize low-frequency components associated with larger eigenvalues.

initialization (cf. equation 6), the new ones (cf. equations 7-9), and the Pytorch one. We varied the
depth L while fixing N = 256, |I| = 200, and ω0 = 1. In figure 6, we plot the normalized NTK
trace (mean eigenvalue) expressed as Tr(Kθ0)/|I|N , together with the gradient norm ∥∂xΨθ0∥ as
functions of network depth. We use the NTK trace as a computationally convenient proxy for the
typical eigenvalue behavior as depth increases. With the original SIREN initialization, we observe
exponential growth of both the NTK eigenvalues and the input gradients. In this case, increasing
depth accelerates training but also causes gradient explosion in input space. This corresponds to
spurious high-frequency components absent from the target signal, which degrade generalization,
here understood as smooth interpolation between data points. With PyTorch initialization, the NTK
eigenvalues decrease until reaching a plateau, while the gradient in input coordinate space vanishes.
By contrast, with our new initialisations, the NTK eigenvalues increases linearly with depth while
the gradients remain constant. Consequently, the effective learning rate increases with depth L,
while the input-space gradients stay normalized. These behaviors are confirmed in practical set-
tings, such as the image-fitting task shown in figure 2, and in additional experiments presented in
Appendix B.

Interpretation of the scalings. The scaling of gradients with σL
g is expected from section 3.2,

with σg ≈
√
1.2 for SIREN, σg = 1 for our proposed initialization, and σg =

√
1/3 for PyTorch

initialization. Similarly, it is possible to explain the NTK eigenvalue scaling. We note first that
diagonal element of the NTK matrix are Kθ0,i,i = |∇θΨθ0(xi)|2. From this and the zero mean
property of every gradient distribution, we relate the average eigenvalue of the NTK denoted λ̄ to
the variance of gradients in parameter space:

λ̄ = 1
|I| Tr(Kθ0) = N2

L∑

ℓ=1

Var [∇Wℓ
Ψθ0(xi)] +N

L∑

ℓ=1

Var [∇bℓΨθ0(xi)] , (16)

where Wℓ, bℓ are respectively a weight and a bias of the ℓ-th layer. The sum involving weights
parameters being dominant, we neglect the sum on bias terms in the following. When σ2

g ̸= 1, using
equation 12, we obtain a geometric sum, leading to

1
|I|N Tr(Kθ0) ∝

(σ2
g)

L+1 − 1

σ2
g − 1

. (17)

If σg > 1 (SIREN original), then λ̄ ∝ σ2L
g and the NTK explodes exponentially with depth L. This

exponential scaling for the NTK eigenvalues without proper initialization was observed experimen-
tally in (de Avila Belbute-Peres & Kolter, 2023), yet without precise discussion on the causes and
the effect of such behavior, since their focus was on the choice of ω0 rather than on weight and bias
initialization.

If σg < 1 (SIREN PyTorch), NTK eigenvalues become independent from the depth L in the large
depth limit, yielding slow convergence, together with vanishing gradients.

9
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If σg = 1 (SIREN σa = 0, 1), equation 17 does not apply. Each term of the sum on weight parame-
ters in equation 16 gives the same contribution, leading to λ̄ ∝ L, which is consistent with the results
plotted figure 6 for the σa = 1 initialization, for σa = 0 it seems that the NTK eigenvalues are con-
verging to a fix distribution, and we attribute that to finite size effect of our initialization, indeed
the convergence is really slow towards σa = 0, which seems to compensate the NTK eigenvalues
growth with depth, for finite depth networks.
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Figure 6: The left plot stands for the scaling of the mean eigenvalue of the NTK matrix over the
number of layer. The right plot stands for the scaling of the gradient of the network (in input
coordinate space) with the number of layers. The experimental setup and hyper-parameters are the
same as in figure 5, except for the network depth which varies here.

5 DISCUSSION, CONCLUSION, PERSPECTIVES

We proposed a new initialization scheme for sinusoidal neural networks that prevents gradient ex-
plosion and vanishing, and presented various applications, from noisy image fitting, video, and
audio reconstruction (Appendix B). The parametrization is derived analytically by examining the
variances of pre-activations and layer-to-layer Jacobians in the limit of infinitely wide and deep net-
works. This approach removes the need for architectural tricks such as skip connections or empirical
hyperparameter tuning to stabilize deep models. By analyzing both the neural tangent kernel and
input-space gradients, we showed that this initialization enables deep networks to train with learning
rates that scale linearly with depth, while suppressing spurious noise above the Nyquist frequency
in implicit neural representations. Whereas prior work motivated the use of sine activations by not-
ing that derivatives of SIRENs remain well-behaved, our study goes further by providing a deeper
theoretical analysis. We demonstrate that sinusoidal architectures not only preserve these desirable
properties but also admit stronger theoretical justification. A key take-away is that fixing the Ja-
cobian variance (σg = 1) is essential to control gradients, whereas setting the targeted fixed point
pre-activation variance (σa = 0) gives direct control over the network spectrum at initialization.

Although this study focuses on signal encoding with a quadratic loss, future work could extend the
approach to more complex losses, including physics-informed settings, with potential applications in
atmospheric and oceanic field reconstruction. Furthermore, our study focuses solely on controlling
the variance of the weights at initialization. One could broaden this perspective by considering
additional structural properties of the network such as the distribution of singular values of the layer
Jacobians (presented in Appendix B.1), which play a crucial role in propagating information across
the network. More broadly, our results may encourage wider adoption of sine activations in machine
learning.
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REPRODUCIBILITY

Code Implementation. All source code used in our experiments is provided in the supplementary
material, including implementations of the architectures used for comparison.

Models and Architectures. Details on the choice of activation functions are given in the main
text. Initialization methods and architectural specifications for each model are described within the
corresponding experimental sections.

Experiments. Each experiment is reported with its hyperparameters (e.g., learning rate, optimizer,
number of epochs) in the relevant sections or figures. All experiments were run with fixed random
seeds to ensure exact reproducibility of the reported results.
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6 EXPERIMENTAL APPENDIX

6.1 END TO END JACOBIAN, SINGULAR VALUE SPECTRUM

As discussed in (Pennington et al., 2017), an important notion of stability in neural networks is
captured by the singular value distribution of the end-to-end Jacobian: when these singular values
concentrate around 1, the network preserves the norm of signals during backpropagation. This
property, known as dynamical isometry, is closely linked to stable and efficient training and will be
the subject of further investigation for SIREN architectures in future work.

As a preliminary step toward this analysis, we plot figure 20 the full singular value distribution of
the end-to-end Jacobian obtained with our proposed initialization. Since we focus on INR settings,
we define the end-to-end Jacobian as the matrix of size N × N , where N denotes the width of the
network:

J =
∂hL−1

∂h1

Once again, our initialization with σa = 0 exhibits a stable and nearly unitary normalized maxi-
mum singular value, independently of network depth. This behaviour is not observed for the other
initialization schemes, where the largest singular value either grows steadily with depth or collapses
rapidly, as in the case of the PyTorch initialization. However, our initialization does not achieve full
dynamical isometry, indicating that there remains room for improvement while still satisfying the
key constraints established earlier. Exploring additional constraints on the weight distribution may
therefore lead to enhanced stability with respect to dynamical isometry.

Figure 7: Full singular value spectrum evolution with depth for the proposed initializations σa = 0
and σa = 1, for the original Sitzmann initialization, and for the PyTorch default weight initialization.
Each spectrum was averaged over five independently initialized networks. The Jacobian distribution
was computed twice and averaged, using 10 sample points on the domain [−π, π].

6.2 NTK SPECTRUM AND FOURIER OVERLAP

6.2.1 NTK SPECTRUM

In the main text, we restricted our analysis of the Neural Tangent Kernel (NTK) spectrum to its trace,
which captures only its mean behaviour. However, the trace alone does not reflect the full structure
of the spectrum. In this section, we therefore examine the complete NTK eigenvalue distribution in
order to highlight its finer characteristics.

The full spectrum analysis shown figure 21 reinforces our previous observations based on the NTK
trace, namely that the Sitzmann and PyTorch initializations become extremely ill-conditioned as
depth increases. In contrast, the σa = 1 and σa = 0 initializations remain comparatively stable.
One can observe a noticeable lifting of the eigenvalues at high indices for σa = 1, whereas this
lifting is much smaller and more uniform under the σa = 0 initialization. This behaviour could be
directly related to aliasing phenomena in such networks, where high frequencies can be used earlier
to fit a signal.

This interpretation is further supported by the next analysis, where we show that under ill-
conditioned initializations the low-index NTK eigenvectors begin to encode increasingly high fre-
quencies as depth grows.
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Figure 8: Full NTK eigenspectrum evolution with depth for the proposed initializations σa = 0 and
σa = 1, for the original Sitzmann initialization, and for the PyTorch default weight initialization.
Each spectrum was averaged over five independently initialized networks. The NTK was computed
on the domain [−π, π] using 256 sample points.

6.2.2 FOURIER OVERLAP

To support our NTK analysis and our explanation of spectral bias, we previously assumed (see
Figure 5) a form of alignment between the eigenvectors of the SIREN NTK and the Fourier modes.
To verify this assumption for our different initialization schemes, we examined the power spectrum
of the NTK eigenvectors, which corresponds to their overlap with the Fourier modes:

|⟨vn, ϕω⟩|2 =

∣∣∣∣
∫

Ω

vn(x) e
−iωx dx

∣∣∣∣
2

. (18)

The previous analysis reveals that the only initialization preserving the expected ordering, low fre-
quencies corresponding to low NTK eigenvalues, is our proposed initialization with σa = 0. This
observation is consistent with our Fourier-spectrum study (see Section 3.3). Indeed, we observe in
Figure 22 an almost perfect alignment between the Fourier modes and the NTK eigenspectrum for
frequencies below w0.

For the other initialization schemes, this alignment deteriorates substantially as depth increases,
calling into question the relevance of NTK-based explanations of spectral bias. Indeed, in the
NTK regime, the first modes learned are no longer the low-frequency components; instead, higher-
frequency modes increasingly dominate for σa = 1 and the Sitzmann initialization. For the PyTorch
initialization, the situation is reversed: the entire spectrum collapses, preventing any meaningful
frequency ordering.

6.3 AUDIO FITTING EXPERIMENTS

To investigate the effect of the proposed initialization on the network’s ability to fit high–frequency
signals, we consider a 7-second audio clip sampled at the standard rate of 44,200 Hz. To expose
potential generalization effects, we subsample the signal by a factor of three and set w0 = 7000,
which is approximately the Nyquist frequency corresponding to this reduced sampling rate. The
results are shown figure 23.

Both the SNR and MSE metrics show a consistent improvement when using our proposed initial-
ization on generalization tasks, while also providing strong training performance. The initialization
with σa = 1 also achieves competitive results, though its generalization accuracy remains notice-
ably lower. For the other initialization schemes, even when training performance is satisfactory, the
generalization error remains far too large to reliably encode a continuous signal.

6.4 VIDEO FITTING EXPERIMENTS

Video fitting on ERA-5 wind fields. To evaluate the impact of the initialization on a complex
video-fitting task, we consider the hourly ERA-5 atmospheric reanalysis on the spherical Earth,
focusing on the 10 m meridional (South-North) wind component v(t, λ, φ).
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Figure 9: Overlap evolution with depth of the NTK eigenbasis over the Fourier modes, for the
proposed initializations σa = 0 and σa = 1, the original Sitzmann initialization and the initialization
with Pytorch default initialization weight. The power spectrum has been calculated using w0 = 1,
over the interval [−64, 64] using 512 points. w0 has been chosen to be two times smaller than the
Nyquist frequency of the input points for the sake of vizualization. The horizontal red dashed lines
correspond to the frequencies ±ω0.

Where the data is defined on a regular longitude–latitude grid with

λ ∈ [0, 360), φ ∈ [−90, 90],

discretized into
Nλ = 1440 and Nφ = 720

spatial points, respectively. We restrict ourselves to the first Tmax = 30 hourly time steps. For
training, we form a set of input–output pairs

(
xi,yi

)
i∈I,
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Figure 10: Comparison of several state-of-the-art methods (described in Figure 2) with SIREN using
our proposed initialization. All networks, with depth L = 15 and width N = 256, were trained for
10,000 epochs using the ADAM optimizer with a learning rate of 3× 10−5.

where each index i corresponds to a triplet (t, λ, φ) on this spatio-temporal grid. The target yi is
obtained from v(t, λ, φ) by a standard affine normalization (subtracting a global mean and dividing
by a global standard deviation computed over the first Tmax frames).

Each input vector is defined as
xi =

(
τ(ti), λi, φi

)
,

where the time coordinate τ(t) is obtained via a linear rescaling of the discrete time index t such that
the effective Nyquist frequency along the time axis matches that of the two spatial axes (longitude
and latitude). This ensures a comparable frequency bandwidth in all three input directions and allows
us to pick w0 = 0.7 for every direction.

For training, we randomly subsample a fixed fraction of the full spatial gridded points {1, . . . , Nλ}×
{1, . . . , Nφ} (10% of all points, justifying the choice of w0), while for evaluation we use the com-
plete spatio-temporal grid.

Regarding the batching, to avoid I/O bottlenecks when accessing the dataset, we organize the data
into time-slice batches. Concretely, we consider a spatio-temporal grid

t ∈ {0, . . . , Tmax − 1}, λ ∈ {λ1, . . . , λNλ
}, φ ∈ {φ1, . . . , φNφ},

and for each fixed time index t we form a batch containing many spatial points on the sphere. For
a given time t, we define a (possibly subsampled) index set It ⊂ {1, . . . , Nλ} × {1, . . . , Nφ}, and
construct the corresponding mini-batch

Bt =
{(

xt,j,k,yt,j,k

)
: (j, k) ∈ It

}
,

where each input is xt,j,k =
(
τ(t), λj , φk

)
and the target yt,j,k is the normalized wind value at time

t and location (λj , φk).

We benchmark previous state-of-the-art INR methods and our SIREN models with different ini-
tialization schemes on this ERA-5 re-analysis to assess their ability to fit and generalize complex
spatio-temporal dynamics on the sphere.

Once again, our initialization with σa = 0 yields better generalization performance, even on com-
plex tasks and geometries such as video fitting on the sphere. In contrast, the Sitzmann and σa = 1
initializations tend to produce noticeable noisy artifacts. Moreover, the FINER and WIRE methods
appear clearly unstable for high-depth networks. We also highlight the comparatively good perfor-
mance of the positional encoding ReLU (PE) network in this setting.

6.5 DENOISING EXPERIMENTS

We consider a grayscale image y⋆ : Ω ⊂ R2 → [0, 1] (the astronaut image), defined on a
continuous domain Ω. For training, we sample a regular grid of locations

(xi)i∈I, I = {1, . . . , 128} × {1, . . . , 128},

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 11: Comparison over three different time frames of several state-of-the-art methods on the
ERA-5 reanalysis dataset (first 30 hours), using networks with width N = 256 and depth L =
15. All models were trained for 6,000 epochs with the ADAM optimizer and a Reduce-on-Plateau
learning-rate scheduler, starting from an initial learning rate of 10−3. For batching, we used the
time-slice structure described above with 5 gradient accumulation steps. To reduce computation
time, we employed gradient scaling together with automatic mixed-precision (AMP) training.

.

which we identify with points in [−1, 1]2. The clean training targets are

yi = y⋆(xi) ∈ [0, 1], i ∈ I.

To study denoising and the implicit spectral regularization of different initializations, we corrupt
only the training targets with synthetic high-frequency noise. Let N = 128 be the spatial resolution
of the training grid and let

fNyq =
N

4
denote the associated Nyquist frequency (in cycles per unit length on [−1, 1]). We construct a high-
frequency noise field as a superposition of K random waves whose spatial frequencies lie strictly
above fNyq:

η(x) =

K∑

k=1

sin
(
2π

(
f (k)
x x1 + f (k)

y x2

)
+ ϕ(k)

)
,

where for each k we draw f
(k)
x , f

(k)
y ∼ U

(
2fNyq, 4fNyq

)
, ϕ(k) ∼ U(0, 2π), and x = (x1, x2)

⊤.
We then normalize this field on the training grid to have zero mean and unit variance,

η̃i =
η(xi)− 1

|I|
∑

j∈I η(xj)√
1
|I|

∑
j∈I

(
η(xj)− 1

|I|
∑

ℓ∈I η(xℓ)
)2 , i ∈ I,

and scale it by a prescribed noise level σnoise > 0. The noisy training targets are finally defined as

ỹi = yi + σnoise η̃i, i ∈ I,

We train all INR models on the noisy dataset {(xi, ỹi)}i∈I and evaluate on a higher-resolution grid
covering the full image domain, using the clean image y⋆ as reference. This setup isolates the ability
of each initialization to act as an implicit frequency-space regularizer for denoising, independently
of network depth.

Figure 25 illustrates our claim that the proposed initialization acts as a regularizer on the frequency
content that the network can represent. Indeed, we observe higher SNR and lower MSE for our ini-
tialization σa = 0, together with a significantly larger training loss. This indicates that the network
does not fit all of the high-frequency background noise, but instead focuses on reconstructing the
underlying clean signal.
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Figure 12: Results of the denoising experiments for the different state-of-the-art methods,using
networks with width N = 256 and depth L = 10. All models are trained on the noisy dataset
{(xi, ỹi)}i∈I described above using σnoise = 0.05 and evaluated on the original high-resolution
image of size 512 × 512 to assess denoising performance. The networks were trained for 10 000
epochs using the ADAM optimizer with a learning rate of 10−4.

6.6 PHYSICS INFORMED EXPERIMENTS

Physics-Informed Neural Networks (PINNs) approximate the solution u of a differential equation
with Ψθ by embedding the underlying physical laws into the loss function. Given a PDE of the form

N [u](x) = f(x), x ∈ Ω,

with boundary/initial conditions B[u] = g(x) on ∂Ω, the neural network Ψθ is trained by minimiz-
ing the composite loss

L(θ) = λf

∑

xf∈Df

|N [Ψθ](xf )− f(xf )|2 + λb

∑

xb∈Db

|B[Ψθ](xb)− g(xb)|2 .

where Df and Db denote collocation points in the domain and on the boundary. Automatic differ-
entiation is used to compute N [Ψθ], allowing the network to satisfy the governing equations as part
of the training process.

In order to compare the several model at stake and the impact of the initialization, we used the
PINNacle benchmark (Hao et al., 2024), which allowed us to have a pre-builtin solver for each
differential equation we studied.

6.6.1 BURGER 1D

We consider the one-dimensional viscous Burgers equation, written in the generic PDE form

N [u](x, t) = ut + uux − νuxx = 0, (x, t) ∈ Ω , ν =
0.01

π
.

The spatio-temporal domain is defined as Ω = [−1, 1]× [0, 1].. The initial and boundary conditions
are given byu(x, 0) = − sin(πx), u(−1, t) = u(1, t) = 0.

We observe figure 26 that the different initialization schemes yield very similar results, with the ex-
ception of the FINER and ReLU networks. Interestingly, for this specific task, the original Sitzmann
initialization appears to provide the most favorable performance. We conjecture that this behavior
is related to the nature of the Burgers equation, whose sharp propagating front can be effectively
represented even under a highly ill-conditioned gradient distribution.

6.6.2 STATIONARY NAVIER-STOKES 2D

We consider the stationary incompressible 2D Navier-Stokes equations

Nu[u, p] = (u · ∇)u+∇p− ν∆u = 0, Np[u] = ∇ · u = 0,
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Figure 13: Results of the Burgers 1D solutions for the different state of the art methods, using a
network with width N = 256 and L = 15. The networks were trained for 10 000 epochs using the
ADAM optimizer with a learning rate of 10−4. For the SIREN based architectures, we chose w0 = 2.

for the velocity field u = (u, v) and pressure p, with ν = 1.

The spatial domain Ω is defined as

Ω = ([0, 8]2) \
⋃

i

Ri,

where each Ri denotes a circular obstacle. For further details about the boundary conditions please
see the original PINNacle benchmark (Hao et al., 2024).

Figure 14: Results of the Navier-Stokes 2D solutions for the different state of the art methods, using
a network with width N = 256 and L = 15. The networks were trained for 10 000 epochs using the
ADAM optimizer with a learning rate of 10−4. For the SIREN based architectures, we chose w0 = 2.

The impact of initialization observed figure 27 is far more pronounced in that case than for Burger.
We observe that having proper control over the spectral properties of the initialization can lead
to a significant improvement in performance. The Sitzmann initialization exhibits, as expected,
problematic high-frequency components, while other models such as FINER, Tanh, and ReLU fail
completely to reconstruct the physical solution.

6.6.3 HEAT EQUATION IN COMPLEX GEOMETRY

We consider the transient 2D heat equation

N [u](x, t) = ut −∆u = 0, (x, t) ∈ Ω× [0, 3].

The spatial domain Ω is defined as

Ω = ([−8, 8]× [−12, 12]) \
⋃

i

Ri,

where each Ri denotes a circular obstacle. For further detail about the boundary conditions please
see the original PINNacle benchmark (Hao et al., 2024).

The results for different initializations are shown figure 28. The distinction between σa = 1 and
σa = 0 is striking. The former produces noticeably noisy and unstable solutions, whereas setting
σa = 0 successfully reproduces the behavior of the ground-truth solution. For the other initialization
methods, the observations are consistent with those made in the Navier–Stokes experiment.
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Figure 15: Results of the 2D heat equation experiments for the different state of the art methods,
using a network with width N = 256 and L = 15. The networks were trained for 10 000 epochs
using the ADAM optimizer with a learning rate of 10−4. For the SIREN based architectures, we chose
w0 = 1.

6.7 SYNTHETIC EXPERIMENTS

6.7.1 1D FITTING EXPERIMENTS

For the 1D fitting experiments, we generated synthetic data by sampling from a multi-scale function:

f1d(x) = sin(3x) + 0.7 cos(8x)

+ 0.3 sin(40x+ 1) + exp(−x2)

To explore the impact of initialization on the performance of various neural network architectures,
we studied two tasks: function fitting and PDE solving. Since image and video fitting reduce to
function fitting, we focus on it. This choice lets us control the target function’s frequency content.
As a result, we can probe the different scales present in the data.
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Figure 16: 1d Averaged generalization and training error for the 1D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.

The results plotted figure 29 show that our proposed initialization matches or exceeds the accuracy
of the traditional SIREN architecture for fitting a function. Moreover, it delivers significantly lower
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generalization error compared to the original SIREN. Notably, the Tanh-based positional-encoding
network also shows strong generalization performance, despite its slightly higher training error.

6.7.2 2D FITTING EXPERIMENTS

We applied the same methodology to a two-dimensional, multi-scale test function:

f2d(x, y) = sin(3x) cos(3y) + sin(15x− 2) cos(15y)

+ exp
(
− (x2 + y2)

)
,

for (x, y) ∈ [−1, 1]2. The exponential term ensures no architecture can represent the function
trivially. We sampled 3600 random training points, giving a Nyquist frequency above 15. Each
network was trained for 5000 epochs using Adam (learning rate 10−4) under various initialization
schemes. We then evaluated generalization error on 10 000 test points. The comparative results
appear in Fig. 30.
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Figure 17: 2d Averaged generalization and training error for the 2D fitting problem. The results
are averaged over 10 runs for each architecture of width N = 1238. The error bars represent the
standard deviation of the results.

The results mirror the 1D fitting experiments. Our proposed initialization clearly outperforms all
other architectures on the generalization task. At the same time, it maintains a very low training
error, comparable to the SIREN architecture.

6.7.3 3D FITTING EXPERIMENTS

For the 3D fitting experiments, we use the same framework as in 1D and 2D. We test a three-
dimensional function with multi-scale features:

f3d(x, y, z) = sin(5x) cos(12y) sin(3z)

+ exp
(
− (x2 + y2 + z2)

)
,

for (x, y, z) ∈ [−1, 1]3. The exponential term prevents trivial representation by any architecture. We
sample 8000 random training points, ensuring a Nyquist frequency above 12. Each network trains
for 5000 epochs using Adam with learning rate 10−4 under various initialization schemes. We then
evaluate generalization error on 70 000 test points. The results appear in Fig. 31.

Once again, our proposed initialization delivers strong results. It clearly outperforms all other archi-
tectures on generalization. Its fitting error remains very low, only slightly above the classic SIREN.
Interestingly, as the number of layers increases, SIREN’s training error decreases alongside rising
high-frequency content. This suggests that fitting high frequencies may harm generalization—a
drawback our method avoids.
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Figure 18: 3d Averaged generalization and training error for the 2D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.
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A MATHEMATICAL APPENDIX

A.1 INPUT DISTRIBUTION

Theorem (Restatement of Theorem 3.1). Considering SIREN network described in equation 5
where, for some cw, cb ∈ R+, and for every layer ℓ ∈ {2, . . . , L}, the weight matrix Wℓ is ini-
tialized as a random matrix sampled from U(−cw/

√
N, cw/

√
N), and the bias bℓ is initialized

as a random vector sampled from N (0, c2b). Let (zℓ)ℓ∈{1...,L} the preactivation sequence defined
in equation 3 and relying on an input x ∈ Rn0 . Then, in the limit of large N , the preactivation
sequence (zℓ)ℓ∈N converges in distribution to N (0, σ2

a) where

σ2
a = c2b +

c2w
6

+
1

2
W0

(
−c2w

3
e−

c2w
3 −2c2b

)
(19)

with W0 is the principal real branch of the Lambert function. Additionally, the sequence associated
to the variance of the preactivation

(
Var(zℓ)

)
ℓ∈N converges to a fixed point σa, which is exponen-

tially attractive for all values of cw ̸=
√
3.

Proof. The proof can be split in three steps: (i) prove that the sequence of preactivations follows a
Gaussian distribution (cf. Lemma A.1), (ii) give an expression of the variance of the output of a sin
activation when the input follows a zero-mean Gaussian distribution of s.t.d. σa (cf. Lemma A.2),
(iii) provides the expression of the variance of each element of the preactivation sequence using the
result in (ii) and proves its convergence to a fixed point σa (cf. Lemma A.3).

Lemma A.1. Considering SIREN network described in equation 5 where, for some cw, cb ∈ R+,
and for every layer ℓ ∈ {2, . . . , L}, the weight matrix Wℓ is initialized as a random matrix sampled
from U(−cw/

√
N, cw/

√
N), W1 is sampled from U(−w0/n0, w0/n0), and the bias bℓ is initialized

as a random vector sampled from N (0, c2b). Let (zℓ)ℓ∈{1...,L} the preactivation sequence defined
in equation 3 and relying on an input x ∈ Rn0 . Then, in the limit of large N , each element of the
preactivation sequence (zℓ)ℓ∈N is distributed according to a zero-mean Gaussian distribution.

Proof. We recall that for the first layer, h0 = x and, for every ℓ ∈ {1, . . . , L},

hℓ = sin
(
Wℓhℓ−1 + bℓ

)
.

Since the sine activation is an odd function, it preserves the zero-mean property of any distribution:
if zℓ = Wℓhℓ−1 + bℓ has zero mean, then hℓ will also have zero mean. This property propagates
layer by layer.

As W1 and b1 are assumed to have zero mean (by definition, cf. equation 7) and x is a deterministic
vector, it ensures that the first-layer pre-activation has zero-mean. Moreover, as Wℓ and bℓ are
assumed to have zero mean the zero-mean property holds for all subsequent pre-activations zℓ and
hℓ.

Second, we prove that the preactivation sequence is distributed according to a Gaussian. We first
rewrite each element of the preactivation sequence as

zℓ,i =
N∑

j=1

Wℓ,i,jhℓ−1,j + bℓ,i . (20)

As a sum of two Gaussian stays Gaussian and because bℓ is assumed to be Gaussian with a standard
deviation σb, the main purpose here is then to prove that

∑N
j=1 Wℓ,i,jhℓ−1,j follow a Gaussian

distribution.

Thanks to the Central Limit Theorem, whatever is the distribution of hℓ−1,j , the term∑N
j=1 Wℓ,i,jhℓ−1,j converges in distribution to a Gaussian distribution in the limit of large N . Since

the bias is also normally sampled, each component zℓ,i follows a gaussian distribution in the same
large N limit, with zero mean and a variance denoted σ2

a.
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To compute this variance, let us first compute the variance of each summand denoted σ2
ℓ,i,j , given

by the product of two independent random variables with zero mean, namely Wℓ,i,j and hℓ−1,j ,

σ2
ℓ,i,j = Var [Wℓ,i,j ] Var [hℓ−1,j ] , . (21)

Since Wℓ,i,j is uniformly distributed on [−cw/
√
N, cw/

√
N ], we have:

Var [Wℓ,i,j ] =
c2w
3N

. (22)

While the variance of hℓ−1,j is still unknown, we can express it from the knowledge of zℓ−1, leading
to

σ2
ℓ,i,j =

c2w
3N

Var [sin(zℓ−1,j)] . (23)

whose expression of Var [sin(zℓ−1,j)] will be provided later.

As the bias variance follows a Gaussian distribution as described in equation 7, the variance of all
the elements of the preactivation zℓ is

σ2
ℓ =

c2w
3
Var [sin(zℓ−1)] + c2b . (24)

Lemma A.2. Let z be a normally distributed random variable and zero mean z ∼ N (0, σ2). Then
we have :

Var [sin (z)] =
1

2

(
1− e2σ

2
)
. (25)

Proof of Lemma A.2. The proof combined the properties of the Gaussian distribution with the fact
that the sine function is an odd function. We have:

Var [sin (z)] = E
[
sin2(z)

]
− E [sin(z)]

2

Since sin is odd and since the expectation of z is zero, we have E [sin(z)] = 0. In addition, using
sin2(z) = (1− cos(2z))/2, we obtain

E
[
sin2(z)

]
=

1

2
− 1

2
E [cos(2z)] .

The characteristic function of the Gaussian distribution with zero mean and variance σa is given by:

gz(t) = E(eitz) = e−
1
2 t

2σ2

.

Now we notice that
E [cos(2z)] = E

[
ℜ
[
ei2z

]]
= ℜ [gz(2)] = e−2σ2

a .

The first equality uses the linearity of the mean. This leads to the final result:

Var [sin (z)] =
1

2

(
1− e−2σ2

)
.

Lemma A.3. Considering SIREN network described in equation 5 where, for some cw, cb ∈ R+,
and for every layer ℓ ∈ {1, . . . , L}, the weight matrix Wℓ is initialized as a random matrix sam-
pled from U(−cw/

√
N, cw/

√
N), and the bias bℓ is initialized as a random vector sampled from

N (0, c2b). Let x ∈ Rn0 . Then, in the limit of large N , the preactivation sequence (zℓ)ℓ∈{1...,L}
defined in equation 3 is distributed according to a Gaussian distribution with zero-mean and, for
every ℓ, a variance

σ2
ℓ =

c2w
6

(
1− e−2σ2

ℓ−1

)
+ c2b

Moreover, the sequence (σ2
ℓ )ℓ∈N converges to

σ2
a = c2b +

c2w
6

+
1

2
W0,−1

(
−c2w

3
e−

c2w
3 −2c2b

)
,

with W0,−1 the two real branches of the Lambert W function. And for cw ̸=
√
3, this convergence is

exponentially fast.
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Proof of Lemma A.3.

Fixed Point Value : Combining equation 24 and equation A.3, the variance of the pre-activation at
layer ℓ is

σ2
ℓ =

c2w
6

(
1− e−2σ2

ℓ−1

)
+ c2b

To characterize the fixed point of the sequence (σ2
ℓ )ℓ∈N, we define a function f as

f(x) =
c2w
6

(
1− e−2x

)
+ c2b . (26)

The fixed point of this function is given by the solution of the equation f(x) = x. Rearranging the
different term gives:

c2w
6

+ c2b − x =
c2w
6
e−2x. (27)

Using y =
c2w
6 + c2b − x yields

ye−2y =
c2w
6
e−2(

c2w
6 +c2b).

Then, using the definition of the real valued Lambert W function, we get

y = −1

2
Wk

(
−c2w

3
e−2(

c2w
6 +c2b)

)
, where k ∈ {−1, 0}.

The W0 branch is called the principal branch and is defined on (−e−1,+∞). The W−1 branch is
defined for (−e−1, 0). To obtain a positive variance, the branch to consider is W0, as illustrated
numerically in figure 19.

Figure 19: The σa solution emerging from the W0 branch on the left and W−1 branch on the right

Convergence Speed : To quantify the convergence towards the fixed point σ2
a, consider the deriva-

tive of f at the fixed point:

f ′(σ2
a) =

c2w
3
e−2σ2

a .

The fixed point is exponentially attractive whenever f ′(σ2
a) < 1, which is immediately satisfied for

cw <
√
3. For cw >

√
3, Lemma A.3 gives

f ′(σ2
a) = 2(−f(σa) +

c2w
6

+ c2b) = −W0

(
− c2w

3 e−c2w/3−2c2b

)
.

Since
− 1

e < − c2w
3 e−c2w/3−2c2b < 0,
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the properties of the principal branch W0 imply |f ′(σ2
a)| < 1. Hence, the fixed point is exponentially

attractive for all values of cw ̸=
√
3, and convergence occurs rapidly. For cw =

√
3, the map f can

be written

f(x) =
1

2

(
1− e−2x

)
, x ≥ 0.

A Taylor expansion at x = 0 yields

f(x) = x− x2 +
2

3
x3 +O(x4),

so that f is tangent to the identity at the origin, i.e. f(0) = 0 and f ′(0) = 1. Moreover, since
f(x) < x for all x > 0, the map f admits 0 as its unique fixed point on [0,∞), and any sequence
(σℓ)ℓ≥0 defined by σℓ+1 = f(σℓ) with σ0 > 0 is strictly decreasing and converges to 0. Furthermore
thanks to the previous extension it fits into the general class of one-dimensional parabolic maps
studied in (Coll et al., 2020, Theorem 1). That theorem provides a complete asymptotic expansion
of the orbit (σℓ); in particular,

σℓ ∼
1

ℓ
as ℓ → ∞.

This concludes the proof of the Lemma A.3, and of the Theorem 3.1.

A.2 GRADIENT DISTRIBUTION

Theorem (Restatement of Theorem 3.2). Let Jℓ = ∂hℓ/∂hℓ−1 denote the Jacobian of the ℓ-th
layer. Under the same assumptions a Theorem 3.1 we have

Jℓ = diag(cos (zℓ)) Wℓ.

In the limit of large N , each entry of Jℓ has zero mean and a sequence of variance σ̃2
ℓ such that the

sequence (σ̃2
ℓ )ℓ∈N that converges to

σ2
g =

c2w
6N

(
1 + e−2σ2

a
)
.

Proof. An element of the Jacobian of the ℓ-th layer are writen as:

∂hℓ,i
∂hℓ−1,k

= Wℓ,i,k cos




N∑

j=1

Wℓ,i,jhℓ−1,j + bℓ,i


 = Wℓ,i,k cos (zℓ,i)

with zℓ,i the ith component of pre-activation vector defined in equation 3. In the limit of large
width N∞ Wℓ and zℓ are independent (leave-one-out justification), resulting in the independence
of variable Wℓ,i,k and cos (zℓ,i). The variance of their product denoted σ̃2

ℓ can then be expressed as
the product of their variance:

σ̃2
ℓ = Var [Wℓ,i,k] Var [cos (zℓ,i)] .

Considering the same arguments as for Theorem 3.1 and replacing sin by cos, the sequence (σ̃ℓ)ℓ∈N
converges to

σ2
g =

c2w
6N

(1 + e−2σ2
a),

with σ2
a the limit variance of the pre-activation, given by Theorem 3.1.
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A.3 PROOF OF EQUATION 8 AND INITIALIZATION 9

We propose to initialize the weights and biases of SIREN networks as follows:

Wℓ ∼




U
(
−ω0

n0
, ω0

n0

)
, ℓ = 1,

U
(
− cw√

N
, cw√

N

)
, ℓ ∈ {2, . . . , L},

and
bℓ ∼ N (0, c2b), ℓ ∈ {1, . . . , L}.

To control the distribution scaling of gradients, following equation 11, we impose σ2
g = 1, i.e.,

c2w
6

(
1 + e−σa

)
= 1. (28)

Let’s recall that the fix point σa verifies :

σ2
a =

c2w
6

(
1− e−2σ2

a

)
+ c2b

From equation 28 and , we easily get

cb =

√
1− c2w

3
− 1

2
log

(
6

c2w
− 1

)
. (29)

Combining this result with equation 28 leads to an implicit equation for c2b .

We discuss in the text two particular points, corresponding to σa = 0 and σ1 = 1, respectively:

• The case σa = 0 (proposed initialization) leads to (cw, cb) = (
√
3, 0).

• The case σa = 1 leads to c2w = 6/(1 + e−1). To obtain an explicit expression for cb, it is
convenient to use the fixed-point equation 27 with x = 1, leading to:

c2w
6

(
1− e−2

)
+ c2b = 1, (30)

which, using equation equation 28, simplifies to

c2b =
c2we

−2

3
. (31)

A.4 DERIVATION OF THE PROPOSED SCALING

Let Ψθ(x) defined as in equation 5 a scalar output function, initialized as in the previous theorems,
and considering a given value of σg resulting from the initialization.

Derivation of the parameter-wise Gradient scaling: Considering a weight-parameter Wℓ, i, j

with ℓ > 1 of the ℓ-th layer, we study the scalar ∂Ψθ(x)
∂Wℓ,i,j

, which can be rewritten as :

∂Ψθ(x)

∂Wℓ,i,j
=

∂Ψθ

∂hL−1

∂hL−1

∂hL−2
· · · ∂hℓ+1

∂hℓ

∂hℓ(x)

∂Wℓ,i,j

Then from theorem 3.2 under the choice of our initialization we know that the Jacobian matrices
Jℓ = ∂hℓ/∂hℓ−1 have variance σ2

g/N in the limit of large l and large N . Moreover, we have from
the definition of Ψθ the expression of the vector ∂Ψθ

∂hL−1
= WL with Var(WL) ∼ 1/N . Let us

consider first the sensitivity vector gℓ:

gℓ =
∂Ψθ

∂hL−1

∂hL−1

∂hL−2
· · · ∂hℓ+1

∂hℓ
. (32)
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Owing to the impact of matrix multiplication on every components, we have Var(gℓ) ∼
(Nσ2

g)
L−ℓ−1/N . Let us now consider now the term ∂hℓ(x)

∂Wℓ,i,j
. This is a zero vector except for the i-th

component, verifying ∂hℓ,i(x)
∂Wℓ,i,j

= hℓ−1,j cos(Wℓ−1,i,:hℓ−1 +bi), with variance Var(∂hℓ,i(x)
∂Wℓ,i,j

) ∼ 1.
Hence, the parameter-wise gradient can be rewritten as:

∂Ψθ(x)

∂Wℓ,i,j
= gℓ,ihℓ−1,j cos(Wℓ−1,i,:hℓ−1 + bi).

Assuming independence between gℓ,i and ∂Ψθ(x)
∂Wℓ,i,j

, we finally obtain the desired variance scaling,

namely Var(∂Ψθ(x)
∂Wℓ,i,j

) ∼ (Nσ2
g)

L−ℓ−1/N .

Derivation of the input-wise Gradient scaling: Following the same notations as above, we have:
∂Ψθ(x)

∂x
=

∂Ψθ(x)

∂hL−1

∂hL−1

∂hL−2
· · · ∂h2

∂h1

∂h1(x)

∂x
.

Recalling that g1, has variance Var(g1) ∼ (Nσ2
g)

L−2/N . In that case the 1/N factor will cancel
out due to the term ∂h1(x)

∂x . Indeed, we have:

∂h1(x)

∂x
= diag(cos (W1x+ b)) W1,

which is a non-trivial matrix of variance Var(∂h1(x)
∂x ) ∼ w2

0 , for both the original and proposed
SIREN initialization. Focusing on one input coordinate xi, we get:

∂Ψθ(x)

∂xi
= g1 diag(cos (W1x+ b)) W1,:,i =

∑

j

g1,j (diag(cos (Wx+ b)) W1,:,i)j .

The variance of each term scales as ∼ (σ2
g)

L−2/N . Supposing independence between each sum-
mand leads to Var(∂Ψθ(x)

∂x ) ∼ (σ2
g)

L−2w2
0 .

B EXPERIMENTAL APPENDIX

B.1 END TO END JACOBIAN, SINGULAR VALUE SPECTRUM

As discussed in (Pennington et al., 2017), an important notion of stability in neural networks is
captured by the singular value distribution of the end-to-end Jacobian: when these singular values
concentrate around 1, the network preserves the norm of signals during backpropagation. This
property, known as dynamical isometry, is closely linked to stable and efficient training and will be
the subject of further investigation for SIREN architectures in future work.

As a preliminary step toward this analysis, we plot figure 20 the full singular value distribution of
the end-to-end Jacobian obtained with our proposed initialization. Since we focus on INR settings,
we define the end-to-end Jacobian as the matrix of size N × N , where N denotes the width of the
network:

J =
∂hL−1

∂h1

Once again, our initialization with σa = 0 exhibits a stable and nearly unitary normalized maxi-
mum singular value, independently of network depth. This behaviour is not observed for the other
initialization schemes, where the largest singular value either grows steadily with depth or collapses
rapidly, as in the case of the PyTorch initialization. However, our initialization does not achieve full
dynamical isometry, indicating that there remains room for improvement while still satisfying the
key constraints established earlier. Exploring additional constraints on the weight distribution may
therefore lead to enhanced stability with respect to dynamical isometry.

B.2 NTK SPECTRUM AND FOURIER OVERLAP

B.2.1 NTK SPECTRUM

In the main text, we restricted our analysis of the Neural Tangent Kernel (NTK) spectrum to its trace,
which captures only its mean behaviour. However, the trace alone does not reflect the full structure
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Figure 20: Full singular value spectrum evolution with depth for the proposed initializations σa = 0
and σa = 1, for the original Sitzmann initialization, and for the PyTorch default weight initialization.
Each spectrum was averaged over five independently initialized networks. The Jacobian distribution
was computed twice and averaged, using 10 sample points on the domain [−π, π].

of the spectrum. In this section, we therefore examine the complete NTK eigenvalue distribution in
order to highlight its finer characteristics.

Figure 21: Full NTK eigenspectrum evolution with depth for the proposed initializations σa = 0 and
σa = 1, for the original Sitzmann initialization, and for the PyTorch default weight initialization.
Each spectrum was averaged over five independently initialized networks. The NTK was computed
on the domain [−π, π] using 256 sample points.

The full spectrum analysis shown figure 21 reinforces our previous observations based on the NTK
trace, namely that the Sitzmann and PyTorch initializations become extremely ill-conditioned as
depth increases. In contrast, the σa = 1 and σa = 0 initializations remain comparatively stable.
One can observe a noticeable lifting of the eigenvalues at high indices for σa = 1, whereas this
lifting is much smaller and more uniform under the σa = 0 initialization. This behaviour could be
directly related to aliasing phenomena in such networks, where high frequencies can be used earlier
to fit a signal.

This interpretation is further supported by the next analysis, where we show that under ill-
conditioned initializations the low-index NTK eigenvectors begin to encode increasingly high fre-
quencies as depth grows.

B.2.2 FOURIER OVERLAP

To support our NTK analysis and our explanation of spectral bias, we previously assumed (see
Figure 5) a form of alignment between the eigenvectors of the SIREN NTK and the Fourier modes.
To verify this assumption for our different initialization schemes, we examined the power spectrum
of the NTK eigenvectors, which corresponds to their overlap with the Fourier modes:

|⟨vn, ϕω⟩|2 =

∣∣∣∣
∫

Ω

vn(x) e
−iωx dx

∣∣∣∣
2

. (33)
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Figure 22: Overlap evolution with depth of the NTK eigenbasis over the Fourier modes, for the
proposed initializations σa = 0 and σa = 1, the original Sitzmann initialization and the initialization
with Pytorch default initialization weight. The power spectrum has been calculated using w0 = 1,
over the interval [−64, 64] using 512 points. w0 has been chosen to be two times smaller than the
Nyquist frequency of the input points for the sake of vizualization. The horizontal red dashed lines
correspond to the frequencies ±ω0.

The previous analysis reveals that the only initialization preserving the expected ordering, low fre-
quencies corresponding to low NTK eigenvalues, is our proposed initialization with σa = 0. This
observation is consistent with our Fourier-spectrum study (see Section 3.3). Indeed, we observe in
Figure 22 an almost perfect alignment between the Fourier modes and the NTK eigenspectrum for
frequencies below w0.

For the other initialization schemes, this alignment deteriorates substantially as depth increases,
calling into question the relevance of NTK-based explanations of spectral bias. Indeed, in the
NTK regime, the first modes learned are no longer the low-frequency components; instead, higher-
frequency modes increasingly dominate for σa = 1 and the Sitzmann initialization. For the PyTorch
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initialization, the situation is reversed: the entire spectrum collapses, preventing any meaningful
frequency ordering.

B.3 AUDIO FITTING EXPERIMENTS

To investigate the effect of the proposed initialization on the network’s ability to fit high–frequency
signals, we consider a 7-second audio clip sampled at the standard rate of 44,200 Hz. To expose
potential generalization effects, we subsample the signal by a factor of three and set w0 = 7000,
which is approximately the Nyquist frequency corresponding to this reduced sampling rate. The
results are shown figure 23.

Figure 23: Comparison of several state-of-the-art methods (described in Figure 2) with SIREN using
our proposed initialization. All networks, with depth L = 15 and width N = 256, were trained for
10,000 epochs using the ADAM optimizer with a learning rate of 3× 10−5.

Both the SNR and MSE metrics show a consistent improvement when using our proposed initial-
ization on generalization tasks, while also providing strong training performance. The initialization
with σa = 1 also achieves competitive results, though its generalization accuracy remains notice-
ably lower. For the other initialization schemes, even when training performance is satisfactory, the
generalization error remains far too large to reliably encode a continuous signal.

B.4 VIDEO FITTING EXPERIMENTS

Video fitting on ERA-5 wind fields. To evaluate the impact of the initialization on a complex
video-fitting task, we consider the hourly ERA-5 atmospheric reanalysis on the spherical Earth,
focusing on the 10 m meridional (South-North) wind component v(t, λ, φ).

Where the data is defined on a regular longitude–latitude grid with

λ ∈ [0, 360), φ ∈ [−90, 90],

discretized into
Nλ = 1440 and Nφ = 720

spatial points, respectively. We restrict ourselves to the first Tmax = 30 hourly time steps. For
training, we form a set of input–output pairs

(
xi,yi

)
i∈I,

where each index i corresponds to a triplet (t, λ, φ) on this spatio-temporal grid. The target yi is
obtained from v(t, λ, φ) by a standard affine normalization (subtracting a global mean and dividing
by a global standard deviation computed over the first Tmax frames).

Each input vector is defined as
xi =

(
τ(ti), λi, φi

)
,

where the time coordinate τ(t) is obtained via a linear rescaling of the discrete time index t such that
the effective Nyquist frequency along the time axis matches that of the two spatial axes (longitude
and latitude). This ensures a comparable frequency bandwidth in all three input directions and allows
us to pick w0 = 0.7 for every direction.
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For training, we randomly subsample a fixed fraction of the full spatial gridded points {1, . . . , Nλ}×
{1, . . . , Nφ} (10% of all points, justifying the choice of w0), while for evaluation we use the com-
plete spatio-temporal grid.

Regarding the batching, to avoid I/O bottlenecks when accessing the dataset, we organize the data
into time-slice batches. Concretely, we consider a spatio-temporal grid

t ∈ {0, . . . , Tmax − 1}, λ ∈ {λ1, . . . , λNλ
}, φ ∈ {φ1, . . . , φNφ},

and for each fixed time index t we form a batch containing many spatial points on the sphere. For
a given time t, we define a (possibly subsampled) index set It ⊂ {1, . . . , Nλ} × {1, . . . , Nφ}, and
construct the corresponding mini-batch

Bt =
{(

xt,j,k,yt,j,k

)
: (j, k) ∈ It

}
,

where each input is xt,j,k =
(
τ(t), λj , φk

)
and the target yt,j,k is the normalized wind value at time

t and location (λj , φk).

We benchmark previous state-of-the-art INR methods and our SIREN models with different ini-
tialization schemes on this ERA-5 re-analysis to assess their ability to fit and generalize complex
spatio-temporal dynamics on the sphere.

Figure 24: Comparison over three different time frames of several state-of-the-art methods on the
ERA-5 reanalysis dataset (first 30 hours), using networks with width N = 256 and depth L =
15. All models were trained for 6,000 epochs with the ADAM optimizer and a Reduce-on-Plateau
learning-rate scheduler, starting from an initial learning rate of 10−3. For batching, we used the
time-slice structure described above with 5 gradient accumulation steps. To reduce computation
time, we employed gradient scaling together with automatic mixed-precision (AMP) training.

.

Once again, our initialization with σa = 0 yields better generalization performance, even on com-
plex tasks and geometries such as video fitting on the sphere. In contrast, the Sitzmann and σa = 1
initializations tend to produce noticeable noisy artifacts. Moreover, the FINER and WIRE methods
appear clearly unstable for high-depth networks. We also highlight the comparatively good perfor-
mance of the positional encoding ReLU (PE) network in this setting.

B.5 DENOISING EXPERIMENTS

We consider a grayscale image y⋆ : Ω ⊂ R2 → [0, 1] (the astronaut image), defined on a
continuous domain Ω. For training, we sample a regular grid of locations

(xi)i∈I, I = {1, . . . , 128} × {1, . . . , 128},
which we identify with points in [−1, 1]2. The clean training targets are

yi = y⋆(xi) ∈ [0, 1], i ∈ I.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

To study denoising and the implicit spectral regularization of different initializations, we corrupt
only the training targets with synthetic high-frequency noise. Let N = 128 be the spatial resolution
of the training grid and let

fNyq =
N

4
denote the associated Nyquist frequency (in cycles per unit length on [−1, 1]). We construct a high-
frequency noise field as a superposition of K random waves whose spatial frequencies lie strictly
above fNyq:

η(x) =

K∑

k=1

sin
(
2π

(
f (k)
x x1 + f (k)

y x2

)
+ ϕ(k)

)
,

where for each k we draw f
(k)
x , f

(k)
y ∼ U

(
2fNyq, 4fNyq

)
, ϕ(k) ∼ U(0, 2π), and x = (x1, x2)

⊤.
We then normalize this field on the training grid to have zero mean and unit variance,

η̃i =
η(xi)− 1

|I|
∑

j∈I η(xj)√
1
|I|

∑
j∈I

(
η(xj)− 1

|I|
∑

ℓ∈I η(xℓ)
)2 , i ∈ I,

and scale it by a prescribed noise level σnoise > 0. The noisy training targets are finally defined as

ỹi = yi + σnoise η̃i, i ∈ I,

We train all INR models on the noisy dataset {(xi, ỹi)}i∈I and evaluate on a higher-resolution grid
covering the full image domain, using the clean image y⋆ as reference. This setup isolates the ability
of each initialization to act as an implicit frequency-space regularizer for denoising, independently
of network depth.

Figure 25: Results of the denoising experiments for the different state-of-the-art methods,using
networks with width N = 256 and depth L = 10. All models are trained on the noisy dataset
{(xi, ỹi)}i∈I described above using σnoise = 0.05 and evaluated on the original high-resolution
image of size 512 × 512 to assess denoising performance. The networks were trained for 10 000
epochs using the ADAM optimizer with a learning rate of 10−4.

Figure 25 illustrates our claim that the proposed initialization acts as a regularizer on the frequency
content that the network can represent. Indeed, we observe higher SNR and lower MSE for our ini-
tialization σa = 0, together with a significantly larger training loss. This indicates that the network
does not fit all of the high-frequency background noise, but instead focuses on reconstructing the
underlying clean signal.

B.6 PHYSICS INFORMED EXPERIMENTS

Physics-Informed Neural Networks (PINNs) approximate the solution u of a differential equation
with Ψθ by embedding the underlying physical laws into the loss function. Given a PDE of the form

N [u](x) = f(x), x ∈ Ω,
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with boundary/initial conditions B[u] = g(x) on ∂Ω, the neural network Ψθ is trained by minimiz-
ing the composite loss

L(θ) = λf

∑

xf∈Df

|N [Ψθ](xf )− f(xf )|2 + λb

∑

xb∈Db

|B[Ψθ](xb)− g(xb)|2 .

where Df and Db denote collocation points in the domain and on the boundary. Automatic differ-
entiation is used to compute N [Ψθ], allowing the network to satisfy the governing equations as part
of the training process.

In order to compare the several model at stake and the impact of the initialization, we used the
PINNacle benchmark (Hao et al., 2024), which allowed us to have a pre-builtin solver for each
differential equation we studied.

B.6.1 BURGER 1D

We consider the one-dimensional viscous Burgers equation, written in the generic PDE form

N [u](x, t) = ut + uux − νuxx = 0, (x, t) ∈ Ω , ν =
0.01

π
.

The spatio-temporal domain is defined as Ω = [−1, 1]× [0, 1].. The initial and boundary conditions
are given byu(x, 0) = − sin(πx), u(−1, t) = u(1, t) = 0.

Figure 26: Results of the Burgers 1D solutions for the different state of the art methods, using a
network with width N = 256 and L = 15. The networks were trained for 10 000 epochs using the
ADAM optimizer with a learning rate of 10−4. For the SIREN based architectures, we chose w0 = 2.

We observe figure 26 that the different initialization schemes yield very similar results, with the ex-
ception of the FINER and ReLU networks. Interestingly, for this specific task, the original Sitzmann
initialization appears to provide the most favorable performance. We conjecture that this behavior
is related to the nature of the Burgers equation, whose sharp propagating front can be effectively
represented even under a highly ill-conditioned gradient distribution.

B.6.2 STATIONARY NAVIER-STOKES 2D

We consider the stationary incompressible 2D Navier-Stokes equations

Nu[u, p] = (u · ∇)u+∇p− ν∆u = 0, Np[u] = ∇ · u = 0,

for the velocity field u = (u, v) and pressure p, with ν = 1.

The spatial domain Ω is defined as

Ω = ([0, 8]2) \
⋃

i

Ri,

where each Ri denotes a circular obstacle. For further details about the boundary conditions please
see the original PINNacle benchmark (Hao et al., 2024).

The impact of initialization observed figure 27 is far more pronounced in that case than for Burger.
We observe that having proper control over the spectral properties of the initialization can lead
to a significant improvement in performance. The Sitzmann initialization exhibits, as expected,
problematic high-frequency components, while other models such as FINER, Tanh, and ReLU fail
completely to reconstruct the physical solution.
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Figure 27: Results of the Navier-Stokes 2D solutions for the different state of the art methods, using
a network with width N = 256 and L = 15. The networks were trained for 10 000 epochs using the
ADAM optimizer with a learning rate of 10−4. For the SIREN based architectures, we chose w0 = 2.

B.6.3 HEAT EQUATION IN COMPLEX GEOMETRY

We consider the transient 2D heat equation

N [u](x, t) = ut −∆u = 0, (x, t) ∈ Ω× [0, 3].

The spatial domain Ω is defined as

Ω = ([−8, 8]× [−12, 12]) \
⋃

i

Ri,

where each Ri denotes a circular obstacle. For further detail about the boundary conditions please
see the original PINNacle benchmark (Hao et al., 2024).

Figure 28: Results of the 2D heat equation experiments for the different state of the art methods,
using a network with width N = 256 and L = 15. The networks were trained for 10 000 epochs
using the ADAM optimizer with a learning rate of 10−4. For the SIREN based architectures, we chose
w0 = 1.

The results for different initializations are shown figure 28. The distinction between σa = 1 and
σa = 0 is striking. The former produces noticeably noisy and unstable solutions, whereas setting
σa = 0 successfully reproduces the behavior of the ground-truth solution. For the other initialization
methods, the observations are consistent with those made in the Navier–Stokes experiment.

B.7 SYNTHETIC EXPERIMENTS

B.7.1 1D FITTING EXPERIMENTS

For the 1D fitting experiments, we generated synthetic data by sampling from a multi-scale function:

f1d(x) = sin(3x) + 0.7 cos(8x)

+ 0.3 sin(40x+ 1) + exp(−x2)
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To explore the impact of initialization on the performance of various neural network architectures,
we studied two tasks: function fitting and PDE solving. Since image and video fitting reduce to
function fitting, we focus on it. This choice lets us control the target function’s frequency content.
As a result, we can probe the different scales present in the data.
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Figure 29: 1d Averaged generalization and training error for the 1D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.

The results plotted figure 29 show that our proposed initialization matches or exceeds the accuracy
of the traditional SIREN architecture for fitting a function. Moreover, it delivers significantly lower
generalization error compared to the original SIREN. Notably, the Tanh-based positional-encoding
network also shows strong generalization performance, despite its slightly higher training error.

B.7.2 2D FITTING EXPERIMENTS

We applied the same methodology to a two-dimensional, multi-scale test function:

f2d(x, y) = sin(3x) cos(3y) + sin(15x− 2) cos(15y)

+ exp
(
− (x2 + y2)

)
,

for (x, y) ∈ [−1, 1]2. The exponential term ensures no architecture can represent the function
trivially. We sampled 3600 random training points, giving a Nyquist frequency above 15. Each
network was trained for 5000 epochs using Adam (learning rate 10−4) under various initialization
schemes. We then evaluated generalization error on 10 000 test points. The comparative results
appear in Fig. 30.

The results mirror the 1D fitting experiments. Our proposed initialization clearly outperforms all
other architectures on the generalization task. At the same time, it maintains a very low training
error, comparable to the SIREN architecture.

B.7.3 3D FITTING EXPERIMENTS

For the 3D fitting experiments, we use the same framework as in 1D and 2D. We test a three-
dimensional function with multi-scale features:

f3d(x, y, z) = sin(5x) cos(12y) sin(3z)

+ exp
(
− (x2 + y2 + z2)

)
,

for (x, y, z) ∈ [−1, 1]3. The exponential term prevents trivial representation by any architecture. We
sample 8000 random training points, ensuring a Nyquist frequency above 12. Each network trains
for 5000 epochs using Adam with learning rate 10−4 under various initialization schemes. We then
evaluate generalization error on 70 000 test points. The results appear in Fig. 31.
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Figure 30: 2d Averaged generalization and training error for the 2D fitting problem. The results
are averaged over 10 runs for each architecture of width N = 1238. The error bars represent the
standard deviation of the results.
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Figure 31: 3d Averaged generalization and training error for the 2D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.

Once again, our proposed initialization delivers strong results. It clearly outperforms all other archi-
tectures on generalization. Its fitting error remains very low, only slightly above the classic SIREN.
Interestingly, as the number of layers increases, SIREN’s training error decreases alongside rising
high-frequency content. This suggests that fitting high frequencies may harm generalization—a
drawback our method avoids.

C ABLATION STUDIES

Since our theoretical analysis is derived in the infinite-width and infinite-depth regime, we also
evaluate our model in the opposite setting: using small widths and very large depths. This allows
us to examine, on one hand, how finite-size effects modify the experimental behaviour, and on the
other hand, whether our theoretical predictions remain valid when the depth becomes extremely
large. This analysis further reveals how these factors influence the overall performance of such
neural networks.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

C.1 FINITE WIDTH EFFECT

The finite-width experiment (with N = 32) leads to the same conclusions as the theoretical study:
deep networks initialized with the Sitzmann scheme or with σa = 1 exhibit a high noise level.
In contrast, our proposed initialization maintains a lower noise level (see the gradient section of
Figure 32), even for very small widths, although it severely harms performance.

Figure 32: Comparison of the discussed initialization method, and how finite width (N = 32 and
N = 128) affects their performance and behavior. The setting of the experiments are the same as
one described in Figure 2

C.2 LARGE DEPTH EFFECT

As shown Figure 33, the large-depth experiments with L = 10 and L = 40 confirm our previ-
ous theoretical discussion in the infinite-depth limit. In the case σa = 0, increasing the depth to
L = 40 even improves performance and further reduces the effective noise level. For σa = 1, the
performance at large depth is surprisingly good, despite the clear growth of high-frequency com-
ponents with depth observed in the Fourier spectrum (see Figure 4); this observation still holds at
L = 10. We attribute this behaviour to the long training time. For the Sitzmann original initializa-
tion, as expected, the increasing of depth severely impacts the generalization performances, due to
overwhelming presence of high frequency components.

Figure 33: Comparison of the discussed initialization method, and how large depth affect their
performance and behavior. The setting of the experiments are the same as one described in Figure 2
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