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ABSTRACT

Proper initialisation strategy is of primary importance to mitigate gradient explo-
sion or vanishing when training neural networks. Yet, the impact of initialisa-
tion parameters still lacks a precise theoretical understanding for several well-
established architectures. Here, we propose a new initialisation for networks with
sinusoidal activation functions such as STREN, focusing on gradients control, their
scaling with network depth, their impact on training and on generalization. To
achieve this, we identify a closed-form expression for the initialisation of the pa-
rameters, differing from the original STREN scheme. This expression is derived
from fixed points obtained through the convergence of pre-activation distribution
and the variance of Jacobian sequences. Controlling both gradients and targeting
vanishing pre-activation helps preventing the emergence of inappropriate frequen-
cies during estimation, thereby improving generalization. We further show that
this initialisation strongly influences training dynamics through the Neural Tan-
gent Kernel framework (NTK). Finally, we benchmark SIREN with the proposed
initialisation against the original scheme and other baselines on function fitting
and image reconstruction. The new initialisation consistently outperforms state-
of-the-art methods across a wide range of reconstruction tasks, including those
involving physics-informed neural networks.

1 INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Implicit neural representations (INRs) have become a prevalent tool for approximating functions in
diverse applications, including signal encoding (Striimpler et al., |2022; |Dupont et al., |2021)), signal
reconstruction (Park et al.,[2019; Mildenhall et al.,|2020), and solutions of partial differential equa-
tions (PDEs) (Raissi et al., [2019). A central challenge in these neural approximations is to recover
the frequency spectrum of a target signal within reasonable training time and from limited data. In
this context, standard multi-layer perceptrons (MLPs) used for INRs often suffer from spectral bias,
whereby low-frequency components are preferentially learned compared to high-frequency details
(Rahaman et al., [2019; [Li et al., 2024). This bias can hinder performance, either by slowing train-
ing or by reducing precision, when the signal of interest contains significant high-frequency content
(fine textures, details ...). To mitigate this issue, several architectures have been proposed, such as
positional encoding (Tancik et al., 2020) or networks with sinusoidal activation functions (SIREN,
(Sitzmann et al., |2020)), which enable faster learning of high-frequency components. However,
increasing network depth in these methods has been empirically observed to introduce in the re-
constructed function spurious high-frequency components absent from the target one (see, e.g., (Ma
et al.l 2025))), leading to noisy representations and degraded generalization (i.e., the ability to inter-
polate the signal correctly).

In this work, we propose an initialisation strategy for STREN that bypasses two opposing pitfalls: (i)
slow training and poor recovery of high-frequency details due to spectral bias in standard MLPs, and
(ii) rapid training in deeper SIREN, which comes at the cost of spurious high-frequency artifacts
and degraded generalization. Finding the right balance between these two extremes corresponds
to locating the frontier between vanishing-gradient and exploding-gradient regimes. Operating in
this regime, where gradients remain stable, is often referred to as computing at the edge of chaos
(Yang & Schoenholz, 2017} |Seleznova & Kutyniok, 2022), a concept from dynamical systems the-
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ory (Kelso et al.l[1986; Langton, |1986). Building on this idea, we introduce an explicit initialisation
scheme for STREN. Our method ensures that inputs and parameters gradients neither vanish nor
explode with depth enabling both stable and expressive learning dynamics. With appropriate tun-
ing of the pre-activation statistics it allows to impose a finite range of frequency at initialisation,
allowing the network to capture high-frequency contents without introducing spurious components.
To better understand the critical role of

the initialisation in INRs, we complement
our theoretical analysis with experiments
based on the neural tangent kernel (NTK) -

framework (Jacot et al.| 2018 [Li et al.|
2024). We find that controlling gradient
propagation at initialisation strongly influ-

ences the NTK eigenvalues, which deter- RSN

mine the training speed of the frequencies LI {ITEEL))
associated with the corresponding eigen- 10-4 10-3 10-2 101

vectors.

100

Beyond the NTK framework, our initial- Figure 1: Generalization error over different prob-
isation prevents the degradation of deep lems averaged over different architecture depths for 1d,
neural network performance with increas- 2d and 3d multi-scaled function approximation. The
ing depth. We illustrate this property results are displayed for different state-of-the-art ar-
across several function fitting problem in chitectures including the one proposed in this work
Figure [Tivhere a comparison of the per- (SIREN Proposed). See Appendix [B.6.3] for details.
formance of our initialisation against the In standard deviation of the error is colored in light
original SIREN scheme and other base- gray.

lines is presented.

1.2 RELATED WORK

Frequency representation. Our study will be based on the work of (Sitzmann et al.,[2020)), which
introduced the STREN architecture, a neural network with sinuosidal activation functions designed
to effectively learn high-frequency functions by using a tunable parameter w that controls the fre-
quency range of the network. Architecturally, this approach is closely related to positional-encoding
and Random Fourier feature, which also address the challenge of learning high-frequency signals
(Tancik et al.} 2020; 'Wang et al., 2021). However, SIREN requires careful tuning of wg depending
on both the network architecture and the dataset (de Avila Belbute-Peres & Kolter, 2023)). Moreover,
the effect of network depth on performance remains poorly understood and has so far been studied
mostly through empirical and observational analyses (Cai et al., |2024; |Tancik et al., [2020). To the
best of our knowledge, there is currently no work connecting theoretical gradient scaling with depth
to the performance of such architectures.

Neural Tangent Kernel. The NTK framework provides a theoretical foundation for understanding
the training dynamics of neural networks, and how the initialisation properties affect the learning
process (Jacot et al., 2018 |Li et al., 2024} [Yiice et al., 2022). Some works have already focused
on the frequency learning aspect of the NTK, either for the Fourier Features (Wang et al., [2021) or
the SIREN architecture (de Avila Belbute-Peres & Kolter, [2023)). These works have shown how the
network architecture can be tailored to bypass the spectral bias. However they did not provide a
full understanding of the impact of network depth on the networks properties and did not tackle the
vanishing or exploding gradient impact on the learning dynamics.

initialisation. Our focus on initialisation is closely related to the work of |Glorot & Bengio|(2010)
andHe et al.|(2015]), which introduced the now widely used Xavier and Kaiming initialisation meth-
ods, respectively. Both approaches aim to maintain stable activation and gradient distributions across
layers. Xavier initialisation was developed for saturating nonlinearities such as hyperbolic tangent
(Tanh), and is motivated by theoretical insights into variance preservation, though its derivation
assumes an approximate linearization. Kaiming initialisation was later introduced for rectified lin-
ear units (ReLU), which allows for exact variance calculations. Although commonly applied to
smoother activation functions such as GeLU or SiLU, its theoretical justification in those cases is
only approximate. In the context of SIREN, tailored initialisations have been proposed (Sitzmann
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et al., 2020; |de Avila Belbute-Peres & Kolter} [2023)) to control the distribution of pre-activations
layer by layer. However, these initialisations are only approximate and fail to offer stability guaran-
tees for deep SIREN architectures, where gradient growth remains uncontrolled, as we shall see later
in this work. We also note the recent work of Novello et al. (2025)), which identified the same issues
and proposed an empirical method to control a network’s spectrum. However, their approach does
not provide principled control of either the frequency spectrum or the network gradients, leading to
significant adaptation effort for each problem.

Edge of Chaos (EOC). EOC is the critical initialisation regime where two key conditions are met:
forward pre-activation variances remain stable, and backward gradients neither explode nor vanish.
In the infinite-width mean-field limit, these properties follow from coupled recursions for layer-
wise variance and inter-sample correlations under the initialisation distribution, whose fixed points
determine both activation and gradient stability (Poole et al.,|2016} [Schoenholz et al., 2017)). [Yang
& Schoenholz| (2017 showed that placing conventional networks near the EOC improves training
performance. While prior work has applied these ideas to INRs (Hayou et al.l [2019; [Seleznova &
Kutyniok} 2022; |Hayou et al.| |2022), the case of sine activation functions has not been considered.

1.3 CONTRIBUTIONS

This works brings a deeper understanding over INR initialisation for signal representation and train-
ing dynamic, with the following main contributions:

* An explicit derivation of the initialisation for the STREN architecture, which allows us
to have an invariant distribution of the gradients across the layers and a possibly depth-
independant fourier spectrum. This is done by calculating the fixed point for the layer-wise
gradient and the network output distribution, in the limit of infinite width and infinite depth.

* The understanding of the key concepts for controlled frequency learning using w, and how
the initialisation properties, through the NTK, shape the training dynamics of the network,
leading to a controlled spectrum of the learned function.

* A series of experiments presented in Appendix [B] demonstrates the effectiveness of the
proposed initialisation scheme on multi-dimensional and multi-frequency function approx-
imation, including audio signals, image denoising, and video reconstruction on the ERA-5
atmospheric reanalysis dataset. We further investigate the impact of this initialisation in the
context of PDE solving using physics-informed neural networks.

Although our motivation comes from INRs, the proposed closed-form initialisation for sine networks
at the edge of chaos is not specific to this setting. Because it stabilizes gradient propagation in
deep architectures with periodic activations, it may also benefit broader applications where periodic
features are desirable but have been limited by unsuitable initialisation schemes.

2 PRELIMINARIES

2.1 GENERALITIES ON IMPLICIT REPRESENTATION OF FUNCTIONS

Implicit neural representations have been introduced to find an approximation of a function f:  —
R from a dataset D = {(x;, y;)ic1 | i = f(x;)} . The goal is then to build a parametrized function
Ty : Q — R?. When this parametrized function is a neural network, it is commonly referred to as
implicit neural representation (INR), Neural Fields (NerF), or Neural Implicit Functions.

In this work, we formally denote the involved neural network Wy, which can be written as the
composition of L layers:
Wy =hy, 0---0hg, (1)

where each layer ¢ € {1,..., L} is composed of n; neurons, parameterized by a set of parameters
0 = (Wy, b)) where W, € R™*"™-1 are the weights and by € R™ the bias, and ny denotes
the input dimension of the network. Each layer also relies on an activation function o, applied
element-wise. The ¢-th layer is thus defined by

ho, =00 ©® (Wz . —l—b@). 2)
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For an input € RY, the preactivation refers to
= Wyhy_; + by where hy ;= h9£71 0...0 h91 (a:) 3)

The estimation of the parameters § = {04}46{17”_7 1) relies on the minimization of a loss £ over a
dataset D = {(;, yi)ic1 }:

min £(9) : “HZH‘I’@% ~uil3. @)
i€l

The main challenges when considering INRs include selecting an appropriate architecture (i.e.,
parametrization and activation function), choosing a suitable initialization to insure output stability,
and determining and efficient optimization strategy. In this work, we will focus on STREN archithec-
tures (described in the next section). Regarding minimization strategy, we focus on gradient-based
methods, leaving alternative minimization strategies outside the scope of our study.

2.2 CHOICE OF THE ARCHITECTURE

This work focuses on the so called STREN architecture, which stands for Sinusoidal Representation
Network and introduced by |Sitzmann et al.|(2020). SIREN is a particular instance of equations
with a final linear layer:

Uy(z) = W, sin(WL_1 sin(. .. sin(Wiz + b)) + bL_l) + by )

This architecture enables the estimation of natural frequency decompositions in a broad range of
problems while ensuring differentiability. The latter property is particularly important for PDE-
related applications, such as physics-informed neural networks, where accurate derivatives are often
essential (Raissi et al., |[2019).

3  WEIGHT INITIALIZATION

In the original SIREN initialization (Sitzmann et al., 2020), the weights and biases were chosen as

U(-2, o), =1,

no ? no
u(_%%) , lef2,..., L,
where N = ny is the number of neurons per hidden layer, assumed to be the same across all
layers, L — 1 is the number of hidden layers, and U/ denotes the uniform distribution. wq is an
important tunable parameter, originally chosen to be 30. It must be adjusted according to the network
architecture and the Nyquist frequency of the signal to be reconstructed (de Avila Belbute-Peres &
Kolter, 2023)).

W, ~ bwu( ff) te{l,....L}, (6

Sitzmann et al (2020) argued that the pre-activation of the (-th layer, defined in equation [3] fol-
lows the distribution z, ~ N(0,1), when the network is initialized following equation [6] In this
regime, most of the signal is sufficiently small to propagates through the quasi-linear range of the
sine activation function, while still preserving a meaningful nonlinear contribution. This has been
emphasized as a key feature of the STREN architecture. However, the initialization choice relied on
approximate computations, did not provide constraints on gradients, and it has been observed that
estimation quality decreases in the large-depth limit under such initialization (Cai et al.| [2024). To
address this, we propose the refined initialization:
u(—ﬂ w) L r=1,

no’ no

u(—mﬁ) te{2,... L),

with A/(0, ¢?) the normal distribution of zero mean and variance ¢i. This initialization introduces
two parameters, c,, and ¢, which we set by enforcing constraints on the variance of pre-activations
and the rescaled layer-to-layer Jacobian:

W ~ by~ N(0,¢3), £€{1,...,L}, (7

oh
Oq = VaI‘[Zg]&N_)OO Og = \/NV [+1 éN—>oo~
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Using explicit computations to guarantee a normalized gradient flow across the network in the mean-
field limit, namely o, = 1, we will demonstrate in next sections that ¢, must lie on a curve parame-

terized by c,,:
2 1 6

We now derive two particular initialization choices along this curve. The first is the Sitzmann-
inspired choice, obtained by enforcing o, = 1, which was only approximately realized in |Sitzmann
et al.| (2020) and which we will later show does not produce the desired spectral behaviour. The
second, which we adopt as our proposed initialization, sets o, = 0 and will be shown to provide
much better spectral control (see Section[3.3). The corresponding parameter pairs are

0a=1: (cy,cp) = \/#(1, %), 0o =0 (Proposed): (Cy,cp) = (\/g, 0), 9

We illustrate the effect of these two initialization schemes on an image fitting problem in Fig. [2]
and on several additional reconstruction tasks (see Appendix [B]). Across all depths L, the proposed
initialization with o, = 0 consistently yields more stable networks than the standard STREN (Sitz-
mann) architecture initialized with Eq. equation [] and other state-of-the-art approaches. In partic-
ular, as depth increases, most competing methods exhibit gradient explosion, which manifests as
spurious, noisy high-frequency artifacts in the reconstructed high-resolution images. We also find
that the o, = 1 initialization produces slightly noisier outputs for deep networks than the o, = 0
scheme, a behaviour explained in Section[3.3]and motivating our preference for the proposed initial-
ization.

Ground truth SIREN (o, = 0) SIREN (0, = 1) SIREN (Sitzmann) Wire Finer Tanh (FX) ReLU (PE)

SNR:5041dB
:0.998

SNR:38.11dB SNR:57.73dB SNR:113.99dB SNR:56.00dB SNR:40.50dB SNR:41.94dB

Training

SNR: 20.81 dB SNR: 17.61 dB
SSIM: 0.714 SSIM: 0.490

Evaluation

Gradient

Figure 2: Comparison of several INR architectures and initializations on an image-fitting problem
using an L = 10 hidden-layer neural network of width N = 256. We train the model on a set
(@i, y;)icr Where x; is a location taken on a |I| = 128 x 128 uniformly spaced grid on Q = [—1, 1]?
and y; is the associated image value at this location. The top row shows the fitted 128 x 128 image.
The middle row shows the estimation on an augmented resolution (512 x 512) to assess the model’s
generalization and the last row provides a zoom on part of the image. In all case, we use ADAM
optimizer with learning rate 10~ for 10000 epochs. The state-of-the-art architecture considered in
this experiment are: SIREN (see (Sitzmann et al.,|2020)), FINER (see (Liu et al.,[2024)), WIRE (see
(Saragadam et al., 2022)), Tanh (FX) with Fourier features and Xavier initialization (see (Tancik
et al., 2020)), and the traditional ReLU with Positional Encoding (see (Nair & Hintonl 2010)). We
used for the SIREN based architectures the previously discussed schemes. We observe that the
proposed strategies (SIREN (o, = 0 and o, = 1) lead to significant improvement in the model
estimation with respect to other methods. For instance, it preserves sharp features compared to other
SOTA method such as Wire, Finer, that yields extremely poor results for deep neural networks.

3.1 PRE-ACTIVATION DISTRIBUTION

In the following, we derive the exact form of the pre-activation distribution in the limit of infinitely
wide and deep neural networks, explicitly accounting for the influence of the bias term, which turns
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out to be crucial. More precisely, we show that, for any initialization in the parameter space (¢, ¢p),
the pre-activation distribution converges to a fixed point. The proof is provided in Appendix

Theorem 3.1 (Pre-activation distribution of STREN). Considering SIREN network described in

equation @ where, for some cy,,c, € RT, and for every layer { € {2,..., L}, the weight matrix

W is initialized as a random matrix sampled from U(—cy/V N, ¢ /V N), W1 is sampled from

U(—wo/no, wo/no), the bias by is initialized as a random vector sampled from N(0,c3). Let

Z¢)¢e{1...,L} the pre-activation sequence defined in equation and relying on an input x € R™°.

Then, in the limits N, L — oo, the pre-activation sequence (z;)icn converges in distribution to
N(0,02) with

2 2 2
2 2 Cw 1 Cw —fw_oc2

— —w —W, - 3 b, 10

et by (hond) w

where W is the principal real branch of the Lambert function. The sequence associated to the

variance of the pre-activation (Var(ze)) ey Converges to a fixed point o, which is exponentially

attractive for all values of ¢y, # /3. For ¢y, = \/3 the convergence will be of rate O(%).

Remark 3.1. While the bias distribution is different in our initialization and in the original STREN
scheme, the choice ¢, = \/6 for the weight initialization can be recovered as a special case of
equation[I0by imposing o, = 1, assuming c, = 0, and by neglecting the correction term introduced
by the Lambert function. Using the expansion Wy(z) = = + O (xQ) this correction term can be
estimated as ~ e~ 2, which is small but not negligibl Accounting for this correction term enables
more precise control over the pre-activation variance o .

Remark 3.2. As stated in Theorem[3.1) the pre-activation variance converges exponentially fast to
04 as the depth L increases whenever c,, # /3. In that case, even relatively shallow networks
already have pre-activations that are effectively Gaussian with variance very close to the fixed point
0q. When ¢, = \/3, this convergence becomes much slower. For our proposed choice o, = 0, this
means that the pre-activation variance decays toward zero only gradually with depth.

Deriving the fixed points of the pre-activation distribution is a necessary first step toward character-
izing the layer-wise gradient distribution and for establishing the optimal initialization value for c,,
and ¢;, which we discuss in the next subsection.

3.2 GRADIENT DISTRIBUTION AND STABILITY

The distribution of Jacobian entries is another important property of neural networks that must
be carefully controlled during initialization to avoid gradient vanishing (He et al), 2015} |[Yang &
Schoenholz, 2017). In this work, we show that a tractable derivation is possible for the sine activa-
tion function. This result is described in Theorem Combined with Theorem it will enable
us to propose a principled initialization strategy provided in Proposition

Theorem 3.2 (Jacobian distribution of SIREN). Let J, = 0h,/0hy_1 denote the Jacobian of the
(-th layer. Considering SIREN network described in equation[3] we have

J, = diag(cos (z¢)) Wy.
Under the same assumptions as Theorem[3.1| and maintaining the limit of large N, each entry of J,
has zero mean and a variance 5?, such that the sequence (N 5?) ¢eN converges to

2
Cuw

lim (NG7) = 0q = -2 (1 + e 2%). (11)

£,N—o0 6

For a given network, with input  and output ¥y (x), Theorem can be used to analyze the scaling
behavior of gradients with respect to both the network parameters 6 and the input coordinates x. We
denote by 0y, ¥ the gradient of the network output with respect to the parameters 6, of layer ¢, and
by 0, ¥ the gradient with respect to the input . By applying the chain rule, we have :

8\119(33) o 8\119 8hg+1 8}1@(33) 6\119(:1:) N 8\1'9(91:) %81’11 (:E)
895 B (3'hL_1 ahg 895 ’ 89: h 8hL_1 8h1 a.’I} ’

(12)

' A more precise estimate of this correction term can be obtained using equation to be derived later.
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These relations can be used to obtained scaling of the gradients variances with the network depth
and width (see Appendix [A.4]for a derivation):

Var(9g, Ug(z)) oc N~* (US)L_E_I and  Var(9, Wy (x)) o wq (0] (13)

From equation [T3] we see that gradients in parameter space vanish or explode exponentially with
network depth L, unless the scaling factor N 03 is close to 1. To conclude the analysis of the
statistical properties of STREN networks and derive the initialization schemes provided in equations

|ZHE|, we identify the values of ¢,, and c; allowing to control the scaling of gradients i.e. oy = 1.

Proposition 3.1. Under the same assumptions as in Theorem @ setting o4 = 1 leads to the
weight-bias variance curve cy(cy,) defined in equation @ Furthermore, choosing o, = 0 (our
proposed initialization) or o, = 1 determines a specific pair (¢, cp) given in equation |§|

Figure 3: Experimental standard deviation
of the pre-activation distribution (left) and
of the layer-wise Jacobian entries distribu-
tion (right), as a function of the parame-
ters (¢, ¢p). The plain and dashed black
lines indicate the theoretical predictions
for o, = 1 and o, = 1, following The-
orems [3.T]and[3.2} respectively. The black
and red dots indicates the initialization
provided in Proposition B.1] the Pytorch
dots corresponds to the default weight and
bias initialization, and the green dots to
Weight coefficient c,, the Sitzmann initialization.

pre-activation gradient

Bias std ¢,
3

The proof is given in Appendix [A.3] We verified the validity of this theoretical analysis, involving
careful calculations of the Jacobian and pre-activation distributions, through numerical experiments
displayed in figure[3] These experiments were done 20 times using a STREN neural network of width
N = 256 of depth L = 10, with input dimension ng = 1, and output dimension ng = 1, wg = 1,
and following the initialization scheme in equations[7}{9] The neural network is then evaluated using
[T = 500 input points x; uniformly spaced between [—1, 1] to obtain the studied distributions.

In the next section, we explain why choosing o, = 0 rather than o, = 1 provides better control over
the network’s frequency spectrum.

3.3 FOURIER SPECTRUM AND ALIASING

The need to constrain the Fourier spectrum of sinusoidal neural networks to prevent high-frequency
aliasing was noted in (Ylce et al. 2022), and a closed-form expression for the spectrum of sine-
based networks was later derived in (Novello et al., 2025, Thm. 3), showing that each additional layer
redistributes energy across Fourier modes. Since composing sine activations inherently broadens the
spectrum with depth, controlling this growth requires either limiting the depth or enforcing o, = 0.
In the latter case, deep layers are almost linear, because for z; ~ N (0,02) we have sin(z,) ~ z
as o, — 0. Empirically, our initialization with o, = 0 indeed suppresses the emergence of higher
frequencies: as shown in Fig. [i] spectral broadening with depth is strongly reduced, and most of
the energy remains confined below wy, yielding a meaningful, depth-independent cutoff around wy.
The slow decay of oy toward zero described in Theorem [3.T|appears to compensate the nonlinearities
just enough to avoid both explosion and collapse of the spectrum, even in very deep networks, a
behaviour that remains unexplained and calls for further investigation.

In contrast, for 0, = 1, and even more so under the Sitzmann initialization, the spectrum clearly
broadens with depth, and substantial energy appears beyond wy. This excess energy is exactly what
causes aliasing when the network input is discretized. For the PyTorch initialization, the opposite
behavior occurs: the spectrum collapses rapidly with depth, reflecting a vanishing-signal regime
caused by unnormalized gradients. Overall, this analysis supports our proposed initialization, which
constrains o, = 0 and motivates choosing wy as the Nyquist frequency for sampled inputs. This
ensures that the network can represent all frequencies present in the data while avoiding aliasing in
the early stages of training.
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Figure 4: One-dimensional Fourier spectra of ¥y for multiple depths L € {4, 8, 16,32}, driving
frequencies wg € {100, 1000} (rows), and initialization schemes (columns). Each curve shows the
magnitude of the discrete Fourier transform of Wy evaluated on an equispaced grid; colors encode
the depth L. The red vertical line marks wq /27 which corresponds to the input frequency encoded
by the first layers and the black vertical line marks wg. The colored backgrounds group the different
initializations (from left to right: proposed SIREN with o, = 0, SIREN with o, = 1, the initializa-
tion of (Sitzmann et al.,|2020), and the default PyTorch initialization).

4  SCALING OF THE NEURAL TANGENT KERNEL WITH DEPTH AND
SIMPLIFIED LEARNING DYNAMICS

The Neural Tangent Kernel (NTK) framework is a linearized description of the training dynamics
around initialization, allowing one to study how the network evolves in the early phase of training
(Jacot et al.l 2018). When training neural networks, we typically use gradient descent to minimize
the loss function, with updates 6;1 = 0; — dtVL(0;), where dt is the learning rate and 6; the
parameter vector at iteration ¢.

To simplify we restrict ourselves to a scalar output neural network (i.e., d = 1). Then, we have
for the mean-squared error loss £(60) = >,y | ¥a(e;) — y;]|*/[I], and in the continuous-time limit
dt — 0, the residuals u(x;,t) = Wy, (x;) — y; satisfy
du(t)
dt
where u(t) = (u(x1,t),...,u(xy,t)) and Kp, is the NTK matrix. Assuming the NTK remains
constant during training (Kg, = Kg,), the residuals evolve as

=Ko, u(t), Ko, ;= V¥ (x;) Vo¥y, (z;), (14)

|1

u(t) = exp(—tKg,)u(0) = ) e~ (u(0), vi)vi, (15)

where (\;, v;) are the eigenpairs of the initialized NTK Kj,, ordered so that Ay > --- > /\UI\ > 0,
and (-, -) the Euclidean scalar product. Thus, the early training dynamics is fully determined by the
spectral properties of the NTK at initialization.

Frequency bias in the NTK framework. Equation [T3] shows that modes associated with large
eigenvalues decay quickly, while those with small eigenvalues decay slowly, with characteristic
timescale 1/);. As illustrated in Fig. [5| for the 1D case, and as observed in related settings (see
e.g. (Wang et al.| 2021))), the leading eigenmodes (small 7) of the NTK can be identified with low-
frequency Fourier modes, whereas higher-frequency components (large i) correspond to smaller
eigenvalues );. Figure [5] provides an overview of this behavior. This illustrates the spectral bias
of neural networks in the lazy training regime (i.e., nearly constant NTK) and emphasizes the im-

portance of controlling the spectrum {)\z}lﬂl to accurately capture all relevant target frequencies.
A more detailed study of the overlap between NTK and Fourier modes, for different initialisation
schemes, is presented in Appendix[B.2.2]

Empirical scaling of NTK eigenvalues and network gradients. To highlight the importance of
initialization in the large depth limit, we conducted an experiment comparing the original STREN
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First 6 eigenvectors of the NTK of a SIREN

~1 0 1 -1 0 -1 0 -1 0 L1 0 L1 0 1
xT

Figure 5: The first six eigenvectors vy, ...,vs of the NTK matrix Ky,, ordered by decreasing

eigenvalue A\g > Ay > .-+ > As. The NTK matrix was computed numerically on a uniform grid

of |I| = 500 points over the interval 2 = [—1, 1] using a SIREN network of width N = 512 and

of depth L = 8 and using wy = 1. The eigenvectors exhibit increasingly oscillatory behavior as
the mode index grows, consistent with their interpretation as Fourier-like modes. This observation
confirms the spectral structure predicted by our analysis and highlights the tendency of the NTK to
prioritize low-frequency components associated with larger eigenvalues.

initialization (cf. equation [6)), the new ones (cf. equations [7}9), and the Pytorch one. We varied the
depth L while fixing N = 256, |I| = 200, and wg = 1. In ﬁgure@ we plot the normalized NTK
trace (mean eigenvalue) expressed as Tr(Ky,)/|I|V, together with the gradient norm ||0,, Wy, || as
functions of network depth. We use the NTK trace as a computationally convenient proxy for the
typical eigenvalue behavior as depth increases. With the original STREN initialization, we observe
exponential growth of both the NTK eigenvalues and the input gradients. In this case, increasing
depth accelerates training but also causes gradient explosion in input space. This corresponds to
spurious high-frequency components absent from the target signal, which degrade generalization,
here understood as smooth interpolation between data points. With PyTorch initialization, the NTK
eigenvalues decrease until reaching a plateau, while the gradient in input coordinate space vanishes.
By contrast, with our new initialisations, the NTK eigenvalues increases linearly with depth while
the gradients remain constant. Consequently, the effective learning rate increases with depth L,
while the input-space gradients stay normalized. These behaviors are confirmed in practical set-
tings, such as the image-fitting task shown in figure [2| and in additional experiments presented in
Appendix

Interpretation of the scalings. The scaling of gradients with 05 is expected from section

with o, ~ V1.2 for SIREN, o4 = 1 for our proposed initialization, and o, = /1/3 for PyTorch
initialization. Similarly, it is possible to explain the NTK eigenvalue scaling. We note first that
diagonal element of the NTK matrix are Kg, ;; = |Vy Wy, (x;)|*>. From this and the zero mean
property of every gradient distribution, we relate the average eigenvalue of the NTK denoted A to
the variance of gradients in parameter space:

L L
A= Te(Kg,) = N* Y Var [Vw, g, (@;)] + N Y Var [V, Uy, (2;)] (16)

=1 =1
where Wy, by are respectively a weight and a bias of the ¢-th layer. The sum involving weights

parameters being dominant, we neglect the sum on bias terms in the following. When 02 # 1, using
equation[I2] we obtain a geometric sum, leading to

(Jg)L-i-l 1

2 _
o 1

Tr(Ky,) a7

1

N
If o, > 1 (SIREN original), then A o a L and the NTK explodes exponentially with depth L. This
exponential scaling for the NTK e1genvalues without proper initialization was observed experimen-
tally in (de Avila Belbute-Peres & Kolter] |2023), yet without precise discussion on the causes and
the effect of such behavior, since their focus was on the choice of wy rather than on weight and bias
initialization.
If 04 < 1 (SIREN PyTorch), NTK eigenvalues become independent from the depth L in the large
depth limit, yielding slow convergence, together with vanishing gradients.
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If 7, = 1 (SIREN 0, = 0, 1), equation[I7|does not apply. Each term of the sum on weight parame-
ters in equation gives the same contribution, leading to X\ o L, which is consistent with the results
plotted figure [6]for the o, = 1 initialization, for o, = 0 it seems that the NTK eigenvalues are con-
verging to a fix distribution, and we attribute that to finite size effect of our initialization, indeed
the convergence is really slow towards o, = 0, which seems to compensate the NTK eigenvalues
growth with depth, for finite depth networks.

NTK trace vs depth . Gradient std vs depth
10° 10°
10% ¢ 102
10% ¢ 10t ¢
= _
= 02t T 10k
< = _,Neee®
= 10' ¢ O(L) 9‘: 107! o
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& 10°f§ecoc000000000000000000,00000 £ o107y o SIREN (0, = 0)
10-1E° 1073 ¢ e SIREN (0, = 1)
L]
1072 - O(1) 10-4L SIREN (Sitzmann)
e SIREN (Pytorch)
10—3 L L L L L 10—5 L L 1
10 20 30 40 50 60 10 20 30 40 50 60
Number of hidden layers

Figure 6: The left plot stands for the scaling of the mean eigenvalue of the NTK matrix over the
number of layer. The right plot stands for the scaling of the gradient of the network (in input
coordinate space) with the number of layers. The experimental setup and hyper-parameters are the
same as in figure[5] except for the network depth which varies here.

5 DISCUSSION, CONCLUSION, PERSPECTIVES

We proposed a new initialization scheme for sinusoidal neural networks that prevents gradient ex-
plosion and vanishing, and presented various applications, from noisy image fitting, video, and
audio reconstruction (Appendix [B). The parametrization is derived analytically by examining the
variances of pre-activations and layer-to-layer Jacobians in the limit of infinitely wide and deep net-
works. This approach removes the need for architectural tricks such as skip connections or empirical
hyperparameter tuning to stabilize deep models. By analyzing both the neural tangent kernel and
input-space gradients, we showed that this initialization enables deep networks to train with learning
rates that scale linearly with depth, while suppressing spurious noise above the Nyquist frequency
in implicit neural representations. Whereas prior work motivated the use of sine activations by not-
ing that derivatives of SIRENs remain well-behaved, our study goes further by providing a deeper
theoretical analysis. We demonstrate that sinusoidal architectures not only preserve these desirable
properties but also admit stronger theoretical justification. A key take-away is that fixing the Ja-
cobian variance (o0, = 1) is essential to control gradients, whereas setting the targeted fixed point
pre-activation variance (o, = 0) gives direct control over the network spectrum at initialization.

Although this study focuses on signal encoding with a quadratic loss, future work could extend the
approach to more complex losses, including physics-informed settings, with potential applications in
atmospheric and oceanic field reconstruction. Furthermore, our study focuses solely on controlling
the variance of the weights at initialization. One could broaden this perspective by considering
additional structural properties of the network such as the distribution of singular values of the layer
Jacobians (presented in Appendix [B.I]), which play a crucial role in propagating information across
the network. More broadly, our results may encourage wider adoption of sine activations in machine
learning.

10
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REPRODUCIBILITY

Code Implementation. All source code used in our experiments is provided in the supplementary
material, including implementations of the architectures used for comparison.

Models and Architectures. Details on the choice of activation functions are given in the main
text. Initialization methods and architectural specifications for each model are described within the
corresponding experimental sections.

Experiments. Each experiment is reported with its hyperparameters (e.g., learning rate, optimizer,
number of epochs) in the relevant sections or figures. All experiments were run with fixed random
seeds to ensure exact reproducibility of the reported results.

11
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6 EXPERIMENTAL APPENDIX

6.1 END TO END JACOBIAN, SINGULAR VALUE SPECTRUM

As discussed in (Pennington et al. 2017), an important notion of stability in neural networks is
captured by the singular value distribution of the end-to-end Jacobian: when these singular values
concentrate around 1, the network preserves the norm of signals during backpropagation. This
property, known as dynamical isometry, is closely linked to stable and efficient training and will be
the subject of further investigation for SIREN architectures in future work.

As a preliminary step toward this analysis, we plot figure 20| the full singular value distribution of
the end-to-end Jacobian obtained with our proposed initialization. Since we focus on INR settings,
we define the end-to-end Jacobian as the matrix of size N x NN, where N denotes the width of the
network:
J_ ohp_,

Oh,
Once again, our initialization with 0, = 0 exhibits a stable and nearly unitary normalized maxi-
mum singular value, independently of network depth. This behaviour is not observed for the other
initialization schemes, where the largest singular value either grows steadily with depth or collapses
rapidly, as in the case of the PyTorch initialization. However, our initialization does not achieve full
dynamical isometry, indicating that there remains room for improvement while still satisfying the
key constraints established earlier. Exploring additional constraints on the weight distribution may
therefore lead to enhanced stability with respect to dynamical isometry.

SIREN (o, = 0) SIREN (o, = 1) SIREN (Sitzmann) SIREN (Pytorch)

10!

Singular values

1077k

ll’\‘l" o ””lll‘r‘

Singular value index

Figure 7: Full singular value spectrum evolution with depth for the proposed initializations o, = 0
and o, = 1, for the original Sitzmann initialization, and for the PyTorch default weight initialization.
Each spectrum was averaged over five independently initialized networks. The Jacobian distribution
was computed twice and averaged, using 10 sample points on the domain [—7, 7].

6.2 NTK SPECTRUM AND FOURIER OVERLAP
6.2.1 NTK SPECTRUM

In the main text, we restricted our analysis of the Neural Tangent Kernel (NTK) spectrum to its trace,
which captures only its mean behaviour. However, the trace alone does not reflect the full structure
of the spectrum. In this section, we therefore examine the complete NTK eigenvalue distribution in
order to highlight its finer characteristics.

The full spectrum analysis shown figure [21] reinforces our previous observations based on the NTK
trace, namely that the Sitzmann and PyTorch initializations become extremely ill-conditioned as
depth increases. In contrast, the 0, = 1 and 0, = 0 initializations remain comparatively stable.
One can observe a noticeable lifting of the eigenvalues at high indices for o, = 1, whereas this
lifting is much smaller and more uniform under the o, = 0 initialization. This behaviour could be
directly related to aliasing phenomena in such networks, where high frequencies can be used earlier
to fit a signal.

This interpretation is further supported by the next analysis, where we show that under ill-
conditioned initializations the low-index NTK eigenvectors begin to encode increasingly high fre-
quencies as depth grows.

12
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Figure 8: Full NTK eigenspectrum evolution with depth for the proposed initializations o, = 0 and
o, = 1, for the original Sitzmann initialization, and for the PyTorch default weight initialization.
Each spectrum was averaged over five independently initialized networks. The NTK was computed
on the domain [—, 7] using 256 sample points.

6.2.2 FOURIER OVERLAP

To support our NTK analysis and our explanation of spectral bias, we previously assumed (see
Figure[5) a form of alignment between the eigenvectors of the SIREN NTK and the Fourier modes.
To verify this assumption for our different initialization schemes, we examined the power spectrum
of the NTK eigenvectors, which corresponds to their overlap with the Fourier modes:

/ vy () e da
Q

The previous analysis reveals that the only initialization preserving the expected ordering, low fre-
quencies corresponding to low NTK eigenvalues, is our proposed initialization with ¢, = 0. This
observation is consistent with our Fourier-spectrum study (see Section [3.3). Indeed, we observe in
Figure 22] an almost perfect alignment between the Fourier modes and the NTK eigenspectrum for
frequencies below wy.

2

(v, ) |* = (18)

For the other initialization schemes, this alignment deteriorates substantially as depth increases,
calling into question the relevance of NTK-based explanations of spectral bias. Indeed, in the
NTK regime, the first modes learned are no longer the low-frequency components; instead, higher-
frequency modes increasingly dominate for o, = 1 and the Sitzmann initialization. For the PyTorch
initialization, the situation is reversed: the entire spectrum collapses, preventing any meaningful
frequency ordering.

6.3 AUDIO FITTING EXPERIMENTS

To investigate the effect of the proposed initialization on the network’s ability to fit high—frequency
signals, we consider a 7-second audio clip sampled at the standard rate of 44,200 Hz. To expose
potential generalization effects, we subsample the signal by a factor of three and set wy = 7000,
which is approximately the Nyquist frequency corresponding to this reduced sampling rate. The
results are shown figure 23]

Both the SNR and MSE metrics show a consistent improvement when using our proposed initial-
ization on generalization tasks, while also providing strong training performance. The initialization
with o, = 1 also achieves competitive results, though its generalization accuracy remains notice-
ably lower. For the other initialization schemes, even when training performance is satisfactory, the
generalization error remains far too large to reliably encode a continuous signal.

6.4 VIDEO FITTING EXPERIMENTS
Video fitting on ERA-5 wind fields. To evaluate the impact of the initialization on a complex

video-fitting task, we consider the hourly ERA-5 atmospheric reanalysis on the spherical Earth,
focusing on the 10 m meridional (South-North) wind component v(t, A, ).

13
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Figure 9: Overlap evolution with depth of the NTK eigenbasis over the Fourier modes, for the
proposed initializations o, = 0 and o, = 1, the original Sitzmann initialization and the initialization
with Pytorch default initialization weight. The power spectrum has been calculated using wy = 1,
over the interval [—64, 64] using 512 points. wq has been chosen to be two times smaller than the
Nyquist frequency of the input points for the sake of vizualization. The horizontal red dashed lines
correspond to the frequencies £wy.

Where the data is defined on a regular longitude—latitude grid with
A €1]0,360), ¢ € [-90,90],

discretized into
Ny =1440 and N, =720

spatial points, respectively. We restrict ourselves to the first Ti,ox = 30 hourly time steps. For
training, we form a set of input—output pairs

(mia yi)ie]p

14
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Figure 10: Comparison of several state-of-the-art methods (described in Figure[2) with SIREN using
our proposed initialization. All networks, with depth L = 15 and width N = 256, were trained for
10,000 epochs using the ADAM optimizer with a learning rate of 3 x 10~°.

where each index i corresponds to a triplet (¢, \, ¢) on this spatio-temporal grid. The target y; is
obtained from v(t, A, ) by a standard affine normalization (subtracting a global mean and dividing
by a global standard deviation computed over the first 7}, frames).

Each input vector is defined as

Ty = (T(ti)v >\ia Soz)v
where the time coordinate 7(¢) is obtained via a linear rescaling of the discrete time index ¢ such that
the effective Nyquist frequency along the time axis matches that of the two spatial axes (longitude

and latitude). This ensures a comparable frequency bandwidth in all three input directions and allows
us to pick wg = 0.7 for every direction.

For training, we randomly subsample a fixed fraction of the full spatial gridded points {1, ..., Ny} X
{1,..., Ny} (10% of all points, justifying the choice of wy), while for evaluation we use the com-
plete spatio-temporal grid.

Regarding the batching, to avoid I /0O bottlenecks when accessing the dataset, we organize the data
into time-slice batches. Concretely, we consider a spatio-temporal grid

t€{0,..., Tmax — 1}, A€ {1, AN ) pe{e1,-- 0N, }

and for each fixed time index ¢ we form a batch containing many spatial points on the sphere. For
a given time ¢, we define a (possibly subsampled) index set Z, C {1,..., Nx} x {1,..., N}, and
construct the corresponding mini-batch

Br = {(zejh: i) - (4,F) € T},
where each inputis @, ; , = (7(t), \;, ) and the target y; ; . is the normalized wind value at time
t and location (A, ¢x).

We benchmark previous state-of-the-art INR methods and our SIREN models with different ini-
tialization schemes on this ERA-5 re-analysis to assess their ability to fit and generalize complex
spatio-temporal dynamics on the sphere.

Once again, our initialization with o, = 0 yields better generalization performance, even on com-
plex tasks and geometries such as video fitting on the sphere. In contrast, the Sitzmann and o, = 1
initializations tend to produce noticeable noisy artifacts. Moreover, the FINER and WIRE methods
appear clearly unstable for high-depth networks. We also highlight the comparatively good perfor-
mance of the positional encoding ReLU (PE) network in this setting.

6.5 DENOISING EXPERIMENTS

We consider a grayscale image y* : Q C R? — [0,1] (the astronaut image), defined on a
continuous domain 2. For training, we sample a regular grid of locations

(xi)ier,  I={1,...,128} x {1,...,128},

15
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Figure 11: Comparison over three different time frames of several state-of-the-art methods on the
ERA-5 reanalysis dataset (first 30 hours), using networks with width N = 256 and depth L =
15. All models were trained for 6,000 epochs with the ADAM optimizer and a Reduce-on-Plateau
learning-rate scheduler, starting from an initial learning rate of 10~3. For batching, we used the
time-slice structure described above with 5 gradient accumulation steps. To reduce computation
time, we employed gradient scaling together with automatic mixed-precision (AMP) training.

which we identify with points in [—1, 1]?. The clean training targets are

yi = y*(x;) € [0,1], iel

To study denoising and the implicit spectral regularization of different initializations, we corrupt
only the training targets with synthetic high-frequency noise. Let N = 128 be the spatial resolution
of the training grid and let

N
fNyq = 4

denote the associated Nyquist frequency (in cycles per unit length on [—1, 1]). We construct a high-
frequency noise field as a superposition of K random waves whose spatial frequencies lie strictly
above fnyq:

K
n(x) = Zsin(%(f;k)xl + flgk)@) + ¢(k)),
k

1

where for each k we draw %, fék) ~ U(2fNyqr 4fnyq), 8% ~ U(0,27), and & = (21,22) "
We then normalize this field on the training grid to have zero mean and unit variance,

_— n(x;) — ITh > jan(z))
\/ﬁ Zjer(m(@;) = 1 Xer n(z))”

and scale it by a prescribed noise level op0ise > 0. The noisy training targets are finally defined as

iel,

Yi = Yi + Onoise Tis rel

We train all INR models on the noisy dataset {(x;, §;) };cr and evaluate on a higher-resolution grid
covering the full image domain, using the clean image y* as reference. This setup isolates the ability
of each initialization to act as an implicit frequency-space regularizer for denoising, independently
of network depth.

Figure [23]illustrates our claim that the proposed initialization acts as a regularizer on the frequency
content that the network can represent. Indeed, we observe higher SNR and lower MSE for our ini-
tialization o, = 0, together with a significantly larger training loss. This indicates that the network
does not fit all of the high-frequency background noise, but instead focuses on reconstructing the
underlying clean signal.

16
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Figure 12: Results of the denoising experiments for the different state-of-the-art methods,using
networks with width N = 256 and depth L = 10. All models are trained on the noisy dataset
{(x;, ;) }ic1 described above using opeie = 0.05 and evaluated on the original high-resolution
image of size 512 x 512 to assess denoising performance. The networks were trained for 10 000
epochs using the ADAM optimizer with a learning rate of 10~

6.6 PHYSICS INFORMED EXPERIMENTS

Physics-Informed Neural Networks (PINNs) approximate the solution u of a differential equation

with Uy by embedding the underlying physical laws into the loss function. Given a PDE of the form
Nuj(z) = f(x), €9,

with boundary/initial conditions Blu] = g(x) on 912, the neural network ¥y is trained by minimiz-
ing the composite loss

LO) =X > INWol(ms) = fl=p) + N Y [BW)(ms) — g(my)] .

waDf x, €Dy

where Dy and D;, denote collocation points in the domain and on the boundary. Automatic differ-
entiation is used to compute N'[¥y], allowing the network to satisfy the governing equations as part
of the training process.

In order to compare the several model at stake and the impact of the initialization, we used the
PINNacle benchmark (Hao et al., |2024), which allowed us to have a pre-builtin solver for each
differential equation we studied.

6.6.1 BURGER 1D

We consider the one-dimensional viscous Burgers equation, written in the generic PDE form

0.01
Nul(z,t) = ut + wuy — vug, =0, (x, ) € ,v=—0.
T
The spatio-temporal domain is defined as 2 = [—1, 1] x [0, 1].. The initial and boundary conditions

are given byu(z,0) = — sin(nx), u(—1,t) = u(l,t) = 0.

We observe figure [26] that the different initialization schemes yield very similar results, with the ex-
ception of the FINER and ReLU networks. Interestingly, for this specific task, the original Sitzmann
initialization appears to provide the most favorable performance. We conjecture that this behavior
is related to the nature of the Burgers equation, whose sharp propagating front can be effectively
represented even under a highly ill-conditioned gradient distribution.

6.6.2 STATIONARY NAVIER-STOKES 2D

We consider the stationary incompressible 2D Navier-Stokes equations
Nufu,p] = (u-V)u+ Vp — vAu = 0, Nplu] =V -u=0,

17
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Figure 13: Results of the Burgers 1D solutions for the different state of the art methods, using a
network with width NV = 256 and L = 15. The networks were trained for 10 000 epochs using the
ADAM optimizer with a learning rate of 10~%. For the SIREN based architectures, we chose wg = 2.

for the velocity field u = (u,v) and pressure p, with v = 1.

The spatial domain 2 is defined as
Q= (0.8 \[JR:,

where each R; denotes a circular obstacle. For further details about the boundary conditions please

see the original PINNacle benchmark (Hao et al.,[2024).

Ground truth SIREN (0, = 0)

SIREN (Sitzmann)

‘Tanh (Fourier-Xavier) ReLU (PE)

MSE: 5.961e-02 MSE: 4.3310.01
RMSE: 1075¢-01 RMSE: 2780001

MSE: 2.359¢+00
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Figure 14: Results of the Navier-Stokes 2D solutions for the different state of the art methods, using
a network with width NV = 256 and L = 15. The networks were trained for 10 000 epochs using the
ADAM optimizer with a learning rate of 10~%. For the SIREN based architectures, we chose wg = 2.

The impact of initialization observed figure [27|is far more pronounced in that case than for Burger.
We observe that having proper control over the spectral properties of the initialization can lead
to a significant improvement in performance. The Sitzmann initialization exhibits, as expected,
problematic high-frequency components, while other models such as FINER, Tanh, and ReLU fail
completely to reconstruct the physical solution.

6.6.3 HEAT EQUATION IN COMPLEX GEOMETRY
We consider the transient 2D heat equation

Nu)(z,t) = up — Au =0, (x,t) € Q x [0,3].

The spatial domain 2 is defined as

Q= ([-8,8] x [-12,12)) \ | J Rs,

where each R; denotes a circular obstacle. For further detail about the boundary conditions please

see the original PINNacle benchmark 2024).

The results for different initializations are shown figure The distinction between o, = 1 and
0, = 0 is striking. The former produces noticeably noisy and unstable solutions, whereas setting
0, = 0 successfully reproduces the behavior of the ground-truth solution. For the other initialization
methods, the observations are consistent with those made in the Navier—Stokes experiment.
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Figure 15: Results of the 2D heat equation experiments for the different state of the art methods,
using a network with width N = 256 and L = 15. The networks were trained for 10 000 epochs
using the ADAM optimizer with a learning rate of 10~*. For the SIREN based architectures, we chose
wo = 1.

|

6.7 SYNTHETIC EXPERIMENTS
6.7.1 1D FITTING EXPERIMENTS

For the 1D fitting experiments, we generated synthetic data by sampling from a multi-scale function:

f1a(x) = sin(3z) + 0.7 cos(8z)
+ 0.3sin(40z + 1) + exp(—z?)

To explore the impact of initialization on the performance of various neural network architectures,
we studied two tasks: function fitting and PDE solving. Since image and video fitting reduce to
function fitting, we focus on it. This choice lets us control the target function’s frequency content.
As a result, we can probe the different scales present in the data.

1d Averaged Generalization error 1d Averaged Training error
10°
10°
1072
—1
10 10-*
1072 10-6
1073 10
10—10
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[ SIREN (o, = 0) [ SIREN (Sitzmann) [ Finer [ RelU (PE)
[ SIREN (o, = 1) I Wire [ Tanh (Fourier-Xavier)

Figure 16: 1d Averaged generalization and training error for the 1D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.

The results plotted figure [29)show that our proposed initialization matches or exceeds the accuracy
of the traditional SIREN architecture for fitting a function. Moreover, it delivers significantly lower

19



Under review as a conference paper at ICLR 2026

generalization error compared to the original SIREN. Notably, the Tanh-based positional-encoding
network also shows strong generalization performance, despite its slightly higher training error.

6.7.2 2D FITTING EXPERIMENTS

We applied the same methodology to a two-dimensional, multi-scale test function:
faa(z,y) = sin(3x) cos(3y) + sin(15z — 2) cos(15y)
+ exp(— (z% + yz))7
for (z,y) € [—1,1]2. The exponential term ensures no architecture can represent the function
trivially. We sampled 3600 random training points, giving a Nyquist frequency above 15. Each

network was trained for 5000 epochs using Adam (learning rate 10~%) under various initialization
schemes. We then evaluated generalization error on 10 000 test points. The comparative results

appear in Fig. [30]

2d Averaged Generalization error 2d Averaged Training error

Number of hidden layers
[ SIREN (0, =0) [ SIREN (Sitzmann) [ Finer 3 RelU (PE)
[ SIREN (0, = 1) Bl Wire [ Tanh (Fourier-Xavier)

Figure 17: 2d Averaged generalization and training error for the 2D fitting problem. The results
are averaged over 10 runs for each architecture of width N = 1238. The error bars represent the
standard deviation of the results.

The results mirror the 1D fitting experiments. Our proposed initialization clearly outperforms all
other architectures on the generalization task. At the same time, it maintains a very low training
error, comparable to the SIREN architecture.

6.7.3 3D FITTING EXPERIMENTS

For the 3D fitting experiments, we use the same framework as in 1D and 2D. We test a three-
dimensional function with multi-scale features:

faa(x,y, z) = sin(5x) cos(12y) sin(3z)
+exp(— (2* +y° +27)),

for (z,y, z) € [~1,1]. The exponential term prevents trivial representation by any architecture. We
sample 8000 random training points, ensuring a Nyquist frequency above 12. Each network trains
for 5000 epochs using Adam with learning rate 10~* under various initialization schemes. We then
evaluate generalization error on 70 000 test points. The results appear in Fig.[31]

Once again, our proposed initialization delivers strong results. It clearly outperforms all other archi-
tectures on generalization. Its fitting error remains very low, only slightly above the classic SIREN.
Interestingly, as the number of layers increases, SIREN’s training error decreases alongside rising
high-frequency content. This suggests that fitting high frequencies may harm generalization—a
drawback our method avoids.
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3d Averaged Generalization error 3d Averaged Training error

Number of hidden layers
[ SIREN (0, = 0) [0 SIREN (Sitzmann) [ Finer [ ReLU (PE)
[ SIREN (0, = 1) Bl Wire [ Tanh (Fourier-Xavier)

Figure 18: 3d Averaged generalization and training error for the 2D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.
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A MATHEMATICAL APPENDIX

A.1 INPUT DISTRIBUTION

Theorem (Restatement of Theorem [3.1). Considering SIREN network described in equation 5]
where, for some c,,,c, € RT, and for every layer ¢ € {2,..., L}, the weight matrix W is ini-
tialized as a random matrix sampled from U(—c, /' N, ¢ /V'N), and the bias by is initialized
as a random vector sampled from N0, c3). Let (Z0)eeq1...,Ly the preactivation sequence defined
in equation [3| and relying on an input & € R™. Then, in the limit of large N, the preactivation
sequence (z¢)een converges in distribution to N (0, 02) where

1 .
+5Wo (—%e—s—zci) (19)

2
Cw

2 2
o, =¢, + 6

3

with W, is the principal real branch of the Lambert function. Additionally, the sequence associated
to the variance of the preactivation (Var(Zg)) converges to a fixed point o, which is exponen-

tially attractive for all values of ¢, # \/3.

£eN

Proof. The proof can be split in three steps: (i) prove that the sequence of preactivations follows a
Gaussian distribution (cf. LemmalA.T), (ii) give an expression of the variance of the output of a sin
activation when the input follows a zero-mean Gaussian distribution of s.t.d. o, (cf. Lemma @]},
(iii) provides the expression of the variance of each element of the preactivation sequence using the
result in (ii) and proves its convergence to a fixed point o, (cf. Lemma[A.3).

Lemma A.1. Considering SIREN network described in equation |5 where, for some c,,,c;, € RT,
and for every layer £ € {2, ..., L}, the weight matrix Wy is initialized as a random matrix sampled
fromU(—cy /N, cw/VN), Wy is sampled from U(—wq /no, wo/no), and the bias by is initialized
as a random vector sampled from N (0, cg) Let (z¢)¢eqa...,Ly the preactivation sequence defined
in equation 3| and relying on an input € R"™. Then, in the limit of large N, each element of the
preactivation sequence (z¢)een is distributed according to a zero-mean Gaussian distribution.

Proof. We recall that for the first layer, hg = @ and, forevery £ € {1,..., L},
h, = sin (Wgheq + bg).

Since the sine activation is an odd function, it preserves the zero-mean property of any distribution:
if zy = Wyhy_1 + by has zero mean, then h, will also have zero mean. This property propagates
layer by layer.

As W and by are assumed to have zero mean (by definition, cf. equation[7) and « is a deterministic
vector, it ensures that the first-layer pre-activation has zero-mean. Moreover, as W, and b, are
assumed to have zero mean the zero-mean property holds for all subsequent pre-activations z, and
hy.

Second, we prove that the preactivation sequence is distributed according to a Gaussian. We first
rewrite each element of the preactivation sequence as

N
Zg; = Zwé,i,jhéfl,j +be; - (20)
j=1

As a sum of two Gaussian stays Gaussian and because by is assumed to be Gaussian with a standard
deviation oy, the main purpose here is then to prove that Z;V=1 Wy,i she—1; follow a Gaussian
distribution.

Thanks to the Central Limit Theorem, whatever is the distribution of h,_; ;, the term

Z;Vzl Wy i, ;he—1 ; converges in distribution to a Gaussian distribution in the limit of large N. Since
the bias is also normally sampled, each component z, ; follows a gaussian distribution in the same
large N limit, with zero mean and a variance denoted o2,
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To compute this variance, let us first compute the variance of each summand denoted o7, ;» given
by the product of two independent random variables with zero mean, namely Wy ; ; and hy_y ;,

0t = Var [We, ] Var [he—1 ], 21
Since W,,; ; is uniformly distributed on [—c,, /v/N, ¢,,/v/N], we have:
2
c
Var [W&i,j] = 37;\}7 (22)

While the variance of hy_ ; is still unknown, we can express it from the knowledge of z,_1, leading

to
2

C .
0?71-7]- = 3—]1‘\’[Var [sin(ze—1,5)] - (23)

whose expression of Var [sin(z¢_1 ;)] will be provided later.

As the bias variance follows a Gaussian distribution as described in equation [/} the variance of all
the elements of the preactivation zy is

2
o2 = %Var [sin(ze—1)] + ¢ 9

O

Lemma A.2. Let z be a normally distributed random variable and zero mean z ~ N(0,02). Then
we have :

Var [sin (z)] = % (1 — 62"2) . (25)

Proof of LemmalA.2] The proof combined the properties of the Gaussian distribution with the fact
that the sine function is an odd function. We have:

Var [sin (2)] = E [sin?(2)] — E [sin(z)]?

Since sin is odd and since the expectation of z is zero, we have E [sin(z)] = 0. In addition, using
sin?(z) = (1 — cos(2z))/2, we obtain
1 1
E [sin?(2)] = o E]E [cos(22)] .
The characteristic function of the Gaussian distribution with zero mean and variance o, is given by:
gz(t) _ E(eitz) _ e—%tQUQ.
Now we notice that ‘ ,
E[cos(22)] = E [R [e*]] = R [g.(2)] = e~ .
The first equality uses the linearity of the mean. This leads to the final result:
1
Var [sin (z)] = B (1 — 6_2"2) .
O

Lemma A.3. Considering SIREN network described in equation |5 where, for some c,,,c;, € RT,
and for every layer £ € {1,..., L}, the weight matrix W is initialized as a random matrix sam-
pled from U(—c, /N, co/V'N), and the bias by is initialized as a random vector sampled from
N(0,¢}). Let x € R™. Then, in the limit of large N, the preactivation sequence (Ze)eeqr....1)
defined in equation |3|is distributed according to a Gaussian distribution with zero-mean and, for

every {, a variance
2

c
ol = Fw (1 - 6_20‘?*1) +cf

Moreover, the sequence (03) ey converges to

2 1 2 2
o2 =ci+ %U + §Wo,,1 (—(:;:]6_3_2612’) ,

with Wy, _1 the two real branches of the Lambert W function. And for c,, # /3, this convergence is
exponentially fast.

25



Under review as a conference paper at ICLR 2026

Proof of Lemma[A3]

Fixed Point Value : Combining equation 24]and equation [A.3] the variance of the pre-activation at

layer / is
2

C 2
0-? S (1 _ 6_205*1) + c%
To characterize the fixed point of the sequence (07)sen, we define a function f as

2
flz) = %" (1 - 6721’) + cg. (26)
The fixed point of this function is given by the solution of the equation f(z) = x. Rearranging the
different term gives:
C12,U + 2 C’IQU —2x (27)
— 4 —z=—Fe .
6 " 6
Using y = % + ¢ — x yields

2 2
ye 2 = Cw =2t
6

Then, using the definition of the real valued Lambert W function, we get

1 02 B2
y = —§Wk <—§U€2(6+C”)> , where ke {-1,0}.

The W), branch is called the principal branch and is defined on (—e~!, +00). The W_; branch is
defined for (—6’1, 0). To obtain a positive variance, the branch to consider is W, as illustrated
numerically in figure [T9]

3 Branch Wy Branch W_;
2
5
1
1 2 3 1 2 3
Cw Cw
— L
0 5 10 -4 -2 0
o; o;

Figure 19: The o, solution emerging from the W, branch on the left and W_; branch on the right

Convergence Speed : To quantify the convergence towards the fixed point o2, consider the deriva-
tive of f at the fixed point:

1'(02) = %e—zf’i-

The fixed point is exponentially attractive whenever f/(02) < 1, which is immediately satisfied for
Cw < V3. Forcy, > V3, Lemma gives

2

Cw 2 2 /3_0c2
fl(02) =2(—f(oa) + 5 T ) = _WO(_?we 2 /3-2 b) .

Since

2 2 2
c — —
_é < _T;,H e Cw/3—2¢; < 0’
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the properties of the principal branch Wy imply | f’(02)| < 1. Hence, the fixed point is exponentially

attractive for all values of c,, # /3, and convergence occurs rapidly. For ¢,, = v/3, the map f can
be written

f(x):%(l—efh), x> 0.

A Taylor expansion at z = 0 yields
2
flx)=2—2*+ ggc?’ + O(x%),

so that f is tangent to the identity at the origin, i.e. f(0) = 0 and f’(0) = 1. Moreover, since
fl@)<a for all x > 0, the map f admits O as its unique fixed point on [0, 00), and any sequence
(0¢)e>0 defined by 0441 = f(0¢) with og > 01s strictly decreasing and converges to 0. Furthermore
thanks to the previous extension it fits into the general class of one-dimensional parabolic maps
studied in (Coll et al.l 2020, Theorem 1). That theorem provides a complete asymptotic expansion
of the orbit (oy); in particular,

crng as { — oo.

This concludes the proof of the Lemma[A.3] and of the Theorem3.1] O

A.2 GRADIENT DISTRIBUTION

Theorem (Restatement of Theorem . Let J; = 0hy/0hy_1 denote the Jacobian of the (-th
layer. Under the same assumptions a Theorem[3.1|we have

J, = diag(cos (z¢)) Wy.

In the limit of large N, each entry of Jy has zero mean and a sequence of variance 5? such that the
sequence (07)¢en that converges to

0'2:

g (1 + 6_203)'

2

Proof. An element of the Jacobian of the /-th layer are writen as:

N
= Wy, 1 cos E We,i’jhzfl,j +bgi | = Wy, cos (Zg’i)

Jj=1

ohy ;
Ohy_1

with z,; the i component of pre-activation vector defined in equation In the limit of large
width Noo W, and z, are independent (leave-one-out justification), resulting in the independence
of variable W ; 1 and cos (z,,;). The variance of their product denoted 55 can then be expressed as
the product of their variance:

67 = Var [Wy,; ;] Var [cos (z,)] .

Considering the same arguments as for Theorem and replacing sin by cos, the sequence (o) en
converges to

2
7= e

with o2 the limit variance of the pre-activation, given by Theorem [3.1
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A.3  PROOF OF EQUATION [§] AND INITIALIZATION [9]

We propose to initialize the weights and biases of SIREN networks as follows:

u(—mm) tef,... L,

b, ~ N(0,¢2), £€{1,...,L}.
To control the distribution scaling of gradients, following equation we impose 03 =1,ie.,

and

@‘gw

(1 +e %) =1. (28)

Let’s recall that the fix point o, verifies :

2
c
o2 = —é” (1 - 6720‘21) +c?

From equation[28]and , we easily get

2 1 6

Combining this result with equation leads to an implicit equation for c3.

We discuss in the text two particular points, corresponding to o, = 0 and o1 = 1, respectively:

* The case o, = 0 (proposed initialization) leads to (¢, c;) = (v/3,0).

* The case o, = 1 leads to ¢2, = 6/(1 + e~1). To obtain an explicit expression for cy, it is
convenient to use the fixed-point equation[27|with = 1, leading to:

e -2 2
i)t -1, (30)
which, using equation equation [28] simplifies to
e ?
= T (31)

A.4 DERIVATION OF THE PROPOSED SCALING

Let Wy () defined as in equation |5|a scalar output function, initialized as in the previous theorems,
and considering a given value of o, resulting from the initialization.

Derivation of the parameter-wise Gradient scaling: Considering a weight-parameter Wy, 7, j

with ¢ > 1 of the /-th layer, we study the scalar gq"’(m) which can be rewritten as :

8\119(33) 8\119 8hL_1 o 8hg+1 ahg(.’B)

8Wg,i)j N 81’1]4,1 8hL,2 ah( an’i’j

Then from theorem [3.2] under the choice of our initialization we know that the Jacobian matrices
J; = Ohy/Ohy_1 have variance o2 /N in the limit of large [ and large N. Moreover, we have from

the definition of Wy the expression of the vector da‘l"’ = W, with Var(Wp) ~ 1/N. Let us
consider first the sensitivity vector gy:

9% Ohyy Ohe
8= Ohy_; 0hyp_» ohy

(32)
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Owing to the impact of matrix multiplication on every components, we have Var(g,) ~
(No2)L=*=1/N. Let us now consider now the term g;‘vei(m). This is a zero vector except for the i-th

component, verifying +m hy_1 j cos(Wy_1,.he_1 +b;), with variance Var(m‘vf,il(m)) ~ 1.

Hence, the parameter-wise gradient can be rewritten as:
O¥y(x)
OWy i

=gy ihy_qjcos(Wy_y;.hy_1 +b;).

Assuming independence between g, ; and ‘9‘1’9(3)

namely Var(aqu,g(m)) ~ (No2)E=*=1/N.

, we finally obtain the desired variance scaling,

Derivation of the input-wise Gradient scaling: Following the same notations as above, we have:
OVg(x) O¥g(x)ohr_;  Ohs Oh;(x)
dx  Oh,, oh, 5, Oh, 0w
Recalling that g1, has variance Var(gi) ~ (No2)“~2/N. In that case the 1/N factor will cancel

out due to the term ahalif). Indeed, we have:
Ohy (x)
oz

which is a non-trivial matrix of variance Var(ahaliciz)) ~ w3, for both the original and proposed
SIREN initialization. Focusing on one input coordinate x;, we get:

OWy(x)
ox;

= diag(cos (Wix + b)) Wy,

= g; diag(cos (Wixz + b)) Wy ., = Z g1,; (diag(cos (Wax + b)) Wy . ;);.
J
The variance of each term scales as ~ (ag)L_2 /N. Supposing independence between each sum-

mand leads to Var(2%e(=)) (o2)F2wg.

B EXPERIMENTAL APPENDIX

B.1 END TO END JACOBIAN, SINGULAR VALUE SPECTRUM

As discussed in (Pennington et al. 2017), an important notion of stability in neural networks is
captured by the singular value distribution of the end-to-end Jacobian: when these singular values
concentrate around 1, the network preserves the norm of signals during backpropagation. This
property, known as dynamical isometry, is closely linked to stable and efficient training and will be
the subject of further investigation for SIREN architectures in future work.

As a preliminary step toward this analysis, we plot figure 20| the full singular value distribution of
the end-to-end Jacobian obtained with our proposed initialization. Since we focus on INR settings,
we define the end-to-end Jacobian as the matrix of size N x NN, where N denotes the width of the
network:

ohr_4

oh,

Once again, our initialization with o, = 0 exhibits a stable and nearly unitary normalized maxi-
mum singular value, independently of network depth. This behaviour is not observed for the other
initialization schemes, where the largest singular value either grows steadily with depth or collapses
rapidly, as in the case of the PyTorch initialization. However, our initialization does not achieve full
dynamical isometry, indicating that there remains room for improvement while still satisfying the
key constraints established earlier. Exploring additional constraints on the weight distribution may
therefore lead to enhanced stability with respect to dynamical isometry.

J:

B.2 NTK SPECTRUM AND FOURIER OVERLAP
B.2.1 NTK SPECTRUM

In the main text, we restricted our analysis of the Neural Tangent Kernel (NTK) spectrum to its trace,
which captures only its mean behaviour. However, the trace alone does not reflect the full structure
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Figure 20: Full singular value spectrum evolution with depth for the proposed initializations o, = 0
and o, = 1, for the original Sitzmann initialization, and for the PyTorch default weight initialization.
Each spectrum was averaged over five independently initialized networks. The Jacobian distribution
was computed twice and averaged, using 10 sample points on the domain [—, 7].

of the spectrum. In this section, we therefore examine the complete NTK eigenvalue distribution in
order to highlight its finer characteristics.

SIREN (0, = 0) SIREN (0, = 1) SIREN (Sitzmann) SIREN (Pytorch)

— L=4 L=16
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Figure 21: Full NTK eigenspectrum evolution with depth for the proposed initializations o, = 0 and
o, = 1, for the original Sitzmann initialization, and for the PyTorch default weight initialization.
Each spectrum was averaged over five independently initialized networks. The NTK was computed
on the domain [—, 7] using 256 sample points.

The full spectrum analysis shown figure 21| reinforces our previous observations based on the NTK
trace, namely that the Sitzmann and PyTorch initializations become extremely ill-conditioned as
depth increases. In contrast, the 0, = 1 and 0, = 0 initializations remain comparatively stable.
One can observe a noticeable lifting of the eigenvalues at high indices for o, = 1, whereas this
lifting is much smaller and more uniform under the o, = 0 initialization. This behaviour could be
directly related to aliasing phenomena in such networks, where high frequencies can be used earlier
to fit a signal.

This interpretation is further supported by the next analysis, where we show that under ill-
conditioned initializations the low-index NTK eigenvectors begin to encode increasingly high fre-
quencies as depth grows.

B.2.2 FOURIER OVERLAP

To support our NTK analysis and our explanation of spectral bias, we previously assumed (see
Figure[3)) a form of alignment between the eigenvectors of the SIREN NTK and the Fourier modes.
To verify this assumption for our different initialization schemes, we examined the power spectrum
of the NTK eigenvectors, which corresponds to their overlap with the Fourier modes:

2

(U, P> = (33)

/ vy () e da
Q
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Figure 22: Overlap evolution with depth of the NTK eigenbasis over the Fourier modes, for the
proposed initializations o, = 0 and o, = 1, the original Sitzmann initialization and the initialization
with Pytorch default initialization weight. The power spectrum has been calculated using wy = 1,
over the interval [—64, 64] using 512 points. wq has been chosen to be two times smaller than the
Nyquist frequency of the input points for the sake of vizualization. The horizontal red dashed lines
correspond to the frequencies £wy.

The previous analysis reveals that the only initialization preserving the expected ordering, low fre-
quencies corresponding to low NTK eigenvalues, is our proposed initialization with o, = 0. This
observation is consistent with our Fourier-spectrum study (see Section [3.3). Indeed, we observe in
Figure [22| an almost perfect alignment between the Fourier modes and the NTK eigenspectrum for
frequencies below wy.

For the other initialization schemes, this alignment deteriorates substantially as depth increases,
calling into question the relevance of NTK-based explanations of spectral bias. Indeed, in the
NTK regime, the first modes learned are no longer the low-frequency components; instead, higher-
frequency modes increasingly dominate for o, = 1 and the Sitzmann initialization. For the PyTorch
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initialization, the situation is reversed: the entire spectrum collapses, preventing any meaningful
frequency ordering.

B.3 AUDIO FITTING EXPERIMENTS

To investigate the effect of the proposed initialization on the network’s ability to fit high—frequency
signals, we consider a 7-second audio clip sampled at the standard rate of 44,200 Hz. To expose
potential generalization effects, we subsample the signal by a factor of three and set wy = 7000,
which is approximately the Nyquist frequency corresponding to this reduced sampling rate. The
results are shown figure 23]

SIREN (0, = 0) SIREN (0, = 1) SIREN (Sitzmann) Wire Finer Tanh (Fourier-Xavier) ReLU (PE)
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SNR: 28.73 dB
MSE: 2.56e-06

SNR: -0.00 dB
MSE: 1.91e-03

SNR: -0.24 dB
MSE: 2.02e-03

SNR: 24.52 dB
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Figure 23: Comparison of several state-of-the-art methods (described in Figure[2) with SIREN using
our proposed initialization. All networks, with depth L = 15 and width N = 256, were trained for
10,000 epochs using the ADAM optimizer with a learning rate of 3 x 10~°.

Both the SNR and MSE metrics show a consistent improvement when using our proposed initial-
ization on generalization tasks, while also providing strong training performance. The initialization
with g, = 1 also achieves competitive results, though its generalization accuracy remains notice-
ably lower. For the other initialization schemes, even when training performance is satisfactory, the
generalization error remains far too large to reliably encode a continuous signal.

B.4 VIDEO FITTING EXPERIMENTS

Video fitting on ERA-5 wind fields. To evaluate the impact of the initialization on a complex
video-fitting task, we consider the hourly ERA-5 atmospheric reanalysis on the spherical Earth,
focusing on the 10 m meridional (South-North) wind component v (¢, A, ).

Where the data is defined on a regular longitude—latitude grid with
A €10,360), ¢ €[-90,90],
discretized into
Ny =1440 and N, =720

spatial points, respectively. We restrict ourselves to the first Ti,.x = 30 hourly time steps. For
training, we form a set of input—output pairs

(mia yi)ie]l’

where each index ¢ corresponds to a triplet (¢, A, ¢) on this spatio-temporal grid. The target y; is
obtained from v(t, A, ) by a standard affine normalization (subtracting a global mean and dividing
by a global standard deviation computed over the first 7}, frames).

Each input vector is defined as

Ty = (T(ti)v >\ia %)7
where the time coordinate 7(t) is obtained via a linear rescaling of the discrete time index ¢ such that
the effective Nyquist frequency along the time axis matches that of the two spatial axes (longitude
and latitude). This ensures a comparable frequency bandwidth in all three input directions and allows
us to pick wg = 0.7 for every direction.
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For training, we randomly subsample a fixed fraction of the full spatial gridded points {1, ..., Ny} X
{1,..., Ny} (10% of all points, justifying the choice of wy), while for evaluation we use the com-
plete spatio-temporal grid.

Regarding the batching, to avoid I /0 bottlenecks when accessing the dataset, we organize the data
into time-slice batches. Concretely, we consider a spatio-temporal grid

te{o max_l}a )\G{Alﬂ"'7>\N>\}? 906{@1’--~7<PN¢}7

and for each fixed time index ¢ we form a batch containing many spatial points on the sphere. For
a given time ¢, we define a (possibly subsampled) index set Z, C {1,...,Nx} x {1,...,N,}, and
construct the corresponding mini-batch

By = {(ejk:yein) : (G:F) € L},

where each input is x; j . = (T(t), A, gok) and the target y; ; ;. is the normalized wind value at time
t and location (\;, ¢r).

We benchmark previous state-of-the-art INR methods and our SIREN models with different ini-
tialization schemes on this ERA-5 re-analysis to assess their ability to fit and generalize complex
spatio-temporal dynamics on the sphere.

Ground truth SIREN (7, = 0) SIREN (7, = 1) SIREN (Sitzmann) Finer Tanh (Fourier-Xavier) ReLU (PE)
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Figure 24: Comparison over three different time frames of several state-of-the-art methods on the
ERA-5 reanalysis dataset (first 30 hours), using networks with width N = 256 and depth L =
15. All models were trained for 6,000 epochs with the ADAM optimizer and a Reduce-on-Plateau
learning-rate scheduler, starting from an initial learning rate of 10~3. For batching, we used the
time-slice structure described above with 5 gradient accumulation steps. To reduce computation
time, we employed gradient scaling together with automatic mixed-precision (AMP) training.

Once again, our initialization with o, = 0 yields better generalization performance, even on com-
plex tasks and geometries such as video fitting on the sphere. In contrast, the Sitzmann and o, = 1
initializations tend to produce noticeable noisy artifacts. Moreover, the FINER and WIRE methods
appear clearly unstable for high-depth networks. We also highlight the comparatively good perfor-
mance of the positional encoding ReLU (PE) network in this setting.

B.5 DENOISING EXPERIMENTS

We consider a grayscale image y* : Q C R? — [0,1] (the ast ronaut image), defined on a
continuous domain 2. For training, we sample a regular grid of locations

(zi)ier,  T={1,...,128} x {1,...,128},
which we identify with points in [—1, 1]?. The clean training targets are

yi =y (x;) € [0,1], iel
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To study denoising and the implicit spectral regularization of different initializations, we corrupt
only the training targets with synthetic high-frequency noise. Let N = 128 be the spatial resolution

of the training grid and let
N
INyq = 4

denote the associated Nyquist frequency (in cycles per unit length on [—1, 1]). We construct a high-
frequency noise field as a superposition of K random waves whose spatial frequencies lie strictly
above fnyq:

n(x) =

M=

sin<27r(f£k)m1 + fzgk)wg) + ¢(k)),
k

where for each k we draw %, y(k ~ U(2fNyas 4fnyq), 8% ~ U(0,27), and & = (21,22) .

We then normalize this field on the training grid to have zero mean and unit variance,

e e
\/ﬁ > e ((®5) = i e n(zs))”

and scale it by a prescribed noise level op,0i5¢ > 0. The noisy training targets are finally defined as

1

~

iel,

gi = Y + Onoise flia i€ H’

We train all INR models on the noisy dataset {(«;, §;) }ier and evaluate on a higher-resolution grid
covering the full image domain, using the clean image y* as reference. This setup isolates the ability
of each initialization to act as an implicit frequency-space regularizer for denoising, independently
of network depth.

Ground truth SIREN (7, = 0] SIREN (7,

Evaluation

Gradient

Figure 25: Results of the denoising experiments for the different state-of-the-art methods,using
networks with width N = 256 and depth L = 10. All models are trained on the noisy dataset
{(x;, ;) }icr described above using opneie = 0.05 and evaluated on the original high-resolution
image of size 512 x 512 to assess denoising performance. The networks were trained for 10 000
epochs using the ADAM optimizer with a learning rate of 10~

Figure 25]illustrates our claim that the proposed initialization acts as a regularizer on the frequency
content that the network can represent. Indeed, we observe higher SNR and lower MSE for our ini-
tialization o, = 0, together with a significantly larger training loss. This indicates that the network
does not fit all of the high-frequency background noise, but instead focuses on reconstructing the
underlying clean signal.

B.6 PHYSICS INFORMED EXPERIMENTS

Physics-Informed Neural Networks (PINNs) approximate the solution u of a differential equation
with ¥y by embedding the underlying physical laws into the loss function. Given a PDE of the form

Nul(z) = f(x), €9,
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with boundary/initial conditions B[u] = g(x) on 9¢2, the neural network Wy is trained by minimiz-
ing the composite loss

LO)Y =X > IN[Wl(zy) — flmp))® + N Y [B[Wol(zs) — g(m)]*

mfGDf x, €Dy

where Dy and D;, denote collocation points in the domain and on the boundary. Automatic differ-
entiation is used to compute N'[¥y], allowing the network to satisfy the governing equations as part
of the training process.

In order to compare the several model at stake and the impact of the initialization, we used the
PINNacle benchmark (Hao et al., [2024), which allowed us to have a pre-builtin solver for each
differential equation we studied.

B.6.1 BURGER 1D

We consider the one-dimensional viscous Burgers equation, written in the generic PDE form

0.01
Nu)(z,t) = up + uty — vug, =0, (2, 1) €Q ,v=—0.
™
The spatio-temporal domain is defined as 2 = [—1, 1] x [0, 1].. The initial and boundary conditions

are given byu(z,0) = —sin(wz), u(=1,t) = u(l,t) = 0.

Ground truth SIREN (7, = 0) SIREN (0, = 1) SIREN (Sitzmann) Finer ReLU (PE)

—0.88

Figure 26: Results of the Burgers 1D solutions for the different state of the art methods, using a
network with width NV = 256 and L = 15. The networks were trained for 10 000 epochs using the
ADAM optimizer with a learning rate of 10~%. For the SIREN based architectures, we chose wy = 2.

We observe figure 26| that the different initialization schemes yield very similar results, with the ex-
ception of the FINER and ReLU networks. Interestingly, for this specific task, the original Sitzmann
initialization appears to provide the most favorable performance. We conjecture that this behavior
is related to the nature of the Burgers equation, whose sharp propagating front can be effectively
represented even under a highly ill-conditioned gradient distribution.

B.6.2 STATIONARY NAVIER-STOKES 2D
We consider the stationary incompressible 2D Navier-Stokes equations

Ny[u,pl = (u- V)u+ Vp — vAu = 0, Nplu] =V -u =0,
for the velocity field u = (u, v) and pressure p, with v = 1.

The spatial domain 2 is defined as
Q=08 \JR,

where each R; denotes a circular obstacle. For further details about the boundary conditions please

see the original PINNacle benchmark (Hao et al.,2024).

The impact of initialization observed figure [27]is far more pronounced in that case than for Burger.
We observe that having proper control over the spectral properties of the initialization can lead
to a significant improvement in performance. The Sitzmann initialization exhibits, as expected,
problematic high-frequency components, while other models such as FINER, Tanh, and ReLU fail
completely to reconstruct the physical solution.
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Figure 27: Results of the Navier-Stokes 2D solutions for the different state of the art methods, using
a network with width V = 256 and L = 15. The networks were trained for 10 000 epochs using the
ADAM optimizer with a learning rate of 10~%. For the SIREN based architectures, we chose wg = 2.

B.6.3 HEAT EQUATION IN COMPLEX GEOMETRY

We consider the transient 2D heat equation

Nu)(z,t) = up — Au =0, (x,t) € Q% [0,3].

The spatial domain €2 is defined as

Q= ([-8,8 x [-12,12) \ | J Ri,

where each R; denotes a circular obstacle. For further detail about the boundary conditions please

see the original PINNacle benchmark 2024).
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Figure 28: Results of the 2D heat equation experiments for the different state of the art methods,
using a network with width N = 256 and L = 15. The networks were trained for 10 000 epochs
using the ADAM optimizer with a learning rate of 10—, For the SIREN based architectures, we chose
wo = 1.

The results for different initializations are shown figure The distinction between o, = 1 and
o0, = 0 is striking. The former produces noticeably noisy and unstable solutions, whereas setting
0, = 0 successfully reproduces the behavior of the ground-truth solution. For the other initialization
methods, the observations are consistent with those made in the Navier—Stokes experiment.

B.7 SYNTHETIC EXPERIMENTS
B.7.1 1D FITTING EXPERIMENTS

For the 1D fitting experiments, we generated synthetic data by sampling from a multi-scale function:
fra(x) = sin(3z) + 0.7 cos(8z)
+ 0.3sin(402 4 1) + exp(—=?)
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To explore the impact of initialization on the performance of various neural network architectures,
we studied two tasks: function fitting and PDE solving. Since image and video fitting reduce to
function fitting, we focus on it. This choice lets us control the target function’s frequency content.
As a result, we can probe the different scales present in the data.

1d Averaged Generalization error 1d Averaged Training error

Number of hidden layers
[ SIREN (o, =0) [ SIREN (Sitzmann) [ Finer 3 RelU (PE)
[ SIREN (0, = 1) Bl Wire [ Tanh (Fourier-Xavier)

Figure 29: 1d Averaged generalization and training error for the 1D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.

The results plotted figure [29)show that our proposed initialization matches or exceeds the accuracy
of the traditional SIREN architecture for fitting a function. Moreover, it delivers significantly lower
generalization error compared to the original SIREN. Notably, the Tanh-based positional-encoding
network also shows strong generalization performance, despite its slightly higher training error.

B.7.2 2D FITTING EXPERIMENTS

We applied the same methodology to a two-dimensional, multi-scale test function:
faa(z,y) = sin(3z) cos(3y) + sin(15z — 2) cos(15y)
+exp(— (2% + ¢?)),
for (z,y) € [—1,1]2. The exponential term ensures no architecture can represent the function
trivially. We sampled 3600 random training points, giving a Nyquist frequency above 15. Each

network was trained for 5000 epochs using Adam (learning rate 10~4) under various initialization
schemes. We then evaluated generalization error on 10 000 test points. The comparative results

appear in Fig. [30]

The results mirror the 1D fitting experiments. Our proposed initialization clearly outperforms all
other architectures on the generalization task. At the same time, it maintains a very low training
error, comparable to the SIREN architecture.

B.7.3 3D FITTING EXPERIMENTS

For the 3D fitting experiments, we use the same framework as in 1D and 2D. We test a three-
dimensional function with multi-scale features:

faa(z,y, z) = sin(bx) cos(12y) sin(3z)
+exp(— (2% +y° + 2%)),
for (z,y, z) € [~1,1]3. The exponential term prevents trivial representation by any architecture. We
sample 8000 random training points, ensuring a Nyquist frequency above 12. Each network trains

for 5000 epochs using Adam with learning rate 10~* under various initialization schemes. We then
evaluate generalization error on 70 000 test points. The results appear in Fig.[31]

37



Under review as a conference paper at ICLR 2026

2d Averaged Generalization error 2d Averaged Training error

10°

107t

1072

1073 10

1076

Number of hidden layers
[ SIREN (0, = 0) [0 SIREN (Sitzmann) [ Finer [ RelU (PE)
[ SIREN (0, =1) Bl Wire [ Tanh (Fourier-Xavier)

Figure 30: 2d Averaged generalization and training error for the 2D fitting problem. The results
are averaged over 10 runs for each architecture of width N = 1238. The error bars represent the
standard deviation of the results.
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Figure 31: 3d Averaged generalization and training error for the 2D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.

Once again, our proposed initialization delivers strong results. It clearly outperforms all other archi-
tectures on generalization. Its fitting error remains very low, only slightly above the classic SIREN.
Interestingly, as the number of layers increases, SIREN’s training error decreases alongside rising
high-frequency content. This suggests that fitting high frequencies may harm generalization—a
drawback our method avoids.

C ABLATION STUDIES

Since our theoretical analysis is derived in the infinite-width and infinite-depth regime, we also
evaluate our model in the opposite setting: using small widths and very large depths. This allows
us to examine, on one hand, how finite-size effects modify the experimental behaviour, and on the
other hand, whether our theoretical predictions remain valid when the depth becomes extremely
large. This analysis further reveals how these factors influence the overall performance of such
neural networks.
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C.1 FINITE WIDTH EFFECT

The finite-width experiment (with N = 32) leads to the same conclusions as the theoretical study:
deep networks initialized with the Sitzmann scheme or with o, = 1 exhibit a high noise level.
In contrast, our proposed initialization maintains a lower noise level (see the gradient section of
Figure[32), even for very small widths, although it severely harms performance.

Ground truth SIREN (0, = 0. N = 32) SIREN (s, = 0. N = 128) SIREN (s, = 1,V = 32) SIREN (7, = 1, N = 125) Sitzmann (V — 12) Sitzmann (V — 123)
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Figure 32: Comparison of the discussed initialization method, and how finite width (N = 32 and
N = 128) affects their performance and behavior. The setting of the experiments are the same as
one described in Figure 2]

C.2 LARGE DEPTH EFFECT

As shown Figure the large-depth experiments with L = 10 and L = 40 confirm our previ-
ous theoretical discussion in the infinite-depth limit. In the case o, = 0, increasing the depth to
L = 40 even improves performance and further reduces the effective noise level. For o, = 1, the
performance at large depth is surprisingly good, despite the clear growth of high-frequency com-
ponents with depth observed in the Fourier spectrum (see Figure [d)); this observation still holds at
L = 10. We attribute this behaviour to the long training time. For the Sitzmann original initializa-
tion, as expected, the increasing of depth severely impacts the generalization performances, due to
overwhelming presence of high frequency components.

Ground truth SIREN (o, = 0. L = 10} SIREN (7, = 0. L = 40) SIREN (7, = 1, L = 10) SIREN (7, = 1, L = 40) Sitzmann (1. = 10) Sitzmann (£, = 10)
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Figure 33: Comparison of the discussed initialization method, and how large depth affect their
performance and behavior. The setting of the experiments are the same as one described in Figure
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