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ABSTRACT

Proper initialization strategy is of primary importance to mitigate gradient explo-
sion or vanishing when training neural networks. Yet, the impact of initializa-
tion parameters still lacks a precise theoretical understanding for several well-
established architectures. Here, we propose a new initialization for networks
with sinusoidal activation functions such as SIREN, focusing on gradients con-
trol, their scaling with network depth, their impact on training and on generaliza-
tion. To achieve this, we identify a closed-form expression for the initialization
of the parameters, differing from the original SIREN scheme. This expression is
derived from fixed points obtained through the convergence of pre-activation dis-
tribution and the variance of Jacobian sequences. Controlling gradients prevents
the emergence of inappropriate frequencies during estimation, thereby improving
generalization. We further show that this initialization strongly influences train-
ing dynamics through the Neural Tangent Kernel framework (NTK). Finally, we
benchmark STREN with the proposed initialization against the original scheme
and other baselines on function fitting and image reconstruction. The new initial-
ization consistently outperforms state-of-the-art methods.

1 INTRODUCTION

1.1 CONTEXT AND MOTIVATION

Implicit neural representations (INRs) have become a prevalent tool for approximating functions in
diverse applications, including signal encoding (Striimpler et al.l 2022} |Dupont et al.| 2021]), signal
reconstruction (Park et al.,[2019; Mildenhall et al.,|2020), and solutions of partial differential equa-
tions (PDEs) (Raissi et al.}|[2019). A central challenge in these neural approximations is to recover
the frequency spectrum of a target signal within reasonable training time and from limited data. In
this context, standard multi-layer perceptrons (MLPs) used for INRs often suffer from spectral bias,
whereby low-frequency components are preferentially learned compared to high-frequency details
(Rahaman et al.,2019; |Li et al.||2024). This bias can hinder performance, either by slowing training
or by reducing precision, when the signal of interest contains significant high-frequency content.
To mitigate this issue, several architectures have been proposed, such as positional encoding (Tan-
cik et al., [2020) or networks with sinusoidal activation functions (SIREN, Sitzmann et al.| (2020)),
which enable faster learning of high-frequency components. However, increasing network depth
in these methods has been empirically observed to introduce in the reconstructed function spurious
high-frequency components absent from the target one (see, e.g.,[Ma et al.|(2025)), leading to noisy
representations and degraded generalization (i.e., the ability to interpolate the signal correctly).

In this work, we propose an initialization strategy for SIREN that bypasses two opposing pit-
falls: (i) slow training and poor recovery of high-frequency details due to spectral bias in stan-
dard MLPs, and (ii) rapid training in deeper SIREN, which comes at the cost of spurious high-
frequency artifacts and degraded generalization. Finding the right balance between these two
extremes corresponds to locating the frontier between vanishing-gradient and exploding-gradient
regimes. Operating in this regime, where gradients remain stable, is often referred to as comput-
ing at the edge of chaos (Yang & Schoenholz, 2017} Seleznova & Kutyniok, 2022)), a concept
from dynamical systems theory (Kelso et al., [1986} |[Langton, |1986). Building on this idea, we
introduce an explicit initialization scheme for STREN. Our method ensures that gradients neither
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vanish nor explode with depth, allowing the network to capture high-frequency content without
introducing spurious components, thereby enabling both stable and expressive learning dynamics.

To better understand the critical role of
the initialization in INRs, we comple-

ment our theoretical analysis with ex-

.
periments based on the neural tangent
kernel (NTK) framework (Jacot et al.,

2018} [Li et al) 2024). We find that

controlling gradient propagation at ini-

tialization strongly influences the NTK 103 102 1071 100
eigenvalues, which determine the train-

ing speed of the frequencies associ- Figure 1: Generalization error over different problems
ated with the corresponding eigenvec-  averaged over different architecture depths for 1d, 2d
tors. We further provide the scaling of  and 3d multi-scaled function approximation. The results
these eigenvalues with network depth, are displayed for different state-of-the-art architectures
showing that, under proper initializa- jncluding the one proposed in this work (SIREN Pro-
tion, increasing depth accelerates learn-  poged). See Appendix [B-T] for details.

ing while preserving a prescribed gradi-

ent distribution.

Beyond the NTK framework, our initialization prevents the degradation of deep neural network per-
formance with increasing depth. We illustrate this property across several function fitting problem
in Figure [Tvhere a comparison of the performance of our initialization against the original STREN
scheme and other baselines is presented.

1.2 RELATED WORK

Frequency representation. Our study will be based on the work of (Sitzmann et al.,[2020), which
introduced the STREN architecture, a neural network with sinuosidal activation functions designed
to effectively learn high-frequency functions by using a tunable parameter w that controls the fre-
quency range of the network. Architecturally, this approach is closely related to positional-encoding
and Random Fourier feature, which also address the challenge of learning high-frequency signals
(Tancik et al., [2020; 'Wang et al.| 2021)). However, SIREN requires careful tuning of wy depending
on both the network architecture and the dataset (de Avila Belbute-Peres & Kolter, 2023)). Moreover,
the effect of network depth on performance remains poorly understood and has so far been studied
mostly through empirical and observational analyses (Cai et al., 2024} Tancik et al., [2020). To the
best of our knowledge, there is currently no work connecting theoretical gradient scaling with depth
to the performance of such architectures.

Neural Tangent Kernel. The NTK framework provides a theoretical foundation for understand-
ing the training dynamics of neural networks, and how the initialization properties affect the learning
process (Jacot et al., 2018} |[Li et al.,2024)). Some works have already focused on the frequency learn-
ing aspect of the NTK, either for the Fourier Features (Wang et al.l[2021) or the STREN architecture
(de Avila Belbute-Peres & Kolter, |2023). These works have shown how the network architecture
can be tailored to bypass the spectral bias. However they did not provide a full understanding of the
impact of network depth on the networks properties and did not tackle the vanishing or exploding
gradient impact on the learning dynamics.

Initialization. Our focus on initialization is closely related to the work of |Glorot & Bengio|(2010)
and|He et al.|(2015), which introduced the now widely used Xavier and Kaiming initialization meth-
ods, respectively. Both approaches aim to maintain stable activation and gradient distributions across
layers. Xavier initialization was developed for saturating nonlinearities such as hyperbolic tangent
(Tanh), and is motivated by theoretical insights into variance preservation, though its derivation
assumes an approximate linearization. Kaiming initialization was later introduced for rectified lin-
ear units (ReLU), which allows for exact variance calculations. Although commonly applied to
smoother activation functions such as GeLU or SiLU, its theoretical justification in those cases is
only approximate. In the context of SIREN, tailored initializations have been proposed (Sitzmann
et al., [2020; |[de Avila Belbute-Peres & Kolter, 2023) to control the distribution of pre-activations
layer by layer. However, these initializations are only approximate and fail to offer stability guar-
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antees for deep SIREN architectures, where gradient growth remains uncontrolled, as we shall see
later in this work.

Edge of Chaos. Previous works investigating the Edge of Chaos, which aims at controlling the
correlation between neuron outputs, emphasize the importance of initialization for the stability of
neural network statistics (including gradients). For traditional architectures and activation functions,
Yang & Schoenholz (2017) showed that a careful control at initialization leads to improved training
stability and performance. Some authors also investigated training at the edge of chaos in INR
(Hayou et al., [2019; |Seleznova & Kutyniok, |2022; |[Hayou et al., 2022), but did not address the case
of sine activation functions.

1.3 CONTRIBUTIONS

This works brings a deeper understanding over INR initialization for signal representation and train-
ing dynamic, with the following main contributions:

* An explicit derivation of the initialization for the STREN architecture, which allows us to
have an invariant distribution of the gradients across the layers. This is done by calculating
the fixed point for the layer-wise gradient and the network output distribution, in the limit
of infinite width and infinite depth.

* The understanding of the key concepts for controlled frequency learning, and how the ini-
tialization properties, through the NTK, shape the training dynamics of the network, lead-
ing to a controlled spectrum of the learned function.

* A series of experiments demonstrating the effectiveness of the proposed initialization
method on multi-dimensional and multi-frequency function approximation.

Furthermore, we believe that the insights gained into the interplay between initialization, early train-
ing, and the vanishing/exploding gradient problem will be valuable beyond the specific case of INR
with sinusoidal activations discussed in this paper.

2 PRELIMINARIES

2.1 GENERALITIES ON IMPLICIT REPRESENTATION OF FUNCTIONS

Implicit neural representations have been introduced to find an approximation of a function f: Q2 —
R from a dataset D = {(x;,¥y;)ic1 | i = f(x;)} . The goal is then to build a parametrized function
Ty : QO — R% When this parametrized function is a neural network, it is commonly referred to as
implicit neural representation (INR), Neural Fields (NerF), or Neural Implicit Functions.

In this work, we formally denote the involved neural network Wy, which can be written as the
composition of L layers:
\P9:h9L0~~Oh91 (1)

where each layer ¢ € {1,..., L} is composed of ny neurons, parameterized by a set of parameters
0 = (Wy,by) where W, € R™>*™-1 are the weights and by € R™ the bias, and ng denotes
the input dimension of the network. Each layer also relies on an activation function o, applied
element-wise. The ¢-th layer is thus defined by

ho, = 00 © (W - +by). 2)
For an input € RY, the preactivation refers to

zy = Wyhy_1 + by where hy_ 1 =hg, ,0...0hg, (:1:) 3)

The estimation of the parameters 6 relies on the minimization of a loss £ over a dataset D =

{(@i, yi)ier}: )
min £(0) = i > Vo) — il )

i€l
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The main challenges when considering INRs include selecting an appropriate architecture (i.e.,
parametrization and activation function), choosing a suitable initialization to insure output stability,
and determining and efficient optimization strategy. In this work, we will focus on STREN archithec-
tures (described in the next section). Regarding minimization strategy, we focus on gradient-based
methods, leaving alternative minimization strategies outside the scope of our study.

2.2 CHOICE OF THE ARCHITECTURE

This work focuses on the so called STREN architecture, which stands for Sinusoidal Representation
Network and introduced by [Sitzmann et al.|(2020). SIREN is a particular instance of equations [T}2}

that can be written in the following way with a linear final layer:
Ug(x) =W sin(WL,l sin(...sin(Wix + by)) + bL,l) +br. 5)

This architecture enables the estimation of natural frequency decompositions in a broad range of
problems while ensuring differentiability. The latter property is particularly important for PDE-
related applications, such as physics-informed neural networks, where accurate derivatives are often
essential.

3  WEIGHT INITIALIZATION

In the original STREN implementation (Sitzmann et al.| 2020), the weights and biases were initial-
ized as

u(-ﬂ ﬂ), 0=1,

W o7 no be~U(-——L, L), ¢e{1,....,L}, (6
¢ u(—ﬁﬁ) te e I} ‘ (mm) { b @

where N = ny is the number of neurons per hidden layer, assumed to be the same across all layers,
L — 1 is the number of hidden layers, and U denotes the uniform distribution. wg is an important
tunable parameter, originally chosen to be 30, but in practice it must be adjusted according to the
network architecture and the Nyquist frequency of the signal to be reconstructed (de Avila Belbute-
Peres & Kolter, [2023)).

Sitzmann et al.| (2020) argued that the pre-activation of the ¢-th layer, defined in equation [3] fol-
lows the distribution z; ~ N(0, 1), when the network is initialized following equation [ In this
regime, most of the signal is sufficiently small to propagates through the quasi-linear range of the
sine activation function, while still preserving a meaningful nonlinear contribution. This has been
emphasized as a key feature of the STREN architecture. However, the initialization choice relied on
approximate computations, did not provide constraints on gradients, and it has been observed that
estimation quality decreases in the large-depth limit under such initialization (Cai et al.| [2024). To
address this, we propose the refined initialization:
U(—2 ), o=,

no”no

u(f;wﬁ,yﬁ), vef2,.... L},

with NV(0, ¢) the normal distribution of zero mean and variance c7. This initialization introduces
two parameters, ¢, and cp, to be determined. Using explicit computations, we will demonstrate in
next section that the choice

Cow = \/H% and cp = % cwe ! (8)

guarantees important stability properties of the network. To illustrate the interest of this new ini-
tialization, we show in Figure [2| that it leads to a stable network whatever the depth L compared
to the standard SIREN architecture initialized with equations Indeed, the classical SIREN
initialization suffers from gradient explosion for a deeper architecture, visible as spurious, noisy
high-frequency features in the estimated high-resolution image. Moreover, it leads to significant
improvement in the model estimation with respect to other methods. For instance, it preserves sharp
features and enables fast training, compared to ReLu with Kaiming intialization of SiLu with Xavier
initialization, which still do not have converged after 10 000 epochs.

W, ~ b, ~ N(0,¢}), L€ {1,...,L}, (7)
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SIREN (proposed) SIREN (Sitzmann) ‘Tanh (PE-Xavier) ReLU (Kaiming) SILU (Xavier)

Figure 2: Comparison of several INR architectures and initializations on an image-fitting problem
using an L = 10 hidden-layer neural network of width N = 256. We train the model on a set
(@i, y;)icr Where x; is a location taken on a |I| = 128 x 128 uniformly spaced grid on Q = [—1, 1]?
and y; is the associated image value at this location. The top row shows the fitted 128 x 128 image.
The middle row shows the estimation on an augmented resolution (512 x 512) to assess the model’s
generalization and the last row provides a zoom on part of the image. In all case, we use ADAM
optimizer with learning rate 10~* for 3000 epochs. The state-of-the-art architecture considered in
this experiment are: STREN (see[Sitzmann et al.|(2020)), Tanh with Positional Encoding (PE) (see
Tancik et al (2020)), GeLU (see Hendrycks & Gimpel| (2016), SiLU (see Elfwing et al.| (2018))
and the traditional ReLU (see [Nair & Hinton| (2010). To initialize these architectures we used for
SIREN the previously discussed schemes and, for the others, two different schemes : Xavier (Glorot

2010) and Kaiming (He et al.| 2015).

on
g
5
=
=

Evaluation

3.1 PRE-CTIVATION DISTRIBUTION

In the following, we derive the exact form of the pre-activation distribution in the limit of infinitely
wide and deep neural networks, explicitly accounting for the influence of the bias term, which turns
out to be crucial. More precisely, we show that, for any initialization in the parameter space (c,,, ¢p),
the pre-activation distribution converges to a fixed point.

Theorem 3.1 (Pre-activation distribution of STREN). Considering SIREN network described in
equation |5\ where, for some c,,,c, € R, and for every layer { € {2,..., L}, the weight matrix
W, is initialized as a random matrix sampled from U(—cy,/ VN, ¢y, / VN ), let W1 be sampled
from U(—wo/no,wo/no), the bias by is initialized as a random vector sampled from N (0, c?).
Let (2¢)peq1...,1y the pre-activation sequence defined in equation El and relying on an input x €
R™. Then, in the limit of large N, the pre-activation sequence (z¢)¢cn converges in distribution to
N(0,02) with
2 1 A
o2 =c+ F“’ +5Wo <—?“’e—3—2%> . )

Where W, is the principal real branch of the Lambert function. Additionally, the sequence asso-

ciated to the variance of the pre-activation (Var(Zg)) en Converges 1o a fixed point o,, which is

exponentially attractive for all values of ¢, # /3.

The proof is provided in Appendix [A.1]

Remark 3.1. While the bias distribution is different in our initialization and in the original STREN
scheme, the choice c,, = V6 for the weight initialization can be recovered as a special case of
equation[9 by imposing o, = 1, assuming ¢, = 0, and by neglecting the correction term introduced
by the Lambert function. Using the expansion Wy(z) = © + O (xz) this correction term can be
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estimated as ~ e~ 2, which is small but not negligibleﬂ Accounting for this correction term enables
more precise control over the pre-activation variance o .

Remark 3.2. A stated in Theorem the convergence of the pre-activation variance to o, is
exponentially fast with respect to the depth L. Consequently, even shallow neural networks exhibit a
pre-activation Gaussian distribution with a variance that is already very close to the fixed point o,.

Deriving the fixed points of the pre-activation distribution is a necessary first step toward character-
izing the layer-wise gradient distribution and for establishing the optimal initialization value for c,,
and ¢;, which we discuss in the next subsection.

3.2 GRADIENT DISTRIBUTION AND STABILITY

The distribution of Jacobian entries is another important property of neural networks that must
be carefully controlled during initialization to avoid gradient vanishing (He et al., 2015} |Yang &
Schoenholz, [2017). In this work, we show that a tractable derivation is possible for the sine activa-
tion function. This result is described in Theorem 3.2l Combined with Theorem B.1] it will enable
us to propose a principled initialization strategy provided in Proposition

Theorem 3.2 (Jacobian distribution of SIREN). Let J, = 0hy/0h,_; denote the Jacobian of the
(-th layer. Considering SIREN network described in equation 5] we have
J, = diag(cos (z¢)) Wy.
Under the same assumptions that for Theorem assuming further that Wy and zy are indepen-
dent, and considering the limit of large N, each entry of J, has zero mean and a variance 3, such
that the sequence (G7)ren converges to
2
2 € —202
o, = G—XI (1 +e % )
For a given network, with input  and output ¥y (x), Theorem can be used to analyze the scaling
behavior of gradients with respect to both the network parameters 6 and the input coordinates x. We
denote by 0y, ¥ the gradient of the network output with respect to the parameters 6, of layer ¢, and
by 0, ¥ the gradient with respect to the input . By applying the chain rule, we have :

8‘1’9(1‘) - 8\1’9 8hL,1 ahg+1 ahg(iL’>
00,  Ohp_,0h;,_,  Oh, 06, ’

OWe(x) O0Vg(x)Ohp_y Ohy Ohy (x)
or  Ohp_; oh,_» Oh; Ox

(10)

(an

These relations can be used to obtained scaling of the gradients variances with the network depth

and width (see Appendix for a derivation):
Var(9p, Uy (@) o N~" (No2)" ™" and Var(9,¥y(x)) o wi (No> (12)

Remark 3.3. From equation we see that gradients in parameter space vanish or explode ex-
ponentially with network depth L, unless the scaling factor N og is close to 1. This is achieved by

)L—2

setting 0, = 1// N, ensuring that gradient variance remains stable across layers.

In the regime o, = 1/+/ N, gradients with respect to input coordinates are also controlled and scale
proportionally to wy at initialization. In practice, we choose the Nyquist frequency of the estimation
that scales as |]I\1/ "0 assuming I evenly-spaced training points within a given spatio-temporal do-
main properly normalized in each direction. Higher-frequency components injected at initialization

cannot be controlled and thus appear as noise. This motivates our proposed initialization at the edge
of chaos, with oy = 1/v/ N and wg ~ UI|1/ "0 which restricts the initial spectrum to the relevant
range.

To conclude the analysis of the statistical properties of STREN networks and derive the initialization
scheme provided in equations we identify the value of ¢,, and ¢, allowing to control both
the distribution of pre-activations, which requires setting o, = 1, and the scaling of gradients i.e.

oy =1/VN.

' A more precise estimate of this correction term can be obtained using equation to be derived later.
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pre-activation gradient
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Bias std ¢

V3 V63

Weight coefficient c,,

Figure 3: Experimental standard deviation of the pre-activation distribution (left) and of the layer-
wise jacobian entries distribution (right), as a function of the parameters (c,,, ;). The plain and
dashed black lines indicate the theoretical predictions for o, = 1 and oy = 1/ VN, following Theo-
rems [3.T]and[3.2] respectively. The black dot indicates the initialization provided in Proposition 3.1}

Proposition 3.1. Under the same assumptions that for Theorem @ setting 04 = 1l and o4 =
1/V/'N, lead to the weight and bias variances, ¢, and cy, defined in equation

We verified the validity of this theoretical analysis, involving careful calculations of the Jacobian and
pre-activation distributions, through numerical experiments displayed in figure[§] These experiments
were done 20 times using a SIREN neural network of width N = 256 of depth L = 10, with input
dimension ng = 1, and output dimension ny = 1, wg = 1, and following the initialization scheme
in equations The neural network is then evaluated using |I| = 500 input points @; uniformly
spaced between [—1, 1] to obtain the studied distributions

We now discuss how this initialization affects early stage of training.

4  SCALING OF THE NEURAL TANGENT KERNEL WITH DEPTH AND
SIMPLIFIED LEARNING DYNAMICS

The Neural Tangent Kernel (NTK) framework is a linearized description of the training dynamics
around initialization, allowing one to study how the network evolves in the early phase of training

(2018). When training neural networks, we typically use gradient descent to minimize
the loss function, with updates 6;11 = 0; — dtVL(6;), where dt is the learning rate and 6, the

parameter vector at iteration ¢.

To simplify we restrict ourselves to a scalar output neural network (i.e., d = 1). Then, we have
for the mean-squared error loss £(0) = >,y | ¥o(e;) — y;]/*/[1], and in the continuous-time limit
dt — 0, the residuals u(x;,t) = Uy, (x;) — y; satisfy
du(t)
Sdt
where u(t) = (u(x1,t),...,u(x),t)) and Ky, is the NTK matrix.

=Ko, u(t), Ko, i;= V¥, (x;)  Vo¥,(x;), (13)

Assuming the NTK remains constant during training (Kp, = Ky, ), the residuals evolve as
11|
u(t) = exp(—tKo,)u(0) = > e~ (u(0), v;)v;, (14)
i=1

where (A, v;) are the eigenpairs of the initialized NTK Ky,, ordered so that Ay > --- > X\ > 0,
and (-, -) the Euclidean scalar product. Thus, the early training dynamics is fully determined by the
spectral properties of the NTK at initialization.

Frequency bias in the NTK framework. Equation [14] shows that modes associated with large
eigenvalues decay quickly, while those with small eigenvalues converge slowly, with characteristic
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timescale 1/)\;. As illustrated in Fig. |4| for the 1D case, and as observed in related settings (see
e.g. [Wang et al.| (2021)), the leading eigenmodes (small ¢) of the NTK can be identified with low-
frequency Fourier modes, whereas higher-frequency components (large ¢) correspond to smaller
eigenvalues \;. This explains the spectral bias of neural networks in the lazy training regime, i.e.
the regime of nearly constant NTK. This also highlights the importance of controlling the spectrum
{Ai}ieqa,..., )iy in order to faithfully capture all relevant frequencies of the target signal.

First 6 eigenvectors of the NTK of a SIREN

Figure 4: The first six eigenvectors vy, ..., vs of the NTK matrix Ky, ordered by decreasing
eigenvalue A\g > Ay > --- > A5. The NTK matrix was computed numerically on a uniform grid
of |I| = 500 points over the interval {3 = [—1, 1] using a SIREN network of width N = 512 and

of depth L = 8 and using wg = 1. The eigenvectors exhibit increasingly oscillatory behavior as
the mode index grows, consistent with their interpretation as Fourier-like modes. This observation
confirms the spectral structure predicted by our analysis and highlights the tendency of the NTK to
prioritize low-frequency components associated with larger eigenvalues.

Empirical scaling of NTK eigenvalues and network gradients. To highlight the importance of
initialization in the limit of large network depth, we conducted an experiment comparing the original
SIREN initialization (cf. equation [6) the proposed one (cf. equations [78), and another one with
the default PyTorch initialization, corresponding to ¢;, = 1/ V/N and cw = 1. We varied the depth
L while fixing N = 256, |I] = 200, and wg = 1. In figure |5} we plot the normalized NTK
trace (mean eigenvalue) expressed as Tr(Ky,)/|I|V , together with the gradient norm ||, Wy, || as
functions of network depth. We use the NTK trace as a computationally convenient proxy for the
typical eigenvalue behavior as depth increases. With the original STREN initialization, we observe
exponential growth of both the NTK eigenvalues and the input gradients. In this case, increasing
depth accelerates training but also causes gradient explosion in input space. This corresponds to
spurious high-frequency components absent from the target signal, which degrade generalization,
here understood as smooth interpolation between data points. With PyTorch initialization, the NTK
eigenvalues decrease until reaching a plateau, while the gradient in input coordinate space vanishes.
By contrast, with our proposed initialization, the NTK eigenvalues increases linearly with depth
while the gradients remain constant. Consequently, the effective learning rate increases with depth
L, while the input-space gradients stay normalized, preventing the emergence of noise at spatial
scales smaller than wy in the initial state. These behavior is practically confirmed on real training
cases such as image fitting example (i.e, image super-resolution) depicted in figure 2}

Interpretation of the scalings. The scaling of gradients with (o, V/N)E is expected from sec-
tion with ag\/N ~ /1.2 for SIREN, = 1 for our proposed initialization, and = 4/1/3 for
PyTorch initialization. Similarly, it is possible to explain the NTK eigenvalue scaling. We note first
that diagonal element of the NTK matrix are Ko, ; ; = [Vo ¥y, (2;) |2. From this and the zero mean
property of every gradient distribution, we relate the average eigenvalue of the NTK denoted A to
the variance of gradients in parameter space:
L L
A= ﬁ Tl"(Keo) = N2 Z Var [VW[\PQO (x)] + N ZV&I‘ [Vb[ Uy, (z;)], (15)
=1 =1
where Wy, b, are respectively a weight and a bias of the /-th layer. The sum involving weights
parameters being dominant, we neglect the sum on bias terms in the following. When 03 # 1/N,
using equation[I0] we obtain a geometric sum, leading to

(NO‘S)L+1 -1

NoZ -1 (16)

ﬁ Tl“(KgO) X
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* If 0,/v/N > 1 (SIREN original), then A o (No?2)” and the NTK explodes exponentially
with depth L. This exponential scaling for the NTK eigenvalues without proper initializa-
tion was observed experimentally in de Avila Belbute-Peres & Kolter| (2023)), yet without
precise discussion on the causes and the effect of such behavior, since their focus was on
the choice of wy rather than on weight and bias initialization.

o If ag\/ﬁ < 1 (SIREN PyTorch), NTK eigenvalues become independent from the depth L
in the large depth limit, yielding slow convergence, together with vanishing gradients.

* If 0,V N = 1 (SIREN proposed), equation |16{does not apply. Each term of the sum on
weight parameters in equation |15| gives the same contribution, leading to A o< L, which is
consistent with the results plotted figure [35]for our proposed initialization.

NTK trace vs depth Gradient std vs depth
105 E

108

10!

Tr(Ky,)/([1]V)

SIREN (Proposed)
SIREN (original)
® SIREN (PyTorch)

20 30 40 50

10—1 L

Figure 5: The left plot stands for the scaling of the mean eigenvalue of the NTK matrix over the
number of layer. The right plot stands for the scaling of the gradient of the network (in input
coordinate space) with the number of layers. The experimental setup and hyper-parameters are the
same as in figure ] except for the network depth which varies here.

5 DISCUSSION, CONCLUSION, PERSPECTIVES

We proposed a new initialization scheme for sinusoidal neural networks that prevents gradient ex-
plosion and vanishing. The parametrization is derived analytically by examining the variances of
pre-activations and layer-to-layer Jacobians in the limit of infinitely wide and deep networks. This
approach removes the need for architectural tricks such as skip connections or empirical hyperpa-
rameter tuning to stabilize deep models. By analyzing both the neural tangent kernel and input-space
gradients, we showed that this initialization enables deep networks to train with learning rates that
scale linearly with depth, while suppressing spurious noise above the Nyquist frequency in implicit
neural representations. Whereas prior work motivated the use of sine activations by noting that
derivatives of SIRENs remain well-behaved, our study goes further by providing a deeper theoreti-
cal analysis. We demonstrate that sinusoidal architectures not only preserve these desirable proper-
ties but also admit stronger theoretical justification. Indeed, it enables us to explicitly compute key
variances of network distributions.

Among the initialization constraints, controlling the Jacobian variance (03 = 1/N) is essential,
while the pre-activation variance (o2 = 1) may be adapted and optimized in future work. Although
this study focuses on signal encoding with a quadratic loss, future work could extend the approach
to more complex losses, including physics-informed settings, with potential applications in atmo-
spheric and oceanic field reconstruction. More broadly, our results may encourage wider adoption
of sine activations in machine learning.
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REPRODUCIBILITY

Code Implementation. All source code used in our experiments is provided in the supplementary
material, including implementations of the architectures used for comparison.

Models and Architectures. Details on the choice of activation functions are given in the main
text. Initialization methods and architectural specifications for each model are described within the
corresponding experimental sections.

Experiments. Each experiment is reported with its hyperparameters (e.g., learning rate, optimizer,
number of epochs) in the relevant sections or figures. All experiments were run with fixed random
seeds to ensure exact reproducibility of the reported results.
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A MATHEMATICAL APPENDIX

A.1 INPUT DISTRIBUTION

Theorem (Restatement of Theorem [3.1). Considering SIREN network described in equation
where, for some c,,,c, € RY, and for every layer £ € {2,..., L}, the weight matrix W is ini-
tialized as a random matrix sampled from U(—c,,/ VN, ¢y / VN ), and the bias by is initialized
as a random vector sampled from N (0, cg) Let (z¢)¢eqa...,Ly the preactivation sequence defined
in equation [3| and relying on an input & € R"™. Then, in the limit of large N, the preactivation
sequence (z¢)gen converges in distribution to N'(0, 02) where

2 2 2
2_ 2, Cw 1 Cw —Zw _2¢2
= “Wo (- 5% 17
O =¢C + 6 + D) 0< 3¢ > a7

with W, is the principal real branch of the Lambert function. Additionally, the sequence associated
to the variance of the preactivation (Var(z@)) converges to a fixed point o,, which is exponen-

tially attractive for all values of ¢, # \/3.

LeN

Proof. The proof can be split in three steps: (i) prove that the sequence of preactivations follows a
Gaussian distribution (cf. Lemma , (i1) give an expression of the variance of the output of a sin
activation when the input follows a zero-mean Gaussian distribution of s.t.d. o, (cf. Lemma ,
(iii) provides the expression of the variance of each element of the preactivation sequence using the
result in (ii) and proves its convergence to a fixed point o, (cf. Lemma[A.3).

Lemma A.1. Considering SIREN network described in equation |5 where, for some c,,,c, € R,
and for every layer ¢ € {2, ..., L}, the weight matrix W is initialized as a random matrix sam-

pled from U(—cy,/ VN, ¢y / VN ), and the bias by is initialized as a random vector sampled from
N(0, cﬁ). Let (zz)ge{le} the preactivation sequence defined in equation Eland relying on an in-
put x € R™. Then, in the limit of large N, each element of the preactivation sequence (Zg)gcn is
distributed according to a zero-mean Gaussian distribution.

Proof. We recall that for the first layer, hg = @ and, forevery £ € {1,..., L},
h, = sin (Wghg_l + bg)

Since the sine activation is an odd function, it preserves the zero-mean property of any distribution:
if zo = Wyhy_1 + by has zero mean, then h, will also have zero mean. This property propagates
layer by layer.

As W1 and by are assumed to have zero mean (by definition, cf. equation and x is a deterministic
vector, it ensures that the first-layer pre-activation has zero-mean. Moreover, as W, and b, are
assumed to have zero mean the zero-mean property holds for all subsequent pre-activations z, and
h,.

Second, we prove that the preactivation sequence is distributed according to a Gaussian. We first
rewrite each element of the preactivation sequence as

N
Zp; = Zwe,i,jhé—l,j +byg;. (18)

Jj=1

As a sum of two Gaussian stays Gaussian and because by is assumed to be Gaussian with a standard
deviation oy, the main purpose here is then to prove that Z;V=1 Wy,ishe—1; follow a Gaussian
distribution.

Thanks to the Central Limit Theorem, whatever is the distribution of h,_;;, the term

Z;\le Wy i, 5he—1,; converges in distribution to a Gaussian distribution in the limit of large N. Since
the bias is also normally sampled, each component z, ; follows a gaussian distribution in the same
large N limit, with zero mean and a variance denoted o2,

13



Under review as a conference paper at ICLR 2026

To compute this variance, let us first compute the variance of each summand denoted o7, ;» given
by the product of two independent random variables with zero mean, namely Wy ; ; and hy_y ;,

0t = Var [We, ] Var [he—1 ], (19)
Since W,,; ; is uniformly distributed on [—c,, /v/N, ¢,,/v/N], we have:
2
c
Var [W&i,j] = 37;\}7 (20)

While the variance of hy_ ; is still unknown, we can express it from the knowledge of z,_1, leading

to
2

C .
0?71-7]- = 3—]1‘\’[Var [sin(ze—1,5)] - 21)

whose expression of Var [sin(z¢_1 ;)] will be provided later.

As the bias variance follows a Gaussian distribution as described in equation [/} the variance of all
the elements of the preactivation zy is

2
o2 = %Var [sin(ze—1)] + ¢ (22)

O

Lemma A.2. Let z be a normally distributed random variable and zero mean z ~ N(0,02). Then
we have :

Var [sin (z)] = % (1 — 62"2) . (23)

Proof of LemmalA.2] The proof combined the properties of the Gaussian distribution with the fact
that the sine function is an odd function. We have:

Var [sin (2)] = E [sin?(2)] — E [sin(z)]?

Since sin is odd and since the expectation of z is zero, we have E [sin(z)] = 0. In addition, using
sin?(z) = (1 — cos(2z))/2, we obtain
1 1
E [sin?(2)] = o E]E [cos(22)] .
The characteristic function of the Gaussian distribution with zero mean and variance o, is given by:
gz(t) _ E(eitz) _ e—%tQUQ.
Now we notice that ‘ ,
E[cos(22)] = E [R [e*]] = R [g.(2)] = e~ .
The first equality uses the linearity of the mean. This leads to the final result:
1
Var [sin (z)] = B (1 — 6_2"2) .
O

Lemma A.3. Considering SIREN network described in equation |5 where, for some c,,,c;, € RT,
and for every layer £ € {1,..., L}, the weight matrix W is initialized as a random matrix sam-
pled from U(—c, /N, co/V'N), and the bias by is initialized as a random vector sampled from
N(0,¢}). Let x € R™. Then, in the limit of large N, the preactivation sequence (Ze)eeqr....1)
defined in equation |3|is distributed according to a Gaussian distribution with zero-mean and, for

every {, a variance
2

c
ol = Fw (1 - 6_20‘?*1) +cf

Moreover, the sequence (03) ey converges to

2 1 2 2
o2 =ci+ %U + §Wo,,1 (—(:;:]6_3_2612’) ,

with Wy, _1 the two real branches of the Lambert W function. And for c,, # /3, this convergence is
exponentially fast.
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Proof of Lemma[A3]

Fixed Point Value : Combining equation22]and equation[A.3] the variance of the pre-activation at

layer £ is
2

ol = %" (1 — 6_2(7?*1) +cf

To characterize the fixed point of the sequence (07 )¢cn, we define a function f as

62
f(z) = ﬁ (1—e2") +¢j. (24)

The fixed point of this function is given by the solution of the equation f(z) = x. Rearranging the
different term gives:

2 2
Cw 2 Cw —2z
— +c —x=—e “*. 25
6 b 6 (25)
. 62 2 .
Using y = < + ¢; — x yields
c2 oy 2
ye 2 = “w o =2(g )

6
Then, using the definition of the real valued Lambert W function, we get

1 c2 4 2
y= fiVVk <§U€2(6+cb)> , where ke {-1,0}.

The W, branch is called the principal branch and is defined on (—e~!, +00). The W_; branch is
defined for (—e~1,0). To obtain a positive variance, the branch to consider is W), as illustrated
numerically in figure[§

3 Branch W,y Branch W_;
2
5
1
1 2 3 1 2 3
Cw Cw
— e
0 5 10 -4 -2 0
o3 o3

Figure 6: The o, solution emerging from the W, branch on the left and W_; branch on the right

Convergence Speed : To quantify the convergence towards the fixed point o2, consider the deriva-
tive of f at the fixed point:

Flo?) = et
The fixed point is exponentially attractive whenever f/(02) < 1, which is immediately satisfied for

Cw < v/3. For Cyw > V3, Lemmagives
2

Cw 2 2 92
(02 =2=f(oa) + & +) = W~ emhraad).

Since

2 2 2
c _ _
_é < —%6 Cw/3—2¢; < O’

the properties of the principal branch Wy imply | f’(02)| < 1. Hence, the fixed point is exponentially
attractive for all values of ¢,, # /3, and convergence occurs rapidly.

This concludes the proof of the Lemma[A3] and of the Theorem 3.1} O
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A.2 GRADIENT DISTRIBUTION

Theorem (Restatement of Theorem[3.2). Let J; = Ohy/0hy_1 denote the Jacobian of the (-th layer.
Under the same assumptions that for Theorem|3.1|and assuming that W and z, are independent,

we have
J, = diag(cos (z¢)) Wy.

In the limit of large N, each entry of J, has zero mean and a sequence of variance o3 such that the
sequence (03 )¢en that converges to

2
2 _ Cw —202

(o2 g = 67]\7 (]. +e )
Proof. An element of the Jacobian of the /-th layer are writen as:

N
= WZ,i,k CcoS E We,i’jhgfl,j + bgﬂ' = Wg’i,k coS (Zg’i)

j=1

ohy ;
Ohy_1

with z, ; the it" component of preactivation vector defined in equation [3| Assuming independance
of variable W;  and cos (z,;), the variance of their product denoted 77 can be expressed as the

product of their variance:
o7 = Var [Wy, ] Var [cos (z)] -

Considering the same arguments as for Theoremand replacing sin by cos, the sequence (G¢)een
converges to

2
7= e,

with o2 the limit variance of the pre-activation, given by Theorem [3.1

A.3  PROOF OF PROPOSITION EQUATION [3.1]

We propose to initialize the weights and biases of SIREN networks as follows:

U(- ey, o=,

TL()’HQ
U(-ox,92), Lef2,..., L},

b, ~ N(0,¢}), £€{1,...,L}.
To control the distribution of pre-activations and the scaling of gradients we impose 02 = 1 and

W, ~

and

ol = . ie.,
e+ % + %Wo <—C§”66§UQC§) =1, (26)
and 2 1
S (140 = L @

From equation[27] we get

6
=4 ——. 2
ew =\ 7o (28)

Combining this result with equation [26|leads to an implicit equation for ¢;. To obtain an explicit
expression, it is convenient to use the fixed-point equation 25| with = o, = 1 leading to:

szu -2 2
F(1—e ) +c =1, (29)
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which, using equation (28)), simplifies to

2 —2
2_Cwe

Cr =
b 3
This initialization ensures that, in the limit of infinitely deep and wide networks, the distributions
of inputs and gradients remain normalized. In practice, it enables stable information propagation

through the network while keeping the sinusoidal activation function in a marginally nonlinear
regime.

(30)

A.4 DERIVATION OF THE PROPOSED SCALING
Let ¥y(x) defined as in equation [5|a scalar output function, initialized as in the previous theorems,
and considering a given value of o, resulting from the initialization.

Derivation of the parameter-wise Gradient scaling: Considering a weight-parameter Wy, 7, j

with ¢ > 1 of the /-th layer, we study the scalar 8%(%) , which can be rewritten as :

8\119(:11) o 8\1/9 8hL,1 8hg+1 8h4(w)
6W(7i7j N 8hL_1 8hL_2 ahg 8W@7i7j

Then from theorem [3.2] under the choice of our initialization we know that the Jacobian matrices
J; = Ohy/Ohy_1 have variance o2 /N in the limit of large [ and large N. Moreover, we have from

the definition of Wy the expression of the vector ‘31‘1"’ = W, with Var(Wp) ~ 1/N. Let us
consider first the sensitivity vector gy:

OVy Ohy_y  Ohe
ohp_10h, 5  Ohg

g = 31D

Owing to the impact of matrix multiplication on every components, we have Var(g,) ~
8hg(:l:)
oW,

=hyq; cos(Wg,lyl,;hz,l + b;), with variance Var(%@) ~ 1.
PX2W)

(NJ?)L*Z*/N. Let us now consider now the term
ahz 1(90) _
OWy i,
Hence, the parameter-wise gradlent can be rewritten as:
OVy(x)
Wi j

. This is a zero vector except for the i-th

component, verifying

=g b1 jcos(Wy_1;.h;_1 +b;).

Assuming independence between gy ; and 8\119(1:)

namely Var(aqj"( )) (NUS)L*K’l/N.

, we finally obtain the desired variance scaling,

Derivation of the input-wise Gradient scaling: Following the same notations as above, we have:

OWg(x)  OWy(x) Oy  Ohy Ohy(x)
oz n 8hL_1 ahL_Q 8h1 oz '

Recalling that g;, has variance Var(g;) ~ (No2)“~2/N. In that case the 1/N factor will cancel
out due to the term ahalia(:”). Indeed, we have:

ohy (x)
ox

= diag(cos (Wix + b)) Wy,

which is a non-trivial matrix of variance Var(ahdla(e )) ~ w3, for both the original and proposed

SIREN initialization. Focusing on one input coordinate x;, we get:

5\1/.9 (iL‘)
8JCZ‘

= gy diag(cos (Wiz + b)) Wy ., = Zgl’j (diag(cos (Wz + b)) W .;);.

J
The variance of each term scales as ~ (N 02)L ~2/N. Supposing independence between each sum-

mand leads to Var(2%2@)) ~ (No2)EF=2ug.
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B EXPERIMENTAL APPENDIX

To explore the impact of the initialization on the performances of several Neural Network architec-
tures we studied multiple problems such as function and image fitting.

B.1 IMAGE FITTING EXPERIMENTS

After comparing multiple architecture in the main content, we will focus here on the degradation of
the reconstruction with the increasing of the network depth as highlighted in the paper, we conducted
this experiment

| SIREN (L = 10, proposed) | | SIREN (L = 6, proposed) | | SIREN (L = 2, proposed) | | SIREN (L = 10, Sitzmann) | | SIREN (L = 6, Sitzmann) | | SIREN (L = 2, Sitzmann) |

Training

Evaluation

Figure 7: Comparison of the original and proposed SIREN initialization (presented in equations|[7}{8))
on an image-fitting problem using a neural network of varying depth and of width N = 256. We
train the model on a set (x;, y;);er Where @; is a location taken on a |I| = 128 x 128 uniformly
spaced grid on [—1, 1] and y; is the associated image value at this location. The top row shows the
fitted 128 x 128 image. The middle row shows the estimation on an augmented resolution (512 x512)
to assess the model’s generalization and the last row provides a zoom on part of the image. In all
case, we use ADAM optimizer with learning rate 10~* for 10 000 epochs.

B.2 1D FITTING EXPERIMENTS
For the 1D fitting experiments, we generated synthetic data by sampling from a multi-scale function:

f1a(x) = sin(3z) + 0.7 cos(8z)
+ 0.3sin(40z + 1) + exp(—z?)

To explore the impact of initialization on the performance of various neural network architectures,
we studied two tasks: function fitting and PDE solving. Since image and video fitting reduce to
function fitting, we focus on it. This choice lets us control the target function’s frequency content.
As a result, we can probe the different scales present in the data.

The results plotted figure [§] show that our proposed initialization matches or exceeds the accuracy
of the traditional SIREN architecture for fitting a function. Moreover, it delivers significantly lower
generalization error compared to the original SIREN. Notably, the Tanh-based positional-encoding
network also shows strong generalization performance, despite its slightly higher training error.
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1d Averaged Generalization error 1d Averaged Training error
T 7 f y
1071 L
107 I = 1 J
j | 100 f / f /
f (I 1 f f
: f oot MR e
v = = 10°° = J = =
= ey
= = 10713 | = ] = i =
10 J ‘ TR Fol
2 4 6 8 10 2 4 6 8 10
Number of hidden layers
A SIREN (proposed) A Tanh (PE) A SilU (Xavier)
A SIREN (Sitzmann) A ReLU (Kaiming) A GeLU (Xavier)

Figure 8: 1d Averaged generalization and training error for the 1D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.

B.3 2D FITTING EXPERIMENTS

We applied the same methodology to a two-dimensional, multi-scale test function:

faa(z,y) = sin(3z) cos(3y) + sin(15x — 2) cos(15y)
+ exp(— (xQ + y2))7

for (z,y) € [—1,1]%. The exponential term ensures no architecture can represent the function
trivially. We sampled 3600 random training points, giving a Nyquist frequency above 15. Each
network was trained for 5000 epochs using Adam (learning rate 10~) under various initialization
schemes. We then evaluated generalization error on 10 000 test points. The comparative results

appear in Fig.[9]

2d Averaged Generalization error 2d Averaged Training error
¥ s g B ' o H7
oo | N
f f / f
f i f f f 1
f ! ! f !
o T ! i Ml
2 4 6 8 10 2 4 6 8 10
Number of hidden layers
2 SIREN (proposed) EZA Tanh (PE) [Z] SilU (Xavier)
A SIREN (Sitzmann) [ ReLU (Kaiming) A GelU (Xavier)

Figure 9: 2d Averaged generalization and training error for the 2D fitting problem. The results
are averaged over 10 runs for each architecture of width N = 1238. The error bars represent the
standard deviation of the results.

The results mirror the 1D fitting experiments. Our proposed initialization clearly outperforms all
other architectures on the generalization task. At the same time, it maintains a very low training
error, comparable to the SIREN architecture.
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B.4 3D FITTING EXPERIMENTS

For the 3D fitting experiments, we use the same framework as in 1D and 2D. We test a three-
dimensional function with multi-scale features:

faa(z,y, z) = sin(bz) cos(12y) sin(3z)
+exp(— (2 +y* +2%)),
for (z,y, z) € [~1,1]3. The exponential term prevents trivial representation by any architecture. We
sample 8000 random training points, ensuring a Nyquist frequency above 12. Each network trains

for 5000 epochs using Adam with learning rate 10~ under various initialization schemes. We then
evaluate generalization error on 70 000 test points. The results appear in Fig.

2d Averaged Generalization error 2d Averaged Training error
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Figure 10: 3d Averaged generalization and training error for the 2D fitting problem. The results are
averaged over 10 runs for each architecture of width N = 128. The error bars represent the standard
deviation of the results.

Once again, our proposed initialization delivers strong results. It clearly outperforms all other archi-
tectures on generalization. Its fitting error remains very low, only slightly above the classic SIREN.
Interestingly, as the number of layers increases, SIREN’s training error decreases alongside rising
high-frequency content. This suggests that fitting high frequencies may harm generalization—a
drawback our method avoids.
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