

000 001 002 003 004 005 006 007 008 009 010 A NEW INITIALISATION TO CONTROL GRADIENTS IN SINUSOIDAL NEURAL NETWORK

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
Anonymous authors
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Paper under double-blind review

ABSTRACT

011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
Proper initialisation strategy is of primary importance to mitigate gradient explosion or vanishing when training neural networks. Yet, the impact of initialisation parameters still lacks a precise theoretical understanding for several well-established architectures. Here, we propose a new initialisation for networks with sinusoidal activation functions such as SIREN, focusing on gradients control, their scaling with network depth, their impact on training and on generalization. To achieve this, we identify a closed-form expression for the initialisation of the parameters, differing from the original SIREN scheme. This expression is derived from fixed points obtained through the convergence of pre-activation distribution and the variance of Jacobian sequences. Controlling both gradients and targeting vanishing pre-activation helps preventing the emergence of inappropriate frequencies during estimation, thereby improving generalization. We further show that this initialisation strongly influences training dynamics through the Neural Tangent Kernel framework (NTK). Finally, we benchmark SIREN with the proposed initialisation against the original scheme and other baselines on function fitting and image reconstruction. The new initialisation consistently outperforms state-of-the-art methods across a wide range of reconstruction tasks, including those involving physics-informed neural networks.

1 INTRODUCTION

1.1 CONTEXT AND MOTIVATION

031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
Implicit neural representations (INRs) have become a prevalent tool for approximating functions in diverse applications, including signal encoding (Strümpler et al., 2022; Dupont et al., 2021), signal reconstruction (Park et al., 2019; Mildenhall et al., 2020), and solutions of partial differential equations (PDEs) (Raissi et al., 2019). A central challenge in these neural approximations is to recover the frequency spectrum of a target signal within reasonable training time and from limited data. In this context, standard multi-layer perceptrons (MLPs) used for INRs often suffer from *spectral bias*, whereby low-frequency components are preferentially learned compared to high-frequency details (Rahaman et al., 2019; Li et al., 2024). This bias can hinder performance, either by slowing training or by reducing precision, when the signal of interest contains significant high-frequency content (fine textures, details ...). To mitigate this issue, several architectures have been proposed, such as positional encoding (Tancik et al., 2020) or networks with sinusoidal activation functions (SIREN, (Sitzmann et al., 2020)), which enable faster learning of high-frequency components. However, increasing network depth in these methods has been empirically observed to introduce in the reconstructed function spurious high-frequency components absent from the target one (see, e.g., (Ma et al., 2025)), leading to noisy representations and degraded generalization (i.e., the ability to interpolate the signal correctly).

048
049
050
051
052
053
In this work, we propose an initialisation strategy for SIREN that bypasses two opposing pitfalls: (i) slow training and poor recovery of high-frequency details due to spectral bias in standard MLPs, and (ii) rapid training in deeper SIREN, which comes at the cost of spurious high-frequency artifacts and degraded generalization. Finding the right balance between these two extremes corresponds to locating the frontier between vanishing-gradient and exploding-gradient regimes. Operating in this regime, where gradients remain stable, is often referred to as computing at the edge of chaos (Yang & Schoenholz, 2017; Seleznova & Kutyniok, 2022), a concept from dynamical systems the-

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 158

108 et al., 2020; de Avila Belbute-Peres & Kolter, 2023) to control the distribution of pre-activations
 109 layer by layer. However, these initialisations are only approximate and fail to offer stability guarantees
 110 for deep SIREN architectures, where gradient growth remains uncontrolled, as we shall see later
 111 in this work. We also note the recent work of Novello et al. (2025), which identified the same issues
 112 and proposed an *empirical* method to control a network’s spectrum. However, their approach does
 113 not provide principled control of either the frequency spectrum or the network gradients, leading to
 114 significant adaptation effort for each problem.

115 **Edge of Chaos (EOC).** EOC is the critical initialisation regime where two key conditions are met:
 116 forward pre-activation variances remain stable, and backward gradients neither explode nor vanish.
 117 In the infinite-width mean-field limit, these properties follow from coupled recursions for layer-
 118 wise variance and inter-sample correlations under the initialisation distribution, whose fixed points
 119 determine both activation and gradient stability (Poole et al., 2016; Schoenholz et al., 2017). Yang
 120 & Schoenholz (2017) showed that placing conventional networks near the EOC improves training
 121 performance. While prior work has applied these ideas to INRs (Hayou et al., 2019; Seleznova &
 122 Kutyniok, 2022; Hayou et al., 2022), the case of sine activation functions has not been considered.
 123

124 **1.3 CONTRIBUTIONS**

125 This works brings a deeper understanding over INR initialisation for signal representation and training
 126 dynamic, with the following main contributions:

- 127 • An explicit derivation of the initialisation for the SIREN architecture, which allows us
 128 to have an invariant distribution of the gradients across the layers and a possibly depth-
 129 independant fourier spectrum. This is done by calculating the fixed point for the layer-wise
 130 gradient and the network output distribution, in the limit of infinite width and infinite depth.
- 131 • The understanding of the key concepts for controlled frequency learning using w_0 , and how
 132 the initialisation properties, through the NTK, shape the training dynamics of the network,
 133 leading to a controlled spectrum of the learned function.
- 134 • A series of experiments presented in Appendix B demonstrates the effectiveness of the
 135 proposed initialisation scheme on multi-dimensional and multi-frequency function approx-
 136 imation, including audio signals, image denoising, and video reconstruction on the ERA-5
 137 atmospheric reanalysis dataset. We further investigate the impact of this initialisation in the
 138 context of PDE solving using physics-informed neural networks.

139 Although our motivation comes from INRs, the proposed closed-form initialisation for sine networks
 140 at the edge of chaos is not specific to this setting. Because it stabilizes gradient propagation in
 141 deep architectures with periodic activations, it may also benefit broader applications where periodic
 142 features are desirable but have been limited by unsuitable initialisation schemes.

143 **2 PRELIMINARIES**

144 **2.1 GENERALITIES ON IMPLICIT REPRESENTATION OF FUNCTIONS**

145 Implicit neural representations have been introduced to find an approximation of a function $f: \Omega \mapsto$
 146 \mathbb{R}^d from a dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)_{i \in \mathbb{I}} \mid \mathbf{y}_i = f(\mathbf{x}_i)\}$. The goal is then to build a parametrized function
 147 $\Psi_\theta: \Omega \mapsto \mathbb{R}^d$. When this parametrized function is a neural network, it is commonly referred to as
 148 implicit neural representation (INR), Neural Fields (NerF), or Neural Implicit Functions.

149 In this work, we formally denote the involved neural network Ψ_θ , which can be written as the
 150 composition of L layers:

$$\Psi_\theta = h_{\theta_L} \circ \dots \circ h_{\theta_1} \quad (1)$$

151 where each layer $\ell \in \{1, \dots, L\}$ is composed of n_ℓ neurons, parameterized by a set of parameters
 152 $\theta_\ell = (\mathbf{W}_\ell, \mathbf{b}_\ell)$ where $\mathbf{W}_\ell \in \mathbb{R}^{n_\ell \times n_{\ell-1}}$ are the weights and $\mathbf{b}_\ell \in \mathbb{R}^{n_\ell}$ the bias, and n_0 denotes
 153 the input dimension of the network. Each layer also relies on an activation function σ_ℓ applied
 154 element-wise. The ℓ -th layer is thus defined by

$$h_{\theta_\ell} = \sigma_\ell \odot (\mathbf{W}_\ell \cdot + \mathbf{b}_\ell). \quad (2)$$

162 For an input $\mathbf{x} \in \mathbb{R}^d$, the preactivation refers to
 163

$$164 \mathbf{z}_\ell = \mathbf{W}_\ell \mathbf{h}_{\ell-1} + \mathbf{b}_\ell \quad \text{where} \quad \mathbf{h}_{\ell-1} = h_{\theta_{\ell-1}} \circ \dots \circ h_{\theta_1}(\mathbf{x}). \quad (3)$$

165 The estimation of the parameters $\theta = \{\theta_\ell\}_{\ell \in \{1, \dots, L\}}$ relies on the minimization of a loss \mathcal{L} over a
 166 dataset $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)_{i \in \mathbb{I}}\}$:
 167

$$168 \min_{\theta} \mathcal{L}(\theta) := \frac{1}{|\mathbb{I}|} \sum_{i \in \mathbb{I}} \|\Psi_\theta(\mathbf{x}_i) - \mathbf{y}_i\|_2^2. \quad (4)$$

170 The main challenges when considering INRs include selecting an appropriate architecture (i.e.,
 171 parametrization and activation function), choosing a suitable initialization to insure output stability,
 172 and determining and efficient optimization strategy. In this work, we will focus on SIREN architec-
 173 tures (described in the next section). Regarding minimization strategy, we focus on gradient-based
 174 methods, leaving alternative minimization strategies outside the scope of our study.
 175

176 **2.2 CHOICE OF THE ARCHITECTURE**
 177

178 This work focuses on the so called SIREN architecture, which stands for Sinusoidal Representation
 179 Network and introduced by Sitzmann et al. (2020). SIREN is a particular instance of equations 1-2
 180 with a final linear layer:

$$181 \Psi_\theta(\mathbf{x}) = \mathbf{W}_L \sin\left(\mathbf{W}_{L-1} \sin(\dots \sin(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)) + \mathbf{b}_{L-1}\right) + \mathbf{b}_L. \quad (5)$$

183 This architecture enables the estimation of natural frequency decompositions in a broad range of
 184 problems while ensuring differentiability. The latter property is particularly important for PDE-
 185 related applications, such as physics-informed neural networks, where accurate derivatives are often
 186 essential (Raissi et al., 2019).

188 **3 WEIGHT INITIALIZATION**
 189

190 In the original SIREN initialization (Sitzmann et al., 2020), the weights and biases were chosen as
 191

$$192 \mathbf{W}_\ell \sim \begin{cases} \mathcal{U}\left(-\frac{\omega_0}{n_0}, \frac{\omega_0}{n_0}\right), & \ell = 1, \\ 193 \mathcal{U}\left(-\frac{\sqrt{6}}{\sqrt{N}}, \frac{\sqrt{6}}{\sqrt{N}}\right), & \ell \in \{2, \dots, L\}, \end{cases} \quad \mathbf{b}_\ell \sim \mathcal{U}\left(-\frac{1}{\sqrt{N}}, \frac{1}{\sqrt{N}}\right), \quad \ell \in \{1, \dots, L\}, \quad (6)$$

195 where $N \equiv n_\ell$ is the number of neurons per hidden layer, assumed to be the same across all
 196 layers, $L - 1$ is the number of hidden layers, and \mathcal{U} denotes the uniform distribution. ω_0 is an
 197 important tunable parameter, originally chosen to be 30. It must be adjusted according to the network
 198 architecture and the Nyquist frequency of the signal to be reconstructed (de Avila Belbute-Peres &
 199 Kolter, 2023).

200 Sitzmann et al. (2020) argued that the pre-activation of the ℓ -th layer, defined in equation 3, fol-
 201 lows the distribution $\mathbf{z}_\ell \sim \mathcal{N}(0, 1)$, when the network is initialized following equation 6. In this
 202 regime, most of the signal is sufficiently small to propagates through the quasi-linear range of the
 203 sine activation function, while still preserving a meaningful nonlinear contribution. This has been
 204 emphasized as a key feature of the SIREN architecture. However, the initialization choice relied on
 205 approximate computations, did not provide constraints on gradients, and it has been observed that
 206 estimation quality decreases in the large-depth limit under such initialization (Cai et al., 2024). To
 207 address this, we propose the refined initialization:

$$208 \mathbf{W}_\ell \sim \begin{cases} \mathcal{U}\left(-\frac{\omega_0}{n_0}, \frac{\omega_0}{n_0}\right), & \ell = 1, \\ 209 \mathcal{U}\left(-\frac{c_w}{\sqrt{N}}, \frac{c_w}{\sqrt{N}}\right), & \ell \in \{2, \dots, L\}, \end{cases} \quad \mathbf{b}_\ell \sim \mathcal{N}(0, c_b^2), \quad \ell \in \{1, \dots, L\}, \quad (7)$$

212 with $\mathcal{N}(0, c_b^2)$ the normal distribution of zero mean and variance c_b^2 . This initialization introduces
 213 two parameters, c_w and c_b , which we set by enforcing constraints on the variance of pre-activations
 214 and the rescaled layer-to-layer Jacobian:

$$215 \sigma_a = \sqrt{\text{Var}[\mathbf{z}_\ell]_{\ell, N \rightarrow \infty}} \quad \text{and} \quad \sigma_g = \sqrt{N \text{Var}\left[\frac{\partial \mathbf{h}_{\ell+1}}{\partial \mathbf{h}_\ell}\right]_{\ell, N \rightarrow \infty}}.$$

Using explicit computations to guarantee a normalized gradient flow across the network in the mean-field limit, namely $\sigma_g = 1$, we will demonstrate in next sections that c_b must lie on a curve parameterized by c_w :

$$c_b = \sqrt{1 - \frac{c_w^2}{3} - \frac{1}{2} \log\left(\frac{6}{c_w^2} - 1\right)}. \quad (8)$$

We now derive two particular initialization choices along this curve. The first is the *Sitzmann-inspired* choice, obtained by enforcing $\sigma_a = 1$, which was only approximately realized in Sitzmann et al. (2020) and which we will later show does not produce the desired spectral behaviour. The second, which we adopt as our *proposed* initialization, sets $\sigma_a = 0$ and will be shown to provide much better spectral control (see Section 3.3). The corresponding parameter pairs are

$$\sigma_a = 1 : (c_w, c_b) = \sqrt{\frac{6}{1+e^{-2}}}\left(1, \frac{e^{-1}}{\sqrt{3}}\right), \quad \sigma_a = 0 \quad (\text{Proposed}) : (c_w, c_b) = (\sqrt{3}, 0), \quad (9)$$

We illustrate the effect of these two initialization schemes on an image fitting problem in Fig. 2 and on several additional reconstruction tasks (see Appendix B). Across all depths L , the proposed initialization with $\sigma_a = 0$ consistently yields more stable networks than the standard SIREN (Sitzmann) architecture initialized with Eq. equation 6 and other state-of-the-art approaches. In particular, as depth increases, most competing methods exhibit gradient explosion, which manifests as spurious, noisy high-frequency artifacts in the reconstructed high-resolution images. We also find that the $\sigma_a = 1$ initialization produces slightly noisier outputs for deep networks than the $\sigma_a = 0$ scheme, a behaviour explained in Section 3.3 and motivating our preference for the proposed initialization.

Figure 2: Comparison of several INR architectures and initializations on an image-fitting problem using an $L = 10$ hidden-layer neural network of width $N = 256$. We train the model on a set $(\mathbf{x}_i, y_i)_{i \in \mathbb{I}}$ where \mathbf{x}_i is a location taken on a $\|\mathbf{x}\| = 128 \times 128$ uniformly spaced grid on $\Omega = [-1, 1]^2$ and y_i is the associated image value at this location. The top row shows the fitted 128×128 image. The middle row shows the estimation on an augmented resolution (512×512) to assess the model’s generalization and the last row provides a zoom on part of the image. In all case, we use ADAM optimizer with learning rate 10^{-4} for 10000 epochs. The state-of-the-art architecture considered in this experiment are: SIREN (see (Sitzmann et al., 2020)), FINER (see (Liu et al., 2024)), WIRE (see (Saragadam et al., 2022)), Tanh (FX) with Fourier features and Xavier initialization (see (Tancik et al., 2020)), and the traditional ReLU with Positional Encoding (see (Nair & Hinton, 2010)). We used for the SIREN based architectures the previously discussed schemes. We observe that the proposed strategies (SIREN ($\sigma_a = 0$ and $\sigma_a = 1$) lead to significant improvement in the model estimation with respect to other methods. For instance, it preserves sharp features compared to other SOTA method such as WIRE, FINER, that yields extremely poor results for deep neural networks.

3.1 PRE-ACTIVATION DISTRIBUTION

In the following, we derive the exact form of the pre-activation distribution in the limit of infinitely wide and deep neural networks, explicitly accounting for the influence of the bias term, which turns

out to be crucial. More precisely, we show that, for any initialization in the parameter space (c_w, c_b) , the pre-activation distribution converges to a fixed point. The proof is provided in Appendix A.1.

Theorem 3.1 (Pre-activation distribution of SIREN). *Considering SIREN network described in equation 5 where, for some $c_w, c_b \in \mathbb{R}^+$, and for every layer $\ell \in \{2, \dots, L\}$, the weight matrix \mathbf{W}_ℓ is initialized as a random matrix sampled from $\mathcal{U}(-c_w/\sqrt{N}, c_w/\sqrt{N})$, \mathbf{W}_1 is sampled from $\mathcal{U}(-w_0/n_0, w_0/n_0)$, the bias \mathbf{b}_ℓ is initialized as a random vector sampled from $\mathcal{N}(0, c_b^2)$. Let $(\mathbf{z}_\ell)_{\ell \in \{1, \dots, L\}}$ the pre-activation sequence defined in equation 3 and relying on an input $\mathbf{x} \in \mathbb{R}^{n_0}$. Then, in the limits $N, L \rightarrow \infty$, the pre-activation sequence $(\mathbf{z}_\ell)_{\ell \in \mathbb{N}}$ converges in distribution to $\mathcal{N}(0, \sigma_a^2)$ with*

$$\sigma_a^2 = c_b^2 + \frac{c_w^2}{6} + \frac{1}{2} \mathcal{W}_0 \left(-\frac{c_w^2}{3} e^{-\frac{c_w^2}{3} - 2c_b^2} \right), \quad (10)$$

where \mathcal{W}_0 is the principal real branch of the Lambert function. The sequence associated to the variance of the pre-activation $(\text{Var}(\mathbf{z}_\ell))_{\ell \in \mathbb{N}}$ converges to a fixed point σ_a , which is exponentially attractive for all values of $c_w \neq \sqrt{3}$. For $c_w = \sqrt{3}$ the convergence will be of rate $\mathcal{O}(\frac{1}{\ell})$.

Remark 3.1. While the bias distribution is different in our initialization and in the original SIREN scheme, the choice $c_w = \sqrt{6}$ for the weight initialization can be recovered as a special case of equation 10 by imposing $\sigma_a = 1$, assuming $c_b = 0$, and by neglecting the correction term introduced by the Lambert function. Using the expansion $\mathcal{W}_0(x) = x + \mathcal{O}(x^2)$, this correction term can be estimated as $\sim e^{-2}$, which is small but not negligible¹. Accounting for this correction term enables more precise control over the pre-activation variance σ_a .

Remark 3.2. As stated in Theorem 3.1, the pre-activation variance converges exponentially fast to σ_a as the depth L increases whenever $c_w \neq \sqrt{3}$. In that case, even relatively shallow networks already have pre-activations that are effectively Gaussian with variance very close to the fixed point σ_a . When $c_w = \sqrt{3}$, this convergence becomes much slower. For our proposed choice $\sigma_a = 0$, this means that the pre-activation variance decays toward zero only gradually with depth.

Deriving the fixed points of the pre-activation distribution is a necessary first step toward characterizing the layer-wise gradient distribution and for establishing the optimal initialization value for c_w and c_b , which we discuss in the next subsection.

3.2 GRADIENT DISTRIBUTION AND STABILITY

The distribution of Jacobian entries is another important property of neural networks that must be carefully controlled during initialization to avoid gradient vanishing (He et al., 2015; Yang & Schoenholz, 2017). In this work, we show that a tractable derivation is possible for the sine activation function. This result is described in Theorem 3.2. Combined with Theorem 3.1 it will enable us to propose a principled initialization strategy provided in Proposition 3.1.

Theorem 3.2 (Jacobian distribution of SIREN). *Let $\mathbf{J}_\ell = \partial \mathbf{h}_\ell / \partial \mathbf{h}_{\ell-1}$ denote the Jacobian of the ℓ -th layer. Considering SIREN network described in equation 5, we have*

$$\mathbf{J}_\ell = \text{diag}(\cos(\mathbf{z}_\ell)) \mathbf{W}_\ell.$$

Under the same assumptions as Theorem 3.1, and maintaining the limit of large N , each entry of \mathbf{J}_ℓ has zero mean and a variance $\tilde{\sigma}_\ell^2$, such that the sequence $(N\tilde{\sigma}_\ell^2)_{\ell \in \mathbb{N}}$ converges to

$$\lim_{\ell, N \rightarrow \infty} (N\tilde{\sigma}_\ell^2) = \sigma_g = \frac{c_w^2}{6} (1 + e^{-2\sigma_a^2}). \quad (11)$$

For a given network, with input \mathbf{x} and output $\Psi_\theta(\mathbf{x})$, Theorem 3.2 can be used to analyze the scaling behavior of gradients with respect to both the network parameters θ and the input coordinates \mathbf{x} . We denote by $\partial_{\theta_\ell} \Psi$ the gradient of the network output with respect to the parameters θ_ℓ of layer ℓ , and by $\partial_{\mathbf{x}} \Psi$ the gradient with respect to the input \mathbf{x} . By applying the chain rule, we have :

$$\frac{\partial \Psi_\theta(\mathbf{x})}{\partial \theta_\ell} = \frac{\partial \Psi_\theta}{\partial \mathbf{h}_{L-1}} \dots \frac{\partial \mathbf{h}_{\ell+1}}{\partial \mathbf{h}_\ell} \frac{\partial \mathbf{h}_\ell(\mathbf{x})}{\partial \theta_\ell}, \quad \frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{h}_{L-1}} \dots \frac{\partial \mathbf{h}_2}{\partial \mathbf{h}_1} \frac{\partial \mathbf{h}_1(\mathbf{x})}{\partial \mathbf{x}}. \quad (12)$$

¹A more precise estimate of this correction term can be obtained using equation 30, to be derived later.

324 These relations can be used to obtain scaling of the gradients variances with the network depth
 325 and width (see Appendix A.4 for a derivation):
 326

$$327 \text{Var}(\partial_{\theta_\ell} \Psi_\theta(\mathbf{x})) \propto N^{-1} (\sigma_g^2)^{L-\ell-1} \quad \text{and} \quad \text{Var}(\partial_{\mathbf{x}} \Psi_\theta(\mathbf{x})) \propto \omega_0^2 (\sigma_g^2)^{L-2}. \quad (13)$$

328 From equation 13, we see that gradients in parameter space vanish or explode exponentially with
 329 network depth L , unless the scaling factor $N\sigma_g^2$ is close to 1. To conclude the analysis of the
 330 statistical properties of SIREN networks and derive the initialization schemes provided in equations
 331 7-9, we identify the values of c_w and c_b allowing to control the scaling of gradients i.e. $\sigma_g = 1$.
 332

333 **Proposition 3.1.** *Under the same assumptions as in Theorem 3.1, setting $\sigma_g = 1$ leads to the
 334 weight-bias variance curve $c_b(c_w)$ defined in equation 8. Furthermore, choosing $\sigma_a = 0$ (our
 335 proposed initialization) or $\sigma_a = 1$ determines a specific pair (c_w, c_b) given in equation 9.*

336
 337 Figure 3: Experimental standard deviation
 338 of the pre-activation distribution (left) and
 339 of the layer-wise Jacobian entries distribu-
 340 tion (right), as a function of the parame-
 341 ters (c_w, c_b) . The plain and dashed black
 342 lines indicate the theoretical predictions
 343 for $\sigma_a = 1$ and $\sigma_g = 1$, following The-
 344 orems 3.1 and 3.2, respectively. The black
 345 and red dots indicate the initialization
 346 provided in Proposition 3.1, the Pytorch
 347 dots corresponds to the default weight and
 348 bias initialization, and the green dots to
 349 the Sitzmann initialization.

350 The proof is given in Appendix A.3. We verified the validity of this theoretical analysis, involving
 351 careful calculations of the Jacobian and pre-activation distributions, through numerical experiments
 352 displayed in figure 3. These experiments were done 20 times using a SIREN neural network of width
 353 $N = 256$ of depth $L = 10$, with input dimension $n_0 = 1$, and output dimension $n_d = 1$, $w_0 = 1$,
 354 and following the initialization scheme in equations 7-9. The neural network is then evaluated using
 $|\mathcal{I}| = 500$ input points \mathbf{x}_i uniformly spaced between $[-1, 1]$ to obtain the studied distributions.

355 In the next section, we explain why choosing $\sigma_a = 0$ rather than $\sigma_a = 1$ provides better control over
 356 the network's frequency spectrum.

3.3 FOURIER SPECTRUM AND ALIASING

360 The need to constrain the Fourier spectrum of sinusoidal neural networks to prevent high-frequency
 361 aliasing was noted in (Yüce et al., 2022), and a closed-form expression for the spectrum of sine-
 362 based networks was later derived in (Novello et al., 2025, Thm. 3), showing that each additional layer
 363 redistributes energy across Fourier modes. Since composing sine activations inherently broadens the
 364 spectrum with depth, controlling this growth requires either limiting the depth or enforcing $\sigma_a = 0$.
 365 In the latter case, deep layers are almost linear, because for $\mathbf{z}_\ell \sim \mathcal{N}(0, \sigma_a^2)$ we have $\sin(\mathbf{z}_\ell) \approx \mathbf{z}_\ell$
 366 as $\sigma_a \rightarrow 0$. Empirically, our initialization with $\sigma_a = 0$ indeed suppresses the emergence of higher
 367 frequencies: as shown in Fig. 4, spectral broadening with depth is strongly reduced, and most of
 368 the energy remains confined below w_0 , yielding a meaningful, depth-independent cutoff around w_0 .
 369 The slow decay of σ_ℓ toward zero described in Theorem 3.1 appears to compensate the nonlinearities
 370 just enough to avoid both explosion and collapse of the spectrum, even in very deep networks, a
 371 behaviour that remains unexplained and calls for further investigation.

372 In contrast, for $\sigma_a = 1$, and even more so under the Sitzmann initialization, the spectrum clearly
 373 broadens with depth, and substantial energy appears beyond w_0 . This excess energy is exactly what
 374 causes aliasing when the network input is discretized. For the PyTorch initialization, the opposite
 375 behavior occurs: the spectrum collapses rapidly with depth, reflecting a vanishing-signal regime
 376 caused by unnormalized gradients. Overall, this analysis supports our proposed initialization, which
 377 constrains $\sigma_a = 0$ and motivates choosing w_0 as the Nyquist frequency for sampled inputs. This
 378 ensures that the network can represent all frequencies present in the data while avoiding aliasing in
 379 the early stages of training.

Figure 4: One-dimensional Fourier spectra of Ψ_θ for multiple depths $L \in \{4, 8, 16, 32\}$, driving frequencies $w_0 \in \{100, 1000\}$ (rows), and initialization schemes (columns). Each curve shows the magnitude of the discrete Fourier transform of Ψ_θ evaluated on an equispaced grid; colors encode the depth L . The red vertical line marks $w_0/2\pi$ which corresponds to the input frequency encoded by the first layers and the black vertical line marks w_0 . The colored backgrounds group the different initializations (from left to right: proposed SIREN with $\sigma_a = 0$, SIREN with $\sigma_a = 1$, the initialization of (Sitzmann et al., 2020), and the default PyTorch initialization).

4 SCALING OF THE NEURAL TANGENT KERNEL WITH DEPTH AND SIMPLIFIED LEARNING DYNAMICS

The Neural Tangent Kernel (NTK) framework is a linearized description of the training dynamics around initialization, allowing one to study how the network evolves in the early phase of training (Jacot et al., 2018). When training neural networks, we typically use gradient descent to minimize the loss function, with updates $\theta_{t+1} = \theta_t - dt \nabla_\theta \mathcal{L}(\theta_t)$, where dt is the learning rate and θ_t the parameter vector at iteration t .

To simplify we restrict ourselves to a scalar output neural network (i.e., $d = 1$). Then, we have for the mean-squared error loss $\mathcal{L}(\theta) = \sum_{i \in \mathbb{I}} \|\Psi_\theta(\mathbf{x}_i) - y_i\|^2 / |\mathbb{I}|$, and in the continuous-time limit $dt \rightarrow 0$, the residuals $u(\mathbf{x}_i, t) = \Psi_{\theta_t}(\mathbf{x}_i) - y_i$ satisfy

$$\frac{d\mathbf{u}(t)}{dt} = \mathbf{K}_{\theta_t} \mathbf{u}(t), \quad \mathbf{K}_{\theta_t, i, j} = \nabla_\theta \Psi_{\theta_t}(\mathbf{x}_i) \cdot \nabla_\theta \Psi_{\theta_t}(\mathbf{x}_j), \quad (14)$$

where $\mathbf{u}(t) = (u(\mathbf{x}_1, t), \dots, u(\mathbf{x}_{|\mathbb{I}|}, t))$ and \mathbf{K}_{θ_t} is the NTK matrix. Assuming the NTK remains constant during training ($\mathbf{K}_{\theta_t} \equiv \mathbf{K}_{\theta_0}$), the residuals evolve as

$$\mathbf{u}(t) = \exp(-t\mathbf{K}_{\theta_0})\mathbf{u}(0) = \sum_{i=1}^{|\mathbb{I}|} e^{-t\lambda_i} \langle \mathbf{u}(0), \mathbf{v}_i \rangle \mathbf{v}_i, \quad (15)$$

where $(\lambda_i, \mathbf{v}_i)$ are the eigenpairs of the initialized NTK \mathbf{K}_{θ_0} , ordered so that $\lambda_1 \geq \dots \geq \lambda_{|\mathbb{I}|} > 0$, and $\langle \cdot, \cdot \rangle$ the Euclidean scalar product. Thus, the early training dynamics is fully determined by the spectral properties of the NTK at initialization.

Frequency bias in the NTK framework. Equation 15 shows that modes associated with large eigenvalues decay quickly, while those with small eigenvalues decay slowly, with characteristic timescale $1/\lambda_i$. As illustrated in Fig. 5 for the 1D case, and as observed in related settings (see e.g. (Wang et al., 2021)), the leading eigenmodes (small i) of the NTK can be identified with low-frequency Fourier modes, whereas higher-frequency components (large i) correspond to smaller eigenvalues λ_i . Figure 5 provides an overview of this behavior. This illustrates the spectral bias of neural networks in the lazy training regime (i.e., nearly constant NTK) and emphasizes the importance of controlling the spectrum $\{\lambda_i\}_{i=1}^{|\mathbb{I}|}$ to accurately capture all relevant target frequencies. A more detailed study of the overlap between NTK and Fourier modes, for different initialisation schemes, is presented in Appendix B.2.2.

Empirical scaling of NTK eigenvalues and network gradients. To highlight the importance of initialization in the large depth limit, we conducted an experiment comparing the original SIREN

441 Figure 5: The first six eigenvectors v_0, \dots, v_5 of the NTK matrix \mathbf{K}_{θ_0} , ordered by decreasing
 442 eigenvalue $\lambda_0 > \lambda_1 > \dots > \lambda_5$. The NTK matrix was computed numerically on a uniform grid
 443 of $|\mathbb{I}| = 500$ points over the interval $\Omega = [-1, 1]$ using a SIREN network of width $N = 512$ and
 444 of depth $L = 8$ and using $\omega_0 = 1$. The eigenvectors exhibit increasingly oscillatory behavior as
 445 the mode index grows, consistent with their interpretation as Fourier-like modes. This observation
 446 confirms the spectral structure predicted by our analysis and highlights the tendency of the NTK to
 447 prioritize low-frequency components associated with larger eigenvalues.

448

449 initialization (cf. equation 6), the new ones (cf. equations 7-9), and the Pytorch one. We varied the
 450 depth L while fixing $N = 256$, $|\mathbb{I}| = 200$, and $\omega_0 = 1$. In figure 6, we plot the normalized NTK
 451 trace (mean eigenvalue) expressed as $\text{Tr}(\mathbf{K}_{\theta_0})/|\mathbb{I}|N$, together with the gradient norm $\|\partial_x \Psi_{\theta_0}\|$ as
 452 functions of network depth. We use the NTK trace as a computationally convenient proxy for the
 453 typical eigenvalue behavior as depth increases. With the original SIREN initialization, we observe
 454 exponential growth of both the NTK eigenvalues and the input gradients. In this case, increasing
 455 depth accelerates training but also causes gradient explosion in input space. This corresponds to
 456 spurious high-frequency components absent from the target signal, which degrade generalization,
 457 here understood as smooth interpolation between data points. With PyTorch initialization, the NTK
 458 eigenvalues decrease until reaching a plateau, while the gradient in input coordinate space vanishes.
 459 By contrast, with our new initialisations, the NTK eigenvalues increases linearly with depth while
 460 the gradients remain constant. Consequently, the effective learning rate increases with depth L ,
 461 while the input-space gradients stay normalized. These behaviors are confirmed in practical set-
 462 tings, such as the image-fitting task shown in figure 2, and in additional experiments presented in
 463 Appendix B.

463 **Interpretation of the scalings.** The scaling of gradients with σ_g^L is expected from section 3.2,
 464 with $\sigma_g \approx \sqrt{1.2}$ for SIREN, $\sigma_g = 1$ for our proposed initialization, and $\sigma_g = \sqrt{1/3}$ for PyTorch
 465 initialization. Similarly, it is possible to explain the NTK eigenvalue scaling. We note first that
 466 diagonal element of the NTK matrix are $\mathbf{K}_{\theta_0, i, i} = |\nabla_{\theta} \Psi_{\theta_0}(\mathbf{x}_i)|^2$. From this and the zero mean
 467 property of every gradient distribution, we relate the average eigenvalue of the NTK denoted $\bar{\lambda}$ to
 468 the variance of gradients in parameter space:

469

$$\bar{\lambda} = \frac{1}{|\mathbb{I}|} \text{Tr}(\mathbf{K}_{\theta_0}) = N^2 \sum_{\ell=1}^L \text{Var} [\nabla_{\mathbf{W}_{\ell}} \Psi_{\theta_0}(\mathbf{x}_i)] + N \sum_{\ell=1}^L \text{Var} [\nabla_{\mathbf{b}_{\ell}} \Psi_{\theta_0}(\mathbf{x}_i)], \quad (16)$$

470 where $\mathbf{W}_{\ell}, \mathbf{b}_{\ell}$ are respectively a weight and a bias of the ℓ -th layer. The sum involving weights
 471 parameters being dominant, we neglect the sum on bias terms in the following. When $\sigma_g^2 \neq 1$, using
 472 equation 12, we obtain a geometric sum, leading to

473

$$\frac{1}{|\mathbb{I}|N} \text{Tr}(\mathbf{K}_{\theta_0}) \propto \frac{(\sigma_g^2)^{L+1} - 1}{\sigma_g^2 - 1}. \quad (17)$$

474 If $\sigma_g > 1$ (SIREN original), then $\bar{\lambda} \propto \sigma_g^{2L}$ and the NTK explodes exponentially with depth L . This
 475 exponential scaling for the NTK eigenvalues without proper initialization was observed experimen-
 476 tally in (de Avila Belbute-Peres & Kolter, 2023), yet without precise discussion on the causes and
 477 the effect of such behavior, since their focus was on the choice of ω_0 rather than on weight and bias
 478 initialization.

479 If $\sigma_g < 1$ (SIREN PyTorch), NTK eigenvalues become independent from the depth L in the large
 480 depth limit, yielding slow convergence, together with vanishing gradients.

If $\sigma_g = 1$ (SIREN $\sigma_a = 0, 1$), equation 17 does not apply. Each term of the sum on weight parameters in equation 16 gives the same contribution, leading to $\bar{\lambda} \propto L$, which is consistent with the results plotted figure 6 for the $\sigma_a = 1$ initialization, for $\sigma_a = 0$ it seems that the NTK eigenvalues are converging to a fix distribution, and we attribute that to finite size effect of our initialization, indeed the convergence is really slow towards $\sigma_a = 0$, which seems to compensate the NTK eigenvalues growth with depth, for finite depth networks.

Figure 6: The left plot stands for the scaling of the mean eigenvalue of the NTK matrix over the number of layer. The right plot stands for the scaling of the gradient of the network (in input coordinate space) with the number of layers. The experimental setup and hyper-parameters are the same as in figure 5, except for the network depth which varies here.

5 DISCUSSION, CONCLUSION, PERSPECTIVES

We proposed a new initialization scheme for sinusoidal neural networks that prevents gradient explosion and vanishing, and presented various applications, from noisy image fitting, video, and audio reconstruction (Appendix B). The parametrization is derived analytically by examining the variances of pre-activations and layer-to-layer Jacobians in the limit of infinitely wide and deep networks. This approach removes the need for architectural tricks such as skip connections or empirical hyperparameter tuning to stabilize deep models. By analyzing both the neural tangent kernel and input-space gradients, we showed that this initialization enables deep networks to train with learning rates that scale linearly with depth, while suppressing spurious noise above the Nyquist frequency in implicit neural representations. Whereas prior work motivated the use of sine activations by noting that derivatives of SIRENs remain well-behaved, our study goes further by providing a deeper theoretical analysis. We demonstrate that sinusoidal architectures not only preserve these desirable properties but also admit stronger theoretical justification. A key take-away is that fixing the Jacobian variance ($\sigma_g = 1$) is essential to control gradients, whereas setting the targeted fixed point pre-activation variance ($\sigma_a = 0$) gives direct control over the network spectrum at initialization.

Although this study focuses on signal encoding with a quadratic loss, future work could extend the approach to more complex losses, including physics-informed settings, with potential applications in atmospheric and oceanic field reconstruction. Furthermore, our study focuses solely on controlling the variance of the weights at initialization. One could broaden this perspective by considering additional structural properties of the network such as the distribution of singular values of the layer Jacobians (presented in Appendix B.1), which play a crucial role in propagating information across the network. More broadly, our results may encourage wider adoption of sine activations in machine learning.

540
541

REPRODUCIBILITY

542

Code Implementation. All source code used in our experiments is provided in the supplementary material, including implementations of the architectures used for comparison.

544

545

Models and Architectures. Details on the choice of activation functions are given in the main text. Initialization methods and architectural specifications for each model are described within the corresponding experimental sections.

547

548

Experiments. Each experiment is reported with its hyperparameters (e.g., learning rate, optimizer, number of epochs) in the relevant sections or figures. All experiments were run with fixed random seeds to ensure exact reproducibility of the reported results.

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

6 EXPERIMENTAL APPENDIX

595

6.1 END TO END JACOBIAN, SINGULAR VALUE SPECTRUM

598 As discussed in (Pennington et al., 2017), an important notion of stability in neural networks is
 599 captured by the singular value distribution of the end-to-end Jacobian: when these singular values
 600 concentrate around 1, the network preserves the norm of signals during backpropagation. This
 601 property, known as *dynamical isometry*, is closely linked to stable and efficient training and will be
 602 the subject of further investigation for SIREN architectures in future work.

603 As a preliminary step toward this analysis, we plot figure 20 the full singular value distribution of
 604 the end-to-end Jacobian obtained with our proposed initialization. Since we focus on INR settings,
 605 we define the end-to-end Jacobian as the matrix of size $N \times N$, where N denotes the width of the
 606 network:

$$607 \mathbf{J} = \frac{\partial \mathbf{h}_{L-1}}{\partial \mathbf{h}_1}$$

608 Once again, our initialization with $\sigma_a = 0$ exhibits a stable and nearly unitary normalized maximum
 609 singular value, independently of network depth. This behaviour is not observed for the other
 610 initialization schemes, where the largest singular value either grows steadily with depth or collapses
 611 rapidly, as in the case of the PyTorch initialization. However, our initialization does not achieve full
 612 dynamical isometry, indicating that there remains room for improvement while still satisfying the
 613 key constraints established earlier. Exploring additional constraints on the weight distribution may
 614 therefore lead to enhanced stability with respect to dynamical isometry.

616 Figure 7: Full singular value spectrum evolution with depth for the proposed initializations $\sigma_a = 0$
 617 and $\sigma_a = 1$, for the original Sitzmann initialization, and for the PyTorch default weight initialization.
 618 Each spectrum was averaged over five independently initialized networks. The Jacobian distribution
 619 was computed twice and averaged, using 10 sample points on the domain $[-\pi, \pi]$.
 620

621

6.2 NTK SPECTRUM AND FOURIER OVERLAP

622

6.2.1 NTK SPECTRUM

623 In the main text, we restricted our analysis of the Neural Tangent Kernel (NTK) spectrum to its trace,
 624 which captures only its mean behaviour. However, the trace alone does not reflect the full structure
 625 of the spectrum. In this section, we therefore examine the complete NTK eigenvalue distribution in
 626 order to highlight its finer characteristics.

627 The full spectrum analysis shown figure 21 reinforces our previous observations based on the NTK
 628 trace, namely that the Sitzmann and PyTorch initializations become extremely ill-conditioned as
 629 depth increases. In contrast, the $\sigma_a = 1$ and $\sigma_a = 0$ initializations remain comparatively stable.
 630 One can observe a noticeable lifting of the eigenvalues at high indices for $\sigma_a = 1$, whereas this
 631 lifting is much smaller and more uniform under the $\sigma_a = 0$ initialization. This behaviour could be
 632 directly related to aliasing phenomena in such networks, where high frequencies can be used earlier
 633 to fit a signal.

634 This interpretation is further supported by the next analysis, where we show that under ill-
 635 conditioned initializations the low-index NTK eigenvectors begin to encode increasingly high fre-
 636 quencies as depth grows.

Figure 8: Full NTK eigenspectrum evolution with depth for the proposed initializations $\sigma_a = 0$ and $\sigma_a = 1$, for the original Sitzmann initialization, and for the PyTorch default weight initialization. Each spectrum was averaged over five independently initialized networks. The NTK was computed on the domain $[-\pi, \pi]$ using 256 sample points.

6.2.2 FOURIER OVERLAP

To support our NTK analysis and our explanation of spectral bias, we previously assumed (see Figure 5) a form of alignment between the eigenvectors of the SIREN NTK and the Fourier modes. To verify this assumption for our different initialization schemes, we examined the power spectrum of the NTK eigenvectors, which corresponds to their overlap with the Fourier modes:

$$|\langle \mathbf{v}_n, \phi_\omega \rangle|^2 = \left| \int_{\Omega} \mathbf{v}_n(x) e^{-i\omega x} dx \right|^2. \quad (18)$$

The previous analysis reveals that the only initialization preserving the expected ordering, *low frequencies* corresponding to *low NTK eigenvalues*, is our proposed initialization with $\sigma_a = 0$. This observation is consistent with our Fourier-spectrum study (see Section 3.3). Indeed, we observe in Figure 22 an almost perfect alignment between the Fourier modes and the NTK eigenspectrum for frequencies below w_0 .

For the other initialization schemes, this alignment deteriorates substantially as depth increases, calling into question the relevance of NTK-based explanations of spectral bias. Indeed, in the NTK regime, the first modes learned are no longer the low-frequency components; instead, higher-frequency modes increasingly dominate for $\sigma_a = 1$ and the Sitzmann initialization. For the PyTorch initialization, the situation is reversed: the entire spectrum collapses, preventing any meaningful frequency ordering.

6.3 AUDIO FITTING EXPERIMENTS

To investigate the effect of the proposed initialization on the network’s ability to fit high-frequency signals, we consider a 7-second audio clip sampled at the standard rate of 44,200 Hz. To expose potential generalization effects, we subsample the signal by a factor of three and set $w_0 = 7000$, which is approximately the Nyquist frequency corresponding to this reduced sampling rate. The results are shown figure 23.

Both the **SNR** and **MSE** metrics show a consistent improvement when using our proposed initialization on generalization tasks, while also providing strong training performance. The initialization with $\sigma_a = 1$ also achieves competitive results, though its generalization accuracy remains noticeably lower. For the other initialization schemes, even when training performance is satisfactory, the generalization error remains far too large to reliably encode a continuous signal.

6.4 VIDEO FITTING EXPERIMENTS

Video fitting on ERA-5 wind fields. To evaluate the impact of the initialization on a complex video-fitting task, we consider the hourly ERA-5 atmospheric reanalysis on the spherical Earth, focusing on the 10 m meridional (South-North) wind component $v(t, \lambda, \varphi)$.

Figure 9: Overlap evolution with depth of the NTK eigenbasis over the Fourier modes, for the proposed initializations $\sigma_a = 0$ and $\sigma_a = 1$, the original Sitzmann initialization and the initialization with Pytorch default initialization weight. The power spectrum has been calculated using $w_0 = 1$, over the interval $[-64, 64]$ using 512 points. w_0 has been chosen to be two times smaller than the Nyquist frequency of the input points for the sake of visualization. The horizontal red dashed lines correspond to the frequencies $\pm\omega_0$.

Where the data is defined on a regular longitude–latitude grid with

$$\lambda \in [0, 360), \quad \varphi \in [-90, 90],$$

discretized into

$$N_\lambda = 1440 \quad \text{and} \quad N_\varphi = 720$$

spatial points, respectively. We restrict ourselves to the first $T_{\max} = 30$ hourly time steps. For training, we form a set of input–output pairs

$$(\mathbf{x}_i, \mathbf{y}_i)_{i \in \mathbb{I}},$$

Figure 10: Comparison of several state-of-the-art methods (described in Figure 2) with SIREN using our proposed initialization. All networks, with depth $L = 15$ and width $N = 256$, were trained for 10,000 epochs using the ADAM optimizer with a learning rate of 3×10^{-5} .

where each index i corresponds to a triplet (t, λ, φ) on this spatio-temporal grid. The target \mathbf{y}_i is obtained from $v(t, \lambda, \varphi)$ by a standard affine normalization (subtracting a global mean and dividing by a global standard deviation computed over the first T_{\max} frames).

Each input vector is defined as

$$\mathbf{x}_i = (\tau(t_i), \lambda_i, \varphi_i),$$

where the time coordinate $\tau(t)$ is obtained via a linear rescaling of the discrete time index t such that the effective Nyquist frequency along the time axis matches that of the two spatial axes (longitude and latitude). This ensures a comparable frequency bandwidth in all three input directions and allows us to pick $w_0 = 0.7$ for every direction.

For training, we randomly subsample a fixed fraction of the full spatial gridded points $\{1, \dots, N_\lambda\} \times \{1, \dots, N_\varphi\}$ (10% of all points, justifying the choice of w_0), while for evaluation we use the complete spatio-temporal grid.

Regarding the batching, to avoid I/O bottlenecks when accessing the dataset, we organize the data into time-slice batches. Concretely, we consider a spatio-temporal grid

$$t \in \{0, \dots, T_{\max} - 1\}, \quad \lambda \in \{\lambda_1, \dots, \lambda_{N_\lambda}\}, \quad \varphi \in \{\varphi_1, \dots, \varphi_{N_\varphi}\},$$

and for each fixed time index t we form a batch containing many spatial points on the sphere. For a given time t , we define a (possibly subsampled) index set $\mathcal{I}_t \subset \{1, \dots, N_\lambda\} \times \{1, \dots, N_\varphi\}$, and construct the corresponding mini-batch

$$\mathcal{B}_t = \{(\mathbf{x}_{t,j,k}, \mathbf{y}_{t,j,k}) : (j, k) \in \mathcal{I}_t\},$$

where each input is $\mathbf{x}_{t,j,k} = (\tau(t), \lambda_j, \varphi_k)$ and the target $\mathbf{y}_{t,j,k}$ is the normalized wind value at time t and location (λ_j, φ_k) .

We benchmark previous state-of-the-art INR methods and our SIREN models with different initialization schemes on this ERA-5 re-analysis to assess their ability to fit and generalize complex spatio-temporal dynamics on the sphere.

Once again, our initialization with $\sigma_a = 0$ yields better generalization performance, even on complex tasks and geometries such as video fitting on the sphere. In contrast, the Sitzmann and $\sigma_a = 1$ initializations tend to produce noticeable noisy artifacts. Moreover, the FINER and WIRE methods appear clearly unstable for high-depth networks. We also highlight the comparatively good performance of the positional encoding ReLU (PE) network in this setting.

6.5 DENOISING EXPERIMENTS

We consider a grayscale image $\mathbf{y}^* : \Omega \subset \mathbb{R}^2 \rightarrow [0, 1]$ (the astronaut image), defined on a continuous domain Ω . For training, we sample a regular grid of locations

$$(\mathbf{x}_i)_{i \in \mathbb{I}}, \quad \mathbb{I} = \{1, \dots, 128\} \times \{1, \dots, 128\},$$

Figure 11: Comparison over three different time frames of several state-of-the-art methods on the ERA-5 reanalysis dataset (first 30 hours), using networks with width $N = 256$ and depth $L = 15$. All models were trained for 6,000 epochs with the ADAM optimizer and a *Reduce-on-Plateau* learning-rate scheduler, starting from an initial learning rate of 10^{-3} . For batching, we used the time-slice structure described above with 5 gradient accumulation steps. To reduce computation time, we employed gradient scaling together with automatic mixed-precision (AMP) training.

which we identify with points in $[-1, 1]^2$. The clean training targets are

$$\mathbf{y}_i = \mathbf{y}^*(\mathbf{x}_i) \in [0, 1], \quad i \in \mathbb{I}.$$

To study denoising and the implicit spectral regularization of different initializations, we corrupt only the training targets with synthetic high-frequency noise. Let $N = 128$ be the spatial resolution of the training grid and let

$$f_{\text{Nyq}} = \frac{N}{4}$$

denote the associated Nyquist frequency (in cycles per unit length on $[-1, 1]$). We construct a high-frequency noise field as a superposition of K random waves whose spatial frequencies lie strictly above f_{Nyq} :

$$\eta(\mathbf{x}) = \sum_{k=1}^K \sin\left(2\pi(f_x^{(k)}x_1 + f_y^{(k)}x_2) + \phi^{(k)}\right),$$

where for each k we draw $f_x^{(k)}, f_y^{(k)} \sim \mathcal{U}(2f_{\text{Nyq}}, 4f_{\text{Nyq}})$, $\phi^{(k)} \sim \mathcal{U}(0, 2\pi)$, and $\mathbf{x} = (x_1, x_2)^\top$. We then normalize this field on the training grid to have zero mean and unit variance,

$$\tilde{\eta}_i = \frac{\eta(\mathbf{x}_i) - \frac{1}{|\mathbb{I}|} \sum_{j \in \mathbb{I}} \eta(\mathbf{x}_j)}{\sqrt{\frac{1}{|\mathbb{I}|} \sum_{j \in \mathbb{I}} (\eta(\mathbf{x}_j) - \frac{1}{|\mathbb{I}|} \sum_{\ell \in \mathbb{I}} \eta(\mathbf{x}_\ell))^2}}, \quad i \in \mathbb{I},$$

and scale it by a prescribed noise level $\sigma_{\text{noise}} > 0$. The noisy training targets are finally defined as

$$\tilde{\mathbf{y}}_i = \mathbf{y}_i + \sigma_{\text{noise}} \tilde{\eta}_i, \quad i \in \mathbb{I},$$

We train all INR models on the noisy dataset $\{(\mathbf{x}_i, \tilde{\mathbf{y}}_i)\}_{i \in \mathbb{I}}$ and evaluate on a higher-resolution grid covering the full image domain, using the clean image \mathbf{y}^* as reference. This setup isolates the ability of each initialization to act as an implicit frequency-space regularizer for denoising, independently of network depth.

Figure 25 illustrates our claim that the proposed initialization acts as a regularizer on the frequency content that the network can represent. Indeed, we observe higher **SNR** and lower **MSE** for our initialization $\sigma_a = 0$, together with a significantly larger training loss. This indicates that the network does not fit all of the high-frequency background noise, but instead focuses on reconstructing the underlying clean signal.

Figure 12: Results of the denoising experiments for the different state-of-the-art methods, using networks with width $N = 256$ and depth $L = 10$. All models are trained on the noisy dataset $\{(\mathbf{x}_i, \tilde{\mathbf{y}}_i)\}_{i \in \mathbb{I}}$ described above using $\sigma_{\text{noise}} = 0.05$ and evaluated on the original high-resolution image of size 512×512 to assess denoising performance. The networks were trained for 10 000 epochs using the ADAM optimizer with a learning rate of 10^{-4} .

6.6 PHYSICS INFORMED EXPERIMENTS

Physics-Informed Neural Networks (PINNs) approximate the solution \mathbf{u} of a differential equation with Ψ_θ by embedding the underlying physical laws into the loss function. Given a PDE of the form

$$\mathcal{N}[\mathbf{u}](\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in \Omega,$$

with boundary/initial conditions $\mathcal{B}[\mathbf{u}] = g(\mathbf{x})$ on $\partial\Omega$, the neural network Ψ_θ is trained by minimizing the composite loss

$$\mathcal{L}(\theta) = \lambda_f \sum_{\mathbf{x}_f \in \mathcal{D}_f} |\mathcal{N}[\Psi_\theta](\mathbf{x}_f) - f(\mathbf{x}_f)|^2 + \lambda_b \sum_{\mathbf{x}_b \in \mathcal{D}_b} |\mathcal{B}[\Psi_\theta](\mathbf{x}_b) - g(\mathbf{x}_b)|^2.$$

where \mathcal{D}_f and \mathcal{D}_b denote collocation points in the domain and on the boundary. Automatic differentiation is used to compute $\mathcal{N}[\Psi_\theta]$, allowing the network to satisfy the governing equations as part of the training process.

In order to compare the several model at stake and the impact of the initialization, we used the PINNacle benchmark (Hao et al., 2024), which allowed us to have a pre-builtin solver for each differential equation we studied.

6.6.1 BURGER 1D

We consider the one-dimensional viscous Burgers equation, written in the generic PDE form

$$\mathcal{N}[\mathbf{u}](x, t) = u_t + u u_x - \nu u_{xx} = 0, \quad (x, t) \in \Omega, \quad \nu = \frac{0.01}{\pi}.$$

The spatio-temporal domain is defined as $\Omega = [-1, 1] \times [0, 1]$. The initial and boundary conditions are given by $u(x, 0) = -\sin(\pi x)$, $u(-1, t) = u(1, t) = 0$.

We observe figure 26 that the different initialization schemes yield very similar results, with the exception of the FINER and ReLU networks. Interestingly, for this specific task, the original Sitzmann initialization appears to provide the most favorable performance. We conjecture that this behavior is related to the nature of the Burgers equation, whose sharp propagating front can be effectively represented even under a highly ill-conditioned gradient distribution.

6.6.2 STATIONARY NAVIER-STOKES 2D

We consider the stationary incompressible 2D Navier-Stokes equations

$$\mathcal{N}_u[\mathbf{u}, p] = (u \cdot \nabla) u + \nabla p - \nu \Delta u = 0, \quad \mathcal{N}_p[\mathbf{u}] = \nabla \cdot u = 0,$$

Figure 13: Results of the Burgers 1D solutions for the different state of the art methods, using a network with width $N = 256$ and $L = 15$. The networks were trained for 10 000 epochs using the ADAM optimizer with a learning rate of 10^{-4} . For the SIREN based architectures, we chose $w_0 = 2$.

for the velocity field $u = (u, v)$ and pressure p , with $\nu = 1$.

The spatial domain Ω is defined as

$$\Omega = ([0, 8]^2) \setminus \bigcup_i R_i,$$

where each R_i denotes a circular obstacle. For further details about the boundary conditions please see the original PINNacle benchmark (Hao et al., 2024).

Figure 14: Results of the Navier-Stokes 2D solutions for the different state of the art methods, using a network with width $N = 256$ and $L = 15$. The networks were trained for 10 000 epochs using the ADAM optimizer with a learning rate of 10^{-4} . For the SIREN based architectures, we chose $w_0 = 2$.

The impact of initialization observed figure 27 is far more pronounced in that case than for Burger. We observe that having proper control over the spectral properties of the initialization can lead to a significant improvement in performance. The Sitzmann initialization exhibits, as expected, problematic high-frequency components, while other models such as FINER, Tanh, and ReLU fail completely to reconstruct the physical solution.

6.6.3 HEAT EQUATION IN COMPLEX GEOMETRY

We consider the transient 2D heat equation

$$\mathcal{N}[u](\mathbf{x}, t) = u_t - \Delta u = 0, \quad (\mathbf{x}, t) \in \Omega \times [0, 3].$$

The spatial domain Ω is defined as

$$\Omega = ([-8, 8] \times [-12, 12]) \setminus \bigcup_i R_i,$$

where each R_i denotes a circular obstacle. For further detail about the boundary conditions please see the original PINNacle benchmark (Hao et al., 2024).

The results for different initializations are shown figure 28. The distinction between $\sigma_a = 1$ and $\sigma_a = 0$ is striking. The former produces noticeably noisy and unstable solutions, whereas setting $\sigma_a = 0$ successfully reproduces the behavior of the ground-truth solution. For the other initialization methods, the observations are consistent with those made in the Navier–Stokes experiment.

Figure 15: Results of the 2D heat equation experiments for the different state of the art methods, using a network with width $N = 256$ and $L = 15$. The networks were trained for 10 000 epochs using the ADAM optimizer with a learning rate of 10^{-4} . For the SIREN based architectures, we chose $w_0 = 1$.

6.7 SYNTHETIC EXPERIMENTS

6.7.1 1D FITTING EXPERIMENTS

For the 1D fitting experiments, we generated synthetic data by sampling from a multi-scale function:

$$f_{1d}(x) = \sin(3x) + 0.7 \cos(8x) + 0.3 \sin(40x + 1) + \exp(-x^2)$$

To explore the impact of initialization on the performance of various neural network architectures, we studied two tasks: function fitting and PDE solving. Since image and video fitting reduce to function fitting, we focus on it. This choice lets us control the target function’s frequency content. As a result, we can probe the different scales present in the data.

Figure 16: 1d Averaged generalization and training error for the 1D fitting problem. The results are averaged over 10 runs for each architecture of width $N = 128$. The error bars represent the standard deviation of the results.

The results plotted in figure 29 show that our proposed initialization matches or exceeds the accuracy of the traditional SIREN architecture for fitting a function. Moreover, it delivers significantly lower

1026 generalization error compared to the original SIREN. Notably, the Tanh-based positional-encoding
 1027 network also shows strong generalization performance, despite its slightly higher training error.
 1028

1029 6.7.2 2D FITTING EXPERIMENTS

1030 We applied the same methodology to a two-dimensional, multi-scale test function:

$$1032 \quad f_{2d}(x, y) = \sin(3x) \cos(3y) + \sin(15x - 2) \cos(15y) \\ 1033 \quad + \exp(-(x^2 + y^2)),$$

1035 for $(x, y) \in [-1, 1]^2$. The exponential term ensures no architecture can represent the function
 1036 trivially. We sampled 3600 random training points, giving a Nyquist frequency above 15. Each
 1037 network was trained for 5000 epochs using Adam (learning rate 10^{-4}) under various initialization
 1038 schemes. We then evaluated generalization error on 10 000 test points. The comparative results
 1039 appear in Fig. 30.

1057 Figure 17: 2d Averaged generalization and training error for the 2D fitting problem. The results
 1058 are averaged over 10 runs for each architecture of width $N = 1238$. The error bars represent the
 1059 standard deviation of the results.

1060 The results mirror the 1D fitting experiments. Our proposed initialization clearly outperforms all
 1061 other architectures on the generalization task. At the same time, it maintains a very low training
 1062 error, comparable to the SIREN architecture.

1064 6.7.3 3D FITTING EXPERIMENTS

1066 For the 3D fitting experiments, we use the same framework as in 1D and 2D. We test a three-
 1067 dimensional function with multi-scale features:

$$1069 \quad f_{3d}(x, y, z) = \sin(5x) \cos(12y) \sin(3z) \\ 1070 \quad + \exp(-(x^2 + y^2 + z^2)),$$

1072 for $(x, y, z) \in [-1, 1]^3$. The exponential term prevents trivial representation by any architecture. We
 1073 sample 8000 random training points, ensuring a Nyquist frequency above 12. Each network trains
 1074 for 5000 epochs using Adam with learning rate 10^{-4} under various initialization schemes. We then
 1075 evaluate generalization error on 70 000 test points. The results appear in Fig. 31.

1076 Once again, our proposed initialization delivers strong results. It clearly outperforms all other archi-
 1077 tectures on generalization. Its fitting error remains very low, only slightly above the classic SIREN.
 1078 Interestingly, as the number of layers increases, SIREN's training error decreases alongside rising
 1079 high-frequency content. This suggests that fitting high frequencies may harm generalization—a
 drawback our method avoids.

Figure 18: 3d Averaged generalization and training error for the 2D fitting problem. The results are averaged over 10 runs for each architecture of width $N = 128$. The error bars represent the standard deviation of the results.

REFERENCES

Zhicheng Cai, Hao Zhu, Qiu Shen, Xinran Wang, and Xun Cao. Batch normalization alleviates the spectral bias in coordinate networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 25160–25171, June 2024.

Bartomeu Coll, Armengol Gasull, and Rafel Prohens. Asymptotic dynamics of a difference equation with a parabolic equilibrium. *Qualitative Theory of Dynamical Systems*, 19(2), 2020. ISSN 1575-5460. doi: 10.1007/s12346-020-00406-0. URL <https://doi.org/10.1007/s12346-020-00406-0>.

Filipe de Avila Belbute-Peres and J Zico Kolter. Simple initialization and parametrization of sinusoidal networks via their kernel bandwidth. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=yVqC6gCNf4d>.

Emilien Dupont, Adam Golinski, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. Coin: Compression with implicit neural representations. In *International Conference on Learning Representations*, 2021. URL <http://arxiv.org/abs/2103.03123v2>.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In Yee Whye Teh and Mike Titterington (eds.), *Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics*, volume 9 of *Proceedings of Machine Learning Research*, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL <https://proceedings.mlr.press/v9/glorot10a.html>.

Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang, Songming Liu, Lu Lu, and Jun Zhu. Pinnacle: A comprehensive benchmark of physics-informed neural networks for solving pdes. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 76721–76774. Curran Associates, Inc., 2024. doi: 10.5220/079017-2442. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/8c63299fb2820ef41cb05e2ff11836f5-Paper-Datasets_and_Benchmarks_Track.pdf.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. On the impact of the activation function on deep neural networks training. In *International conference on machine learning*, pp. 2672–2680. PMLR, 2019.

Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. The curse of depth in kernel regime, 13 Dec 2022. URL <https://proceedings.mlr.press/v163/hayou22a.html>.

1134 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
 1135 human-level performance on imagenet classification. In *2015 IEEE International Conference on*
 1136 *Computer Vision (ICCV)*, pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

1137

1138 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 1139 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.

1140 J A S Kelso, A J Mandell, M F Shlesinger, and N H Packard. *Dynamic Patterns in Complex Systems*,
 1141 chapter 3. Addison-Wesley, 1986.

1142

1143 Christopher G Langton. Studying artificial life with cellular automata. *Physica D: Non-*
 1144 *linear Phenomena*, 22(1):120–149, 1986. ISSN 0167-2789. doi: [https://doi.org/10.1016/0167-2789\(86\)90237-X](https://doi.org/10.1016/0167-2789(86)90237-X). URL <https://www.sciencedirect.com/science/article/pii/016727898690237X>. Proceedings of the Fifth Annual International Con-
 1145 ference.

1146

1147

1148 Yicheng Li, Zixiong Yu, Guhan Chen, and Qian Lin. On the eigenvalue decay rates of a class
 1149 of neural-network related kernel functions defined on general domains, 2024. URL <https://arxiv.org/abs/2305.02657>.

1150

1151

1152 Zhen Liu, Hao Zhu, Qi Zhang, Jingde Fu, Weibing Deng, Zhan Ma, Yanwen Guo, and Xun Cao.
 1153 Finer: Flexible spectral-bias tuning in implicit neural representation by variable-periodic activa-
 1154 tion functions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 1155 *Recognition*, 2024.

1156

1157

1158 Mingze Ma, Qingtian Zhu, Yifan Zhan, Zhengwei Yin, Hongjun Wang, and Yinqiang Zheng. Ro-
 1159 bustifying fourier features embeddings for implicit neural representations, 2025. URL <https://arxiv.org/abs/2502.05482>.

1160

1161

1162 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 1163 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.

1164

1165

1166 Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
 1167 In *Proceedings of the 27th International Conference on International Conference on Machine*
 1168 *Learning*, ICML’10, pp. 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077.

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

22

1188 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 1189 deep learning framework for solving forward and inverse problems involving nonlinear partial
 1190 differential equations. *Journal of Computational Physics*, 378:686–707, 2019.

1191
 1192 Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan,
 1193 and Richard G Baraniuk. Wire: Wavelet implicit neural representations. In *arXiv preprint*
 1194 *arXiv:2301.05187*, 2022.

1195 Samuel S Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
 1196 propagation. In *International Conference on Learning Representations*, 2017.

1197
 1198 Maria Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects
 1199 of depth and initialization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
 1200 Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine
 Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 19522–19560. PMLR,
 1201 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/seleznova22a.html>.

1202
 1203 Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural representations with periodic activation functions. In H. Larochelle,
 1204 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural In-*
 1205 *formation Processing Systems*, volume 33, pp. 7462–7473. Curran Associates, Inc.,
 1206 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf.

1207
 1208 Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. Implicit neural
 1209 representations for image compression. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Gio-
 1210 vanni Maria Farinella, and Tal Hassner (eds.), *Computer Vision – ECCV 2022*, pp. 74–91, Cham,
 1211 2022. Springer Nature Switzerland. ISBN 978-3-031-19809-0.

1212
 1213 Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
 1214 Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let net-
 1215 works learn high frequency functions in low dimensional domains. *NeurIPS*, 2020.

1216
 1217 Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of fourier feature net-
 1218 works: From regression to solving multi-scale pdes with physics-informed neural networks. *Com-*
 1219 *puter Methods in Applied Mechanics and Engineering*, 384:113938, 2021. ISSN 0045-7825. doi:
 1220 <https://doi.org/10.1016/j.cma.2021.113938>. URL <https://www.sciencedirect.com/science/article/pii/S0045782521002759>.

1221
 1222 Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. *Advances
 1223 in neural information processing systems*, 30, 2017.

1224
 1225 Gizem Yüce, Guillermo Ortiz-Jimenez, Beril Besbinar, and Pascal Frossard. A structured dictionary
 1226 perspective on implicit neural representations. In *Proc. IEEE/CVF Conference on Computer
 1227 Vision and Pattern Recognition (CVPR 2022)*. June 2022.

1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 **A MATHEMATICAL APPENDIX**
 1243

1244 **A.1 INPUT DISTRIBUTION**
 1245

1246 **Theorem** (Restatement of Theorem 3.1). *Considering SIREN network described in equation 5
 1247 where, for some $c_w, c_b \in \mathbb{R}^+$, and for every layer $\ell \in \{2, \dots, L\}$, the weight matrix \mathbf{W}_ℓ is ini-
 1248 tialized as a random matrix sampled from $\mathcal{U}(-c_w/\sqrt{N}, c_w/\sqrt{N})$, and the bias \mathbf{b}_ℓ is initialized
 1249 as a random vector sampled from $\mathcal{N}(0, c_b^2)$. Let $(\mathbf{z}_\ell)_{\ell \in \{1, \dots, L\}}$ the preactivation sequence defined
 1250 in equation 3 and relying on an input $\mathbf{x} \in \mathbb{R}^{n_0}$. Then, in the limit of large N , the preactivation
 1251 sequence $(\mathbf{z}_\ell)_{\ell \in \mathbb{N}}$ converges in distribution to $\mathcal{N}(0, \sigma_a^2)$ where*

1252
$$\sigma_a^2 = c_b^2 + \frac{c_w^2}{6} + \frac{1}{2} \mathcal{W}_0 \left(-\frac{c_w^2}{3} e^{-\frac{c_w^2}{3} - 2c_b^2} \right) \quad (19)$$

 1253

1254 with \mathcal{W}_0 is the principal real branch of the Lambert function. Additionally, the sequence associated
 1255 to the variance of the preactivation $(\text{Var}(\mathbf{z}_\ell))_{\ell \in \mathbb{N}}$ converges to a fixed point σ_a , which is expon-
 1256 entially attractive for all values of $c_w \neq \sqrt{3}$.
 1257

1258 *Proof.* The proof can be split in three steps: (i) prove that the sequence of preactivations follows a
 1259 Gaussian distribution (cf. Lemma A.1), (ii) give an expression of the variance of the output of a sin
 1260 activation when the input follows a zero-mean Gaussian distribution of s.t.d. σ_a (cf. Lemma A.2),
 1261 (iii) provides the expression of the variance of each element of the preactivation sequence using the
 1262 result in (ii) and proves its convergence to a fixed point σ_a (cf. Lemma A.3).
 1263

1264
 1265 **Lemma A.1.** *Considering SIREN network described in equation 5 where, for some $c_w, c_b \in \mathbb{R}^+$,
 1266 and for every layer $\ell \in \{2, \dots, L\}$, the weight matrix \mathbf{W}_ℓ is initialized as a random matrix sampled
 1267 from $\mathcal{U}(-c_w/\sqrt{N}, c_w/\sqrt{N})$, \mathbf{W}_1 is sampled from $\mathcal{U}(-w_0/n_0, w_0/n_0)$, and the bias \mathbf{b}_ℓ is initialized
 1268 as a random vector sampled from $\mathcal{N}(0, c_b^2)$. Let $(\mathbf{z}_\ell)_{\ell \in \{1, \dots, L\}}$ the preactivation sequence defined
 1269 in equation 3 and relying on an input $\mathbf{x} \in \mathbb{R}^{n_0}$. Then, in the limit of large N , each element of the
 1270 preactivation sequence $(\mathbf{z}_\ell)_{\ell \in \mathbb{N}}$ is distributed according to a zero-mean Gaussian distribution.*

1271 *Proof.* We recall that for the first layer, $\mathbf{h}_0 = \mathbf{x}$ and, for every $\ell \in \{1, \dots, L\}$,

1272
$$\mathbf{h}_\ell = \sin(\mathbf{W}_\ell \mathbf{h}_{\ell-1} + \mathbf{b}_\ell).$$

 1273

1274 Since the sine activation is an odd function, it preserves the zero-mean property of any distribution:
 1275 if $\mathbf{z}_\ell = \mathbf{W}_\ell \mathbf{h}_{\ell-1} + \mathbf{b}_\ell$ has zero mean, then \mathbf{h}_ℓ will also have zero mean. This property propagates
 1276 layer by layer.
 1277

1278 As \mathbf{W}_1 and \mathbf{b}_1 are assumed to have zero mean (by definition, cf. equation 7) and \mathbf{x} is a deterministic
 1279 vector, it ensures that the first-layer pre-activation has zero-mean. Moreover, as \mathbf{W}_ℓ and \mathbf{b}_ℓ are
 1280 assumed to have zero mean the zero-mean property holds for all subsequent pre-activations \mathbf{z}_ℓ and
 1281 \mathbf{h}_ℓ .
 1282

1283 Second, we prove that the preactivation sequence is distributed according to a Gaussian. We first
 1284 rewrite each element of the preactivation sequence as

1285
$$\mathbf{z}_{\ell,i} = \sum_{j=1}^N \mathbf{W}_{\ell,i,j} \mathbf{h}_{\ell-1,j} + \mathbf{b}_{\ell,i}. \quad (20)$$

 1286

1287 As a sum of two Gaussian stays Gaussian and because \mathbf{b}_ℓ is assumed to be Gaussian with a standard
 1288 deviation σ_b , the main purpose here is then to prove that $\sum_{j=1}^N \mathbf{W}_{\ell,i,j} \mathbf{h}_{\ell-1,j}$ follow a Gaussian
 1289 distribution.
 1290

1291 Thanks to the Central Limit Theorem, whatever is the distribution of $\mathbf{h}_{\ell-1,j}$, the term
 1292 $\sum_{j=1}^N \mathbf{W}_{\ell,i,j} \mathbf{h}_{\ell-1,j}$ converges in distribution to a Gaussian distribution in the limit of large N . Since
 1293 the bias is also normally sampled, each component $\mathbf{z}_{\ell,i}$ follows a gaussian distribution in the same
 1294 large N limit, with zero mean and a variance denoted σ_a^2 .
 1295

To compute this variance, let us first compute the variance of each summand denoted $\sigma_{\ell,i,j}^2$, given by the product of two independent random variables with zero mean, namely $W_{\ell,i,j}$ and $h_{\ell-1,j}$,

$$\sigma_{\ell,i,j}^2 = \text{Var}[W_{\ell,i,j}] \text{Var}[h_{\ell-1,j}]. \quad (21)$$

Since $W_{\ell,i,j}$ is uniformly distributed on $[-c_w/\sqrt{N}, c_w/\sqrt{N}]$, we have:

$$\text{Var}[W_{\ell,i,j}] = \frac{c_w^2}{3N}. \quad (22)$$

While the variance of $h_{\ell-1,j}$ is still unknown, we can express it from the knowledge of $z_{\ell-1}$, leading to

$$\sigma_{\ell,i,j}^2 = \frac{c_w^2}{3N} \text{Var}[\sin(z_{\ell-1,j})]. \quad (23)$$

whose expression of $\text{Var}[\sin(z_{\ell-1,j})]$ will be provided later.

As the bias variance follows a Gaussian distribution as described in equation 7, the variance of all the elements of the preactivation z_ℓ is

$$\sigma_\ell^2 = \frac{c_w^2}{3} \text{Var}[\sin(z_{\ell-1})] + c_b^2. \quad (24)$$

□

Lemma A.2. *Let z be a normally distributed random variable and zero mean $z \sim \mathcal{N}(0, \sigma^2)$. Then we have :*

$$\text{Var}[\sin(z)] = \frac{1}{2} \left(1 - e^{2\sigma^2}\right). \quad (25)$$

Proof of Lemma A.2. The proof combined the properties of the Gaussian distribution with the fact that the sine function is an odd function. We have:

$$\text{Var}[\sin(z)] = \mathbb{E}[\sin^2(z)] - \mathbb{E}[\sin(z)]^2$$

Since \sin is odd and since the expectation of z is zero, we have $\mathbb{E}[\sin(z)] = 0$. In addition, using $\sin^2(z) = (1 - \cos(2z))/2$, we obtain

$$\mathbb{E}[\sin^2(z)] = \frac{1}{2} - \frac{1}{2}\mathbb{E}[\cos(2z)].$$

The characteristic function of the Gaussian distribution with zero mean and variance σ_a is given by:

$$g_z(t) = \mathbb{E}(e^{itz}) = e^{-\frac{1}{2}t^2\sigma^2}.$$

Now we notice that

$$\mathbb{E}[\cos(2z)] = \mathbb{E}[\Re[e^{i2z}]] = \Re[g_z(2)] = e^{-2\sigma_a^2}.$$

The first equality uses the linearity of the mean. This leads to the final result:

$$\text{Var}[\sin(z)] = \frac{1}{2} \left(1 - e^{-2\sigma_a^2}\right).$$

□

Lemma A.3. *Considering SIREN network described in equation 5 where, for some $c_w, c_b \in \mathbb{R}^+$, and for every layer $\ell \in \{1, \dots, L\}$, the weight matrix \mathbf{W}_ℓ is initialized as a random matrix sampled from $\mathcal{U}(-c_w/\sqrt{N}, c_w/\sqrt{N})$, and the bias \mathbf{b}_ℓ is initialized as a random vector sampled from $\mathcal{N}(0, c_b^2)$. Let $\mathbf{x} \in \mathbb{R}^{n_0}$. Then, in the limit of large N , the preactivation sequence $(z_\ell)_{\ell \in \{1, \dots, L\}}$ defined in equation 3 is distributed according to a Gaussian distribution with zero-mean and, for every ℓ , a variance*

$$\sigma_\ell^2 = \frac{c_w^2}{6} \left(1 - e^{-2\sigma_{\ell-1}^2}\right) + c_b^2$$

Moreover, the sequence $(\sigma_\ell^2)_{\ell \in \mathbb{N}}$ converges to

$$\sigma_a^2 = c_b^2 + \frac{c_w^2}{6} + \frac{1}{2} \mathcal{W}_{0,-1} \left(-\frac{c_w^2}{3} e^{-\frac{c_w^2}{3} - 2c_b^2}\right),$$

with $\mathcal{W}_{0,-1}$ the two real branches of the Lambert W function. And for $c_w \neq \sqrt{3}$, this convergence is exponentially fast.

1350 *Proof of Lemma A.3.*
 1351

1352 **Fixed Point Value :** Combining equation 24 and equation A.3, the variance of the pre-activation at
 1353 layer ℓ is

$$1354 \quad \sigma_\ell^2 = \frac{c_w^2}{6} \left(1 - e^{-2\sigma_{\ell-1}^2}\right) + c_b^2 \\ 1355$$

1356 To characterize the fixed point of the sequence $(\sigma_\ell^2)_{\ell \in \mathbb{N}}$, we define a function f as
 1357

$$1358 \quad f(x) = \frac{c_w^2}{6} (1 - e^{-2x}) + c_b^2. \\ 1359 \quad (26)$$

1360 The fixed point of this function is given by the solution of the equation $f(x) = x$. Rearranging the
 1361 different term gives:

$$1362 \quad \frac{c_w^2}{6} + c_b^2 - x = \frac{c_w^2}{6} e^{-2x}. \\ 1363 \quad (27)$$

1364 Using $y = \frac{c_w^2}{6} + c_b^2 - x$ yields
 1365

$$1366 \quad ye^{-2y} = \frac{c_w^2}{6} e^{-2(\frac{c_w^2}{6} + c_b^2)}. \\ 1367$$

1368 Then, using the definition of the real valued Lambert W function, we get

$$1369 \quad y = -\frac{1}{2} \mathcal{W}_k \left(-\frac{c_w^2}{3} e^{-2(\frac{c_w^2}{6} + c_b^2)} \right), \quad \text{where } k \in \{-1, 0\}. \\ 1370 \\ 1371$$

1372 The \mathcal{W}_0 branch is called the principal branch and is defined on $(-e^{-1}, +\infty)$. The \mathcal{W}_{-1} branch is
 1373 defined for $(-e^{-1}, 0)$. To obtain a positive variance, the branch to consider is \mathcal{W}_0 , as illustrated
 1374 numerically in figure 19.

1391 Figure 19: The σ_a solution emerging from the W_0 branch on the left and W_{-1} branch on the right
 1392

1393 **Convergence Speed :** To quantify the convergence towards the fixed point σ_a^2 , consider the derivative
 1394 of f at the fixed point:

$$1395 \quad f'(\sigma_a^2) = \frac{c_w^2}{3} e^{-2\sigma_a^2}. \\ 1396$$

1397 The fixed point is exponentially attractive whenever $f'(\sigma_a^2) < 1$, which is immediately satisfied for
 1398 $c_w < \sqrt{3}$. For $c_w > \sqrt{3}$, Lemma A.3 gives
 1399

$$1400 \quad f'(\sigma_a^2) = 2(-f(\sigma_a) + \frac{c_w^2}{6} + c_b^2) = -\mathcal{W}_0 \left(-\frac{c_w^2}{3} e^{-c_w^2/3 - 2c_b^2} \right). \\ 1401$$

1402 Since
 1403

$$-\frac{1}{e} < -\frac{c_w^2}{3} e^{-c_w^2/3 - 2c_b^2} < 0,$$

1404 the properties of the principal branch \mathcal{W}_0 imply $|f'(\sigma_a^2)| < 1$. Hence, the fixed point is exponentially
 1405 attractive for all values of $c_w \neq \sqrt{3}$, and convergence occurs rapidly. For $c_w = \sqrt{3}$, the map f can
 1406 be written

$$1407 \quad 1408 \quad f(x) = \frac{1}{2}(1 - e^{-2x}), \quad x \geq 0.$$

1409 A Taylor expansion at $x = 0$ yields

$$1411 \quad 1412 \quad f(x) = x - x^2 + \frac{2}{3}x^3 + O(x^4),$$

1413 so that f is tangent to the identity at the origin, i.e. $f(0) = 0$ and $f'(0) = 1$. Moreover, since
 1414 $f(x) < x$ for all $x > 0$, the map f admits 0 as its unique fixed point on $[0, \infty)$, and any sequence
 1415 $(\sigma_\ell)_{\ell \geq 0}$ defined by $\sigma_{\ell+1} = f(\sigma_\ell)$ with $\sigma_0 > 0$ is strictly decreasing and converges to 0. Furthermore
 1416 thanks to the previous extension it fits into the general class of one-dimensional parabolic maps
 1417 studied in (Coll et al., 2020, Theorem 1). That theorem provides a complete asymptotic expansion
 1418 of the orbit (σ_ℓ) ; in particular,

$$1419 \quad \sigma_\ell \sim \frac{1}{\ell} \quad \text{as } \ell \rightarrow \infty.$$

1422 This concludes the proof of the Lemma A.3, and of the Theorem 3.1. \square

1424 \square

1425 \square

1426

1427 A.2 GRADIENT DISTRIBUTION

1429 **Theorem** (Restatement of Theorem 3.2). *Let $\mathbf{J}_\ell = \partial \mathbf{h}_\ell / \partial \mathbf{h}_{\ell-1}$ denote the Jacobian of the ℓ -th
 1430 layer. Under the same assumptions a Theorem 3.1 we have*

$$1431 \quad 1432 \quad \mathbf{J}_\ell = \text{diag}(\cos(\mathbf{z}_\ell)) \mathbf{W}_\ell.$$

1433 *In the limit of large N , each entry of \mathbf{J}_ℓ has zero mean and a sequence of variance $\tilde{\sigma}_\ell^2$ such that the
 1434 sequence $(\tilde{\sigma}_\ell^2)_{\ell \in \mathbb{N}}$ that converges to*

$$1436 \quad 1437 \quad \sigma_g^2 = \frac{c_w^2}{6N}(1 + e^{-2\sigma_a^2}).$$

1438

1439 *Proof.* An element of the Jacobian of the ℓ -th layer are written as:

$$1441 \quad 1442 \quad \frac{\partial \mathbf{h}_{\ell,i}}{\partial \mathbf{h}_{\ell-1,k}} = \mathbf{W}_{\ell,i,k} \cos \left(\sum_{j=1}^N \mathbf{W}_{\ell,i,j} \mathbf{h}_{\ell-1,j} + \mathbf{b}_{\ell,i} \right) = \mathbf{W}_{\ell,i,k} \cos(\mathbf{z}_{\ell,i})$$

1444 with $\mathbf{z}_{\ell,i}$ the i^{th} component of pre-activation vector defined in equation 3. In the limit of large
 1445 width $N \infty$ \mathbf{W}_ℓ and \mathbf{z}_ℓ are independent (leave-one-out justification), resulting in the independence
 1446 of variable $\mathbf{W}_{\ell,i,k}$ and $\cos(\mathbf{z}_{\ell,i})$. The variance of their product denoted $\tilde{\sigma}_\ell^2$ can then be expressed as
 1447 the product of their variance:
 1448

$$1449 \quad 1450 \quad \tilde{\sigma}_\ell^2 = \text{Var}[\mathbf{W}_{\ell,i,k}] \text{Var}[\cos(\mathbf{z}_{\ell,i})].$$

1451 Considering the same arguments as for Theorem 3.1 and replacing \sin by \cos , the sequence $(\tilde{\sigma}_\ell)_{\ell \in \mathbb{N}}$
 1452 converges to

$$1453 \quad 1454 \quad \sigma_g^2 = \frac{c_w^2}{6N}(1 + e^{-2\sigma_a^2}),$$

1456 with σ_a^2 the limit variance of the pre-activation, given by Theorem 3.1. \square

1458 A.3 PROOF OF EQUATION 8 AND INITIALIZATION 9
14591460 We propose to initialize the weights and biases of SIREN networks as follows:
1461

1462
$$\mathbf{W}_\ell \sim \begin{cases} \mathcal{U}\left(-\frac{\omega_0}{n_0}, \frac{\omega_0}{n_0}\right), & \ell = 1, \\ \mathcal{U}\left(-\frac{c_w}{\sqrt{N}}, \frac{c_w}{\sqrt{N}}\right), & \ell \in \{2, \dots, L\}, \end{cases}$$

1463

1464 and
1465

1466
$$\mathbf{b}_\ell \sim \mathcal{N}(0, c_b^2), \ell \in \{1, \dots, L\}.$$

1467

1468 To control the distribution scaling of gradients, following equation 11, we impose $\sigma_g^2 = 1$, i.e.,
1469

1470
$$\frac{c_w^2}{6}(1 + e^{-\sigma_a}) = 1. \quad (28)$$

1471

1472 Let's recall that the fix point σ_a verifies :
1473

1474
$$\sigma_a^2 = \frac{c_w^2}{6} \left(1 - e^{-2\sigma_a^2}\right) + c_b^2$$

1475

1476 From equation 28 and , we easily get
1477

1478
$$c_b = \sqrt{1 - \frac{c_w^2}{3} - \frac{1}{2} \log\left(\frac{6}{c_w^2} - 1\right)}. \quad (29)$$

1479

1480 Combining this result with equation 28 leads to an implicit equation for c_b^2 .
14811482 We discuss in the text two particular points, corresponding to $\sigma_a = 0$ and $\sigma_a = 1$, respectively:
14831484

- 1485 The case $\sigma_a = 0$ (proposed initialization) leads to $(c_w, c_b) = (\sqrt{3}, 0)$.
- 1486 The case $\sigma_a = 1$ leads to $c_w^2 = 6/(1 + e^{-1})$. To obtain an explicit expression for c_b , it is
1487 convenient to use the fixed-point equation 27 with $x = 1$, leading to:

1488

1489
$$\frac{c_w^2}{6} (1 - e^{-2}) + c_b^2 = 1, \quad (30)$$

1490

1491 which, using equation 28, simplifies to
1492

1493
$$c_b^2 = \frac{c_w^2 e^{-2}}{3}. \quad (31)$$

1494

1495 A.4 DERIVATION OF THE PROPOSED SCALING
14961497 Let $\Psi_\theta(\mathbf{x})$ defined as in equation 5 a scalar output function, initialized as in the previous theorems,
1498 and considering a given value of σ_g resulting from the initialization.
14991500 **Derivation of the parameter-wise Gradient scaling:** Considering a weight-parameter \mathbf{W}_ℓ, i, j
1501 with $\ell > 1$ of the ℓ -th layer, we study the scalar $\frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{W}_{\ell, i, j}}$, which can be rewritten as :
1502

1503
$$\frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{W}_{\ell, i, j}} = \frac{\partial \Psi_\theta}{\partial \mathbf{h}_{L-1}} \frac{\partial \mathbf{h}_{L-1}}{\partial \mathbf{h}_{L-2}} \dots \frac{\partial \mathbf{h}_{\ell+1}}{\partial \mathbf{h}_\ell} \frac{\partial \mathbf{h}_\ell}{\partial \mathbf{W}_{\ell, i, j}}$$

1504

1505 Then from theorem 3.2 under the choice of our initialization we know that the Jacobian matrices
1506 $\mathbf{J}_\ell = \partial \mathbf{h}_\ell / \partial \mathbf{h}_{\ell-1}$ have variance σ_g^2/N in the limit of large l and large N . Moreover, we have from
1507 the definition of Ψ_θ the expression of the vector $\frac{\partial \Psi_\theta}{\partial \mathbf{h}_{L-1}} = \mathbf{W}_L$ with $\text{Var}(\mathbf{W}_L) \sim 1/N$. Let us
1508 consider first the sensitivity vector \mathbf{g}_ℓ :
1509

1510
$$\mathbf{g}_\ell = \frac{\partial \Psi_\theta}{\partial \mathbf{h}_{L-1}} \frac{\partial \mathbf{h}_{L-1}}{\partial \mathbf{h}_{L-2}} \dots \frac{\partial \mathbf{h}_{\ell+1}}{\partial \mathbf{h}_\ell}. \quad (32)$$

1511

Owing to the impact of matrix multiplication on every components, we have $\text{Var}(\mathbf{g}_\ell) \sim (N\sigma_g^2)^{L-\ell-1}/N$. Let us now consider now the term $\frac{\partial \mathbf{h}_\ell(\mathbf{x})}{\partial \mathbf{W}_{\ell,i,j}}$. This is a zero vector except for the i -th component, verifying $\frac{\partial \mathbf{h}_{\ell,i}(\mathbf{x})}{\partial \mathbf{W}_{\ell,i,j}} = \mathbf{h}_{\ell-1,j} \cos(\mathbf{W}_{\ell-1,i,:} \mathbf{h}_{\ell-1} + \mathbf{b}_i)$, with variance $\text{Var}(\frac{\partial \mathbf{h}_{\ell,i}(\mathbf{x})}{\partial \mathbf{W}_{\ell,i,j}}) \sim 1$. Hence, the parameter-wise gradient can be rewritten as:

$$\frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{W}_{\ell,i,j}} = \mathbf{g}_{\ell,i} \mathbf{h}_{\ell-1,j} \cos(\mathbf{W}_{\ell-1,i,:} \mathbf{h}_{\ell-1} + \mathbf{b}_i).$$

Assuming independence between $\mathbf{g}_{\ell,i}$ and $\frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{W}_{\ell,i,j}}$, we finally obtain the desired variance scaling, namely $\text{Var}(\frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{W}_{\ell,i,j}}) \sim (N\sigma_g^2)^{L-\ell-1}/N$.

Derivation of the input-wise Gradient scaling: Following the same notations as above, we have:

$$\frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{h}_{L-1}} \frac{\partial \mathbf{h}_{L-1}}{\partial \mathbf{h}_{L-2}} \dots \frac{\partial \mathbf{h}_2}{\partial \mathbf{h}_1} \frac{\partial \mathbf{h}_1(\mathbf{x})}{\partial \mathbf{x}}.$$

Recalling that \mathbf{g}_1 , has variance $\text{Var}(\mathbf{g}_1) \sim (N\sigma_g^2)^{L-2}/N$. In that case the $1/N$ factor will cancel out due to the term $\frac{\partial \mathbf{h}_1(\mathbf{x})}{\partial \mathbf{x}}$. Indeed, we have:

$$\frac{\partial \mathbf{h}_1(\mathbf{x})}{\partial \mathbf{x}} = \text{diag}(\cos(\mathbf{W}_1 \mathbf{x} + \mathbf{b})) \mathbf{W}_1,$$

which is a non-trivial matrix of variance $\text{Var}(\frac{\partial \mathbf{h}_1(\mathbf{x})}{\partial \mathbf{x}}) \sim w_0^2$, for both the original and proposed SIREN initialization. Focusing on one input coordinate x_i , we get:

$$\frac{\partial \Psi_\theta(\mathbf{x})}{\partial x_i} = \mathbf{g}_1 \text{diag}(\cos(\mathbf{W}_1 \mathbf{x} + \mathbf{b})) \mathbf{W}_{1,:,i} = \sum_j \mathbf{g}_{1,j} (\text{diag}(\cos(\mathbf{W}_1 \mathbf{x} + \mathbf{b})) \mathbf{W}_{1,:,i})_j.$$

The variance of each term scales as $\sim (\sigma_g^2)^{L-2}/N$. Supposing independence between each summand leads to $\text{Var}(\frac{\partial \Psi_\theta(\mathbf{x})}{\partial \mathbf{x}}) \sim (\sigma_g^2)^{L-2} w_0^2$.

B EXPERIMENTAL APPENDIX

B.1 END TO END JACOBIAN, SINGULAR VALUE SPECTRUM

As discussed in (Pennington et al., 2017), an important notion of stability in neural networks is captured by the singular value distribution of the end-to-end Jacobian: when these singular values concentrate around 1, the network preserves the norm of signals during backpropagation. This property, known as *dynamical isometry*, is closely linked to stable and efficient training and will be the subject of further investigation for SIREN architectures in future work.

As a preliminary step toward this analysis, we plot figure 20 the full singular value distribution of the end-to-end Jacobian obtained with our proposed initialization. Since we focus on INR settings, we define the end-to-end Jacobian as the matrix of size $N \times N$, where N denotes the width of the network:

$$\mathbf{J} = \frac{\partial \mathbf{h}_{L-1}}{\partial \mathbf{h}_1}$$

Once again, our initialization with $\sigma_a = 0$ exhibits a stable and nearly unitary normalized maximum singular value, independently of network depth. This behaviour is not observed for the other initialization schemes, where the largest singular value either grows steadily with depth or collapses rapidly, as in the case of the PyTorch initialization. However, our initialization does not achieve full dynamical isometry, indicating that there remains room for improvement while still satisfying the key constraints established earlier. Exploring additional constraints on the weight distribution may therefore lead to enhanced stability with respect to dynamical isometry.

B.2 NTK SPECTRUM AND FOURIER OVERLAP

B.2.1 NTK SPECTRUM

In the main text, we restricted our analysis of the Neural Tangent Kernel (NTK) spectrum to its trace, which captures only its mean behaviour. However, the trace alone does not reflect the full structure

1577
1578
1579
1580
1581
1582
1583
1584

Figure 20: Full singular value spectrum evolution with depth for the proposed initializations $\sigma_a = 0$ and $\sigma_a = 1$, for the original Sitzmann initialization, and for the PyTorch default weight initialization. Each spectrum was averaged over five independently initialized networks. The Jacobian distribution was computed twice and averaged, using 10 sample points on the domain $[-\pi, \pi]$.

of the spectrum. In this section, we therefore examine the complete NTK eigenvalue distribution in order to highlight its finer characteristics.

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Figure 21: Full NTK eigenspectrum evolution with depth for the proposed initializations $\sigma_a = 0$ and $\sigma_a = 1$, for the original Sitzmann initialization, and for the PyTorch default weight initialization. Each spectrum was averaged over five independently initialized networks. The NTK was computed on the domain $[-\pi, \pi]$ using 256 sample points.

The full spectrum analysis shown figure 21 reinforces our previous observations based on the NTK trace, namely that the Sitzmann and PyTorch initializations become extremely ill-conditioned as depth increases. In contrast, the $\sigma_a = 1$ and $\sigma_a = 0$ initializations remain comparatively stable. One can observe a noticeable lifting of the eigenvalues at high indices for $\sigma_a = 1$, whereas this lifting is much smaller and more uniform under the $\sigma_a = 0$ initialization. This behaviour could be directly related to aliasing phenomena in such networks, where high frequencies can be used earlier to fit a signal.

This interpretation is further supported by the next analysis, where we show that under ill-conditioned initializations the low-index NTK eigenvectors begin to encode increasingly high frequencies as depth grows.

B.2.2 FOURIER OVERLAP

To support our NTK analysis and our explanation of spectral bias, we previously assumed (see Figure 5) a form of alignment between the eigenvectors of the SIREN NTK and the Fourier modes. To verify this assumption for our different initialization schemes, we examined the power spectrum of the NTK eigenvectors, which corresponds to their overlap with the Fourier modes:

$$|\langle \mathbf{v}_n, \phi_\omega \rangle|^2 = \left| \int_{\Omega} \mathbf{v}_n(x) e^{-i\omega x} dx \right|^2. \quad (33)$$

Figure 22: Overlap evolution with depth of the NTK eigenbasis over the Fourier modes, for the proposed initializations $\sigma_a = 0$ and $\sigma_a = 1$, the original Sitzmann initialization and the initialization with Pytorch default initialization weight. The power spectrum has been calculated using $w_0 = 1$, over the interval $[-64, 64]$ using 512 points. w_0 has been chosen to be two times smaller than the Nyquist frequency of the input points for the sake of visualization. The horizontal red dashed lines correspond to the frequencies $\pm\omega_0$.

The previous analysis reveals that the only initialization preserving the expected ordering, *low frequencies* corresponding to *low NTK eigenvalues*, is our proposed initialization with $\sigma_a = 0$. This observation is consistent with our Fourier-spectrum study (see Section 3.3). Indeed, we observe in Figure 22 an almost perfect alignment between the Fourier modes and the NTK eigenspectrum for frequencies below w_0 .

For the other initialization schemes, this alignment deteriorates substantially as depth increases, calling into question the relevance of NTK-based explanations of spectral bias. Indeed, in the NTK regime, the first modes learned are no longer the low-frequency components; instead, higher-frequency modes increasingly dominate for $\sigma_a = 1$ and the Sitzmann initialization. For the PyTorch

1674 initialization, the situation is reversed: the entire spectrum collapses, preventing any meaningful
 1675 frequency ordering.
 1676

1677 B.3 AUDIO FITTING EXPERIMENTS 1678

1679 To investigate the effect of the proposed initialization on the network’s ability to fit high-frequency
 1680 signals, we consider a 7-second audio clip sampled at the standard rate of 44,200 Hz. To expose
 1681 potential generalization effects, we subsample the signal by a factor of three and set $w_0 = 7000$,
 1682 which is approximately the Nyquist frequency corresponding to this reduced sampling rate. The
 1683 results are shown figure 23.

1694 Figure 23: Comparison of several state-of-the-art methods (described in Figure 2) with SIREN using
 1695 our proposed initialization. All networks, with depth $L = 15$ and width $N = 256$, were trained for
 1696 10,000 epochs using the ADAM optimizer with a learning rate of 3×10^{-5} .
 1697

1698 Both the **SNR** and **MSE** metrics show a consistent improvement when using our proposed initialization
 1699 on generalization tasks, while also providing strong training performance. The initialization
 1700 with $\sigma_a = 1$ also achieves competitive results, though its generalization accuracy remains notice-
 1701 ably lower. For the other initialization schemes, even when training performance is satisfactory, the
 1702 generalization error remains far too large to reliably encode a continuous signal.
 1703

1704 B.4 VIDEO FITTING EXPERIMENTS 1705

1706 **Video fitting on ERA-5 wind fields.** To evaluate the impact of the initialization on a complex
 1707 video-fitting task, we consider the hourly ERA-5 atmospheric reanalysis on the spherical Earth,
 1708 focusing on the 10 m meridional (South-North) wind component $v(t, \lambda, \varphi)$.
 1709

1710 Where the data is defined on a regular longitude–latitude grid with

$$1712 \lambda \in [0, 360), \quad \varphi \in [-90, 90],$$

1713 discretized into

$$1714 N_\lambda = 1440 \quad \text{and} \quad N_\varphi = 720$$

1715 spatial points, respectively. We restrict ourselves to the first $T_{\max} = 30$ hourly time steps. For
 1716 training, we form a set of input–output pairs
 1717

$$1718 (\mathbf{x}_i, \mathbf{y}_i)_{i \in \mathbb{I}},$$

1719 where each index i corresponds to a triplet (t, λ, φ) on this spatio-temporal grid. The target \mathbf{y}_i is
 1720 obtained from $v(t, \lambda, \varphi)$ by a standard affine normalization (subtracting a global mean and dividing
 1721 by a global standard deviation computed over the first T_{\max} frames).
 1722

1723 Each input vector is defined as

$$1724 \mathbf{x}_i = (\tau(t_i), \lambda_i, \varphi_i),$$

1725 where the time coordinate $\tau(t)$ is obtained via a linear rescaling of the discrete time index t such that
 1726 the effective Nyquist frequency along the time axis matches that of the two spatial axes (longitude
 1727 and latitude). This ensures a comparable frequency bandwidth in all three input directions and allows
 1728 us to pick $w_0 = 0.7$ for every direction.

For training, we randomly subsample a fixed fraction of the full spatial gridded points $\{1, \dots, N_\lambda\} \times \{1, \dots, N_\varphi\}$ (10% of all points, justifying the choice of w_0), while for evaluation we use the complete spatio-temporal grid.

Regarding the batching, to avoid I/O bottlenecks when accessing the dataset, we organize the data into time-slice batches. Concretely, we consider a spatio-temporal grid

$$t \in \{0, \dots, T_{\max} - 1\}, \quad \lambda \in \{\lambda_1, \dots, \lambda_{N_\lambda}\}, \quad \varphi \in \{\varphi_1, \dots, \varphi_{N_\varphi}\},$$

and for each fixed time index t we form a batch containing many spatial points on the sphere. For a given time t , we define a (possibly subsampled) index set $\mathcal{I}_t \subset \{1, \dots, N_\lambda\} \times \{1, \dots, N_\varphi\}$, and construct the corresponding mini-batch

$$\mathcal{B}_t = \{(\mathbf{x}_{t,j,k}, \mathbf{y}_{t,j,k}) : (j, k) \in \mathcal{I}_t\},$$

where each input is $\mathbf{x}_{t,j,k} = (\tau(t), \lambda_j, \varphi_k)$ and the target $\mathbf{y}_{t,j,k}$ is the normalized wind value at time t and location (λ_j, φ_k) .

We benchmark previous state-of-the-art INR methods and our SIREN models with different initialization schemes on this ERA-5 re-analysis to assess their ability to fit and generalize complex spatio-temporal dynamics on the sphere.

Figure 24: Comparison over three different time frames of several state-of-the-art methods on the ERA-5 reanalysis dataset (first 30 hours), using networks with width $N = 256$ and depth $L = 15$. All models were trained for 6,000 epochs with the ADAM optimizer and a *Reduce-on-Plateau* learning-rate scheduler, starting from an initial learning rate of 10^{-3} . For batching, we used the time-slice structure described above with 5 gradient accumulation steps. To reduce computation time, we employed gradient scaling together with automatic mixed-precision (AMP) training.

Once again, our initialization with $\sigma_a = 0$ yields better generalization performance, even on complex tasks and geometries such as video fitting on the sphere. In contrast, the Sitzmann and $\sigma_a = 1$ initializations tend to produce noticeable noisy artifacts. Moreover, the FINER and WIRE methods appear clearly unstable for high-depth networks. We also highlight the comparatively good performance of the positional encoding ReLU (PE) network in this setting.

B.5 DENOISING EXPERIMENTS

We consider a grayscale image $\mathbf{y}^* : \Omega \subset \mathbb{R}^2 \rightarrow [0, 1]$ (the astronaut image), defined on a continuous domain Ω . For training, we sample a regular grid of locations

$$(\mathbf{x}_i)_{i \in \mathbb{I}}, \quad \mathbb{I} = \{1, \dots, 128\} \times \{1, \dots, 128\},$$

which we identify with points in $[-1, 1]^2$. The clean training targets are

$$\mathbf{y}_i = \mathbf{y}^*(\mathbf{x}_i) \in [0, 1], \quad i \in \mathbb{I}.$$

To study denoising and the implicit spectral regularization of different initializations, we corrupt only the training targets with synthetic high-frequency noise. Let $N = 128$ be the spatial resolution of the training grid and let

$$f_{\text{Nyq}} = \frac{N}{4}$$

denote the associated Nyquist frequency (in cycles per unit length on $[-1, 1]$). We construct a high-frequency noise field as a superposition of K random waves whose spatial frequencies lie strictly above f_{Nyq} :

$$\eta(\mathbf{x}) = \sum_{k=1}^K \sin(2\pi(f_x^{(k)}x_1 + f_y^{(k)}x_2) + \phi^{(k)}),$$

where for each k we draw $f_x^{(k)}, f_y^{(k)} \sim \mathcal{U}(2f_{\text{Nyq}}, 4f_{\text{Nyq}})$, $\phi^{(k)} \sim \mathcal{U}(0, 2\pi)$, and $\mathbf{x} = (x_1, x_2)^\top$. We then normalize this field on the training grid to have zero mean and unit variance,

$$\tilde{\eta}_i = \frac{\eta(\mathbf{x}_i) - \frac{1}{|\mathbb{I}|} \sum_{j \in \mathbb{I}} \eta(\mathbf{x}_j)}{\sqrt{\frac{1}{|\mathbb{I}|} \sum_{j \in \mathbb{I}} (\eta(\mathbf{x}_j) - \frac{1}{|\mathbb{I}|} \sum_{\ell \in \mathbb{I}} \eta(\mathbf{x}_\ell))^2}}, \quad i \in \mathbb{I},$$

and scale it by a prescribed noise level $\sigma_{\text{noise}} > 0$. The noisy training targets are finally defined as

$$\tilde{\mathbf{y}}_i = \mathbf{y}_i + \sigma_{\text{noise}} \tilde{\eta}_i, \quad i \in \mathbb{I},$$

We train all INR models on the noisy dataset $\{(\mathbf{x}_i, \tilde{\mathbf{y}}_i)\}_{i \in \mathbb{I}}$ and evaluate on a higher-resolution grid covering the full image domain, using the clean image \mathbf{y}^* as reference. This setup isolates the ability of each initialization to act as an implicit frequency-space regularizer for denoising, independently of network depth.

Figure 25: Results of the denoising experiments for the different state-of-the-art methods, using networks with width $N = 256$ and depth $L = 10$. All models are trained on the noisy dataset $\{(\mathbf{x}_i, \tilde{\mathbf{y}}_i)\}_{i \in \mathbb{I}}$ described above using $\sigma_{\text{noise}} = 0.05$ and evaluated on the original high-resolution image of size 512×512 to assess denoising performance. The networks were trained for 10 000 epochs using the ADAM optimizer with a learning rate of 10^{-4} .

Figure 25 illustrates our claim that the proposed initialization acts as a regularizer on the frequency content that the network can represent. Indeed, we observe higher **SNR** and lower **MSE** for our initialization $\sigma_a = 0$, together with a significantly larger training loss. This indicates that the network does not fit all of the high-frequency background noise, but instead focuses on reconstructing the underlying clean signal.

B.6 PHYSICS INFORMED EXPERIMENTS

Physics-Informed Neural Networks (PINNs) approximate the solution \mathbf{u} of a differential equation with Ψ_θ by embedding the underlying physical laws into the loss function. Given a PDE of the form

$$\mathcal{N}[\mathbf{u}](\mathbf{x}) = f(\mathbf{x}), \quad \mathbf{x} \in \Omega,$$

1836 with boundary/initial conditions $\mathcal{B}[\mathbf{u}] = g(\mathbf{x})$ on $\partial\Omega$, the neural network Ψ_θ is trained by minimizing
 1837 the composite loss
 1838

$$1839 \mathcal{L}(\theta) = \lambda_f \sum_{\mathbf{x}_f \in \mathcal{D}_f} |\mathcal{N}[\Psi_\theta](\mathbf{x}_f) - f(\mathbf{x}_f)|^2 + \lambda_b \sum_{\mathbf{x}_b \in \mathcal{D}_b} |\mathcal{B}[\Psi_\theta](\mathbf{x}_b) - g(\mathbf{x}_b)|^2.$$

1842 where \mathcal{D}_f and \mathcal{D}_b denote collocation points in the domain and on the boundary. Automatic differentiation
 1843 is used to compute $\mathcal{N}[\Psi_\theta]$, allowing the network to satisfy the governing equations as part
 1844 of the training process.

1845 In order to compare the several model at stake and the impact of the initialization, we used the
 1846 PINNacle benchmark (Hao et al., 2024), which allowed us to have a pre-builtin solver for each
 1847 differential equation we studied.

1849 B.6.1 BURGER 1D

1850 We consider the one-dimensional viscous Burgers equation, written in the generic PDE form
 1851

$$1852 \mathcal{N}[u](x, t) = u_t + u u_x - \nu u_{xx} = 0, \quad (x, t) \in \Omega, \quad \nu = \frac{0.01}{\pi}.$$

1855 The spatio-temporal domain is defined as $\Omega = [-1, 1] \times [0, 1]$. The initial and boundary conditions
 1856 are given by $u(x, 0) = -\sin(\pi x)$, $u(-1, t) = u(1, t) = 0$.

1864 Figure 26: Results of the Burgers 1D solutions for the different state of the art methods, using a
 1865 network with width $N = 256$ and $L = 15$. The networks were trained for 10 000 epochs using the
 1866 ADAM optimizer with a learning rate of 10^{-4} . For the SIREN based architectures, we chose $w_0 = 2$.
 1867

1868 We observe figure 26 that the different initialization schemes yield very similar results, with the
 1869 exception of the FINER and ReLU networks. Interestingly, for this specific task, the original Sitzmann
 1870 initialization appears to provide the most favorable performance. We conjecture that this behavior
 1871 is related to the nature of the Burgers equation, whose sharp propagating front can be effectively
 1872 represented even under a highly ill-conditioned gradient distribution.

1873 B.6.2 STATIONARY NAVIER-STOKES 2D

1875 We consider the stationary incompressible 2D Navier-Stokes equations
 1876

$$1877 \mathcal{N}_u[u, p] = (u \cdot \nabla)u + \nabla p - \nu \Delta u = 0, \quad \mathcal{N}_p[u] = \nabla \cdot u = 0,$$

1878 for the velocity field $u = (u, v)$ and pressure p , with $\nu = 1$.

1879 The spatial domain Ω is defined as
 1880

$$1881 \Omega = ([0, 8]^2) \setminus \bigcup_i R_i,$$

1884 where each R_i denotes a circular obstacle. For further details about the boundary conditions please
 1885 see the original PINNacle benchmark (Hao et al., 2024).

1886 The impact of initialization observed figure 27 is far more pronounced in that case than for Burger.
 1887 We observe that having proper control over the spectral properties of the initialization can lead
 1888 to a significant improvement in performance. The Sitzmann initialization exhibits, as expected,
 1889 problematic high-frequency components, while other models such as FINER, Tanh, and ReLU fail
 completely to reconstruct the physical solution.

Figure 27: Results of the Navier-Stokes 2D solutions for the different state of the art methods, using a network with width $N = 256$ and $L = 15$. The networks were trained for 10 000 epochs using the ADAM optimizer with a learning rate of 10^{-4} . For the SIREN based architectures, we chose $w_0 = 2$.

B.6.3 HEAT EQUATION IN COMPLEX GEOMETRY

We consider the transient 2D heat equation

$$\mathcal{N}[u](x, t) = u_t - \Delta u = 0, \quad (x, t) \in \Omega \times [0, 3].$$

The spatial domain Ω is defined as

$$\Omega = ([-8, 8] \times [-12, 12]) \setminus \bigcup_i R_i,$$

where each R_i denotes a circular obstacle. For further detail about the boundary conditions please see the original PINNace benchmark (Hao et al., 2024).

Figure 28: Results of the 2D heat equation experiments for the different state of the art methods, using a network with width $N = 256$ and $L = 15$. The networks were trained for 10 000 epochs using the ADAM optimizer with a learning rate of 10^{-4} . For the SIREN based architectures, we chose $w_0 = 1$.

The results for different initializations are shown figure 28. The distinction between $\sigma_a = 1$ and $\sigma_a = 0$ is striking. The former produces noticeably noisy and unstable solutions, whereas setting $\sigma_a = 0$ successfully reproduces the behavior of the ground-truth solution. For the other initialization methods, the observations are consistent with those made in the Navier-Stokes experiment.

B.7 SYNTHETIC EXPERIMENTS

B.7.1 1D FITTING EXPERIMENTS

For the 1D fitting experiments, we generated synthetic data by sampling from a multi-scale function:

$$f_{1d}(x) = \sin(3x) + 0.7 \cos(8x) + 0.3 \sin(40x + 1) + \exp(-x^2)$$

1944 To explore the impact of initialization on the performance of various neural network architectures,
 1945 we studied two tasks: function fitting and PDE solving. Since image and video fitting reduce to
 1946 function fitting, we focus on it. This choice lets us control the target function’s frequency content.
 1947 As a result, we can probe the different scales present in the data.

1948

1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313

Figure 30: 2d Averaged generalization and training error for the 2D fitting problem. The results are averaged over 10 runs for each architecture of width $N = 1238$. The error bars represent the standard deviation of the results.

Figure 31: 3d Averaged generalization and training error for the 2D fitting problem. The results are averaged over 10 runs for each architecture of width $N = 128$. The error bars represent the standard deviation of the results.

Once again, our proposed initialization delivers strong results. It clearly outperforms all other architectures on generalization. Its fitting error remains very low, only slightly above the classic SIREN. Interestingly, as the number of layers increases, SIREN’s training error decreases alongside rising high-frequency content. This suggests that fitting high frequencies may harm generalization—a drawback our method avoids.

C ABLATION STUDIES

Since our theoretical analysis is derived in the infinite-width and infinite-depth regime, we also evaluate our model in the opposite setting: using small widths and very large depths. This allows us to examine, on one hand, how finite-size effects modify the experimental behaviour, and on the other hand, whether our theoretical predictions remain valid when the depth becomes extremely large. This analysis further reveals how these factors influence the overall performance of such neural networks.

2052
2053 C.1 FINITE WIDTH EFFECT

2054 The finite-width experiment (with $N = 32$) leads to the same conclusions as the theoretical study:
 2055 deep networks initialized with the Sitzmann scheme or with $\sigma_a = 1$ exhibit a high noise level.
 2056 In contrast, our proposed initialization maintains a lower noise level (see the gradient section of
 2057 Figure 32), even for very small widths, although it severely harms performance.

2058
 2059 Figure 32: Comparison of the discussed initialization method, and how finite width ($N = 32$ and
 2060 $N = 128$) affects their performance and behavior. The setting of the experiments are the same as
 2061 one described in Figure 2

2062
2063 C.2 LARGE DEPTH EFFECT

2064 As shown Figure 33, the large-depth experiments with $L = 10$ and $L = 40$ confirm our previous
 2065 theoretical discussion in the infinite-depth limit. In the case $\sigma_a = 0$, increasing the depth to
 2066 $L = 40$ even improves performance and further reduces the effective noise level. For $\sigma_a = 1$, the
 2067 performance at large depth is surprisingly good, despite the clear growth of high-frequency com-
 2068 ponents with depth observed in the Fourier spectrum (see Figure 4); this observation still holds at
 2069 $L = 10$. We attribute this behaviour to the long training time. For the Sitzmann original initializa-
 2070 tion, as expected, the increasing of depth severely impacts the generalization performances, due to
 2071 overwhelming presence of high frequency components.

2072
 2073 Figure 33: Comparison of the discussed initialization method, and how large depth affect their
 2074 performance and behavior. The setting of the experiments are the same as one described in Figure 2