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ABSTRACT

We introduce the first bidirectional collaborative medical report generation frame-
work to reduce physicians’ workload and enhance trustworthiness through tar-
geted physician-AI interaction, where physicians provide feedback only on the
most critical parts, and the Vision-Language Model (VLM) propagates these to
finalize the full report. The core challenge lies in defining the optimal unit of
interaction. We propose the Anatomy-Finding Concept Unit (AFCU), a minimal,
clinically grounded semantic statement (e.g., “left lobe: hypoechoic nodule”), sat-
isfying three key principles: atomicity, lack of ambiguity, and anatomical anchor-
ing. To extract AFCU, we use a Large Language Model (LLM) guided by pre-
defined clinical templates followed by information bottleneck clustering to group
lexically diverse but semantically equivalent anatomical concepts (e.g., “left and
right lobe” to “both lobes of the thyroid gland”), eliminating redundancy while
preserving diagnostic fidelity. To prioritize physician intervention, we introduce
the Concept Risk Score (CRS), quantifying behavioral inconsistency (concepts
generated regardless of image content) and semantic instability (inconsistent asso-
ciated findings under image perturbations) via occlusion-based visual grounding.
Finally, we propose Holistic Semantic Match (HSM), a concept-based metric that
correlates strongly with human judgment (Pearson’s r = 0.846, p < 0.05). Experi-
ments show our framework improves semantic quality by 9.13% HSM across four
organs by correcting only one AFCU with high error risk per report – a minimal,
clinically feasible intervention, enabling efficient and trustworthy physician-AI
collaboration.

1 INTRODUCTION

Medical imaging reports serve as critical objective evidence for clinical diagnosis but impose sub-
stantial time and workload burdens on physicians (Kisilev et al., 2015; Hartsock & Rasool, 2024).
Advances in Artificial Intelligence (AI) have significantly improved the accuracy of automated Med-
ical Report Generation (MRG), making it one of the most promising solutions (Li et al., 2021; Zhou,
2023; Wang et al., 2025). However, does automated MRG truly reduce the workload of physicians?
In practice, due to the lack of trust stemming from the “black-box” nature of AI systems (Messina
et al., 2022), their potential for errors and the associated ethical concerns, physicians still need to
conduct comprehensive manual reviews of generated reports. As a result, the final report quality
remains heavily dependent on the physician’s vigilance and expertise. Since physician involvement
is unavoidable, the real challenge lies not in removing physicians from the loop by pushing model
accuracy ever higher, which has an upper bound, but in leveraging their expertise more effectively.
This motivates a new collaborative MRG paradigm, where physicians and AI interact in a targeted
and trustworthy manner to jointly produce reliable medical reports.

While the need for effective collaboration between AI and physicians is clear, existing approaches
remain largely unidirectional. To structure these approaches and advance collaborative MRG, we
define the Report Collaboration Level (RCL) based on AI trustworthiness and physicians’ actual
workload, as illustrated in Figure 1. Current mainstream methods fall into the first two levels. RCL-
1 Passive Collaboration. Exemplified by Flamingo-CXR (Tanno et al., 2025), where AI drafts the
report and physicians comprehensively revise it, akin to “an intern writing a draft for an attending
physician to rewrite.” This mode features low AI trustworthiness and high physician burden. RCL-2
Guided Collaboration. As in Keyword-based MRG (Dong et al., 2025), where physicians provide
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keywords and AI structures the final report, analogous to “a supervisor providing key points for an
intern to compose.” Here, AI exhibits partial interpretability, moderately reducing physician work-
load. However, both RCL-1 and RCL-2 represent unidirectional workflows, underutilizing AI’s deep
understanding of medical images and text, and still requiring comprehensive manual review.

RCL 1 RCL 2 RCL 3 RCL Challenges

Interaction Level
AI Generate

Human Modify

Infomation

AI Generate

AI Generate

Alert

AI Modify

 Information

Lack  of
Interaction

Understanding

Lack of 
Potential Error 

Estimation
Error Estimation

Sentence
Phrase Concept

Report

Textual Semantic Clusters
Visual Semantic Consistency

Visual Semantic Conflicts

Figure 1: Comparison and Visualization of Report Collaboration Levels (RCL). RCL categorizes
human-AI report generation, from full physician review (Tanno et al., 2025; Dong et al., 2025) to
interaction focused only on key uncertainties.
To address this limitation, we introduce RCL-3 — an active bidirectional paradigm for the first time:
VLMs draft reports, proactively flag contents with high error risk, and physicians correct only those.
VLMs then finalize the report. Analogous to “an intern flags uncertainties for targeted guidance,”
this boosts AI trustworthiness, reduces physician workload, and enhances collaboration efficiency.
However, in RCL-3, a core challenge emerges: what is the efficient, yet clinically meaningful, unit
a physician should correct? Inspired by software engineering — where engineers fix statements,
not entire files or tokens — we argue that physicians require an interaction unit that is atomic, un-
ambiguous, and strongly anchored to clinical reality. Figure 2 illustrates that coarse units (e.g.,
sentences) violate atomicity, forcing review of multi-fact statements; fragmented ones (e.g., GPT
concepts) violate unambiguity, being weakly anchored to anatomy (More details can be found in
Sec. A.19). We propose the Anatomy-Finding Concept Unit (AFCU) as the optimal solution: a min-
imal semantic “statement” composed of an anatomical concept (e.g., “left lobe”) and its associated
finding concepts (e.g., “hypoechoic nodule”). Our empirical analysis in Table 1 demonstrates that
AFCU is the optimal choice for achieving the best performance in practice. However, this raises two
issues: (i) how to extract these clinically grounded concept units? and (ii) how to assess poten-
tial errors? Regarding extraction methods, we use DeepSeek-V3 (DeepSeek-AI, 2024) to initially
extract anatomical and finding concepts based on predefined templates derived from real clinical re-
ports, followed by clustering anatomical concepts to reduce semantic redundancy using information
bottleneck. For potential error assessment, we propose the Concept Risk Score (CRS). CRS quanti-
fies each anatomical concept’s visual detachment and semantic instability through occlusion-based
perturbations and automatically identifies high-risk anatomical concept requiring physician inter-
vention. A higher CRS indicates greater model improvement. Physicians then provide feedback
only on one flagged anatomical concept, enabling VLMs to regenerate more reliable reports based
on concept-level interaction.

Moreover, better medical report generation must be evaluated with clinically grounded metrics.
BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) capture only surface text; even HalFscore
(Chen et al., 2025a) — reliant on LLMs and natural image priors — is impractical for structured
reports. We propose a concept-based metric, Holistic Semantic Match (HSM), that measures entity
coverage, attribute fidelity, and clinical alignment. As shown in Figure 5(a), our proposed metric
exhibits strong correlation with human evaluations (Pearson’s r = 0.846, p < 0.05), validating its
clinical effectiveness.

To summarize, our main contributions are threefold. First, we introduce the first bidirectional collab-
orative MRG framework, which improves model trustworthiness while reducing physicians’ work-
load. Second, via information bottleneck theory, we enable VLMs to interpret and revise concept-
level feedback through clustering and concept-level instruction tuning for targeted report refinement.
Third, we propose the Concept Risk Score, a perturbation-based metric that prioritizes high-leverage
anatomical entity corrections to maximize diagnostic gain per intervention. Additionally, we estab-
lish the first concept-grounded semantic metric suite for medical reports, and by flagging the single
most critical entity concept for intervention, our method boosts HSM semantic similarity by an
average of 9.13% across four organs, achieving significant quality gains with minimal physician
intervention.
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2 RELATED WORK

2.1 MEDICAL REPORT GENERATION

Medical report generation is a cornerstone of computer-aided diagnosis, aiming to alleviate clini-
cians’ workload (Liu et al., 2025b; Chen et al., 2025b). Deep learning has driven steady progress
(Jing et al., 2017; Zhang et al., 2017; Zeng et al., 2020; Jin et al., 2024b; Tang et al., 2025) — from
early CNN-LSTM hybrids SAT (Vinyals et al., 2015), to memory-augmented Transformers R2Gen
(Chen et al., 2020), and knowledge-bridged architectures KMVE (Li et al., 2024a). More recently,
Vision-Language Models have further improved fluency and coverage (Hartsock & Rasool, 2024;
Ge et al., 2025). Concurrently, other efforts have sought to enhance factual consistency through
knowledge graphs (Zhang et al., 2020; Li et al., 2023; Hou et al., 2023a), tree-structured observation
planning (Hou et al., 2023b), or clinical knowledge injection into Transformers (Huang et al., 2023).
While these approaches enhance report quality, anatomical grounding, and structured reasoning,
they remain fully automatic and operate within a unidirectional generation paradigm. Consequently,
their outputs still require comprehensive review and correction by physicians in clinical practice.
Due to limited trust and lack of interactive refinement mechanisms, this paradigm (Tanno et al.,
2025; Dong et al., 2025) has not significantly reduced physician workload, highlighting the urgent
need for a bidirectional collaboration framework that enables concept-level interaction and shared
goal understanding.

2.2 HUMAN-AI COLLABORATION

Most human activities are collaborative, so integrating AI into complex workflows requires a
Computer-Supported Cooperative Work perspective (Wang et al., 2020). Human-AI collaboration
has reduced human workload across various domains. In systematic literature reviews (Spillias et al.,
2024), AI-assisted retrieval and screening enhanced accuracy, achieving low omission rates and high
consistency despite some false positives. In brain MRI differential diagnosis (Kim et al., 2025), ra-
diology residents using LLM-assisted search tools improved diagnostic accuracy without affecting
interpretation time or confidence. However, current approaches in medical report generation (Tanida
et al., 2023) largely involve passive, unidirectional collaboration, such as Flamingo-CXR (Tanno
et al., 2025) reports for physicians to revise or physicians providing keywords for AI to organize
(Dong et al., 2025). These methods don’t significantly reduce clinicians’ workload.

2.3 UNCERTAINTY ESTIMATION FOR LARGE MULTIMODAL MODELS

As multimodal large models spread, assessing output reliability and using uncertainty estimation
to identify potential errors has become a key challenge Liu et al. (2025a). Current uncertainty
estimation methods can be broadly categorized into sequence-level and entity-level approaches.
Sequence-level methods, such as token probability-based uncertainty (Guerreiro et al., 2022) and
semantic entropy via clustering (Kuhn et al., 2023; Farquhar et al., 2024), capture global output
variability but fail to localize errors to specific entities. VL-Uncertainty (Zhang et al., 2024) im-
proves robustness via visual-textual perturbations but remains sequence-focused. Although recent
entity-level detection methods (Obeso et al., 2025) attempt fine-grained validation, their reliance
on external knowledge bases makes it difficult to meet the core requirement of visual-grounded ac-
curacy in medical imaging reports — even when combined with Retrieval-Augmented Generation,
they cannot ensure consistency between the generated content and the visual features of the image
(e.g., echo, boundaries, blood flow), leading to clinical risk. Furthermore, existing methods fail to
provide intervention priorities based on entity-level uncertainty.

3 METHODOLOGY

We propose a concept-centric, risk-aware framework for human-AI collaborative medical report
generation, addressing three key challenges: extracting non-redundant concepts, integrating human
feedback without retraining, and prioritizing high-impact interventions. Our pipeline begins with
Compression of Anatomical Concepts via Information Bottleneck (§3.1), which distills reports into
a structured, image-grounded concept dictionary, compressing redundancy while preserving criti-
cal Anatomy-Finding Concept Units (AFCU). Next, Concept Instruction Tuning enables models to
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self-calibrate during inference (§3.2), aligning generated reports with physician-provided concept
cues to reflect high-confidence clinical knowledge when uncertainty arises. We then introduce the
Concept Risk Score (§3.3), a two-stage metric that identifies concepts most likely to benefit from in-
tervention, evaluating behavioral inconsistency and semantic ambiguity to highlight optimal targets
for correction. Finally, the Holistic Semantic Match metric assesses clinical fidelity by measuring
semantic alignment (§3.4), focusing on anatomical accuracy and descriptive consistency rather than
lexical overlap.

Reports

Anatomical 
Concepts

Finding
Concepts

Sentence
Transformer

Embedding Clustering Dictionary

甲状腺大小形态如常，腺体回声不均匀，内可见散在低回声区，界限不清晰。
于左叶腺体内可见多个低回声结节，大者位于中部，大小约_2DS_，边界清晰，
形态规整，CDFI示未见血流信号。双侧颈部未见明显肿大淋巴结。
The thyroid gland was normal in size and shape, with heterogeneous glandular echogenicity, 
and scattered hypoechoic areas with unclear boundaries. Multiple hypoechoic nodules were 
observed within the left lobe, the largest of which was located in the central region, 
approximately 2DS in size, with clear boundaries and regular morphology. CDFI showed no 
blood flow signal. No obvious enlarged lymph nodes were found bilaterally in the neck.

Report-level

Sentence-level
于左叶腺体内可见多个低回声结节，大者位于中部，大小约_2DS_，边界清晰，
形态规整，CDFI示未见血流信号。
Multiple hypoechoic nodules were observed within the left lobe, the largest of which was 
located in the central region, approximately 2DS in size, with clear boundaries and regular 
morphology. CDFI showed no blood flow signal.

左叶腺体内可见多个低
回声结节
Multiple hypoechoic 
nodules can be seen in the 
left lobe gland

Phrase-level
大者位于中部
The larger one is in the 
middle

Concept-level                                                                            (GPT) 
高回声结节
Hyperechoic nodules

低回声结节
Hypoechoic nodules

Concept-level                             (Anatomic-Finding Concept Unit)
左叶-多个低回声结节 
Left lobe - multiple 
hypoechoic nodules

左叶结节-大者位于中部
Left lobe nodule - the larger 
one is located in the middle

Coarse-Grained

Coarse-Grained

Weakly Anchored

Weakly Anchored

Fine-Grained
Strongly Anchored

Figure 2: Comparison of Interaction Levels by Semantic Granularity and Anchoring, with
Anatomic-Finding Concept Unit Extraction Pipeline. Details of the different granularity levels are
provided in Sec. A.19.

Realistic human-AI collaborative report generation follows the three-stage pipeline in Figure 3: (1)
A fine-tuned VLM generates an initial report; (2) CRS identifies the anatomical concept with the
highest error risk, and a physician provides the corrected description; (3) The VLM incorporates this
feedback to produce the final revised report.

3.1 COMPRESSION OF ANATOMICAL CONCEPTS VIA INFORMATION BOTTLENECK

Recall from Section 1 that we define the Anatomy-Finding Concept Unit (AFCU) as the atomic
unit of human-AI collaboration – composed of an anatomical concept (e.g., “left lobe”) and its
associated finding concepts (e.g., “hypoechoic nodules”). While finding concepts are clinically dis-
criminative and must remain uncompressed, anatomical concepts suffer from lexical redundancy.
For example, “bilateral thyroid lobes”, “left and right lobe”, and “bilateral glandular tissue” all de-
scribe the same anatomy. This variation hinders efficient interaction. As shown in Figure 4(a),
compressing only anatomical concepts reduces redundancy by 87.1%, while preserving diagnostic
fidelity through uncompressed findings.

Given image X and report R, our goal is to extract a structured, non-redundant concept dictionary
D that preserves maximal semantic relevance to X and eliminates linguistic redundancy in R. This
is formalized as an Information Bottleneck (IB) (Tishby et al., 2000; Tishby & Zaslavsky, 2015)
objective:

E∗ = argmax
E′⊆E

[I(E ′;X)− β · I(E ′; E)] , (1)

where E are extracted anatomical concepts, E∗ is the compressed version, and β balances relevance
versus conciseness.

Since mutual information is intractable to compute directly, we approximate Eq. 1 in three steps.

Firstly, extract high-fidelity concepts. Use DeepSeek-V3 (DeepSeek-AI, 2024) and clinical tem-
plates (see Appendix § A.3) to extract Anatomical Concept set E (e.g., “left and right lobe”, “bilobar
lobe”) and Finding Concept set A (e.g., “size normal”, “uniform echo”). Since reports describe X ,
extracted anatomical concepts already exhibit high I(E ;X) — we start from a high-fidelity sub-
space. Secondly, cluster semantically equivalent anatomical concepts. Encode each ei ∈ E into
ϕ(ei) ∈ Rd via Sentence Transformer (Reimers & Gurevych, 2019). Anatomical concepts are clus-
tered if their cosine similarity exceeds an adaptive threshold µs + γ · σs, where µs and σs are the
mean and standard deviation of all pairwise similarities. The compression strength parameter γ > 0
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is set by clinical experts based on desired granularity — higher γ yields more, narrower clusters.
The resulting canonical entity set E∗ is formally defined as:

E∗ = {ek | ∃ Ck ⊆ E s.t. ∀ei, ej ∈ Ck, s(ei, ej) > µs + γ · σs} . (2)
For each cluster Ck, a clinical expert selects the most appropriate representative e∗k ∈ Ck based on
clinical canonical usage and report clarity, ensuring E∗ remains clinically faithful. When s(ei, ej)
is high, ei and ej are semantically equivalent, satisfying I(ei; ej) ≈ H(ei). Merging them reduces
I(E∗; E) while preserving I(E∗;X). Thirdly, attach findings without compression. For each e∗k,
retain all associated finding concepts Ae∗k

⊆ A, forming D =
{
(e∗k,Ae∗k

)
}K

k=1
. Finding concepts

(e.g., “hypoechoic”, “irregular margin”) are diagnostic modifiers — compressing them risks critical
loss. Thus, we compress only anatomical concepts, not finding concepts. As shown in Figure 2, our
extract, cluster, and bind pipeline approximates the IB objective, yielding a compact, clinically faith-
ful concept dictionary for RCL-3’s concept instruction tuning, risk scoring, and semantic evaluation
(see Appendix § A.3 for more details).

<Input Image>:
通过分析图像并使用相关信息生成详细的医学报告。
By analyzing the images and using the relevant information to generate a detailed medical report.

<Instruction>:

甲状腺大小形态如常，双叶腺体可见一低回声结节，大小约_2DS_，边界清晰，形态规整，CDFI示周边可探及少许血流信号。
The thyroid gland was normal in size and shape. A hypoechoic nodule, approximately 2DS in size, with clear boundaries and regular morphology, 
was visible in both lobes. CDFI revealed minimal peripheral blood flow. 

<Initial Generation>:

<Image Occlusion>:
...左叶下极可见一低回声结节，大小约_2DS_，边界清晰...
A hypoechoic nodule with a size of approximately 2DS and clear boundaries can 
be seen at the lower pole of the left lobe
...双叶可见多个低回声结节，左叶大者位于中下部，大小约_2DS_...
Multiple hypoechoic nodules can be seen in both lobes. The larger one in the left 
lobe is located in the middle and lower part, about _2DS_ in size.

<Generation under Image Occlusion>:

<Ground Truth>:
甲状腺大小形态如常，双叶可见多个低回声结节，左叶大者位于下极，大小约_2DS_，右叶大者位于下极，大小约_2DS_，上述结节边界清晰，形态规整，CDFI示未
探及血流信号。
The thyroid gland was normal in size and shape. Multiple hypoechoic nodules were visible in both lobes. The larger nodules were located at the lower pole of the left lobe, approximately 
2DS in size. The larger nodules were located at the lower pole of the right lobe, approximately 2DS in size. These nodules had clear boundaries and regular morphology. CDFI revealed no 
blood flow signals. 

<Final Generation>:
甲状腺大小形态如常，双叶腺体内可见多发低回声结节，大者均位于下极，左叶大者约_2DS_，右叶大者约_2DS_，上述结节边界清晰，形态规整，CDFI示未见明确血
流信号。
The thyroid gland was normal in size and shape. Multiple hypoechoic nodules were present in both lobes, the larger of which were located at the lower pole. The larger nodules in the left lobe 
were approximately 2DS in diameter, and in the right lobe, approximately 2DS in diameter. These nodules had clear boundaries and regular morphology, and CDFI revealed no clear blood flow 
signal. 

<Instruction>:

通过分析图像并使用相关信息生成详细的医学报告。信息：存在[甲状腺双叶]，可见(多发低回声结节)。
By analyzing the images and using the relevant information to generate a detailed medical report. Information: Present [both lobes of the thyroid gland], (multiple hypoechoic nodules are 
seen).

Concept
Risk
Score

需要检查[甲状腺双叶]
[Both lobes of the thyroid gland] need to be 

examined

存在[甲状腺双叶]，可见(多发低回声结节)。
Present [both lobes of the thyroid gland],  
(multiple hypoechoic nodules are seen).

Figure 3: The three main stages of bidirectional human-AI collaborative report generation. Among
them, Concept Instruction Tuning follows the same form as the third stage.

3.2 CONCEPT INSTRUCTION TUNING

Table 1: Average performance of inter-
ventions at different levels after instruc-
tion Supervised Fine-Tuning (SFT).
Concept-level (AFCU) SFT refers to
our proposed Concept Instruction Tun-
ing. Implementation details are pro-
vided in Sec. A.19.
Type BLEU-4 ROUGE-L HSM

SFT 0.6341 0.7277 0.6475
+ Phrase-level 0.5662 0.6775 0.5984
+ Sentence-level 0.6481 0.7380 0.6280
+ Report-level 0.8669 0.8999 0.8681
Concept-level (GPT) SFT 0.5653 0.6434 0.5602
+ Concept-level (GPT) 0.5131 0.6370 0.5470

Concept-level (AFCU) SFT 0.6230 0.6985 0.6282
+ Concept-level (AFCU) 0.6604 0.7413 0.7015

We implement anatomically grounded guidance via
concept instruction tuning : during training, we fine-tune
the vision encoder, projector and LLM via LoRA (Hu
et al., 2022) (see Appendix § A.6) on triplets (I, xq, xp),
where I is the input image; xq is the base instruction
(“generate a detailed report”); and xp is a minimal physi-
cian cue in AFCU format — e.g., ‘‘Present [both
lobes of the thyroid gland], (multiple
hypoechoic nodules are seen).’’ — in-
jected as contextual instruction as illustrated in Figure 3
Part 3, where “both lobes of the thyroid gland” denotes
an anatomical concept and “multiple hypoechoic nodules
are seen” a finding concept. Crucially, during inference,
no retraining is needed: physicians can provide xp in
the same format to guide generation. The model, having
learned to reconcile xp with visual input during SFT, per-
forms self-calibration — using xp as a high-confidence
semantic anchor to redirect attention toward clinically critical features. Figure 3 Part 3 demonstrates
this: from the minimal cue above, the model generates new, clinically accurate details absent in xp

— e.g., “larger nodules at the lower pole, 2DS in diameter” (grey text). See Appendix § A.4 for
training examples.
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3.3 CONCEPT RISK SCORE

(a) (b)

r=0.2531,p<0.05

Figure 4: (a) The number of entities in free-text medical reports before and after extraction using
Non-redundant Concepts. (b) The correlation between Concept Risk Score and post-intervention
performance.

In clinical VLM-assisted radiology workflows, manual verification of all generated reports is pro-
hibitively time-consuming for physicians. To guide efficient physician feedback, we propose the
Concept Risk Score (CRS) that identifies which anatomical concepts are most likely to be visually
ungrounded by jointly detecting two failure patterns: (1) the model generates the anatomical con-
cept too consistently across image perturbations (behavioral rigidity), indicating it ignores visual
evidence; and (2) when the anatomical concept appears, its associated finding concepts (e.g., size,
margin, echogenicity) vary semantically across perturbations (content uncertainty), indicating un-
stable visual grounding. CRS multiplies these signals so that only anatomical concepts that are both
persistently generated and semantically inconsistent in their findings receive high scores — pre-
cisely those where physician correction will most improve vision-language alignment. In practice,
this means CRS automatically surfaces the highest-leverage errors: fix one anatomical concept’s
description, and the model’s behavior improves disproportionately.

CRS is computed using the outputs from 7 independent random grid occlusions (T1, . . . , T7) and the
original unoccluded image (T0) (see Appendix § A.7). For each standardized anatomical concept e,
we evaluate behavioral rigidity and content uncertainty.

Behavioral Rigidity — whether e is generated too consistently across the 7 occluded outputs. We
compute frequency as Freq(e) equal to the number of outputs containing e divided by 7. Stability
is derived from the binary entropy of e’s appearance pattern: H(e) = −

∑
x∈{0,1} P (x) log2 P (x),

where P (X = 1) = Freq(e). Stability is normalized to [0,1] as 1 − H(e), peaking when e ap-
pears always or never. The product Freq(e) × Stability(e) captures “false robustness” — anatomical
concepts generated regardless of image content.

Content Uncertainty — whether the finding concepts associated with e (e.g., “irregular mar-
gin”) fluctuate semantically across occlusions. We compute the Semantic Ambiguity Index (SAI)
as SAI(e) =

√
|s(1− s)|, where s is the average cosine similarity using Sentence Transformer

(Reimers & Gurevych, 2019) between finding concept phrases in T1, . . . , T7 and those in T0. SAI
peaks at s = 0.5, highlighting cases where findings are neither preserved nor random — maximally
ambiguous.

The final score is:
CRS(e) = Freq(e)× Stability(e)× SAI(e). (3)

High CRS indicates an anatomical concept that is frequently and stably generated (visually disen-
gaged) yet accompanied by inconsistent finding concepts (visually ambiguous). Example: “thyroid
nodule” always appears, but its findings jump from “irregular margin” to “smooth margin” — a
prime candidate for correction.

The theoretical foundation of this design stems from a core principle of visual grounding: a model
that genuinely generates reports based on visual evidence should be both input-sensitive and input-
consistent. Specifically: (1) If the model truly relies on visual evidence, it should stop reporting
an anatomical concept (e.g., “nodule”) when its region is occluded (T1, . . . , T7). Persistent gener-
ation (high frequency/low entropy) means the model ignores visual input—like a robot that always

6
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says “I see a dog” even when the picture is covered. (2) If the model does report a concept, its de-
scription (e.g., “smooth margin”) should stay stable across views. Wild fluctuations (high Semantic
Ambiguity Index, SAI) mean unstable understanding—like describing the same dog as “brown” one
time and “black” the next. CRS multiplies these signals to flag only concepts that are both visually
disengaged (shouldn’t appear) and semantically ambiguous (described inconsistently)—exactly the
high-risk errors requiring physician correction.

3.4 HOLISTIC SEMANTIC MATCH METRIC

Clinical report generation requires precision, not just fluency. BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) ignore anatomy-finding semantics. BertScore (Zhang et al., 2019) leverages
contextual embeddings but models the report holistically, lacking fine-grained alignment between
anatomical and finding concepts. Evaluation must assess correct anatomical concepts and accu-
rate finding concepts. To address this, we propose Holistic Semantic Match (HSM) — a clinically
grounded metric that evaluates two essential dimensions: (1) correct identification of anatomical
concepts, and (2) semantic accuracy of their associated finding concepts. HSM combines both via
geometric mean, forcing models to excel at both — no trade-offs allowed.

Given generated report Rpred and ground truth Rgt, we normalize anatomical concept surface forms
using the canonical dictionary D introduced in Section 3.1 (e.g., “right lobe of liver” to “right
lobe”), then extract sets Epred and Egt. Coverage is measured by Anatomical Intersection over Union
(AIOU):

AIOU =
|Epred ∩ Egt|
|Epred ∪ Egt|

. (4)

For each anatomical concept e ∈ Epred ∪ Egt, we extract its finding concepts Apred(e) and Agt(e)
(empty if missing), and compute semantic similarity using Sentence Transformer (Reimers &
Gurevych, 2019): sim(e) = cos (ϕ(Apred(e)), ϕ(Agt(e))), averaged over concepts with at least one
non-empty finding, yielding the Finding Semantic Similarity (FSS):

FSS =
1

|E|
∑
e∈E

sim(e), where E = {e | Apred(e) ̸= ∅ or Agt(e) ̸= ∅} . (5)

Final score:
HSM =

√
AIoU× FSS. (6)

HSM is interpretable: low AIoU indicates missed or hallucinated anatomy; low FSS indicates inac-
curate descriptions. Only when both are high does HSM reward the output — aligning evaluation
with clinical safety. A complete HSM computation example is provided in Appendix A.5. For
comparisons with other Sentence Transformers, see Appendix A.8.

4 EXPERIMENTS

4.1 COMPARATIVE METHODS AND IMPLEMENTATION DETAILS

We selected four existing approaches for comparison: (1) SAT (Vinyals et al., 2015), based on
CNN and hierarchical LSTM; (2) R2Gen (Chen et al., 2020), which incorporates a memory-driven
unit into the Transformer; (3) KMVE (Li et al., 2024a), an unsupervised prior knowledge-guided
method; and (4) fine-tuned Qwen2.5-VL (Bai et al., 2025) 3B and 7B models (Ge et al., 2025). To
ensure reliability and credibility, we evaluated all methods on the open-source USReport dataset (Li
et al., 2024b) (covering Thyroid, Mammary, and Liver) and a private multi-cancer ovarian ultra-
sound report dataset (see Appendix §A.2). All data and experiments are in Chinese. English text in
figures was translated from Chinese using Google Translate for readability. We fine-tuned the vision
encoder, projector, and LLM with LoRA(Hu et al., 2022) in Qwen2.5-VL 3B/7B as our primary
experimental models (additional VLM experiments in Appendix §A.10). All hyperparameters and
implementation details are provided in Appendix §A.6 for reproducibility.
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4.2 MAIN RESULTS

Table 2: Results of our method and baselines. All VLM experiments are based on Qwen2.5-VL and
incorporate either SFT (Ge et al., 2025) or our Concept Instruction Tuning and Intervention. Top-1
and top-2 results are highlighted in best and second , respectively. UB denotes the theoretical up-
per bound under Concept Instruction Fine-tuning with intervention, specifically defined as the result
obtained by inputting the complete ground-truth report as a prompt into the VLM after supervised
fine-tuning.

NLG METRICS CE METRICS SEMANTIC METRICS
Datasets Methods BLEU-1 BLEU-4 METEOR ROUGE-L Precision Recall F1 Score AIOU FSS HSM

SAT 0.1127 0.0825 0.1502 0.3533 0.8083 0.3895 0.5110 0.3614 0.1880 0.2512
R2Gen 0.6053 0.4735 0.3557 0.6688 0.8678 0.7342 0.7847 0.6656 0.3862 0.4997
KMVE 0.7256 0.6113 0.4058 0.7085 0.8304 0.8638 0.8307 0.7368 0.5179 0.6101
3B SFT 0.7532 0.6341 0.4226 0.7277 0.8509 0.8910 0.8596 0.7752 0.5531 0.6475
3B Ours 0.8064 0.7080 0.4713 0.7883 0.9153 0.9323 0.9170 0.8621 0.6812 0.7604
7B SFT 0.7253 0.6179 0.4137 0.7374 0.9084 0.8644 0.8749 0.7986 0.6072 0.6892
7B Ours 0.8070 0.6997 0.4634 0.7710 0.8926 0.9192 0.8974 0.8341 0.6450 0.7280

3B UB 0.8469 0.7666 0.5095 0.8300 0.9419 0.9621 0.9484 0.9141 0.7769 0.8383

Thyroid

7B UB 0.8215 0.7177 0.4736 0.7939 0.9243 0.9378 0.9256 0.8775 0.7076 0.7833

SAT 0.1288 0.1113 0.1929 0.4544 0.8275 0.3711 0.5057 0.3546 0.2034 0.2647
R2Gen 0.5308 0.4489 0.3489 0.6937 0.8826 0.7604 0.8114 0.7103 0.4908 0.5804
KMVE 0.7276 0.6414 0.4418 0.7306 0.8420 0.8624 0.8439 0.7563 0.5692 0.6475
3B SFT 0.7137 0.6158 0.4173 0.7355 0.8640 0.8518 0.8527 0.7695 0.5708 0.6520
3B Ours 0.7654 0.6765 0.4581 0.7581 0.8749 0.9016 0.8828 0.8114 0.6289 0.7064

7B SFT 0.7147 0.6110 0.4145 0.7295 0.8471 0.8521 0.8442 0.7585 0.5560 0.6388
7B Ours 0.7636 0.6793 0.4580 0.7894 0.8974 0.9012 0.8954 0.8302 0.6584 0.7307
3B UB 0.8611 0.8071 0.5442 0.8721 0.9500 0.9656 0.9552 0.9238 0.8203 0.8670

Mammary

7B UB 0.8804 0.8321 0.5610 0.8930 0.9567 0.9639 0.9580 0.9292 0.8382 0.8791

SAT 0.0207 0.0191 0.1300 0.2833 0.9964 0.6376 0.7668 0.6340 0.3389 0.4610
R2Gen 0.8518 0.7920 0.5084 0.8519 0.9453 0.9054 0.9206 0.8629 0.7329 0.7927
KMVE 0.8803 0.8288 0.5271 0.8660 0.8345 0.8286 0.8104 0.7646 0.7116 0.7291
3B SFT 0.8724 0.8054 0.5148 0.8410 0.9192 0.9035 0.9050 0.8386 0.7206 0.7743
3B Ours 0.9028 0.8520 0.5538 0.8823 0.9407 0.9440 0.9390 0.8951 0.8022 0.8449
7B SFT 0.8537 0.7721 0.4957 0.8069 0.9156 0.8929 0.8976 0.8286 0.6940 0.7544
7B Ours 0.9105 0.8613 0.5642 0.8888 0.9394 0.9332 0.9330 0.8838 0.7942 0.8356

3B UB 0.9326 0.9016 0.6033 0.9271 0.9695 0.9650 0.9654 0.9391 0.8792 0.9070

Liver

7B UB 0.9440 0.9158 0.6195 0.9359 0.9740 0.9684 0.9693 0.9460 0.8942 0.9185

SAT 0.0821 0.0648 0.1579 0.3592 0.8728 0.2852 0.4164 0.2730 0.1487 0.1992
R2Gen 0.3088 0.1872 0.2135 0.4356 0.7198 0.6148 0.6354 0.4908 0.2358 0.3357
KMVE 0.6012 0.4235 0.3189 0.5492 0.7117 0.6462 0.6597 0.5163 0.2618 0.3637
3B SFT 0.5180 0.3468 0.2813 0.4971 0.6479 0.6134 0.6177 0.4646 0.2243 0.3198
3B Ours 0.6310 0.4648 0.3416 0.5803 0.7966 0.7740 0.7735 0.6505 0.3416 0.4673
7B SFT 0.5514 0.3714 0.2929 0.5105 0.6493 0.6508 0.6350 0.4839 0.2196 0.3224
7B Ours 0.6424 0.4800 0.3497 0.5950 0.8032 0.7580 0.7680 0.6411 0.3301 0.4554

3B UB 0.6624 0.5167 0.3652 0.6256 0.9352 0.8972 0.9265 0.7695 0.4576 0.5888

Ovary

7B UB 0.6666 0.5217 0.3692 0.6389 0.9150 0.8859 0.9117 0.7517 0.4542 0.5799

As shown in Table 2, our method enhances clinical accuracy and semantic consistency in med-
ical report generation through Concept Instruction Fine-tuning and a Concept Risk Score–based
intervention. It improves the key metric HSM by 9.13% and achieves state-of-the-art performance
across all four organs on both the 3B and 7B models by correcting just one Anatomical-Finding
Concept Unit with high error risk per report. Notably, on certain smaller organ-specific datasets, the
3B model slightly outperforms the 7B variant, possibly because the larger model’s higher capacity
leads to overfitting when training data is limited. This minimal intervention is clinically feasible and
enables efficient, trustworthy physician–AI collaboration.

4.3 CONCEPT RISK SCORE PRIORITIZES CLINICALLY HIGH-LEVERAGE INTERVENTION

We evaluate CRS on 100 randomly sampled thyroid ultrasound cases from the validation set. Cor-
recting only the top-3 CRS-ranked anatomical concepts per report yields a statistically significant
correlation with performance improvement (r = 0.2531, p < 0.05) in Figure 4(b). This con-
firms CRS successfully prioritizes high-leverage intervention points — reducing physician workload
while maximizing model behavior improvement. Note that CRS does not rely on model confidence
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Sequential
Random
Shift

No Intervetion (0.620)

(a) (b)

Figure 5: (a) Correlations between automatically computed metrics and human subjective judgments
as well as LLM evaluations. (b) Evaluate the impact of varying numbers and orders of finding
concepts on intervention effectiveness.

or output probability. It measures behavioral inconsistency under perturbation — a more clinically
meaningful signal for feedback prioritization.

4.4 ABLATION STUDY OF DIFFERENT UNCERTAINTY SELECTION STRATEGIES

Table 3: Performance of interventions
selected by different uncertainty esti-
mation methods under the Concepts In-
struction Tuning condition.
Type BLEU-4 ROUGE-L HSM

Concepts Instruction Tuning 0.6230 0.6985 0.6282
+Random 0.6532 0.7365 0.6907
+Semantic Entropy 0.6576 0.7436 0.7086
+VL-uncertainty 0.6672 0.7488 0.7111
+ours 0.7080 0.7883 0.7604
Upper Bound 0.7666 0.8300 0.8383

As shown in Table 3, under the Concept Instruction Tun-
ing baseline, we evaluate various uncertainty-based in-
tervention strategies at the anatomical concept level by
computing uncertainty over the descriptive phrase asso-
ciated with each concept. Methods such as Semantic
Entropy (Kuhn et al., 2023) and VL-Uncertainty (Zhang
et al., 2024) (details in § 2.3) yield varying degrees of im-
provement. Our proposed Concept Risk Score–based in-
tervention (+ours) achieves the best performance across
all metrics, with HSM reaching 0.7604, and significantly
outperforms all alternatives. On core clinical metric
HSM, our method outperforms the second-best approach
by 4.93%—indicating that the Concept Risk Score better
identifies concepts with high error risk for targeted intervention, yielding reports with improved se-
mantic fidelity. Its performance also closely approaches the theoretical upper bound, confirming
the effectiveness of our intervention mechanism. All baseline uncertainty methods are adapted to
operate on anatomical concept–level text spans for fair comparison with CRS.

4.5 HUMAN ANALYSIS OF CONCEPTS METRIC

We conducted human and LLM evaluations to assess whether our semantic similarity metric, HSM,
aligns with human and model judgments. For 100 randomly sampled medical reports, we presented
ground-truth and model-generated texts to radiologists and a large language model (DeepSeek-V3.1)
(DeepSeek-AI, 2024) to rate semantic similarity (templates and criteria in Appendix § A.5). As
shown in Figure 5(a), HSM achieves Spearman correlations of 0.846 with human judgments and
0.763 with LLM ratings, both statistically significant(p < 0.05), validating HSM as a reliable proxy
for clinically meaningful semantic similarity.

4.6 ROBUSTNESS TO INCOMPLETE OR DISORDERED FINDING INPUTS

To mimic how clinicians may provide incomplete or ambiguously ordered findings during interactive
reporting, we evaluate robustness using Anatomy-Finding Concept Units, where each anatomical
concept is paired with exactly five finding concepts. The intervention input is formed by selecting
and/or reordering a subset of these findings.
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We test three perturbations on 128 validation samples with complete AFCUs: (1) Sequential-m:
first m finding concepts in original order; (2) Random-m: m randomly selected finding concepts
in random order; (3) Shift-n: full sequence cyclically shifted left by n positions (Shift-5 recovers
the original order as a control). As shown in Figure 5(b), performance improves with more findings,
yet even minimal inputs (e.g., m = 1) outperform no intervention. Sequential inputs consistently
surpass Random ones at the same m, highlighting the importance of clinical ordering. Shift ex-
periments confirm that performance drops under order perturbations but recovers at Shift-5. These
results show our method remains effective under realistic clinician uncertainty—supporting its prac-
tical use in interactive report generation.

4.7 IMPACT OF MULTIPLE CRS CONCEPT INJECTION

Number of Entities

Sc
or

e

Figure 6: Performance of report generation as more CRS-
ranked concepts are injected.

To explore the effect of simulta-
neously correcting multiple uncer-
tain concepts on report generation,
we injected n CRS-ranked concepts
into the VLM prompt for 50 liver
report cases. As shown in Fig-
ure 6, CRS-guided concept injec-
tion rapidly improves report qual-
ity—as measured by BLEU-1/4 and
ROUGE-L—validating CRS’s ability
to prioritize high-error-risk, clinically
informative concepts. However, per-
formance gains diminish with further
concept additions. This saturation
likely stems from two factors: (1) the
remaining concepts carry lower clini-
cal relevance or error risk, and (2) the VLM is not specifically trained to effectively utilize prompts
augmented with many additional terms. These findings suggest that selectively integrating the most
critical concepts identified by CRS is more effective than exhaustively incorporating numerous con-
cepts. Moreover, our CRS measures error risk—low-risk concepts are often correct (differing only
in phrasing)—so omitting them is clinically acceptable. Error accumulation concerns can also be
alleviated by correcting multiple high-risk AFCUs.

5 CONCLUSION

We shift medical report generation from pursuing autonomous accuracy toward effective human–AI
collaboration by introducing the RCL-3, a bidirectional paradigm in which VLMs proactively flag
content with high error risk and physicians intervene only on the most critical elements. Central
to this approach is the Anatomy-Finding Concept Unit, a clinically grounded atomic unit that en-
ables precise, efficient interaction. Leveraging information bottleneck–based concept compression,
concept-level instruction tuning for feedback integration, and the Concept Risk Score to prioritize
high-impact corrections, our method achieves a 9.13% average gain in Holistic Semantic Match, a
clinically aligned metric strongly correlated with human judgment. This demonstrates that minimal,
targeted physician input can substantially improve report quality, paving the way for trustworthy,
efficient AI-assisted clinical reporting.

ETHICS STATEMENT

We use publicly available medical report datasets for thyroid, mammary, and liver. The private ovary
dataset has received ethical approval; details are in the Appendix. Anonymized details (e.g., ethics
approval numbers and data collection sites) will be released upon acceptance.
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REPRODUCIBILITY STATEMENT

The complete code will be released upon paper acceptance. Additionally, all key details necessary
for reproducibility—including hyperparameters, training procedures, concept construction methods
and examples, LLM prompting templates, and samples from the training and test datasets—are
thoroughly described in the main text and the Appendix.
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A APPENDIX

• A.1: LLM Usage

• A.2: Detailed Content of Private Data

• A.3: Construction of Anatomical and Finding Concepts

• A.4: Examples of Concept Instruction Tuning

• A.5: Concept-based Metrics Computation

• A.6: Experiment Details
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• A.7: Visual Occlusion using Grid-Based Random Mask

• A.8: Case Analysis of Similarity Metrics Across Sentence Embedding Models

• A.9: Comparison of Report Examples Generated by Different Methods

• A.10: Comparison with other Medical VLMs

• A.11: Additional Data

• A.12: Limitations and Societal Impact

• A.13: Stability of HSM Correlation with Traditional Metrics Across Anatomical Organs

• A.14: Ablation Study of Concept Instruction Tuning and CRS

• A.15: Enhancing Clinical Efficacy on the English IU-Xray Dataset

• A.16: Human-in-the-Loop Evaluation

• A.17: Language Presentation and Accessibility

• A.18: Theoretical Analysis of the Concept Risk Score

• A.19: AFCU Enables Clinically Grounded and Fine-Grained Human–AI Interaction

• A.20: HSM Aligns Evaluation with Clinical Reasoning

• A.21: Ablation on Correction Methods Using Zero-shot LLM

A.1 LLM USAGE

During the preparation of this manuscript, large language models (LLMs) were employed in a lim-
ited and auxiliary capacity. Specifically, their usage was restricted to the following three aspects:
(1) checking grammar and expression at the sentence level, thereby providing local linguistic re-
finement; (2) performing global polishing after the draft was completed, ensuring that the overall
exposition conforms to idiomatic English usage.

At no stage were LLMs used for generating research ideas, developing arguments, or modifying
the substantive content of this work. Their sole role was to assist in enhancing the clarity and
effectiveness of communication.

A.2 DETAILED CONTENT OF PRIVATE DATA

As shown in Table 4 and 5, this study constructs an ovarian lesion ultrasound imaging dataset based
on real clinical medical reports from a single center. The dataset comprises 831 pathologically con-
firmed cases, covering non-neoplastic pelvic masses, benign tumors, borderline tumors, advanced-
stage ovarian cancer, early-stage ovarian cancer, and confounding cancer types, corresponding to a
total of 1,570 two-dimensional grayscale ultrasound images. Table 5 further demonstrates that the
number of images per case follows a natural distribution, authentically reflecting the individualized
nature of image acquisition in clinical ultrasound examinations — in contrast to previous studies
that often relied on fixed numbers of one or two images per case.

Data collection and usage have been approved by the institutional ethics review board, in compliance
with medical research standards. To support transparent peer review, the ethics approval number will
be disclosed during the non-anonymous review phase.

Table 4: Case and Image Category Distribution in the Ovarian Ultrasound Dataset
Statistics Cases Case Ratio Images Image Ratio

Non-neoplastic Pelvic Mass 289 34.8% 514 32.7%
Confounding Cancer Types 61 7.3% 117 7.5%

Borderline Tumors 119 14.3% 250 15.9%
Benign Tumors 186 22.4% 328 20.9%

Advanced-stage Ovarian Cancer 97 11.7% 203 12.9%
Early-stage Ovarian Cancer 79 0.095 158 10.1%

Total 831 - 1570 -
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Table 5: Distribution of Image Counts per Case in the Ovarian Ultrasound Dataset
Image Number Cases Case Ratio

1 243 29.2%
2 460 55.4%
3 107 12.9%
4 19 2.3%
5 2 0.2%

Total 831 -

A.3 CONSTRUCTION OF ANATOMICAL AND FINDING CONCEPTS

To promote reproducibility and clinical interpretability, we provide essential descriptions of the
canonical anatomical concepts (as shown in Table 6), derived through our information bottleneck-
based compression pipeline. These include: Template Design and Initial Concept Extraction,
Anatomical Concept Clustering via Semantic Similarity, Binding Findings to Canonical Anatomy.
In our framework, a “concept” refers precisely to this structured pairing: one anatomical entity
with its clinically relevant attributes, enabling precise, targeted physician–AI collaboration without
fragmentation or ambiguity.

Table 6: Examples of Anatomy-Finding Concept Units (AFCUs) — minimal, clinically grounded
semantic units pairing a canonical anatomical region with its associated descriptive findings.

Anatomical Concept Finding Concept

Thyroid gland

Size and shape are normal
Uniform echo

No clear space-occupying lesion was found
No abnormal blood flow signals were found

Bilateral neck No obvious enlarged lymph nodes

Left lobe gland Multiple nodules

Template Design and Initial Concept Extraction As shown in Figures 7 and 8, the Chinese and
English versions of the template, respectively, are used to guide the LLM in performing initial extrac-
tion of Anatomical and Finding Concepts from each report. Each template provides three examples,
though only two are displayed in the figures. These examples are static and generalizable to any new
findings or datasets, designed to inform the model of the relative relationship between Anatomical
Concepts and Finding Concepts. Manual inspection of the experimental results confirmed that the
extracted outputs are clinically acceptable.

Anatomical Concept Clustering via Semantic Similarity Medical reports often exhibit diverse
phrasings for the same anatomical structure—e.g., “bilateral thyroid lobes,” “left and right lobe,”
and “bilateral glandular tissue” all describe the same region, reflecting stylistic differences rather
than clinical distinctions. As illustrated in Table 7, such lexical redundancy is common in free-text
reporting. Normalizing these variants into a single canonical term reduces ambiguity, ensuring that
AI–physician collaboration focuses on clinical content rather than wording preferences.

Table 7: Examples of anatomical concept normalization: diverse expressions extracted from free-
text reports are mapped to a single canonical term through semantic clustering.

Report No. Exacted Anatomical Concept Anatomical Concept after Mapping

1 bilateral thyroid lobes both lobes of the thyroid gland
2 left and right lobe both lobes of the thyroid gland
3 bilateral glandular tissue both lobes of the thyroid gland

Binding Findings to Canonical Anatomy As shown in Table 8, when multiple extracted anatom-
ical concepts (e.g., “thyroid”, “glands”) refer to the same clinical entity, they are first mapped to a
single canonical term (e.g., “thyroid gland”). Crucially, their associated finding concepts — such as
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提取以下文本中的解剖结构（anatomical concept）和对应的发现（finding concept），并以 JSON 格式输出。每个解剖结构和其发现应以"entity"和"attributions"键值对的形式显
示。确保输出格式正确，每个解剖结构和其发现按顺序列出。

文本输入：
{{输入的文本内容}}

JSON输出：
{{
  "entities": [
    {{
      "entity": "实体名称",
      "attributions": ["属性1", "属性2", ...]
    }},
    ...
  ]
}}

示例1-文本输入：
{{甲状腺:左叶大小为_3DS_，峡部_SCM_，右叶大小为_3DS_，腺体回声欠均匀，左叶下极见一混合回声结节，大小为_2DS_，边界清晰，形态尚规整，内以无回声为主，并可
见低回声区，范围为_2DS_，CDFI示结节周边可记录到星点状血流信号；右叶内见两个低回声结节，大小分别约_2DS_、_2DS_，边界清晰，形态规整。甲状腺周围未见肿大淋
巴结。}}
示例2-json输出：
{{
  "entities": [
    {{
      "entity": "甲状腺左叶",
      "attributions": ["大小为_3DS_"]
    }},
    {{
      "entity": "峡部",
      "attributions": ["_SCM_"]
    }},
    {{
      "entity": "甲状腺右叶",
      "attributions": ["大小为_3DS_", "腺体回声欠均匀"]
    }},
    {{
      "entity": "左叶结节",
      "attributions": ["下极","混合回声", "大小为_2DS_", "边界清晰", "形态尚规整", "内以无回声为主", "可见低回声区", "范围为_2DS_", "结节周边可记录到星点状血流信号"]
    }},
    {{
      "entity": "右叶结节",
      "attributions": ["低回声", "大小分别约_2DS_、_2DS_", "边界清晰", "形态规整"]
    }},
    {{
      "entity": "甲状腺周围",
      "attributions": ["未见肿大淋巴结"]
    }}
  ]
}}

示例2-文本输入：
{{甲状腺大小形态如常，腺体回声均匀，未见明确占位性病变，CDFI示腺体内未见异常血流信号。双侧颈部未见明显肿大淋巴结。}}
示例3-json输出：
{{
  "entities": [
    {{
      "entity": "甲状腺",
      "attributions": ["大小形态如常"]
    }},
    {{
      "entity": "腺体",
      "attributions": ["回声均匀","未见明确占位性病变","未见异常血流信号"]
    }},
    {{
      "entity": "双侧颈部",
      "attributions": ["未见明显肿大淋巴结"]
    }}
  ]
}}

现在输入要分析的文本，请给出符合要求的json，不要附带别的信息。输入文本：{{{finding_text}}}

Figure 7: Chinese prompt template with in-context examples guiding LLMs to extract anatomical
and finding concepts in a clinically structured format.
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Extract the anatomical concepts and corresponding findings from the following text and output them in JSON format. Each anatomical concept and its corresponding finding should be 
presented as a key-value pair of "entity" and "attributions". Ensure that the output is well-formatted and that each anatomical concept and its corresponding finding are listed in order.
Text Input: {{Input text content}}

JSON Output:
{{
"entities": [
{
"entity": "Entity Name",
"attributions": ["Attribute 1", "Attribute 2", ...]
},
...
]
}}

Example 1 - Text Input:
{{Thyroid: Left lobe size is 3DS, isthmus SCM, right lobe size is 3DS, gland echoes are uneven, left lobe lower pole shows a mixed echo nodule, size is 2DS, boundary clear, shape still regular, 
mainly anechoic inside, low echo areas visible, range is 2DS, CDFI shows spot-like blood flow signals around the nodule; two low-echo nodules in the right lobe, sizes about 2DS and 2DS, 
boundary clear, shape regular. No enlarged lymph nodes around the thyroid.}}

Example 2 - JSON Output:
{{
"entities": [
{
"entity": "Left thyroid lobe",
"attributions": ["Size is 3DS"]
},
{
"entity": "Isthmus",
"attributions": ["SCM"]
},
{
"entity": "Right thyroid lobe",
"attributions": ["Size is 3DS", "Gland echoes are uneven"]
},
{
"entity": "Left lobe nodule",
"attributions": ["Lower pole", "Mixed echo", "Size is 2DS", "Boundary clear", "Shape still regular", "Mainly anechoic inside", "Low echo areas visible", "Range is 2DS", "Spot-like blood flow 
signals recorded around the nodule"]
},
{
"entity": "Right lobe nodule",
"attributions": ["Low echo", "Sizes about 2DS and 2DS", "Boundary clear", "Shape regular"]
},
{
"entity": "Around the thyroid",
"attributions": ["No enlarged lymph nodes"]
}
]
}}

Example 2 - Text Input:
{{Thyroid size and shape are normal, gland echoes are uniform, no definite space-occupying lesions, CDFI shows no abnormal blood flow signals in the gland. No obvious enlarged lymph 
nodes in both sides of the neck.}}

Example 3 - JSON Output:
{{
"entities": [
{
"entity": "Thyroid",
"attributions": ["Size and shape are normal"]
},
{
"entity": "Gland",
"attributions": ["Echoes uniform", "No definite space-occupying lesions", "No abnormal blood flow signals"]
},
{
"entity": "Both sides of the neck",
"attributions": ["No obvious enlarged lymph nodes"]
}
]
}}
Now input the text to be analyzed, and provide the corresponding JSON. Do not include any additional information. Input text: {{finding_text}}

Figure 8: The English version of Chinese prompt template with in-context examples guiding LLMs
to extract anatomical and finding concepts in a clinically structured format.
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“size normal” or “no abnormal blood flow” — must then be aggregated under this unified anatom-
ical anchor. This process, termed Binding Findings to Canonical Anatomy, ensures that no clinical
information is lost during compression and that each Anatomy-Finding Concept Unit (AFCU) re-
mains semantically complete and clinically grounded — forming the atomic unit for physician-AI
interaction.

Table 8: Example of binding finding concepts to canonical anatomical concepts after semantic map-
ping — consolidating findings under unified anatomy terms for structured AFCU representation.

Anatomical Concept Finding Concept

Before Mapping

thyroid Size and shape are normal

glands
Uniform echo

No clear space-occupying lesion was found
No abnormal blood flow signals were found

After Mapping and Binding thyroid gland

Size and shape are normal
Uniform echo

No clear space-occupying lesion was found
No abnormal blood flow signals were found

A.4 EXAMPLES OF CONCEPT INSTRUCTION TUNING

The Anatomy-Finding Concept Unit (AFCU), which pairs an anatomical concept with one or more
finding concepts, serves as additional contextual information within the instruction for generating
medical reports. As illustrated in Figure 9, the first example represents the traditional fine-tuning
method without AFCUs, whereas the second and third examples showcase our proposed Concept In-
struction Tuning. Notably, a single anatomical concept may correspond to multiple finding concepts;
during both fine-tuning and testing, all relevant findings are included to comprehensively explore our
framework’s capabilities. Furthermore, Figure 5(b) delves into how varying the number and order
of finding concepts impacts model performance, revealing consistent improvements across different
configurations. This approach not only enhances the accuracy of generated reports but also ensures
that no clinically significant detail is overlooked.

A.5 CONCEPT-BASED METRICS COMPUTATION

As shown in Figure 11, we only use the LLM during the dictionary initialization phase. In every
subsequent inference, particularly when evaluating on a new test dataset, finding concepts for an
anatomical concept can be approximated simply by extracting the text segment between two con-
secutive anatomical concepts, following the fixed subject–verb–object syntactic structure commonly
used in Chinese. Then, by comparing the sets of anatomical concepts, we identify the presence of
entities and compute the similarity of finding concepts only for corresponding anatomical concepts
to evaluate fine-grained semantic similarity. As illustrated in the example, our metrics can still make
more nuanced and accurate judgments even when conventional NLG metrics (e.g., ROUGE-L) or
sentence-level embedding cosine similarity scores (STS) are high. Moreover, as shown in Fig-
ure 5(b), we demonstrate that our HSM metric exhibits a strong correlation with both LLM-based
and human evaluations (the LLM evaluation prompt template is provided in Figure 10, and human
annotators used the same rating criteria). Discussion on extracting finding concepts for English
datasets can be found in Appendix § A.12.

A.6 EXPERIMENT DETAILS

As shown in Table 9, we compare the fine-tuning setups for 3B and 7B VLMs, with and without
Concept Instruction Tuning. In all cases, the visual encoder and projector are fully fine-tuned,
while the LLM is updated only via LoRA. For concept instruction tuning, we add synthetic AFCU
examples to the original data. On the Thyroid dataset, this expands the training set from 1,719
samples to 8,884 by including 7,165 generated examples. Training with the AFCU-augmented 3B
model on a single A100 40GB GPU takes 3 hours and 31 minutes; for the 7B model, it takes 4 hours
and 51 minutes. All model outputs are generated using beam search with a beam width of 3. All
hyperparameters — including batch size, LoRA rank, learning rate, and training epochs — are kept
consistent to ensure fair comparison and reproducibility. For other baseline methods, we train for
100 epochs to ensure convergence and report the best-performing checkpoint.
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{
"messages": [
            {
                "role": "user",
                "content": "<image><image>By analyzing the images and using the relevant information to generate a detailed medical report. "
            },
            {
                "role": "assistant",
                "content": "After partial thyroidectomy, the morphology was abnormal, and multiple cystic solid mixed echo nodules could be seen in the left lobe. The largest 
was located in the middle section, with a size of about 2DS, with clear boundaries and regular morphology. CDFI shows that the star-like blood flow signal can be 
detected around the periphery. The echo of the rest of the parenchyma is still uniform, and CDFI shows that the blood flow signal is roughly normal. No enlarged lymph 
nodes were found around the thyroid gland and beside the large blood vessels on both sides of the neck."
            }
        ],
"image_path": [
            "183961_1.jpeg",
            "183961_2.jpeg"
        ]
},

{
"messages": [
            {
                "role": "user",
                "content": "<image><image>By analyzing the images and using the relevant information to generate a detailed medical report. Information: Present thyroid, 
after partial resection, illegal shape, no enlarged lymph nodes were found."
            },
            {
                "role": "assistant",
                "content": "After partial thyroidectomy, the morphology was abnormal, and multiple cystic solid mixed echo nodules could be seen in the left lobe. The largest 
was located in the middle section, with a size of about 2DS, with clear boundaries and regular morphology. CDFI shows that the star-like blood flow signal can be 
detected around the periphery. The echo of the rest of the parenchyma is still uniform, and CDFI shows that the blood flow signal is roughly normal. No enlarged lymph 
nodes were found around the thyroid gland and beside the large blood vessels on both sides of the neck."
            }
        ],
"image_path": [
            "183961_1.jpeg",
            "183961_2.jpeg"
        ]
},

{
"messages": [
            {
                "role": "user",
                "content": "<image><image>By analyzing the images and using the relevant information to generate a detailed medical report. Information: Present bilateral 
neck, no enlarged lymph nodes were found."
            },
            {
                "role": "assistant",
                "content": "After partial thyroidectomy, the morphology was abnormal, and multiple cystic solid mixed echo nodules could be seen in the left lobe. The largest 
was located in the middle section, with a size of about 2DS, with clear boundaries and regular morphology. CDFI shows that the star-like blood flow signal can be 
detected around the periphery. The echo of the rest of the parenchyma is still uniform, and CDFI shows that the blood flow signal is roughly normal. No enlarged lymph 
nodes were found around the thyroid gland and beside the large blood vessels on both sides of the neck."
            }
        ],
"image_path": [
            "183961_1.jpeg",
            "183961_2.jpeg"
        ],
}

Figure 9: Illustration of Concept Instruction Tuning, showing baseline fine-tuning versus our method
with multiple finding concepts paired to a single anatomical concept.

Table 9: Fine-tuning Hyperparameters for Qwen2.5-VL: Standard SFT vs AFCU-Augmented In-
struction Tuning. V denotes Vision Encoder, P denotes Projector.

SFT-3B SFT-7B AFCU-SFT-3B AFCU-SFT-7B

Trainable module V+P+LLM(LoRA) V+P+LLM(LoRA) V+P+LLM(LoRA) V+P+LLM(LoRA)
Training data origin origin origin+AFCUI origin+AFCUI
Learning rate 1e-4 5e-5 1e-4 5e-5

batch size 4 2 4 2
grad accum steps 16 32 16 32

Effective batch size 64 64 64 64
Warmup ratio 0.20 0.20 0.20 0.20

Training epochs 20 20 5 5
LoRA rank 32 32 32 32
LoRA alpha 64 64 64 64

LoRA dropout 0.1 0.2 0.1 0.2
Weight decay 0.05 0.05 0.05 0.05
Warmup ratio 0.20 0.2 0.20 0.2

Max gradient norm 2.0 1.0 2.0 1.0
Trainable Params 5.12 GB 5.21 GB 5.12 GB 5.21 GB

All Params 16.61 GB 33.55 GB 16.61 GB 33.55 GB
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请阅读以下两个医学报告并评估它们之间的语义相似度。根据报告中的疾病诊断、症状描述、检查结果等内容，给出一个从0
到10的相似度评分，并按以下标准给出评分：
              0分： 完全不相似，报告内容没有任何相似之处。
              1分： 极低相似度，报告内容几乎完全不同，只有个别术语或非常小的元素相似。
              2分： 非常低相似度，报告有少量共同的术语或描述，但在诊断、治疗等方面差异较大。
              3分： 低相似度，报告在某些术语或症状上有相似之处，但差异明显，整体内容不一致。
              4分： 较低相似度，报告在某些部分存在共同点，但差异较多，整体结构和重点不同。
              5分： 中等相似度，报告在某些方面相似（如症状或治疗方法），但在一些重要领域（如诊断）存在差异。
              6分： 高相似度，报告在多个方面（如疾病描述、治疗方案等）相似，但细节或某些领域存在差异。
              7分： 非常高相似度，报告在大部分内容上相似，仅在少数细节上存在差异。
              8分： 极高相似度，报告在核心内容上高度一致，仅在措辞或非常细微的地方存在差异。
              9分： 几乎相同，报告内容几乎完全一致，差异极其微小，仅在一些不重要的细节上有所不同。
              10分： 强烈接收，报告完全相同，内容完全一致，无法区分。
              请以'得分；理由'的形式提供你的评分和解释，指出报告内容的相似点和差异。
              报告1：
              {report1}
              报告2：
              {report2}

Please read the following two medical reports and assess their semantic similarity. Based on the reports' content, such as disease 
diagnoses, symptom descriptions, and test results, assign a similarity score from 0 to 10, using the following criteria:
0: Totally dissimilar; the reports share no similarities at all.
1: Extremely low similarity; the reports are almost completely different, with only a few terms or very minor elements being similar.
2: Very low similarity; the reports share a few terms or descriptions, but differ significantly in terms of diagnoses, treatments, and other 
areas.
3: Low similarity; the reports share some similarities in terms or symptoms, but the differences are significant, and the overall content is 
inconsistent.
4: Low similarity; the reports share some similarities, but differ significantly, with different overall structure and focus.
5: Moderately similar; the reports are similar in some areas (such as symptoms or treatments), but differ in some important areas (such 
as diagnoses).
6: Highly similar; the reports are similar in many areas (such as disease descriptions and treatment plans), but differ in details or certain 
areas. 7: Very similar. The reports are similar in most respects, with only minor differences.
8: Extremely similar. The reports are highly consistent in their core content, with only minor or minor differences in wording.
9: Almost identical. The reports are almost identical in content, with only minor differences in minor details.
10: Strongly accepted. The reports are identical, with content that is indistinguishable.
Please provide your score and explanation in the form of 'Score; Reason', identifying the similarities and differences in the reports.

Report 1:
{report1}
Report 2:
{report2}

Figure 10: Prompt template used by the LLM to evaluate semantic similarity between generated and
reference medical reports.

Reports

Anatomical 
Concepts

Finding
Concepts

Sentence
Transformer

Embedding Clustering Dictionary

The thyroid gland is normal in size and shape. Multiple hypoechoic nodules are 
visible in the left lobe, the largest of which is located in the middle, approximately 
2DS in size.

甲状腺大小形态如常，左叶可见多个低回声结节，大者位于中部，大小约_2DS_。

The thyroid gland is normal in size and shape. Multiple hypoechoic nodules are 
present in both lobes, the larger of which are located at the lower pole. 

甲状腺大小形态如常，双叶腺体内可见多发低回声结节，大者均位于下极。

Ground Truth

Prediction

HSM=

EIOU=

ASS=
E A E A

thyroid gland
normal in size 
and shape

Mapping

BLEU1      
BLEU4 
ROUGE-L

0.6579
0.4687
0.7133

EIOU
ASS   
HSM 

0.5000
0.3842
0.4383STS 0.8830

HSM

Figure 11: Workflow of anatomical and finding concepts extraction and concept-based semantic
similarity metric calculation.
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A.7 VISUAL OCCLUSION USING GRID-BASED RANDOM MASK

As illustrated in Figure 12 and Algorithm 1, we employ a grid-based visual occlusion technique to
selectively disrupt the semantic content of images through random masking.

Origin Grid 4 Grid 8 Grid 16 Grid 32 Grid 64 Grid 128 Grid 256

Figure 12: Visual examples of grid-based random masking with grid sizes ranging from 4 to 256 (7
levels in total).

Algorithm 1 Apply Grid-Based Random Mask to Image
Require: Image I ∈ RH×W×3, grid size G, mask probability threshold τ
Ensure: Masked image Imasked

1: W,H ← width(I), height(I)
2: cw ← ⌈W/G⌉, ch ← ⌈H/G⌉ ▷ Cell size
3: Uw ← (G+ 1) · cw, Uh ← (G+ 1) · ch ▷ Upsampled mask size
4: Initialize random grid mask: Mgrid ∈ RG×G

5: for i = 0 to G− 1 do
6: for j = 0 to G− 1 do

7: Mgrid[i, j]←
{
1 if Uniform(0, 1) < τ

0 otherwise
8: end for
9: end for

10: Mup ← Resize(Mgrid, (Uw, Uh)) ▷ Bilinear interpolation
11: Sample random offset: ow ∼ Uniform(0, cw − 1), oh ∼ Uniform(0, ch − 1)
12: M ←Mup[oh : oh +H, ow : ow +W ] ▷ Crop to original size
13: Normalize image: Î ← I/255.0
14: Broadcast mask: Mrgb ← Stack(M,M,M) ▷ Shape: H ×W × 3

15: Imasked ← (Î ⊙Mrgb)× 255
16: Convert Imasked to uint8
17: return Imasked

A.8 CASE ANALYSIS OF SIMILARITY METRICS ACROSS SENTENCE EMBEDDING MODELS

We conduct a case study by comparing the generated report shown in Figure 11 with its ground-
truth report. Specifically, our proposed FSS metric leverages Sentence Transformer (Reimers &
Gurevych, 2019) embeddings to evaluate fine-grained semantic alignment between generated and
reference findings. As shown in Table 10, we evaluate multiple multilingual embedding models and
observe that FSS and HSM yield consistently lower but more discriminative scores compared to
conventional NLG metrics like BLEU-1 and ROUGE-L. Importantly, the relative ranking of models
under FSS closely matches that of the baseline model distiluse-base-multilingual-cased-v1 (Reimers
& Gurevych, 2019) — which we have shown in the main text to correlate strongly with human
judgment — demonstrating that FSS is robust across different embedding backbones. Notably,
this cross-model consistency stems from FSS’s design: it computes similarity only between find-
ing concepts that are explicitly bound to the same canonical anatomical concept, enabling precise,
structure-aware evaluation that generalizes well across languages and embedding architectures.
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Table 10: Comparison of multilingual Sentence Transformer models (Reimers & Gurevych, 2020;
2019). STS scores are computed by encoding the full report sentences into embeddings and mea-
suring cosine similarity; FSS and HSM are our fine-grained metrics that operate only on anatomy-
aligned finding concepts.

Model STS BLEU-1 BLEU-4 ROUGE-L AIOU FSS HSM

distiluse-base-multilingual-cased-v1 0.8830

0.6579 0.4687 0.7133 0.5000

0.3842 0.4383
distiluse-base-multilingual-cased-v2 0.7826 0.3725 0.4316

paraphrase-multilingual-mpnet-base-v2 0.9180 0.3781 0.4348
use-cmlm-multilingual 0.8206 0.3850 0.4387

msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned 0.9112 0.4093 0.4524
distiluse-base-multilingual-cased 0.7826 0.3725 0.4316

A.9 COMPARISON OF REPORT EXAMPLES GENERATED BY DIFFERENT METHODS

As shown in Figure 13, we compare report generation on mammary and liver examples. Standard
SFT often fails to align findings with the correct anatomical concepts, whereas Concept Instruc-
tion Tuning (using AFCU) with CRS-based Intervention accurately associates findings with their
corresponding anatomical structures, producing more precise and structured reports.

Ground Truth
乳腺：软组织各层次显示清晰，皮肤和皮下脂肪
层未见明显异常回声。双侧腺体排列规则，内回
声均匀，未见导管扩张，未见明确占位性病变，
CDFI未见异常血流信号。双侧腋下扫查，未见肿
大淋巴结。
Breast: All layers of soft tissue were clearly visualized, 
with no significant abnormal echogenicity in the skin or 
subcutaneous fat. The glands were regularly arranged 
bilaterally, with uniform internal echogenicity. No ductal 
dilatation or clear space-occupying lesions were 
observed, and CDFI revealed no abnormal blood flow 
signals. Bilateral axillary scans revealed no enlarged 
lymph nodes.

于左乳外侧患者所指处扫查，皮下脂肪层可见一
偏强回声结节，大小约_3DS_，边界清晰，形态规
整，CDFI示可探及血流信号。
Scanning the area indicated by the patient on the outer 
side of the left breast, a relatively strong echo nodule 
was seen in the subcutaneous fat layer, about _3DS_ in 
size, with clear boundaries and regular shape. CDFI 
showed detectable blood flow signals.

乳腺：软组织各层次显示清晰，皮肤和皮下脂肪
层未见明显异常回声。双侧腺体结构紊乱，内回
声不均匀，未见明确占位性病变，CDFI未见异常
血流信号。双侧腋下扫查未见肿大淋巴结。
Breast: All layers of soft tissue were clearly visualized, 
with no significant abnormal echogenicity in the skin or 
subcutaneous fat. The glands were structurally 
disorganized bilaterally, with heterogeneous internal 
echogenicity. No clear space-occupying lesions were 
observed, and CDFI revealed no abnormal blood flow 
signals. Bilateral axillary scans revealed no enlarged 
lymph nodes.

肝脏形态饱满，包膜光滑，肝左叶可见一偏高回
声结节，大小约_2DS_，边界清晰，形态尚规整，
后方回声增强，CDFI示周边可探及血流信号；余
实质回声细密增强，门静脉系统显示欠清晰，肝
肾回声对比增强。肝内外胆管未见扩张。门静脉
主干内径正常范围。胆囊大小形态如常，壁不厚，
光滑，腔内未见明显异常回声。胰腺形态饱满，
实质回声稍增强，胰管不宽，内未见明确占位性
病变。脾脏大小形态如常，实质回声均匀，内未
见明显占位性病变。
The liver is plump and has a smooth capsule. A slightly 
hyperechoic nodule, approximately 2DS in size, with 
well-defined borders and a regular shape, is visible in 
the left lobe. Posterior echogenicity is enhanced, and 
CDFI reveals detectable peripheral blood flow. The 
remaining parenchyma is finely echogenic, with unclear 
visualization of the portal venous system and enhanced 
echo contrast between the liver and kidneys. No 
intrahepatic or extrahepatic bile duct dilatation is 
observed. The internal diameter of the main portal vein 
is within the normal range. The gallbladder is normal in 
size and shape, with a smooth, thin wall and no obvious 
abnormal echogenicity within the lumen. The pancreas 
is plump, with slightly enhanced parenchymal 
echogenicity and a narrow pancreatic duct. No clear 
space-occupying lesion is observed within the pancreas. 
The spleen is normal in size and shape, with a uniform 
parenchymal echogenicity and no obvious space-
occupying lesion within the spleen.

肝脏形态饱满，包膜光滑，实质回声细密增强，
门静脉系统显示欠清晰，肝肾回声对比增强。肝
内外胆管未见扩张。门静脉主干内径正常范围。
胆囊大小形态如常，壁不厚，欠光滑，囊壁上可
见多发偏高回声结节，大者约_2DS_，无声影，不
随体位改变而移动。胰腺大小形态如常，实质回
声均匀，胰管不宽，内未见明确占位性病变。脾
脏大小形态如常，实质回声均匀，内未见明显占
位性病变。
The liver is plump, with a smooth capsule and densely 
enhanced echogenicity. The portal venous system is 
unclear, and liver and kidney echo contrast is enhanced. 
The intrahepatic and extrahepatic bile ducts are not 
dilated. The internal diameter of the main portal vein is 
within the normal range. The gallbladder is normal in 
size and shape, with a thin, less smooth wall. Multiple 
hyperechoic nodules, the largest of which is 
approximately 2DS in diameter, are visible on the cyst 
wall. These nodules are silent and do not move with 
changes in body position. The pancreas is normal in 
size and shape, with a uniform echogenicity and a 
narrow pancreatic duct. No clear space-occupying 
lesions are observed. The spleen is normal in size and 
shape, with a uniform echogenicity and no obvious 
space-occupying lesions.

肝脏形态饱满，包膜光滑，于肝左叶可见一囊性
结构，大小约_2DS_，边界清楚，后方回声增强，
CDFI示其内未见血流信号；余实质回声细密增强，
门静脉系统显示欠清晰，肝肾回声对比增强。肝
内外胆管未见扩张。门静脉主干内径正常范围。
胆囊大小形态如常，壁不厚，光滑，腔内未见明
显异常回声。胰腺大小形态如常，实质回声均匀，
胰管不宽，内未见明确占位性病变。脾脏大小形
态如常，实质回声均匀，内未见明显占位性病变。
The liver is plump and has a smooth capsule. A cystic 
structure approximately 2DS in size is visible in the left 
lobe, with well-defined borders and increased 
echogenicity posteriorly. CDFI reveals no blood flow 
within it. The remaining parenchyma is finely echogenic, 
with the portal venous system less clearly visualized. 
Hepatic and renal echo contrast is enhanced. No 
intrahepatic or extrahepatic bile duct dilatation is 
observed. The internal diameter of the main portal vein 
is within the normal range. The gallbladder is normal in 
size and shape, with a smooth, thin wall and no obvious 
abnormal echogenicity within the lumen. The pancreas 
is normal in size and shape, with a uniform echogenicity 
of the parenchyma and a narrow pancreatic duct. No 
clear space-occupying lesion is observed within the 
parenchyma. The spleen is normal in size and shape, 
with a uniform echogenicity of the parenchyma and no 
obvious space-occupying lesion.

SFT Concept Instruction SFT + CRS

Figure 13: Comparison of report examples generated on the mammary and liver datasets.

A.10 COMPARISON WITH OTHER MEDICAL VLMS

As shown in the Table 11, our bidirectional collaborative framework improves medical VLMs (Xu
et al., 2025; Sellergren et al., 2025) on the English thyroid report dataset—translated from a Chi-
nese clinical dataset via Google Translate—with HSM increasing from 0.6445 (SFT) to 0.6777. A
key limitation stems from our reliance on machine-translated reports: while our framework operates
in English to leverage strong open-source VLMs, subtle clinical semantics in the original Chinese
reports—particularly in nuanced finding descriptors (e.g., margin, echogenicity)—may be lost or
distorted during translation, weakening the anatomical grounding of AFCUs and limiting the effec-
tiveness of concept-level interventions.
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Table 11: Performance comparison of various VLMs on the English thyroid ultrasound report
dataset.

Model BLEU-1 BLEU-4 METEOR ROUGE-L Precision Recall F1 Score AIOU FSS HSM

Lingshu-32B 0.2207 0.0153 0.1348 0.1573 0.5537 0.2375 0.3123 0.2049 0.0488 0.0968
Qwen2.5-VL-3B 0.0846 0.0055 0.0912 0.0957 0.2484 0.1593 0.1858 0.1187 0.0246 0.0507
Medgemma-4b 0.1059 0.0075 0.1148 0.1123 0.2412 0.1450 0.1746 0.1125 0.0228 0.0480

Qwen2.5-VL-3B+SFT 0.6220 0.4367 0.3284 0.6042 0.8541 0.8215 0.8260 0.7281 0.5622 0.6351
Medgemma-4b+SFT 0.6248 0.4350 0.3318 0.6039 0.8635 0.8219 0.8311 0.7378 0.5712 0.6445
Medgemma-4b+Ours 0.6642 0.4609 0.3558 0.6107 0.8879 0.8676 0.8689 0.7877 0.5916 0.6777
Medgemma-4b UB 0.6642 0.4774 0.3737 0.6534 0.9303 0.9193 0.9194 0.8658 0.6865 0.7668

A.11 ADDITIONAL DATA

Tables 12 and 13 are the full versions of the corresponding tables in the main text (see Tables 1
and 3).

Table 12: Average performance of interventions at different levels after instruction Supervised Fine-
Tuning (SFT). Concept-level (AFCU) SFT refers to our proposed Concept Instruction Tuning.

Type BLEU-4 ROUGE-L F1 Score AIOU FSS HSM

SFT 0.6341 0.7277 0.8596 0.7752 0.5531 0.6475
+ Phrase-level Intervention 0.5662 0.6775 0.8356 0.7404 0.4962 0.5984
+ Sentence-level Intervention 0.6481 0.7380 0.8191 0.7188 0.5603 0.6280
+ Report-level Intervention 0.8669 0.8999 0.9455 0.9141 0.8337 0.8681
Concept-level (GPT) SFT 0.5653 0.6434 0.8044 0.6925 0.4606 0.5602
+ Concept-level (GPT) 0.5131 0.6370 0.8145 0.7078 0.4315 0.5470

Concept-level (AFCU) SFT 0.6230 0.6985 0.8459 0.7543 0.5321 0.6282
+ Concept-level (AFCU) 0.6604 0.7413 0.8861 0.8157 0.6131 0.7015

Table 13: Performance of interventions selected by different uncertainty estimation methods under
the Concepts Instruction Tuning condition.

Type BLEU-4 ROUGE-L F1 Score AIOU FSS HSM

Concepts Instruction Tuning 0.6230 0.6985 0.8459 0.7543 0.5321 0.6282
+Random 0.6532 0.7365 0.8797 0.8062 0.6019 0.6907
+Semantic Entropy 0.6576 0.7436 0.8909 0.8236 0.6200 0.7086
+VL-uncertainty 0.6672 0.7488 0.8903 0.8222 0.6252 0.7111
+ours 0.7080 0.7883 0.9170 0.8621 0.6812 0.7604
Upper Bound 0.7666 0.8300 0.9484 0.9141 0.7769 0.8383

A.12 LIMITATIONS AND SOCIETAL IMPACT

Although our Concept Risk Score effectively identifies high-risk present-but-misgrounded anatom-
ical concepts, it assumes the VLM can already detect relevant anatomy, making it unable to flag
anatomical concepts omitted by the model. Recent works (e.g., knowledge-graph or tree-reasoning
models) also use structured concept representations, but primarily to improve internal generation
mechanisms. In contrast, our focus is on human–AI collaboration: AFCU and CRS are not part
of the generator, but interpretable, actionable units for physician feedback. Future work could in-
tegrate such models as backbones within the RCL-3 framework to further enhance collaborative
efficiency. Regarding the Holistic Semantic Match (HSM) metric, its Finding Semantic Similarity
(FSS) component, which compares finding concepts tied to each anatomical entity, is designed to
be language-agnostic. However, implementation is simpler for Chinese reports, which follow a con-
sistent subject–predicate–object structure: the text between consecutive anatomical concepts often
directly encodes the associated finding concepts. In contrast, English reports use more varied syntax
(e.g., passive voice, embedded clauses), requiring robust Natural Language Processing (NLP) tools
for accurate finding extraction. Our current RCL-3 implementation targets only the single anatomi-
cal concept with high error risk per report. While this minimizes physician effort and enables rapid
correction, it leaves other errors unaddressed. This is a deliberate trade-off that favors high-leverage
interventions over exhaustive review.
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Table 14: Correlation between HSM and BLEU metrics across different organs, showing both mean
scores and Pearson correlation coefficients.

Organ Sample Size HSM Mean BLEU1 Mean BLEU4 Mean HSM–BLEU1 HSM–BLEU4

R p-value R p-value

Liver 279 0.8449 0.8854 0.8379 0.8467 p<0.001 0.8735 p<0.001
Mammary 703 0.7064 0.7228 0.6557 0.8335 p<0.001 0.8896 p<0.001

Ovary 169 0.4673 0.5901 0.4415 0.5480 p<0.001 0.6979 p<0.001

Table 15: Ablation study of our method with intervention prompts. ”Base + Prompt”: uses the orig-
inal QwenVL-3B model with intervention prompts applied at inference time. ”Concept Instruction
Tuning” and ”CRS” are the two core components of our proposed method.

Methods BLEU-1 BLEU-4 METEOR ROUGE-L

Base + Prompt 0.1043 0.0301 0.1327 0.3478
Concept Instruction Tuning + Prompt 0.6951 0.5931 0.4342 0.7078

Concept Instruction Tuning + Prompt+ CRS 0.8064 0.7080 0.4713 0.7883
Upper Bound 0.8469 0.7666 0.5095 0.8300

Nevertheless, this focused approach marks a foundational step toward scalable, trust-aware hu-
man–AI collaboration. By shifting from full manual revision to concept-level guidance, we reduce
workload while preserving oversight. The framework is inherently extensible: as VLMs and CRS
improve, the same protocol can support multi-concept or iterative refinement, offering a scalable
blueprint for real-world clinical deployment. We hope our findings provide meaningful insights
and practical guidance for developing truly effective human–AI collaboration paradigms, ultimately
supporting the genuine deployability of medical report generation systems.

A.13 STABILITY OF HSM CORRELATION WITH TRADITIONAL METRICS ACROSS
ANATOMICAL ORGANS

As shown in Figure 14, the correlation between HSM and BLEU metrics is generally strong but
varies across organs, reflecting differences in reporting complexity and semantic structure. For
Liver and Mammary—organs with more standardized descriptions—the correlations are high (R >
0.83 for BLEU-1, R > 0.87 for BLEU-4), suggesting that n-gram overlap often aligns with semantic
correctness. However, for Ovary, the correlation drops notably (R = 0.55 for BLEU-1), indicating
that BLEU can be misleading when reports contain fluent but clinically inaccurate phrasing. This
variability demonstrates that while BLEU may serve as a rough proxy in simpler cases, HSM offers
more stable and clinically meaningful evaluation across diverse anatomical contexts.

A.14 ABLATION STUDY OF CONCEPT INSTRUCTION TUNING AND CRS

Table 15 presents an ablation study to evaluate the contributions of our key components. Using only
intervention prompts with the base QwenVL-3B model (“Base + Prompt”) yields poor performance,
highlighting the necessity of task-specific adaptation. Incorporating Concept Instruction Tuning
dramatically improves all metrics, demonstrating that the intervention capability stems not from the
base model itself, but from our fine-tuning strategy. Adding CRS (Concept Refinement Strategy) fur-
ther boosts performance across the board, confirming that uncertainty-aware, targeted intervention
enhances generation quality. The final result approaches the theoretical upper bound—achieved by
feeding the full ground-truth report as input—validating the efficacy of our human–AI collaboration
framework.

A.15 ENHANCING CLINICAL EFFICACY ON THE ENGLISH IU-XRAY DATASET

To evaluate clinical utility, we report clinical efficacy (CE) metrics—precision, recall, and F1—on
the English-language IU-Xray dataset (Demner-Fushman et al., 2015). As shown in Table 16,
our method achieves 0.470 precision, 0.468 recall, and 0.468 F1, substantially outperforming
R2Gen (Chen et al., 2020), CVT2Dis (Nicolson et al., 2023), M2KT (Nooralahzadeh et al., 2021),
PromptMRG (Jin et al., 2024a), and REVTAF (Zhou et al., 2025) (F1: 0.273). CE metrics are eval-
uated using the same CheXbert-based (Smit et al., 2020) validation code as in Zhou et al. (2025).
The significant gain likely stems from our AFCU-based interaction: when a physician corrects an
Anatomy-Finding Concept Unit, the refined clinical finding is directly incorporated into the final
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Table 16: Clinical efficacy and language quality on IU-Xray. Our method achieves substantially
higher CE metrics (precision, recall, F1) while maintaining competitive METEOR scores versus
state-of-the-art approaches.

Year METEOR Precision Recall F1

R2Gen ACL 2020 0.128 0.151 0.145 0.145
CVT2Dis Artif.Intell.Med 2022 0.147 0.174 0.172 0.168

M2KT MIA 2023 0.153 0.153 0.145 0.145
PromptMRG AAAI 2024 0.160 0.213 0.229 0.211

REVTAF ICCV 2025 0.176 0.286 0.282 0.273
Ours - 0.178 0.470 0.468 0.468

report, leading to more accurate CheXbert labeling. This validates a core claim of our work—the
necessity of efficient, concept-level physician intervention for clinically meaningful refinement. No-
tably, this strong performance is achieved despite our model being primarily trained on Chinese
ultrasound data, demonstrating robust multilingual generalization.

A.16 HUMAN-IN-THE-LOOP EVALUATION

To demonstrate the time savings and reduced workload on physicians achieved by our method, we
compared the time required by human annotators under different generation settings, as shown in
Table 17. We evaluated 15 samples from the Mammary dataset and measured the average time spent
under four configurations: (1) fully human-generated, (2) fully AI-generated, (3) AI-generated with
manual checking and editing of one AFCU by a physician, and (4) AI-generated with CRS-based
checking and subsequent editing of one AFCU by a physician. The results show that setting (4)
reduces the average time by 14.34 seconds compared to setting (3), demonstrating that our CRS
indeed has the potential to alleviate the burden on physicians.

Table 17: Average Time (seconds) per Sample under Different Generation Settings on 15 Mammary
Cases. Our CRS reduces human effort by 14.31 s compared to manual checking.

Human-Generated AI-Generated Human Checking CRS Human Editing Time (s)
✓ 205.95

✓ 15.16
✓ ✓ ✓ 46.10
✓ ✓ ✓ 31.76

A.17 LANGUAGE PRESENTATION AND ACCESSIBILITY

All experiments in this work are conducted on a Chinese ultrasound report dataset. Following the
practice of prior work such as KMVE (Li et al., 2024a), we retain the original Chinese text in figures
to ensure academic fidelity and avoid potential semantic distortion from translation. Nevertheless,
to improve accessibility for non-Chinese readers, every Chinese segment is paired with an English
translation.

To further enhance readability, we provide English-only versions of all key figures (including Fig-
ures 14, 15, 16 and 17).

A.18 THEORETICAL ANALYSIS OF THE CONCEPT RISK SCORE

The Concept Risk Score is a principled metric for identifying anatomical concepts whose gener-
ation by a vision-language model lacks reliable visual grounding. Rather than relying on ad hoc
heuristics, CRS is derived from two formal desiderata for robust medical report generation under
input perturbations: Input Sensitivity: A visually grounded VLM must exhibit dependence on im-
age content; specifically, occlusion of the region corresponding to an anatomical concept e should
reduce or eliminate its generation. Semantic Consistency: Conditional on the presence of e, the as-
sociated descriptive findings (e.g., “irregular margin”, “hypoechoic”) should induce stable semantic
representations across perturbed views of the same image.
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Reports

Anatomical 
Concepts

Finding
Concepts

Sentence
Transformer

Embedding Clustering Dictionary

The thyroid gland was normal in size and shape, with heterogeneous glandular echogenicity, 
and scattered hypoechoic areas with unclear boundaries. Multiple hypoechoic nodules were 
observed within the left lobe, the largest of which was located in the central region, 
approximately 2DS in size, with clear boundaries and regular morphology. CDFI showed no 
blood flow signal. No obvious enlarged lymph nodes were found bilaterally in the neck.

Report-level

Sentence-level
Multiple hypoechoic nodules were observed within the left lobe, the largest of which was 
located in the central region, approximately 2DS in size, with clear boundaries and regular 
morphology. CDFI showed no blood flow signal.

Multiple hypoechoic 
nodules can be seen in the 
left lobe gland

Phrase-level
The larger one is in the 
middle

Concept-level                                                                            (GPT) 
Hyperechoic nodules Hypoechoic nodules

Concept-level                             (Anatomic-Finding Concept Unit)
Left lobe - multiple 
hypoechoic nodules

Left lobe nodule - the larger 
one is located in the middle

Coarse-Grained

Coarse-Grained

Weakly Anchored

Weakly Anchored

Fine-Grained
Strongly Anchored

Figure 14: Comparison of Interaction Levels by Semantic Granularity and Anchoring, with
Anatomic-Finding Concept Unit Extraction Pipeline (English-only version).

<Input Image>:
By analyzing the images and using the relevant information to generate a detailed medical report.
<Instruction>:

The thyroid gland was normal in size and shape. A hypoechoic nodule, approximately 2DS in size, with clear boundaries and regular morphology, 
was visible in both lobes. CDFI revealed minimal peripheral blood flow. 

<Initial Generation>:

<Image Occlusion>:
Generation 1:
A hypoechoic nodule with a size of approximately 2DS and clear boundaries can 
be seen at the lower pole of the left lobe
Generation 2:
Multiple hypoechoic nodules can be seen in both lobes. The larger one in the left 
lobe is located in the middle and lower part, about _2DS_ in size.

<Generation under Image Occlusion>:

<Ground Truth>:
The thyroid gland was normal in size and shape. Multiple hypoechoic nodules were visible in both lobes. The larger nodules were located at the lower pole of the left lobe, approximately 
2DS in size. The larger nodules were located at the lower pole of the right lobe, approximately 2DS in size. These nodules had clear boundaries and regular morphology. CDFI revealed no 
blood flow signals. 

<Final Generation>:
The thyroid gland was normal in size and shape. Multiple hypoechoic nodules were present in both lobes, the larger of which were located at the lower pole. The larger nodules in the left lobe 
were approximately 2DS in diameter, and in the right lobe, approximately 2DS in diameter. These nodules had clear boundaries and regular morphology, and CDFI revealed no clear blood flow 
signal. 

<Instruction>:
By analyzing the images and using the relevant information to generate a detailed medical report. Information: Present [both lobes of the thyroid gland], (multiple hypoechoic nodules are 
seen).

Concept
Risk
Score

[Both lobes of the thyroid gland] need to be 
examined

Present [both lobes of the thyroid gland],  
(multiple hypoechoic nodules are seen).

Figure 15: The three main stages of bidirectional human-AI collaborative report generation. Among
them, Concept Instruction Tuning follows the same form as the third stage (English-only version).

Reports

Anatomical 
Concepts

Finding
Concepts

Sentence
Transformer

Embedding Clustering Dictionary

The thyroid gland is normal in size and shape. Multiple hypoechoic nodules are 
visible in the left lobe, the largest of which is located in the middle, approximately 
2DS in size.

The thyroid gland is normal in size and shape. Multiple hypoechoic nodules are 
present in both lobes, the larger of which are located at the lower pole. 

Ground Truth

Prediction

HSM=

EIOU=

ASS=
E A E A

thyroid gland
normal in size 
and shape

Mapping

BLEU1      
BLEU4 
ROUGE-L

0.6579
0.4687
0.7133

EIOU
ASS   
HSM 

0.5000
0.3842
0.4383STS 0.8830

HSM

Figure 16: Workflow of anatomical and finding concepts extraction and concept-based semantic
similarity metric calculation (English-only version).
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Ground Truth
Breast: All layers of soft tissue were clearly visualized, 
with no significant abnormal echogenicity in the skin or 
subcutaneous fat. The glands were regularly arranged 
bilaterally, with uniform internal echogenicity. No ductal 
dilatation or clear space-occupying lesions were 
observed, and CDFI revealed no abnormal blood flow 
signals. Bilateral axillary scans revealed no enlarged 
lymph nodes.

Scanning the area indicated by the patient on the outer 
side of the left breast, a relatively strong echo nodule 
was seen in the subcutaneous fat layer, about _3DS_ in 
size, with clear boundaries and regular shape. CDFI 
showed detectable blood flow signals.

Breast: All layers of soft tissue were clearly visualized, 
with no significant abnormal echogenicity in the skin or 
subcutaneous fat. The glands were structurally 
disorganized bilaterally, with heterogeneous internal 
echogenicity. No clear space-occupying lesions were 
observed, and CDFI revealed no abnormal blood flow 
signals. Bilateral axillary scans revealed no enlarged 
lymph nodes.

The liver is plump and has a smooth capsule. A slightly 
hyperechoic nodule, approximately 2DS in size, with 
well-defined borders and a regular shape, is visible in 
the left lobe. Posterior echogenicity is enhanced, and 
CDFI reveals detectable peripheral blood flow. The 
remaining parenchyma is finely echogenic, with unclear 
visualization of the portal venous system and enhanced 
echo contrast between the liver and kidneys. No 
intrahepatic or extrahepatic bile duct dilatation is 
observed. The internal diameter of the main portal vein 
is within the normal range. The gallbladder is normal in 
size and shape, with a smooth, thin wall and no obvious 
abnormal echogenicity within the lumen. The pancreas 
is plump, with slightly enhanced parenchymal 
echogenicity and a narrow pancreatic duct. No clear 
space-occupying lesion is observed within the pancreas. 
The spleen is normal in size and shape, with a uniform 
parenchymal echogenicity and no obvious space-
occupying lesion within the spleen.

The liver is plump, with a smooth capsule and densely 
enhanced echogenicity. The portal venous system is 
unclear, and liver and kidney echo contrast is enhanced. 
The intrahepatic and extrahepatic bile ducts are not 
dilated. The internal diameter of the main portal vein is 
within the normal range. The gallbladder is normal in 
size and shape, with a thin, less smooth wall. Multiple 
hyperechoic nodules, the largest of which is 
approximately 2DS in diameter, are visible on the cyst 
wall. These nodules are silent and do not move with 
changes in body position. The pancreas is normal in 
size and shape, with a uniform echogenicity and a 
narrow pancreatic duct. No clear space-occupying 
lesions are observed. The spleen is normal in size and 
shape, with a uniform echogenicity and no obvious 
space-occupying lesions.

The liver is plump and has a smooth capsule. A cystic 
structure approximately 2DS in size is visible in the left 
lobe, with well-defined borders and increased 
echogenicity posteriorly. CDFI reveals no blood flow 
within it. The remaining parenchyma is finely echogenic, 
with the portal venous system less clearly visualized. 
Hepatic and renal echo contrast is enhanced. No 
intrahepatic or extrahepatic bile duct dilatation is 
observed. The internal diameter of the main portal vein 
is within the normal range. The gallbladder is normal in 
size and shape, with a smooth, thin wall and no obvious 
abnormal echogenicity within the lumen. The pancreas 
is normal in size and shape, with a uniform echogenicity 
of the parenchyma and a narrow pancreatic duct. No 
clear space-occupying lesion is observed within the 
parenchyma. The spleen is normal in size and shape, 
with a uniform echogenicity of the parenchyma and no 
obvious space-occupying lesion.

SFT AFCU SFT + CRS

Figure 17: Comparison of report examples generated on the mammary and liver datasets (English-
only version).

We now formalize how CRS quantifies violations of these properties using information-theoretic
and representation-geometric tools.

Behavioral Rigidity as a Signature of Input Insensitivity (Information-Theoretic) Let {Ti}7i=0
denote the set of reports produced from the original image (T0) and seven independently occluded
variants (T1, . . . , T7). For a fixed anatomical concept e, define the binary indicator sequence ai =
I[e ∈ Ti] for i = 1, . . . , 7. The empirical frequency

Freq(e) =
1

7

7∑
i=1

ai

estimates the marginal probability that e is emitted irrespective of visual evidence. However, fre-
quency alone conflates systematic hallucination with stochastic noise.

To disentangle these, we model {ai} as i.i.d. draws from a Bernoulli distribution with parameter
p = Freq(e). The Shannon entropy of this distribution,

H(e) = −p log2 p− (1− p) log2(1− p),

quantifies the uncertainty in the model’s decision to generate e. Minimal entropy (H(e) = 0) occurs
precisely when p ∈ {0, 1}, i.e., when the output is deterministic—either always or never generating
e. We define stability as

Stability(e) = 1−H(e),

which maps entropy to a measure of behavioral rigidity in [0, 1]. The product Freq(e) · Stability(e)
thus isolates concepts that are both frequently generated and insensitive to occlusion—a signature of
false robustness, wherein the model exhibits unwarranted confidence due to reliance on non-visual
priors.
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Content Uncertainty via Semantic Dispersion (representation-geometric) Even when e is
correctly detected, clinical utility requires that its associated findings be semantically coherent
across views. Let F (i)

e denote the set of finding phrases attributed to e in report Ti, and let
ϕi = SBERT(F (i)

e ) ∈ Rd be their aggregated embedding (Reimers & Gurevych, 2019). Define
the average cosine similarity between perturbed and reference findings as

s =
1

7

7∑
i=1

cos(ϕi, ϕ0) =
1

7

7∑
i=1

ϕ⊤
i ϕ0

∥ϕi∥∥ϕ0∥
.

Under perfect visual grounding, ϕi ≈ ϕ0 for all i, yielding s → 1. Under complete semantic
randomness, E[cos(ϕi, ϕ0)] → 0 in high dimensions. Critically, the regime s ≈ 0.5 corresponds to
structured but inconsistent descriptions—indicative of unstable grounding where the model produces
plausible yet mutually contradictory findings.

To emphasize this ambiguous regime, we define the Semantic Ambiguity Index (SAI) as

SAI(e) =
√
|s(1− s)|.

This function attains its maximum at s = 0.5 and is symmetric about this point, providing a bounded
measure (SAI(e) ∈ [0, 0.5]) of semantic dispersion that penalizes both over-consistency (s ≈ 1) and
pure noise (s ≈ 0).

Joint Failure Detection via Multiplicative Scoring The CRS combines the above signals multi-
plicatively:

CRS(e) =
[
Freq(e) · Stability(e)

]
· SAI(e).

This formulation ensures that high scores arise only when both conditions hold: The concept is
persistently generated despite occlusion (high Freq · Stability), indicating visual disengagement; Its
descriptive findings are semantically inconsistent (high SAI), indicating unreliable grounding.

Consequently, CRS inherently suppresses three classes of low-leverage cases: (i) rare errors (low
Freq), (ii) erratic outputs (low Stability), (iii) consistently correct or consistently incorrect descrip-
tions (low SAI).

Thus, CRS provides a theoretically grounded prioritization criterion: it identifies precisely those
concepts whose correction yields maximal improvement in vision-language alignment per unit
physician effort. Unlike confidence-based metrics, CRS operates solely on observable behavioral
responses to perturbations, making it a more reliable proxy for visual grounding quality in safety-
critical clinical settings.

A.19 AFCU ENABLES CLINICALLY GROUNDED AND FINE-GRAINED HUMAN–AI
INTERACTION

As shown in Figure 2, a phrase refers to a short text segment obtained by splitting a report at commas
or periods, a sentence refers to a longer segment split only at periods, and a report denotes the
complete ground-truth report. GPT concepts are generated using the prompt: “Can you provide
concise radiology descriptors for [thyroid nodules]? List in bullet points with no extra context.”
AFCU concepts are extracted using the prompts illustrated in Figures 8.

Regarding the results in Table 1, SFT denotes standard supervised fine-tuning using the full ground-
truth report with LoRA and full visual encoder tuning. Phrase-level means feeding individual
phrases (comma- or period-delimited) into the SFT-ed model for generation. Sentence-level means
feeding whole sentences (period-delimited) into the SFT-ed model. Report-level means providing
the entire ground-truth report as input to the SFT-ed model. GPT SFT refers to fine-tuning on the
same dataset while augmenting the prompt with GPT concepts. AFCU SFT refers to fine-tuning
with prompts augmented by our proposed AFCU concepts.

From Table 1, we observe that SFT + Report-level yields the best performance because the com-
plete ground-truth report is provided as additional input—effectively giving the model the “answer.”
However, this setting is clinically impractical: it makes no sense to ask a radiologist to write a full
report first and then collaborate with a VLM. Nonetheless, it serves as a theoretical upper bound
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for human–AI collaboration. In contrast, AFCU-based interaction achieves the best performance
among practically feasible approaches.

Moreover, as illustrated in Figure 2, both report-level and sentence-level inputs are too coarse-
grained for interactive correction. In clinical practice, radiologists rarely need to revise an entire
sentence or full report; errors are typically localized—minor omissions or inaccuracies in specific
descriptions. On the other hand, phrase-level segments (split by commas) often lack semantic com-
pleteness and are thus unsuitable.

GPT concepts, while useful, tend to describe attributes in a weakly anchored manner—for example,
“hyperechoic nodule” without clearly specifying which lobe (left or right), leading to ambiguity.
In contrast, our AFCU framework explicitly separates: the anatomical concept (e.g., “right lobe”),
and the finding concept (e.g., “hyperechoic nodule”). Only their combination yields a clear, un-
ambiguous, atomic-level description. This design is fine-grained—enabling efficient human–AI
interaction—and strongly anchored to specific anatomical locations, eliminating ambiguity.

As further supported by Table 1, our AFCU-based approach aligns most closely with real-world
clinical workflows—precisely the motivation behind our original design.

A.20 HSM ALIGNS EVALUATION WITH CLINICAL REASONING

In automatic evaluation of medical reports, existing metrics share a fundamental blind spot: they
fail to model the core clinical structure of radiology reports—the binding between anatomical lo-
calization and associated findings. GREENScore (Ostmeier et al., 2024) relies on large language
models to classify errors; while interpretable, it reduces evaluation to error counting and ignores
contextual structure. RaTEScore (Zhao et al., 2024) and GEMA-Score (Zhang et al., 2025) intro-
duce fine-grained entities (e.g., location, severity), yet still treat anatomy and findings as indepen-
dent elements. This allows models to mask incorrect descriptions by merely mentioning the correct
anatomical region—for instance, reporting “pneumothorax” instead of the true “infiltrate” in the
“right lower lobe,” potentially still receiving a high score—creating a serious misalignment with
clinical practice.

HSM’s key contribution is reframing evaluation as validation of the clinical reasoning chain. It ex-
plicitly separates two necessary conditions: (1) whether the correct anatomical regions are covered
(Anatomical IoU, or AIoU), and (2) whether the description for each region is semantically accu-
rate (Finding Semantic Similarity, or FSS). By combining them via geometric mean, HSM ensures
a high score only when the model both avoids missing or hallucinating anatomy and provides ac-
curate descriptions. Moreover, HSM does not critically depend on closed-source models—only a
one-time use of an LLM is needed during dictionary initialization (which can then be reused in-
definitely)—nor on complex rule systems. Instead, it relies solely on a lightweight normalization
dictionary and open-source sentence embeddings, enabling an end-to-end, reproducible, and deploy-
able evaluation framework.

A.21 ABLATION ON CORRECTION METHODS USING ZERO-SHOT LLM

Table 18: Quantitative evaluation of report correction strategies using a zero-shot Qwen-8B on 50
mammography cases. The initial reports are generated by a US-fine-tuned Qwen-VL-3B SFT model,
and then revised via either sentence-level or AFCU doctor inputs.

Methods Seed Metric Average

SFT Report Sentence Prompt AFCU Prompt origin Qwen 8B BLEU-1 BLEU-4 METEOR ROUGE-L BLEU-1 BLEU-4 METEOR ROUGE-L
√

- 0.7404 0.5998 0.4270 0.7709 0.7404 0.5998 0.4270 0.7709
√ √ √

0 0.7267 0.5968 0.3970 0.7717

0.7317 0.6002 0.3988 0.7707

√ √ √
1 0.7267 0.5968 0.3970 0.7717√ √ √
2 0.7296 0.5982 0.3973 0.7701√ √ √
3 0.7397 0.6067 0.4017 0.7697√ √ √
4 0.7359 0.6024 0.4008 0.7704

√ √ √
0 0.7577 0.6252 0.4348 0.7811

0.7552 0.6149 0.4285 0.7751

√ √ √
1 0.7589 0.6207 0.4308 0.7789√ √ √
2 0.7587 0.6203 0.4303 0.7789√ √ √
3 0.7592 0.6209 0.4308 0.7792√ √ √
4 0.7415 0.5874 0.4157 0.7574

To isolate the effect of the correction methods themselves, we fix the initial report (generated by
an ultrasound-fine-tuned Qwen-VL-3B SFT) and evaluate two prompting strategies on a zero-shot
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Qwen3-8B Yang et al. (2025): (1) sentence-level instructions from (Pellegrini et al., 2025), and (2)
our proposed Anatomical-Finding Concept Unit (AFCU) format. Table 18 shows that sentence-
level correction degrades METEOR (from 0.4270 to 0.3988) with negligible improvement in other
metrics—indicating that unstructured natural language fails to effectively guide the LLM due to
referential ambiguity. For example, feedback such as “The nodule communicates with the duct. . . ”
does not specify which of multiple nodules (e.g., in the left or right breast) it refers to, leading to
error-prone revisions.

In contrast, AFCU explicitly anchors each finding to a specific anatomical location (e.g., “Left
breast nodule communicates with the duct; no blood flow detected”), eliminating ambiguity and
consistently improving all metrics (e.g., BLEU-1 from 0.7404 to 0.7552). This improvement stems
from our structured interaction design—not the model’s inherent capabilities—validating AFCU as
a superior correction protocol.
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