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ABSTRACT

We introduce the first bidirectional collaborative medical report generation frame-
work to reduce physicians’ workload and enhance trustworthiness through tar-
geted physician-Al interaction, where physicians provide feedback only on the
most critical parts, and the Vision-Language Model (VLM) propagates these to
finalize the full report. The core challenge lies in defining the optimal unit of
interaction. We propose the Anatomy-Finding Concept Unit (AFCU), a minimal,
clinically grounded semantic statement (e.g., “left lobe: hypoechoic nodule”), sat-
isfying three key principles: atomicity, lack of ambiguity, and anatomical anchor-
ing. To extract AFCU, we use a Large Language Model (LLM) guided by pre-
defined clinical templates followed by information bottleneck clustering to group
lexically diverse but semantically equivalent anatomical concepts (e.g., “left and
right lobe” to “both lobes of the thyroid gland”), eliminating redundancy while
preserving diagnostic fidelity. To prioritize physician intervention, we introduce
the Concept Risk Score (CRS), quantifying behavioral inconsistency (concepts
generated regardless of image content) and semantic instability (inconsistent asso-
ciated findings under image perturbations) via occlusion-based visual grounding.
Finally, we propose Holistic Semantic Match (HSM), a concept-based metric that
correlates strongly with human judgment (Pearson’s r = 0.846, p < 0.05). Experi-
ments show our framework improves semantic quality by 9.13% HSM across four
organs by correcting only one AFCU with high error risk per report — a minimal,
clinically feasible intervention, enabling efficient and trustworthy physician-Al
collaboration.

1 INTRODUCTION

Medical imaging reports serve as critical objective evidence for clinical diagnosis but impose sub-
stantial time and workload burdens on physicians (Kisilev et al., 2015; Hartsock & Rasool, 2024).
Advances in Artificial Intelligence (Al) have significantly improved the accuracy of automated Med-
ical Report Generation (MRG), making it one of the most promising solutions (Li et al., 2021; Zhou,
2023; Wang et al., 2025). However, does automated MRG truly reduce the workload of physicians?
In practice, due to the lack of trust stemming from the “black-box” nature of Al systems (Messina
et al., 2022), their potential for errors and the associated ethical concerns, physicians still need to
conduct comprehensive manual reviews of generated reports. As a result, the final report quality
remains heavily dependent on the physician’s vigilance and expertise. Since physician involvement
is unavoidable, the real challenge lies not in removing physicians from the loop by pushing model
accuracy ever higher, which has an upper bound, but in leveraging their expertise more effectively.
This motivates a new collaborative MRG paradigm, where physicians and Al interact in a targeted
and trustworthy manner to jointly produce reliable medical reports.

While the need for effective collaboration between Al and physicians is clear, existing approaches
remain largely unidirectional. To structure these approaches and advance collaborative MRG, we
define the Report Collaboration Level (RCL) based on Al trustworthiness and physicians’ actual
workload, as illustrated in Figure 1. Current mainstream methods fall into the first two levels. RCL-
1 Passive Collaboration. Exemplified by Flamingo-CXR (Tanno et al., 2025), where Al drafts the
report and physicians comprehensively revise it, akin to “an intern writing a draft for an attending
physician to rewrite.” This mode features low Al trustworthiness and high physician burden. RCL-2
Guided Collaboration. As in Keyword-based MRG (Dong et al., 2025), where physicians provide



Under review as a conference paper at ICLR 2026

keywords and Al structures the final report, analogous to “a supervisor providing key points for an
intern to compose.” Here, Al exhibits partial interpretability, moderately reducing physician work-
load. However, both RCL-1 and RCL-2 represent unidirectional workflows, underutilizing AI’s deep
understanding of medical images and text, and still requiring comprehensive manual review.
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Figure 1: Comparison and Visualization of Report Collaboration Levels (RCL). RCL categorizes
human-Al report generation, from full physician review (Tanno et al., 2025; Dong et al., 2025) to
interaction focused only on key uncertainties.

To address this limitation, we introduce RCL-3 — an active bidirectional paradigm for the first time:
VLMs draft reports, proactively flag contents with high error risk, and physicians correct only those.
VLMs then finalize the report. Analogous to “an intern flags uncertainties for targeted guidance,”
this boosts Al trustworthiness, reduces physician workload, and enhances collaboration efficiency.
However, in RCL-3, a core challenge emerges: what is the efficient, yet clinically meaningful, unit
a physician should correct? Inspired by software engineering — where engineers fix statements,
not entire files or tokens — we argue that physicians require an interaction unit that is atomic, un-
ambiguous, and strongly anchored to clinical reality. Figure 2 illustrates that coarse units (e.g.,
sentences) violate atomicity, forcing review of multi-fact statements; fragmented ones (e.g., GPT
concepts) violate unambiguity, being weakly anchored to anatomy (More details can be found'in
SecrAT19)! We propose the Anatomy-Finding Concept Unit (AFCU) as the optimal solution: a min-
imal semantic “statement” composed of an anatomical concept (e.g., “left lobe”) and its associated
finding concepts (e.g., “hypoechoic nodule”). Our empirical analysis'in Table I"demonstrates that
AFCU is the optimal choice for achieving the best performance in practice. However, this raises two
issues: (i) how to extract these clinically grounded concept units? and (ii) how to assess poten-
tial errors? Regarding extraction methods, we use DeepSeek-V3 (DeepSeek-Al, 2024) to initially
extract anatomical and finding concepts based on predefined templates derived from real clinical re-
ports, followed by clustering anatomical concepts to reduce semantic redundancy using information
bottleneck. For potential error assessment, we propose the Concept Risk Score (CRS). CRS quanti-
fies each anatomical concept’s visual detachment and semantic instability through occlusion-based
perturbations and automatically identifies high-risk anatomical concept requiring physician inter-
vention. A higher CRS indicates greater model improvement. Physicians then provide feedback
only on one flagged anatomical concept, enabling VLMs to regenerate more reliable reports based
on concept-level interaction.

Moreover, better medical report generation must be evaluated with clinically grounded metrics.
BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) capture only surface text; even HalFscore
(Chen et al., 2025a) — reliant on LLMs and natural image priors — is impractical for structured
reports. We propose a concept-based metric, Holistic Semantic Match (HSM), that measures entity
coverage, attribute fidelity, and clinical alignment. As shown in Figure 5(a), our proposed metric
exhibits strong correlation with human evaluations (Pearson’s r = 0.846, p < 0.05), validating its
clinical effectiveness.

To summarize, our main contributions are threefold! First, we introduce the first bidirectional collab-
orative MRG framework, which improves model trustworthiness while reducing physicians’ work-
load. Second, via information bottleneck theory, we enable VLMs to interpret and revise concept-
level feedback through clustering and concept-level instruction tuning for targeted report refinement.
Third, we propose the Concept Risk Score, a perturbation-based metric that prioritizes high-leverage
anatomical entity corrections to maximize diagnostic gain per intervention. Additionally; we estab-
lish the first concept-grounded semantic metric suite for medical reports, and by flagging the single
most critical entity concept for intervention, our method boosts HSM semantic similarity by an
average of 9.13% across four organs, achieving significant quality gains with minimal physician
intervention.
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2 RELATED WORK

2.1 MEDICAL REPORT GENERATION

Medical report generation is a cornerstone of computer-aided diagnosis, aiming to alleviate clini-
cians’ workload (Liu et al., 2025b; Chen et al., 2025b). Deep learning has driven steady progress
(Jing et al., 2017; Zhang et al., 2017; Zeng et al., 2020; Jin et al., 2024b; Tang et al., 2025) — from
early CNN-LSTM hybrids SAT (Vinyals et al., 2015), to memory-augmented Transformers R2Gen
(Chen et al., 2020), and knowledge-bridged architectures KMVE (Li et al., 2024a). More recently,
Vision-Language Models have further improved fluency and coverage (Hartsock & Rasool, 2024;
Ge et al., 2025). Concurrently, other efforts have sought to enhance factual consistency through
knowledge graphs (Zhang et al., 2020; Li et al., 2023; Hou et al., 2023a), tree-structured observation
planning (Hou et al., 2023b), or clinical knowledge injection into Transformers (Huang et al., 2023).
While these approaches enhance report quality, anatomical grounding, and structured reasoning,
they remain fully automatic and operate within a unidirectional generation paradigm. Consequently,
their outputs still require comprehensive review and correction by physicians in clinical practice.
Due to limited trust and lack of interactive refinement mechanisms, this paradigm (Tanno et al.,
2025; Dong et al., 2025) has not significantly reduced physician workload, highlighting the urgent
need for a bidirectional collaboration framework that enables concept-level interaction and shared
goal understanding.

2.2 HUMAN-AI COLLABORATION

Most human activities are collaborative, so integrating Al into complex workflows requires a
Computer-Supported Cooperative Work perspective (Wang et al., 2020). Human-AlI collaboration
has reduced human workload across various domains. In systematic literature reviews (Spillias et al.,
2024), Al-assisted retrieval and screening enhanced accuracy, achieving low omission rates and high
consistency despite some false positives. In brain MRI differential diagnosis (Kim et al., 2025), ra-
diology residents using LL.M-assisted search tools improved diagnostic accuracy without affecting
interpretation time or confidence. However, current approaches in medical report generation (Tanida
et al., 2023) largely involve passive, unidirectional collaboration, such as Flamingo-CXR (Tanno
et al., 2025) reports for physicians to revise or physicians providing keywords for Al to organize
(Dong et al., 2025). These methods don’t significantly reduce clinicians’ workload.

2.3  UNCERTAINTY ESTIMATION FOR LARGE MULTIMODAL MODELS

As multimodal large models spread, assessing output reliability and using uncertainty estimation
to identify potential errors has become a key challenge Liu et al. (2025a). Current uncertainty
estimation methods can be broadly categorized into sequence-level and entity-level approaches.
Sequence-level methods, such as token probability-based uncertainty (Guerreiro et al., 2022) and
semantic entropy via clustering (Kuhn et al., 2023; Farquhar et al., 2024), capture global output
variability but fail to localize errors to specific entities. VL-Uncertainty (Zhang et al., 2024) im-
proves robustness via visual-textual perturbations but remains sequence-focused. Although recent
entity-level detection methods (Obeso et al., 2025) attempt fine-grained validation, their reliance
on external knowledge bases makes it difficult to meet the core requirement of visual-grounded ac-
curacy in medical imaging reports — even when combined with Retrieval-Augmented Generation,
they cannot ensure consistency between the generated content and the visual features of the image
(e.g., echo, boundaries, blood flow), leading to clinical risk. Furthermore, existing methods fail to
provide intervention priorities based on entity-level uncertainty.

3 METHODOLOGY

We propose a concept-centric, risk-aware framework for human-Al collaborative medical report
generation, addressing three key challenges: extracting non-redundant concepts, integrating human
feedback without retraining, and prioritizing high-impact interventions. Our pipeline begins with
Compression of Anatomical Concepts via Information Bottleneck (§3.1), which distills reports into
a structured, image-grounded concept dictionary, compressing redundancy while preserving criti-
cal Anatomy-Finding Concept Units (AFCU). Next, Concept Instruction Tuning enables models to
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self-calibrate during inference (§3.2), aligning generated reports with physician-provided concept
cues to reflect high-confidence clinical knowledge when uncertainty arises. We then introduce the
Concept Risk Score (§3.3), a two-stage metric that identifies concepts most likely to benefit from in-
tervention, evaluating behavioral inconsistency and semantic ambiguity to highlight optimal targets
for correction. Finally, the Holistic Semantic Match metric assesses clinical fidelity by measuring
semantic alignment (§3.4), focusing on anatomical accuracy and descriptive consistency rather than
lexical overlap.

Report-level Phrase-level
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Figure 2: Comparison of Interaction Levels by Semantic Granularity and Anchoring, with
Anatomic-Finding Concept Unit Extraction Pipeline. Details of the different granularity levels are
provided in Sec. A.19.

Realistic human-Al collaborative report generation follows the three-stage pipeline in Figure 3: (1)
A fine-tuned VLM generates an initial report; (2) CRS identifies the anatomical concept with the
highest error risk, and a physician provides the corrected description; (3) The VLM incorporates this
feedback to produce the final revised report.

3.1 COMPRESSION OF ANATOMICAL CONCEPTS VIA INFORMATION BOTTLENECK

Recall from Section 1 that we define the Anatomy-Finding Concept Unit (AFCU) as the atomic
unit of human-AlI collaboration — composed of an anatomical concept (e.g., “left lobe”) and its
associated finding concepts (e.g., “hypoechoic nodules”). While finding concepts are clinically dis-
criminative and must remain uncompressed, anatomical concepts suffer from lexical redundancy.
For example, “bilateral thyroid lobes”, “left and right lobe”, and “bilateral glandular tissue” all de-
scribe the same anatomy. This variation hinders efficient interaction. As shown in Figure 4(a),
compressing only anatomical concepts reduces redundancy by 87.1%, while preserving diagnostic
fidelity through uncompressed findings.

Given image X and report R, our goal is to extract a structured, non-redundant concept dictionary
D that preserves maximal semantic relevance to X and eliminates linguistic redundancy in R. This
is formalized as an Information Bottleneck (IB) (Tishby et al., 2000; Tishby & Zaslavsky, 2015)
objective:

& =argmax [[(EX) - B-1(E;E)], (1)

gce

where £ are extracted anatomical concepts, £* is the compressed version, and 3 balances relevance
versus conciseness.

Since mutual information is intractable to compute directly, we approximate Eq. 1 in three steps.

Firstly, extract high-fidelity concepts. Use DeepSeek-V3 (DeepSeek-Al, 2024) and clinical tem-
plates (see Appendix § A.3) to extract Anatomical Concept set £ (e.g., “left and right lobe”, “bilobar
lobe”) and Finding Concept set A (e.g., “size normal”, “uniform echo”). Since reports describe X,
extracted anatomical concepts already exhibit high I(£; X)) — we start from a high-fidelity sub-
space. Secondly, cluster semantically equivalent anatomical concepts. Encode each e¢; € & into
#(e;) € R? via Sentence Transformer (Reimers & Gurevych, 2019). Anatomical concepts are clus-
tered if their cosine similarity exceeds an adaptive threshold s + v - 05, where us and o, are the
mean and standard deviation of all pairwise similarities. The compression strength parameter v > 0
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is set by clinical experts based on desired granularity — higher « yields more, narrower clusters.
The resulting canonical entity set £* is formally defined as:

E" ={er|ICr C Esit. Ve, e € Cr, s(ej,ej) > ps+v-0s}. )
For each cluster Cy, a clinical expert selects the most appropriate representative e;. € Cj, based on
clinical canonical usage and report clarity, ensuring £* remains clinically faithful. When s(e;, ;)
is high, e; and e; are semantically equivalent, satisfying I(e;; e;) ~ H(e;). Merging them reduces
I(€*; ) while preserving I(£*; X). Thirdly, attach findings without compression. For each e},
retain all associated finding concepts Aex C A, forming D = {(e, Ae:)}kK: ,- Finding concepts
(e.g., “hypoechoic”, “irregular margin”) are diagnostic modifiers — compressing them risks critical
loss. Thus, we compress only anatomical concepts, not finding concepts. As shown in Figure 2, our
extract, cluster, and bind pipeline approximates the IB objective, yielding a compact, clinically faith-
ful concept dictionary for RCL-3’s concept instruction tuning, risk scoring, and semantic evaluation
(see Appendix § A.3 for more details).

<Input Image>: <Instruction>: D
E RSB MR R E SR . _
=
<Initial Generation>: .
FIRBRA/NEAINE, NHEBGTL—RESE, A/ 20s_, AFMN, BARAE, OOFIRELTREDFIRES.
A hypoechoic nodule
was visible in both lobes
<Image ion>: ion under Image ion>: 2)
e EH—‘FﬂiIm_{EEﬁgf, */]\Q_ZDS_, m#ﬁm . [Both lobes of the th, and]
I a
. . - BHARSMERSET, ZEHAFETHTE, A 20s_... sEERETH], TRGAEEEE. ™
et e S
<Instruction>: B
BRA ARG ERRLERERFANESRE. ER: FEFREUH], TR SEENFEH).
[both lobes of the thyroid gland], (multiple hypoechoic nodules are
seen)
<Final Generation>:
;ﬁgﬁ]%m#. TAREATISEEENGT, XAESMT TR, ZrAEL 208, ARAEN 208, LRATAR AN, RS, COFIRARBIHIM
 thyre Multiple hypoechoic nodules were present in both lobes the larger of which were located at the lower pole. The larger nodules in the left lobe
were approximately 2DS in diameter, and in the right lobe, approximately 2DS in diameter
<Ground Truth>:
;ﬂﬂgd\ﬂéﬁﬁﬂ#. NHANSTEESES, LHARET TR, K0 208, AMAFET TR, XL 208, EReHHFAM, HOME, COFIREK
RI#ES. =
Mltiplé hypoechoic nodules were visible in both Iobes. The larger nodules were located at the lower pole of the left lobe, approximately -
2DS in size. The larger nodules were located at the lower pole of the right lobe, approximately 2DS in size. .

Figure 3: The three main stages of bidirectional human-Al collaborative report generation. Among
them, Concept Instruction Tuning follows the same form as the third stage.

3.2 CONCEPT INSTRUCTION TUNING

We implement anatomically grounded guidance via

concept instruction tuning : during training, we fine-tune

the vision encoder, projector and LLM via LoRA (Hu Table 1: Average performance of inter-
et al., 2022) (see Appendix § A.6) on triplets (I, x4, xp), ventions at different levels after instruc-
where I is the input image; z, is the base instruction tion Supervised Fine-Tuning (SFT).
(“generate a detailed report”); and x,, is a minimal physi- Concept-level (AFCU) SFT refers to
cian cue in AFCU format — e.g., * ‘Present [both our proposed Concept Instruction Tun-
lobes of the thyroid gland], (multiple ing. [Implementation details are pro-

hypoechoic nodules are seen).’’ — in- yidedin Sec.A19:
jected as contextual instruction as illustrated in Figure 3  Type BLEU-4 ROUGELL HSM
« ; » SFT 06341 07277 0.6475
Part 3, whpre both lobes of the fhyrozd gland. denotes > o 062 06715 05088
an anatomical concept and “multiple hypoechoic nodules  +Sentence-level 06481 07380  0.6280
are seen” a finding concept. Crucially, during inference, ~*Reportlevel _
L. ded: physici d . Concept-level (GPT) SFT 05653  0.6434 05602
no retraining 1s needed: physicians can provide T, 1N concept-level (GPT) 05131 0.6370  0.5470

the same format to guide generation. The model, having  Concept-level (AFCU) ST 06230 0.6985  0.6282
learned to reconcile x,, with visual input during SFT, per- ~*Conceptlevel (AFCU) 06604 0.7413 07015
forms self-calibration — using z,, as a high-confidence

semantic anchor to redirect attention toward clinically critical features. Figure 3 Part 3 demonstrates
this: from the minimal cue above, the model generates new, clinically accurate details absent in x,
— e.g., “larger nodules at the lower pole, 2DS in diameter” (grey text). See Appendix § A.4 for
training examples.
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3.3 CONCEPT RISK SCORE
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Figure 4: (a) The number of entities in free-text medical reports before and after extraction using
Non-redundant Concepts. (b) The correlation between Concept Risk Score and post-intervention
performance.

In clinical VLM-assisted radiology workflows, manual verification of all generated reports is pro-
hibitively time-consuming for physicians. To guide efficient physician feedback, we propose the
Concept Risk Score (CRS) that identifies which anatomical concepts are most likely to be visually
ungrounded by jointly detecting two failure patterns: (1) the model generates the anatomical con-
cept too consistently across image perturbations (behavioral rigidity), indicating it ignores visual
evidence; and (2) when the anatomical concept appears, its associated finding concepts (e.g., size,
margin, echogenicity) vary semantically across perturbations (content uncertainty), indicating un-
stable visual grounding. CRS multiplies these signals so that only anatomical concepts that are both
persistently generated and semantically inconsistent in their findings receive high scores — pre-
cisely those where physician correction will most improve vision-language alignment. In practice,
this means CRS automatically surfaces the highest-leverage errors: fix one anatomical concept’s
description, and the model’s behavior improves disproportionately.

CRS is computed using the outputs from 7 independent random grid occlusions (77, . .., 7%) and the
original unoccluded image (7j) (see Appendix § A.7). For each standardized anatomical concept e,
we evaluate behavioral rigidity and content uncertainty.

Behavioral Rigidity — whether e is generated too consistently across the 7 occluded outputs. We
compute frequency as Freq(e) equal to the number of outputs containing e divided by 7. Stability
is derived from the binary entropy of e’s appearance pattern: H(e) = —3_ o1y P(2)log, P(),
where P(X = 1) = Freq(e). Stability is normalized to [0,1] as 1 — H (e), peaking when e ap-
pears always or never. The product Freq(e) x Stability(e) captures “false robustness” — anatomical
concepts generated regardless of image content.

Content Uncertainty — whether the finding concepts associated with e (e.g., “irregular mar-
gin”) fluctuate semantically across occlusions. We compute the Semantic Ambiguity Index (SAI)
as SAI(e) = /|s(1 — s)|, where s is the average cosine similarity using Sentence Transformer
(Reimers & Gurevych, 2019) between finding concept phrases in 77, ..., 7% and those in Tj. SAI
peaks at s = 0.5, highlighting cases where findings are neither preserved nor random — maximally
ambiguous.

The final score is:
CRS(e) = Freq(e) x Stability(e) x SAl(e). 3)

High CRS indicates an anatomical concept that is frequently and stably generated (visually disen-
gaged) yet accompanied by inconsistent finding concepts (visually ambiguous). Example: “thyroid
nodule” always appears, but its findings jump from “irregular margin” to “smooth margin” — a
prime candidate for correction.

The theoretical foundation of this design stems from a core principle of visual grounding: a model
that genuinely generates reports based on visual evidence should be both input-sensitive and input-
consistent. Specifically: (1) If the model truly relies on visual evidence, it should stop reporting
an anatomical concept (e.g., “nodule”) when its region is occluded (71, ..., T%). Persistent gener-
ation (high frequency/low entropy) means the model ignores visual input—Ilike a robot that always
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says “I see a dog” even when the picture is covered. (2) If the model does report a concept, its de-
scription (e.g., “smooth margin”) should stay stable across views. Wild fluctuations (high Semantic
Ambiguity Index, SAI) mean unstable understanding—Ilike describing the same dog as “brown” one
time and “black” the next. CRS multiplies these signals to flag only concepts that are both visually
disengaged (shouldn’t appear) and semantically ambiguous (described inconsistently)—exactly the
high-risk errors requiring physician correction.

3.4 HOLISTIC SEMANTIC MATCH METRIC

Clinical report generation requires precision, not just fluency. BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) ignore anatomy-finding semantics. BertScore (Zhang et al., 2019) leverages
contextual embeddings but models the report holistically, lacking fine-grained alignment between
anatomical and finding concepts. Evaluation must assess correct anatomical concepts and accu-
rate finding concepts. To address this, we propose Holistic Semantic Match (HSM) — a clinically
grounded metric that evaluates two essential dimensions: (1) correct identification of anatomical
concepts, and (2) semantic accuracy of their associated finding concepts. HSM combines both via
geometric mean, forcing models to excel at both — no trade-offs allowed.

Given generated report peq and ground truth Ry, we normalize anatomical concept surface forms
using the canonical dictionary D introduced in Section 3.1 (e.g., “right lobe of liver” to “right
lobe”), then extract sets Eyreq and Eg. Coverage is measured by Anatomical Intersection over Union
(AIOU):

| Eprea N By

AIOU = —Ped__—et
| Eprea U Byl

4)

For each anatomical concept e € Epeq U Eg, We extract its finding concepts Aprea(e) and Ag(e)
(empty if missing), and compute semantic similarity using Sentence Transformer (Reimers &
Gurevych, 2019): sim(e) = cos (¢(Aprea(€)), #(Ag(€))), averaged over concepts with at least one
non-empty finding, yielding the Finding Semantic Similarity (FSS):

FSS — % S sim(e), where € = {e | Apea(e) # 0 or Ag(e) # 0} )
ecé
Final score:
HSM = V/AloU x FSS. (6)

HSM is interpretable: low AloU indicates missed or hallucinated anatomy; low FSS indicates inac-
curate descriptions. Only when both are high does HSM reward the output — aligning evaluation
with clinical safety. A complete HSM computation example is provided in Appendix A.5. For
comparisons with other Sentence Transformers, see Appendix A.8.

4 EXPERIMENTS

4.1 COMPARATIVE METHODS AND IMPLEMENTATION DETAILS

We selected four existing approaches for comparison: (1) SAT (Vinyals et al., 2015), based on
CNN and hierarchical LSTM; (2) R2Gen (Chen et al., 2020), which incorporates a memory-driven
unit into the Transformer; (3) KMVE (Li et al., 2024a), an unsupervised prior knowledge-guided
method; and (4) fine-tuned Qwen2.5-VL (Bai et al., 2025) 3B and 7B models (Ge et al., 2025). To
ensure reliability and credibility, we evaluated all methods on the open-source USReport dataset (Li
et al., 2024b) (covering Thyroid, Mammary, and Liver) and a private multi-cancer ovarian ultra-
sound report dataset (see Appendix §A.2). All data and experiments are in Chinese. English text in
figures was translated from Chinese using Google Translate for readability. We fine-tuned the vision
encoder, projector, and LLM with LoRA(Hu et al., 2022) in Qwen2.5-VL 3B/7B as our primary
experimental models (additional VLM experiments in Appendix §A.10). All hyperparameters and
implementation details are provided in Appendix §A.6 for reproducibility.
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4.2 MAIN RESULTS

Table 2: Results of our method and baselines. All VLM experiments are based on Qwen2.5-VL and
incorporate either SFT (Ge et al., 2025) or our Concept Instruction Tuning and Intervention. Top-1

and top-2 results are highlighted in best and second , respectively. UB'denotes the theoretical up-
per bound under Concept Instruction Fine-tuning with intervention, specifically defined as the result
obtained by inputting the complete ground-truth report as a prompt into the VLM after supervised
fine-tuning.

NLG METRICS CE METRICS SEMANTIC METRICS
BLEU-1 BLEU-4 METEOR ROUGE-L Precision Recall F1 Score AIOU FSS HSM

SAT 0.1127 0.0825 0.1502 0.3533 0.8083  0.3895 0.5110 0.3614 0.1880 0.2512
R2Gen 0.6053 0.4735 0.3557 0.6688 0.8678  0.7342  0.7847  0.6656 0.3862 0.4997
KMVE 0.7256 0.6113 0.4058 0.7085 0.8304  0.8638 0.8307 0.7368 0.5179 0.6101
3BSFT  0.7532 0.6341 0.4226 0.7277 0.8509  0.8910 0.8596  0.7752 0.5531 0.6475
3B Ours  0.8064 0.7080 0.4713 0.7883 09153  0.9323 0.9170  0.8621 0.6812 0.7604

Datasets ~ Methods

Thyrold  ZR'SFT 07253 06179 04137 07374 09084 0.8644 0.8749 07986 0.6072 0.6892
7B Ours | 0.8070  0.6997  0.4634 07710 0.8926 09192 0.8974 0.8341 0.6450 0.7280
3BUB 08469 07666  0.5095 0.8300 09419 09621 09484 09141 07769 0.8383
7JBUB 08215 07177  0.4736 07939 09243 09378 09256 08775 0.7076 0.7833
SAT 01288 01113  0.1929 04544  0.8275 03711 05057 03546 02034 0.2647
R2Gen 05308 04489  0.3489 06937  0.8826 07604 08114 07103 04908 0.5804
KMVE 07276  0.6414 04418 07306  0.8420 0.8624 0.8439 07563 05692 0.6475
3BSFT 07137 06158 04173 07355  0.8640 08518 08527 07695 0.5708 0.6520
3BOurs 07654  0.6765  0.4581 0.7581 0.8749 09016 0.8828 0.8114 0.6289 0.7064
Mammary  psEr T 07147 06110 04145 0.7295 0.8471  0.8521 0.8442 07585 0.5560 0.6388
7B Ours 07636 0.6793  0.4580 07894  0.8974 09012  0.8954 0.8302 0.6584 0.7307
3BUB 08611 08071  0.5442 0.8721 09500 09656 09552 09238 0.8203 0.8670
7JBUB 08804 08321  0.5610 0.8930 09567 09639 0.9580 09292 0.8382 0.8791
SAT 00207 00191  0.1300 02833 09964 0.6376 07668 0.6340 0.3389 0.4610
R2Gen 08518 07920  0.5084 0.8519 09453 09054 09206 08629 0.7329 0.7927
KMVE  0.8803 08288  0.5271 0.8660  0.8345 0.8286 0.8104 07646 0.7116 0.7291
3BSFT  0.8724  0.8054  0.5148 08410 09192 09035 09050 08386 07206 0.7743
_ 3BOurs 09028  0.8520  0.5538 0.8823 09407 09440 09390 0.8951 0.8022 0.8449
Liver  “BSFT 08537 07721 04957 0.8069 09156 0.8929 0.8976 0.8286 0.6940 0.7544
7B Ours | 09105  0.8613  0.5642 0.8888 09394 09332 09330 0.8838 0.7942 0.8356
3BUB 09326 09016  0.6033 0.9271 09695 09650 09654 09391 08792 0.9070
7JBUB 09440 09158  0.6195 09359 09740 09684 09693 09460 0.8942 0.9185
SAT 00821 00648  0.1579 03592  0.8728 02852 04164 02730 0.1487 0.1992
R2Gen 03088  0.1872 02135 04356 07198  0.6148  0.6354 04908 02358 0.3357
KMVE 06012 04235  0.3189 05492 07117 06462 06597 05163 02618 0.3637
3BSFT 05180 03468  0.2813 0.4971 0.6479 06134 06177 04646 02243 03198
3BOurs  0.6310 04648 03416 0.5803 07966 0.7740  0.7735 0.6505 0.3416 0.4673
Ovary

7B SFT  0.5514 0.3714 0.2929 0.5105 0.6493  0.6508  0.6350  0.4839 0.2196 0.3224
7B Ours ~ 0.6424 0.4800 0.3497 0.5950 0.8032 0.7580 0.7680  0.6411 0.3301 0.4554

3B UB 0.6624 0.5167 0.3652 0.6256 09352 0.8972 0.9265 0.7695 0.4576 0.5888
7B UB 0.6666 0.5217 0.3692 0.6389 09150  0.8859 09117 0.7517 0.4542 0.5799

As shown in Table 2, our method enhances clinical accuracy and semantic consistency in med-
ical report generation through Concept Instruction Fine-tuning and a Concept Risk Score—based
intervention. It improves the key metric HSM by 9.13% and achieves state-of-the-art performance
across all four organs on both the 3B and 7B models by correcting just one Anatomical-Finding
Concept Unit with high error risk per report. Notably, on certain smaller organ-specific datasets; the
3B model slightly outperforms the 7B variant, possibly because the larger model’s higher capacity
leads to overfitting when training data’is limited: This minimal intervention is clinically feasible and
enables efficient, trustworthy physician—AlI collaboration.

4.3 CONCEPT RISK SCORE PRIORITIZES CLINICALLY HIGH-LEVERAGE INTERVENTION

We evaluate CRS on 100 randomly sampled thyroid ultrasound cases from the validation set. Cor-
recting only the top-3 CRS-ranked anatomical concepts per report yields a statistically significant
correlation with performance improvement (r = 0.2531, p < 0.05) in Figure 4(b). This con-
firms CRS successfully prioritizes high-leverage intervention points — reducing physician workload
while maximizing model behavior improvement. Note that CRS does not rely on model confidence
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Figure 5: (a) Correlations between automatically computed metrics and human subjective judgments
as well as LLM evaluations. (b) Evaluate the impact of varying numbers and orders of finding
concepts on intervention effectiveness.

or output probability. It measures behavioral inconsistency under perturbation — a more clinically
meaningful signal for feedback prioritization.

4.4 ABLATION STUDY OF DIFFERENT UNCERTAINTY SELECTION STRATEGIES

As shown in Table 3, under the Concept Instruction Tun-

ing baseline, we evaluate various uncertainty-based in-

tervention strategies at the anatomical concept level by Table 3: Performance of interventions
computing uncertainty over the descriptive phrase asso- selected by different uncertainty esti-
ciated with each concept. Methods such as Semantic mation methods under the Concepts In-
Entropy (Kuhn et al., 2023) and VL-Uncertainty (Zhang struction Tuning condition.

et al., 2024) (details in § 2.3) yield varying degrees of im-  Type BLEU-4 ROUGE-L HSM
provement. Our proposed Concept Risk Score—based in-  Concepts Instruction Tuning ~ 0.6230  0.6985  0.6282
. . +Random 06532 07365  0.6907
tervention (+ours) achieves the best performance across . semantic Entropy 06576 07436 07086
1 1 1 1 1 +VL-uncertainty 0.6672 0.7488 0.7111

all metrics, with HSM rqachmg 0.7604, and' S{gmﬁcantl.y L R A
outperforms all alternatives. On core clinical metric  Upper Bound 07666  0.8300  0.8383

HSM, our method outperforms the second-best approach

by 4.93%—indicating that the Concept Risk Score better

identifies concepts with high error risk for targeted intervention, yielding reports with improved se-
mantic fidelity. Its performance also closely approaches the theoretical upper bound, confirming
the effectiveness of our intervention mechanism. All'baseline uncertainty methods are adapted to
operate on anatomical concept—level text spans for fair comparison with CRS.

4.5 HUMAN ANALYSIS OF CONCEPTS METRIC

We conducted human and LLM evaluations to assess whether our semantic similarity metric, HSM,
aligns with human and model judgments. For 100 randomly sampled medical reports, we presented
ground-truth and model-generated texts to radiologists and a large language model (DeepSeek-V3.1)
(DeepSeek-Al, 2024) to rate semantic similarity (templates and criteria in Appendix § A.5). As
shown in Figure 5(a), HSM achieves Spearman correlations of 0.846 with human judgments and
0.763 with LLM ratings, both statistically significant(p < 0.05), validating HSM as a reliable proxy
for clinically meaningful semantic similarity.

4.6 ROBUSTNESS TO INCOMPLETE OR DISORDERED FINDING INPUTS

To mimic how clinicians may provide incomplete or ambiguously ordered findings during interactive
reporting, we evaluate robustness using Anatomy-Finding Concept Units, where each anatomical
concept is paired with exactly five finding concepts. The intervention input is formed by selecting
and/or reordering a subset of these findings.
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We test three perturbations on 128 validation samples with complete AFCUs: (1) Sequential-m:
first m finding concepts in original order; (2) Random-m: m randomly selected finding concepts
in random order; (3) Shift-n: full sequence cyclically shifted left by n positions (Shift-5 recovers
the original order as a control). As shown in Figure 5(b), performance improves with more findings,
yet even minimal inputs (e.g., m = 1) outperform no intervention. Sequential inputs consistently
surpass Random ones at the same m, highlighting the importance of clinical ordering. Shift ex-
periments confirm that performance drops under order perturbations but recovers at Shift-5. These
results show our method remains effective under realistic clinician uncertainty—supporting its prac-
tical use in interactive report generation.

4.7 IMPACT OF MULTIPLE CRS CONCEPT INJECTION

To explore the effect of simulta-

neously correcting multiple uncer- —
tain concepts on report generation, | =8
we injected n CRS-ranked concepts ‘

into the VLM prompt for 50 liver o
report cases. As shown in Fig-
ure 6, CRS-guided concept injec-
tion rapidly improves report qual-
ity—as measured by BLEU-1/4 and
ROUGE-L—validating CRS’s ability s

to prioritize high-error-risk, clinically ° ! Number of Entifics : !
informative concepts. However, per-

formance gain_s diminish with further Figure 6: Performance of report generation as more CRS-
concept additions. This saturation ,nked concepts are injected.

likely stems from two factors: (1) the

remaining concepts carry lower clini-

cal relevance or error risk, and (2) the VLM is not specifically trained to effectively utilize prompts
augmented with many additional terms. These findings suggest that selectively integrating the most
critical concepts identified by CRS is more effective than exhaustively incorporating numerous con-
cepts. Moreover, our CRS measures error risk—low-risk concepts are often correct (differing only
in phrasing)—so omitting them is clinically acceptable. Error accumulation concerns can also be
alleviated by correcting multiple high-risk AFCUs.

Score

0.88

0.86

5 CONCLUSION

We shift medical report generation from pursuing autonomous accuracy toward effective human—AlI
collaboration by introducing the RCL-3, a bidirectional paradigm in which VLMs proactively flag
content with high error risk and physicians intervene only on the most critical elements. Central
to this approach is the Anatomy-Finding Concept Unit, a clinically grounded atomic unit that en-
ables precise, efficient interaction. Leveraging information bottleneck—based concept compression,
concept-level instruction tuning for feedback integration, and the Concept Risk Score to prioritize
high-impact corrections, our method achieves a 9.13% average gain in Holistic Semantic Match, a
clinically aligned metric strongly correlated with human judgment. This demonstrates that minimal,
targeted physician input can substantially improve report quality, paving the way for trustworthy,
efficient Al-assisted clinical reporting.

ETHICS STATEMENT

We use publicly available medical report datasets for thyroid, mammary, and liver. The private ovary
dataset has received ethical approval; details are in the Appendix. Anonymized details (e.g., ethics
approval numbers and data collection sites) will be released upon acceptance.
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REPRODUCIBILITY STATEMENT

The complete code will be released upon paper acceptance. Additionally, all key details necessary
for reproducibility—including hyperparameters, training procedures, concept construction methods
and examples, LLM prompting templates, and samples from the training and test datasets—are
thoroughly described in the main text and the Appendix.
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* A.l: LLM Usage

* A.2: Detailed Content of Private Data

* A.3: Construction of Anatomical and Finding Concepts
* A.4: Examples of Concept Instruction Tuning

* A.5: Concept-based Metrics Computation

* A.6: Experiment Details
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A.7: Visual Occlusion using Grid-Based Random Mask
A.8: Case Analysis of Similarity Metrics Across Sentence Embedding Models

* A.9: Comparison of Report Examples Generated by Different Methods

* A.10: Comparison with other Medical VLMs

* A.11: Additional Data

* A.12: Limitations and Societal Impact

* A.13: Stability of HSM Correlation with Traditional Metrics Across Anatomical Organs
* A.14: Ablation Study of Concept Instruction Tuning and CRS

* A.15: Enhancing Clinical Efficacy on the English IU-Xray Dataset

* A.16: Human-in-the-Loop Evaluation

* A.17: Language Presentation and Accessibility

* A.18: Theoretical Analysis of the Concept Risk Score

* A.19: AFCU Enables Clinically Grounded and Fine-Grained Human—AlI Interaction
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A.1 LLM USAGE

During the preparation of this manuscript, large language models (LLMs) were employed in a lim-
ited and auxiliary capacity. Specifically, their usage was restricted to the following three aspects:
(1) checking grammar and expression at the sentence level, thereby providing local linguistic re-
finement; (2) performing global polishing after the draft was completed, ensuring that the overall
exposition conforms to idiomatic English usage.

At no stage were LLMs used for generating research ideas, developing arguments, or modifying
the substantive content of this work. Their sole role was to assist in enhancing the clarity and
effectiveness of communication.

A.2 DETAILED CONTENT OF PRIVATE DATA

As shown in Table 4 and 5, this study constructs an ovarian lesion ultrasound imaging dataset based
on real clinical medical reports from a single center. The dataset comprises 831 pathologically con-
firmed cases, covering non-neoplastic pelvic masses, benign tumors, borderline tumors, advanced-
stage ovarian cancer, early-stage ovarian cancer, and confounding cancer types, corresponding to a
total of 1,570 two-dimensional grayscale ultrasound images. Table 5 further demonstrates that the
number of images per case follows a natural distribution, authentically reflecting the individualized
nature of image acquisition in clinical ultrasound examinations — in contrast to previous studies
that often relied on fixed numbers of one or two images per case.

Data collection and usage have been approved by the institutional ethics review board, in compliance
with medical research standards. To support transparent peer review, the ethics approval number will
be disclosed during the non-anonymous review phase.

Table 4: Case and Image Category Distribution in the Ovarian Ultrasound Dataset

Statistics Cases Case Ratio Images Image Ratio
Non-neoplastic Pelvic Mass 289 34.8% 514 32.7%
Confounding Cancer Types 61 7.3% 117 7.5%

Borderline Tumors 119 14.3% 250 15.9%

Benign Tumors 186 22.4% 328 20.9%

Advanced-stage Ovarian Cancer 97 11.7% 203 12.9%

Early-stage Ovarian Cancer 79 0.095 158 10.1%
Total 831 - 1570 -
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Table 5: Distribution of Image Counts per Case in the Ovarian Ultrasound Dataset

Image Number Cases Case Ratio

1 243 29.2%
2 460 55.4%
3 107 12.9%
4 19 2.3%
5 2 0.2%
Total 831 -

A.3 CONSTRUCTION OF ANATOMICAL AND FINDING CONCEPTS

To promote reproducibility and clinical interpretability, we provide essential descriptions of the
canonical anatomical concepts (as shown in Table 6), derived through our information bottleneck-
based compression pipeline. These include: Template Design and Initial Concept Extraction,
Anatomical Concept Clustering via Semantic Similarity, Binding Findings to Canonical Anatomy.
In our framework, a “concept” refers precisely to this structured pairing: one anatomical entity
with its clinically relevant attributes, enabling precise, targeted physician—Al collaboration without
fragmentation or ambiguity.

Table 6: Examples of Anatomy-Finding Concept Units (AFCUs) — minimal, clinically grounded
semantic units pairing a canonical anatomical region with its associated descriptive findings.

Anatomical Concept Finding Concept

Size and shape are normal
Uniform echo

Thyroid gland No clear space-occupying lesion was found

No abnormal blood flow signals were found
Bilateral neck No obvious enlarged lymph nodes
Left lobe gland Multiple nodules

Template Design and Initial Concept Extraction As shown in Figures 7 and 8, the Chinese and
English versions of the template, respectively, are used to guide the LLM in performing initial extrac-
tion of Anatomical and Finding Concepts from each report. Each template provides three examples,
though only two are displayed in the figures. These examples are static and generalizable to any new
findings or datasets, designed to inform the model of the relative relationship between Anatomical
Concepts and Finding Concepts. Manual inspection of the experimental results confirmed that the
extracted outputs are clinically acceptable.

Anatomical Concept Clustering via Semantic Similarity Medical reports often exhibit diverse
phrasings for the same anatomical structure—e.g., “bilateral thyroid lobes,” “left and right lobe,”
and “bilateral glandular tissue” all describe the same region, reflecting stylistic differences rather
than clinical distinctions. As illustrated in Table 7, such lexical redundancy is common in free-text
reporting. Normalizing these variants into a single canonical term reduces ambiguity, ensuring that
Al-physician collaboration focuses on clinical content rather than wording preferences.

Table 7: Examples of anatomical concept normalization: diverse expressions extracted from free-
text reports are mapped to a single canonical term through semantic clustering.
Report No.  Exacted Anatomical Concept ~Anatomical Concept after Mapping

1 bilateral thyroid lobes both lobes of the thyroid gland
2 left and right lobe both lobes of the thyroid gland
3 bilateral glandular tissue both lobes of the thyroid gland

Binding Findings to Canonical Anatomy As shown in Table 8, when multiple extracted anatom-
ical concepts (e.g., “thyroid”, “glands”) refer to the same clinical entity, they are first mapped to a
single canonical term (e.g., “thyroid gland”). Crucially, their associated finding concepts — such as
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RELURXCASHIRRRILH (anatomical concept) FAMIRIAYRIL (finding concept) , FLUISON H§=UiI. S MESIEHIFIELRIIRLL "entity F"attributions E{ERIAIF R
T MREHERER, SMRIGEEIIEAIHRITSH.

AN

{EANXARE)

JSONEgIH :
"entities": [

i
“entity": "SLIAZFR",
“attributions": ["@I1", "@iE2", ...]

]..,
B

ABILSIAGEIN :

{{FRRBRAEM A/NA_3Ds_, I6EE_scm_, AMA/NA_30s_, BRAREXRIYS, AMTRA—BEEFET, AN 20s_, DFREH, FESHME, NUTEFRE, Ha
H‘JLEEIEIEEE, SBE_20s_, COFMETBANANCRIAIERRITES: AMRRRMERELET, A/NDBIL_20s . _20s_, DFEN, FSRE. FRRIREERDIAH
B4, 1

7ff2-jsonfgH :

{

"entities": [
i
"entity": "EARBRZER",
“attributions": ["A/N9_3DS_"]

i
"entity": "IRER",
“attributions": ["_SCM_"]
)i

i

“entity": "ERARERAR",

“attributions": ["A/\I_3Ds_", "BRREIE RIS
)i

{

“entity": "FEHHEETS",

“attributions": ["THR", RAEIE", "A/NFI_20s_", "FHEMT", "FSHME", "MLAFTEEAE", I MEREX", SEEH_20s_", "E RN REERIKMTEES")
)i

{

“entity": "GIMEETS",

"attributions": [EEIFE", "A/N>BILI_2Ds_, _2Ds_", "SASHEMT", "FASHEE"]
i

{
"entity": "ERIKEREE",
“attributions": ["ATUAFAHELE"]

1

h

A2 SIAGN :

{FRRIRAVIZSANE, BRARIASS), RIUBBMEAMERE, COFRARRISEMARES. WUTERBRIBEMAHES. 1
TI3-jsonfgi :

{

"entities": [

{
“entity": "ERIRER",
“attributions": ["A/VIZASEIE")
W
{
entity": "B
“attributions": [" 194", "SR IBAHE AR KR HIIRIES "1
i

{

“entity": "XUUZTHR",

“attributions": ["ZR B EAFAHELE"]
}

1
i

EMABEDNE, BAHFEERWjson, FEMHERIINES. BMASA: {{finding_text}}}

Figure 7: Chinese prompt template with in-context examples guiding LLMs to extract anatomical
and finding concepts in a clinically structured format.
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Extract the anatomical concepts and corresponding findings from the following text and output them in JSON format. Each anatomical concept and its corresponding finding should be
presented as a key-value pair of "entity" and "attributions". Ensure that the output is well-formatted and that each anatomical concept and its corresponding finding are listed in order.
Text Input: {{Input text content}}

JSON Output:

I

"entities": [

{

"entity": "Entity Name",

"attributions": ["Attribute 1", "Attribute 2", ...]
b

1

Example 1 - Text Input:

{{Thyroid: Left lobe size is 3DS, isthmus SCM, right lobe size is 3DS, gland echoes are uneven, left lobe lower pole shows a mixed echo nodule, size is 2DS, boundary clear, shape still regular,
mainly anechoic inside, low echo areas visible, range is 2DS, CDFI shows spot-like blood flow signals around the nodule; two low-echo nodules in the right lobe, sizes about 2DS and 2DS,
boundary clear, shape regular. No enlarged lymph nodes around the thyroid.}}

Example 2 - JSON Output:
{

"entities": [

"entity": "Left thyroid lobe",
"attributions": ["Size is 3DS"]

"attributions": ["SCM"]

{

"entity": "Right thyroid lobe",

"attributions": ["Size is 3DS", "Gland echoes are uneven"]

"entity": "Left lobe nodule",
i : ["Lower pole", "Mixed echo", "Size is 2DS", "Boundary clear", "Shape still regular", "Mainly anechoic inside", "Low echo areas visible", "Range is 2DS", "Spot-like blood flow
signals recorded around the nodule"]
b
{
"entity": "Right lobe nodule",

"attributions": ["Low echo", "Sizes about 2DS and 2DS", "Boundary clear", "Shape regular"]

: "Around the thyroid",
"attributions": ["No enlarged lymph nodes"]
}

1

1

Example 2 - Text Input:
{{Thyroid size and shape are normal, gland echoes are uniform, no definite space-occupying lesions, CDFI shows no abnormal blood flow signals in the gland. No obvious enlarged lymph
nodes in both sides of the neck.}}

Example 3 - JSON Output:

{

"entities": [

{

"entity": "Thyroid",

"attributions": ["Size and shape are normal"]

b

{

"entity": "Gland",

“attributions": ["Echoes uniform", "No definite space-occupying lesions", "No abnormal blood flow signals"]

: "Both sides of the neck",
"attributions": ["No obvious enlarged lymph nodes"]

1
1

Now input the text to be analyzed, and provide the corresponding JSON. Do not include any additional information. Input text: {{finding_text}}

Figure 8: The English version of Chinese prompt template with in-context examples guiding LLMs
to extract anatomical and finding concepts in a clinically structured format.
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“size normal” or “no abnormal blood flow” — must then be aggregated under this unified anatom-
ical anchor. This process, termed Binding Findings to Canonical Anatomy, ensures that no clinical
information is lost during compression and that each Anatomy-Finding Concept Unit (AFCU) re-
mains semantically complete and clinically grounded — forming the atomic unit for physician-Al
interaction.

Table 8: Example of binding finding concepts to canonical anatomical concepts after semantic map-
ping — consolidating findings under unified anatomy terms for structured AFCU representation.

Anatomical Concept Finding Concept
thyroid Size and shape are normal
Before Mapping Uniform echo
glands No clear space-occupying lesion was found

No abnormal blood flow signals were found

Size and shape are normal
Uniform echo
No clear space-occupying lesion was found
No abnormal blood flow signals were found

After Mapping and Binding thyroid gland

A.4 EXAMPLES OF CONCEPT INSTRUCTION TUNING

The Anatomy-Finding Concept Unit (AFCU), which pairs an anatomical concept with one or more
finding concepts, serves as additional contextual information within the instruction for generating
medical reports. As illustrated in Figure 9, the first example represents the traditional fine-tuning
method without AFCUs, whereas the second and third examples showcase our proposed Concept In-
struction Tuning. Notably, a single anatomical concept may correspond to multiple finding concepts;
during both fine-tuning and testing, all relevant findings are included to comprehensively explore our
framework’s capabilities. Furthermore, Figure 5(b) delves into how varying the number and order
of finding concepts impacts model performance, revealing consistent improvements across different
configurations. This approach not only enhances the accuracy of generated reports but also ensures
that no clinically significant detail is overlooked.

A.5 CONCEPT-BASED METRICS COMPUTATION

As shown in Figure 11, we only use the LLM during the dictionary initialization phase. In every
subsequent inference, particularly when evaluating on a new test dataset, finding concepts for an
anatomical concept can be approximated simply by extracting the text segment between two con-
secutive anatomical concepts, following the fixed subject—verb—object syntactic structure commonly
used in Chinese. Then, by comparing the sets of anatomical concepts, we identify the presence of
entities and compute the similarity of finding concepts only for corresponding anatomical concepts
to evaluate fine-grained semantic similarity. As illustrated in the example, our metrics can still make
more nuanced and accurate judgments even when conventional NLG metrics (e.g., ROUGE-L) or
sentence-level embedding cosine similarity scores (STS) are high. Moreover, as shown in Fig-
ure 5(b), we demonstrate that our HSM metric exhibits a strong correlation with both LLM-based
and human evaluations (the LLM evaluation prompt template is provided in Figure 10, and human
annotators used the same rating criteria). Discussion on extracting finding concepts for English
datasets can be found in Appendix § A.12.

A.6 EXPERIMENT DETAILS

As shown in Table 9, we compare the fine-tuning setups for 3B and 7B VLMs, with and without
Concept Instruction Tuning. In all cases, the visual encoder and projector are fully fine-tuned,
while the LLM is updated only via LoRA. For concept instruction tuning, we add synthetic AFCU
examples to the original data. On the Thyroid dataset, this expands the training set from 1,719
samples to 8,884 by including 7,165 generated examples. Training with the AFCU-augmented 3B
model on a single A100 40GB GPU takes 3 hours and 31 minutes; for the 7B model, it takes 4 hours
and 51 minutes. All model outputs are generated using beam search with a beam width of 3. All
hyperparameters — including batch size, LoRA rank, learning rate, and training epochs — are kept
consistent to ensure fair comparison and reproducibility. For other baseline methods, we train for
100 epochs to ensure convergence and report the best-performing checkpoint.

19



Under review as a conference paper at ICLR 2026

"messages": [

“role"; "user”,
"content™: "<image><image>By analyzing the images and using the relevant information to generate a detailed medical report. "

"role": "assistant",

"content": "After partial thyroidectomy, the morphology was abnormal, and multiple cystic solid mixed echo nodules could be seen in the left lobe. The largest
was located in the middle section, with a size of about 2DS, with clear boundaries and regular morphology. CDFI shows that the star-like blood flow signal can be
detected around the periphery. The echo of the rest of the parenchyma is still uniform, and CDF| shows that the blood flow signal is roughly normal. No enlarged lymph
nodes were found around the thyroid gland and beside the large blood vessels on both sides of the neck.”

"imagé_path": [
"183961_1.jpeg",
"183961_2.jpeg"

1

"messages": [

"role": "user",

"content": "<image><image>By analyzing the images and using the relevant information to generate a detailed medical report. Information: Present thyroid,
after partial resection, illegal shape, no enlarged lymph nodes were found."

"role"; "assistant",

"content": "After partial thyroidectomy, the morphology was abnormal, and multiple cystic solid mixed echo nodules could be seen in the left lobe. The largest
was located in the middle section, with a size of about 2DS, with clear boundaries and regular morphology. CDFI shows that the star-like blood flow signal can be
detected around the periphery. The echo of the rest of the parenchyma is still uniform, and CDFI shows that the blood flow signal is roughly normal. No enlarged lymph
nodes were found around the thyroid gland and beside the large blood vessels on both sides of the neck.”

1
"image_path": [
"183961_1.jpeg",
"183961_2.jpeg"
1

"messages": [

"content": "<image><image>By analyzing the images and using the relevant information to generate a detailed medical report. Information: Present bilateral
neck, no enlarged lymph nodes were found.”

: "assistant",

"content": "After partial thyroidectomy, the morphology was abnormal, and multiple cystic solid mixed echo nodules could be seen in the left lobe. The largest
was located in the middle section, with a size of about 2DS, with clear boundaries and regular morphology. CDFI shows that the star-like blood flow signal can be
detected around the periphery. The echo of the rest of the parenchyma is still uniform, and CDFI shows that the blood flow signal is roughly normal. No enlarged lymph
nodes were found around the thyroid gland and beside the large blood vessels on both sides of the neck."

1
"image_path": [
"183961_1.jpeg",
"183961_2 jpeg”
1

Figure 9: Illustration of Concept Instruction Tuning, showing baseline fine-tuning versus our method
with multiple finding concepts paired to a single anatomical concept.

Table 9: Fine-tuning Hyperparameters for Qwen2.5-VL: Standard SFT vs AFCU-Augmented In-
struction Tuning. V denotes Vision Encoder, P denotes Projector.

SFT-3B SFT-7B AFCU-SFT-3B AFCU-SFT-7B
Trainable module ~ V+P+LLM(LoRA) V+P+LLM(LoRA) V+P+LLM(LoRA) V+P+LLM(LoRA)
Training data origin origin origin+AFCUI origin+ AFCUI
Learning rate le-4 Se-5 le-4 Se-5
batch_size 4 2 4 2
grad_accum_steps 16 32 16 32
Effective batch size 64 64 64 64
‘Warmup ratio 0.20 0.20 0.20 0.20
Training epochs 20 20 5 5
LoRA rank 32 32 32 32
LoRA alpha 64 64 64 64
LoRA dropout 0.1 0.2 0.1 0.2
Weight decay 0.05 0.05 0.05 0.05
‘Warmup ratio 0.20 0.2 0.20 0.2
Max gradient norm 2.0 1.0 2.0 1.0
Trainable Params 5.12GB 5.21 GB 5.12GB 5.21 GB
All Params 16.61 GB 33.55GB 16.61 GB 33.55GB
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{report1}

k&2:

{report2}

Please read the following two medical reports and assess their semantic similarity. Based on the reports' content, such as disease
diagnoses, symptom descriptions, and test results, assign a similarity score from 0 to 10, using the following criteria:
0: Totally dissimilar; the reports share no similarities at all.
1: Extremely low similarity; the reports are almost completely different, with only a few terms or very minor elements being similar.
2: Very low similarity; the reports share a few terms or descriptions, but differ significantly in terms of diagnoses, treatments, and other
areas.
3: Low similarity; the reports share some similarities in terms or symptoms, but the differences are significant, and the overall content is
inconsistent.
4: Low similarity; the reports share some similarities, but differ significantly, with different overall structure and focus.
5: Moderately similar; the reports are similar in some areas (such as symptoms or treatments), but differ in some important areas (such
as diagnoses).
6: Highly similar; the reports are similar in many areas (such as disease descriptions and treatment plans), but differ in details or certain
areas. 7: Very similar. The reports are similar in most respects, with only minor differences.
8: Extremely similar. The reports are highly consistent in their core content, with only minor or minor differences in wording.
9: Almost identical. The reports are almost identical in content, with only minor differences in minor details.
10: Strongly accepted. The reports are identical, with content that is indistinguishable.
Please provide your score and explanation in the form of 'Score; Reason', identifying the similarities and differences in the reports.
Report 1:
{report1}
Report 2:
{report2}

Figure 10: Prompt template used by the LLM to evaluate semantic similarity between generated and
reference medical reports.

_+ e
A= = : O

=1 [+ ] Sentence = l = )

° Transformer —
Reports QY deepseckc Embedding Clustering Dictionary
[ f)‘ Ground Truth thyroid gland
PRI , SRS ) T 1. 5 % 46 . Fov= '
The thyroid gland is . Multiple hypoechoic [ISEEMES arc —
}1l-§c111 in both lobes, b ASS= (] =g
. . a on

B Prediction Mapping . °
TR , BT RS AMAw SEERE, KALFEH, K wS .
The thyroid gland is . Multiple hypoechoic SIS are B"’il 1 0.6579 ‘o 0.5000
visible in \hc-. the largest of which is located in the middle, approximately BLEU4  0.4687 0.3842
2DS in size. ROUGE-L 0.7133 STS  0.8830 0.4383

Figure 11: Workflow of anatomical and finding concepts extraction and concept-based semantic
similarity metric calculation.

21



Under review as a conference paper at ICLR 2026

A.7 VISUAL OCCLUSION USING GRID-BASED RANDOM MASK

As illustrated in Figure 12 and Algorithm 1, we employ a grid-based visual occlusion technique to
selectively disrupt the semantic content of images through random masking.

Origin Grid 4 Grid 8 Grid 16 Grid 32 Grid 64 Grid 128  Grid 256

Figure 12: Visual examples of grid-based random masking with grid sizes ranging from 4 to 256 (7
levels in total).

Algorithm 1 Apply Grid-Based Random Mask to Image

Require: Image I € R7*Wx3 grid size (3, mask probability threshold 7
Ensure: Masked image Iasked
: W, H < width([I), height(I)
cw — [W/G], ¢+ [H/G] > Cell size
Uy~ (G+1)-cw, Up (G+1)-cp > Upsampled mask size
Initialize random grid mask: Mg € RG*G
fori=0to G —1do
for j=0toG —1do
) . 1 if Uniform(0,1) < 7
7 Mesali, 3] {0 otherwise
8: end for

9: end for

10: Myp < Resize(Mrid, (Uw, Up)) > Bilinear interpolation
11: Sample random offset: 0,, ~ Uniform(0, ¢,, — 1), o5, ~ Uniform(0, ¢;, — 1)

122 M <« Mplop : op + H, 0y : 0y + W] > Crop to original size
13: Normalize image: [ < /255.0

14: Broadcast mask: My, <— Stack(M, M, M) > Shape: H x W x 3
15: Imasked < (I@ Mrgb) X 255

16: Convert I j,ed to uint 8

17: return I, ged

AU A

A.8 CASE ANALYSIS OF SIMILARITY METRICS ACROSS SENTENCE EMBEDDING MODELS

We conduct a case study by comparing the generated report shown in Figure 11 with its ground-
truth report. Specifically, our proposed FSS metric leverages Sentence Transformer (Reimers &
Gurevych, 2019) embeddings to evaluate fine-grained semantic alignment between generated and
reference findings. As shown in Table 10, we evaluate multiple multilingual embedding models and
observe that FSS and HSM yield consistently lower but more discriminative scores compared to
conventional NLG metrics like BLEU-1 and ROUGE-L. Importantly, the relative ranking of models
under FSS closely matches that of the baseline model distiluse-base-multilingual-cased-v1 (Reimers
& Gurevych, 2019) — which we have shown in the main text to correlate strongly with human
judgment — demonstrating that FSS is robust across different embedding backbones. Notably,
this cross-model consistency stems from FSS’s design: it computes similarity only between find-
ing concepts that are explicitly bound to the same canonical anatomical concept, enabling precise,
structure-aware evaluation that generalizes well across languages and embedding architectures.
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Table 10: Comparison of multilingual Sentence Transformer models (Reimers & Gurevych, 2020;
2019). STS scores are computed by encoding the full report sentences into embeddings and mea-
suring cosine similarity; FSS and HSM are our fine-grained metrics that operate only on anatomy-
aligned finding concepts.

Model STS BLEU-1 BLEU-4 ROUGE-L AIOU FSS HSM
distiluse-base-multilingual-cased-v1 0.8830 0.3842 0.4383
distiluse-base-multilingual-cased-v2 0.7826 0.3725 0.4316

paraphrase-multilingual-mpnet-base-v2 0.9180 0.3781 0.4348
use-cmim-multilingual 08206 00579 04687 07133 05000 43850 (4387
msmarco-distilbert-multilingual-en-de-v2-tmp-Ing-aligned  0.9112 0.4093 0.4524
distiluse-base-multilingual-cased 0.7826 0.3725 0.4316

A.9 COMPARISON OF REPORT EXAMPLES GENERATED BY DIFFERENT METHODS

As shown in Figure 13, we compare report generation on mammary and liver examples. Standard
SFT often fails to align findings with the correct anatomical concepts, whereas Concept Instruc-
tion Tuning (using AFCU) with CRS-based Intervention accurately associates findings with their
corresponding anatomical structures, producing more precise and structured reports.

Ground Truth

AR : BARRRREREM, AL TR
EARNATZEEE. WUREHTIAN, WE
EE, RILSET K, KIBHSUERE,
COF IRASBIRES . MM FHE, R
KB,

Breast: All layers of soft tissue were clearly vi

SFT

FEASMIBEFIELAE,
IRIBEIELET, K _3Ds_,
#, COFRAIRRIAEES .
Scanning the area indicated by the patient on the outer

side of the left breast, a relatively strong echo nodule
was seen in the subcutaneous fat layer, about _3DS_in

E TR I—

IBFREM, FASH

with no significant abnormal echogenicity in the skin or
subcutaneous fat. The glands were regularly arranged
bilaterally, with uniform internal echogenicity. No ductal
dilatation or clear space-occupying lesions were
observed, and CDFI revealed no abnormal blood flow
signals. Bilateral axillary scans revealed no enlarged
lymph nodes.

HH!J‘}L... 1, SRR, AAME —RE

LTS, AN 20S , IhEEME, FAMAE,
R EIFEEE, COF UREAAIIRRILRIES: &
SREEMTIEE, [(TRKRERREW, BT

S EI AR, AFAISMBEAR A 3K, [ TERBK
EFRRESTEE. BERAIMSNE, EXE,

K, BRRRARSEES. RRFSIERE,
SEREIEFHIER, RERT, PRIRAM SN
L. BEEXNESNE, SREFYS, AR
RAAE SMHRE.

The liver is plump and has a smooth capsule. A slightly
hyperechoic nodule, approximately 2DS in size, with
well-defined borders and a regular shape, is visible in
the left lobe. Posterior echogenicity is enhanced, and
CDFI reveals detectable peripheral blood flow. The
remaining parenchyma is finely echogenic, with unclear
visualization of the portal venous system and enhanced
echo contrast between the liver and kidneys. No
intrahepatic or extrahepatic bile duct dilatation is
observed. The internal diameter of the main portal vein
is within the normal range. The gallbladder is normal in
size and shape, with a smooth, thin wall and no obvious
abnormal echogenicity within the lumen. The pancreas
is plump, with slightly enhanced parenchymal
echogenicity and a narrow pancreatic duct. No clear

space-occupying lesion is observed within the pancreas.

The spleen is normal in size and shape, with a uniform
parenchymal echogenicity and no obvious space-
occupying lesion within the spleen.

size, with clear boundaries and regular shape. CDFI
showed detectable blood flow signals.

FRBEFSZSIE, BIRLR, SKREIFEEIEE,
I"TERRR R 45 B 7R KA, H?élilmi‘ttti‘“%ﬁ i3
I*]9I\HEM*JL.$I“§{<° 1T EFARESERE.

BRSNS, BFE, /d::ﬁ. iJ:_I
A%’iﬁm@;ﬂ#*, RELH WS, KEH, T
BT, RRANLSNE, SRE

EE, RETE, P9k SRR AL . 1B
BEXNEASME, KREFHS, ARRARES
fMERE.

The liver is plump, with a smooth capsule and densely
enhanced echogenicity. The portal venous system is
unclear, and liver and kidney echo contrast is enhanced.
The intrahepatic and extrahepatic bile ducts are not
dilated. The internal diameter of the main portal vein is
within the normal range. The gallbladder is normal in
size and shape, with a thin, less smooth wall. Multiple
hyperechoic nodules, the largest of which is
approximately 2DS in diameter, are visible on the cyst
wall. These nodules are silent and do not move with
changes in body position. The pancreas is normal in
size and shape, with a uniform echogenicity and a
narrow pancreatic duct. No clear space-occupying
lesions are observed. The spleen is normal in size and
shape, with a uniform echogenicity and no obvious
space-occupying lesions.

Concept Instruction SFT + CRS

FLAR: BUBAERREEM, IAAIE T AEAL
ERNATESEOSE. WMREERERE, AR
BYE, RRAMHEMIERE, COFIRIEE

IRIES . WM FEAZERDMAKEBLE.
Breast: All layers of soft tissue were clearly visualized,
with no significant abnormal echogenicity in the skin or
subcutaneous fat. The glands were structurally
disorganized bilaterally, with heterogeneous internal
echogenicity. No clear space-occupying lesions were
observed, and CDFI revealed no abnormal blood flow
signals. Bilateral axillary scans revealed no enlarged
lymph nodes.

FRBRASOR, SR, T it

s ihEiEs, EAEAEE,
CDFITE&I’\]?EJ'TLH]U;‘ME%; REREE BT,
TR ARG RR KOBMT, FHEEIAMIEE. A
PISMBEER LA 3K [TERBKETREERER.
BBEXNESME, ERE, KkiF, ERARLHA
EREEE. RERANESNE, SREEHS,
BRERTE, ARIARSMIERE. BIEAN
BNE, XREFYS, ARDAESMAERE.
The liver is plump and has a smooth capsule. A cystic
structure approximately 2DS in size is visible in the left
lobe, with well-defined borders and increased
echogenicity posteriorly. CDFI reveals no blood flow
within it. The remaining parenchyma is finely echogenic,
with the portal venous system less clearly visualized.
Hepatic and renal echo contrast is enhanced. No
intrahepatic or extrahepatic bile duct dilatation is
observed. The internal diameter of the main portal vein
is within the normal range. The gallbladder is normal in
size and shape, with a smooth, thin wall and no obvious
abnormal echogenicity within the lumen. The pancreas
is normal in size and shape, with a uniform echogenicity
of the parenchyma and a narrow pancreatic duct. No
clear space-occupying lesion is observed within the
parenchyma. The spleen is normal in size and shape,
with a uniform echogenicity of the parenchyma and no
obvious space-occupying lesion.

Figure 13: Comparison of report examples generated on the mammary and liver datasets.

A.10 COMPARISON WITH OTHER MEDICAL VLMsS

As shown in the Table 11, our bidirectional collaborative framework improves medical VLMs (Xu
et al., 2025; Sellergren et al., 2025) on the English thyroid report dataset—translated from a Chi-
nese clinical dataset via Google Translate—with HSM increasing from 0.6445 (SFT) to 0.6777. A
key limitation stems from our reliance on machine-translated reports: while our framework operates
in English to leverage strong open-source VLMs, subtle clinical semantics in the original Chinese
reports—particularly in nuanced finding descriptors (e.g., margin, echogenicity)—may be lost or
distorted during translation, weakening the anatomical grounding of AFCUs and limiting the effec-
tiveness of concept-level interventions.
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Table 11: Performance comparison of various VLMs on the English thyroid ultrasound report
dataset.

Model BLEU-1 BLEU-4 METEOR ROUGE-L Precision Recall F1Score AIOU FSS HSM
Lingshu-32B 0.2207 0.0153 0.1348 0.1573 0.5537 02375 03123 0.2049 0.0488 0.0968
Qwen2.5-VL-3B 0.0846 0.0055 0.0912 0.0957 0.2484  0.1593  0.1858  0.1187 0.0246 0.0507
Medgemma-4b 0.1059 0.0075 0.1148 0.1123 02412 0.1450  0.1746  0.1125 0.0228 0.0480

Qwen2.5-VL-3B+SFT  0.6220 0.4367 0.3284 0.6042 0.8541  0.8215 0.8260 0.7281 0.5622 0.6351
Medgemma-4b+SFT 0.6248 0.4350 0.3318 0.6039 0.8635 0.8219  0.8311  0.7378 0.5712 0.6445
Medgemma-4b+Ours ~ 0.6642 0.4609 0.3558 0.6107 0.8879  0.8676  0.8689  0.7877 0.5916 0.6777

Medgemma-4b UB 0.6642 0.4774 0.3737 0.6534 0.9303 09193 09194 0.8658 0.6865 0.7668

A.11 ADDITIONAL DATA

Tables 12 and 13 are the full versions of the corresponding tables in the main text (see Tables |
and 3).

Table 12: Average performance of interventions at different levels after instruction Supervised Fine-
Tuning (SFT). Concept-level (AFCU) SFT refers to our proposed Concept Instruction Tuning.

Type BLEU-4 ROUGE-L FI Score AIOU FSS HSM
SFT 0.6341 0.7277 0.8596  0.7752 0.5531 0.6475
+ Phrase-level Intervention 0.5662 0.6775 0.8356  0.7404 0.4962 0.5984
+ Sentence-level Intervention  0.6481 0.7380 0.8191 0.7188 0.5603 0.6280
+ Report-level Intervention 0.8669 0.8999 0.9455 0.9141 0.8337 0.8681
Concept-level (GPT) SFT 0.5653 0.6434 0.8044  0.6925 0.4606 0.5602
+ Concept-level (GPT) 0.5131 0.6370 0.8145  0.7078 0.4315 0.5470
Concept-level (AFCU) SFT 0.6230 0.6985 0.8459  0.7543 0.5321 0.6282
+ Concept-level (AFCU) 0.6604 0.7413 0.8861 0.8157 0.6131 0.7015

Table 13: Performance of interventions selected by different uncertainty estimation methods under
the Concepts Instruction Tuning condition.

Type BLEU-4 ROUGE-L Fl1 Score AIOU FSS HSM
Concepts Instruction Tuning  0.6230 0.6985 0.8459  0.7543 0.5321 0.6282
+Random 0.6532 0.7365 0.8797  0.8062 0.6019 0.6907
+Semantic Entropy 0.6576 0.7436 0.8909  0.8236 0.6200 0.7086
+VL-uncertainty 0.6672 0.7488 0.8903  0.8222 0.6252 0.7111
+ours 0.7080 0.7883 09170 0.8621 0.6812 0.7604
Upper Bound 0.7666 0.8300 0.9484 09141 0.7769 0.8383

A.12 LIMITATIONS AND SOCIETAL IMPACT

Although our Concept Risk Score effectively identifies high-risk present-but-misgrounded anatom-
ical concepts, it assumes the VLM can already detect relevant anatomy, making it unable to flag
anatomical concepts omitted by the model. Recent works (e.g., knowledge-graph or tree-reasoning
models) also use structured concept representations, but primarily to improve internal generation
mechanisms. In contrast, our focus is on human—AI collaboration: AFCU and CRS are not part
of the generator, but interpretable, actionable units for physician feedback. Future work could in-
tegrate such models as backbones within the RCL-3 framework to further enhance collaborative
efficiency. Regarding the Holistic Semantic Match (HSM) metric, its Finding Semantic Similarity
(FSS) component, which compares finding concepts tied to each anatomical entity, is designed to
be language-agnostic. However, implementation is simpler for Chinese reports, which follow a con-
sistent subject—predicate—object structure: the text between consecutive anatomical concepts often
directly encodes the associated finding concepts. In contrast, English reports use more varied syntax
(e.g., passive voice, embedded clauses), requiring robust Natural Language Processing (NLP) tools
for accurate finding extraction. Our current RCL-3 implementation targets only the single anatomi-
cal concept with high error risk per report. While this minimizes physician effort and enables rapid
correction, it leaves other errors unaddressed. This is a deliberate trade-off that favors high-leverage
interventions over exhaustive review.
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HSM-BLEU1 HSM-BLEU4
R p-value R p-value

Organ Sample Size HSM Mean BLEUI Mean BLEU4 Mean

Liver 279 0.8449 0.8854 0.8379 0.8467 p<0.001 0.8735 p<0.001
Mammary 703 0.7064 0.7228 0.6557 0.8335 p<0.001 0.8896 p<0.001
Ovary 169 0.4673 0.5901 0.4415 0.5480 p<0.001 0.6979 p<0.001

Methods BLEU-1 BLEU-4 METEOR ROUGE-L
Base + Prompt 0.1043  0.0301 0.1327 0.3478
Concept Instruction Tuning + Prompt 0.6951 0.5931 0.4342 0.7078
Concept Instruction Tuning + Prompt+ CRS ~ 0.8064 0.7080 0.4713 0.7883
Upper Bound 0.8469 0.7666 0.5095 0.8300

Nevertheless, this focused approach marks a foundational step toward scalable, trust-aware hu-
man—Al collaboration. By shifting from full manual revision to concept-level guidance, we reduce
workload while preserving oversight. The framework is inherently extensible: as VLMs and CRS
improve, the same protocol can support multi-concept or iterative refinement, offering a scalable
blueprint for real-world clinical deployment. We hope our findings provide meaningful insights
and practical guidance for developing truly effective human—AlI collaboration paradigms, ultimately
supporting the genuine deployability of medical report generation systems.
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Year METEOR Precision Recall F1
R2Gen ACL 2020 0.128 0.151 0.145 0.145
CVT2Dis Artif Intell.Med 2022 0.147 0.174 0.172  0.168
M2KT MIA 2023 0.153 0.153 0.145 0.145
PromptMRG AAAI 2024 0.160 0.213 0.229 0.211
REVTAF ICCV 2025 0.176 0.286 0.282 0.273
Ours - 0.178 0.470 0.468 0.468

Human-Generated ~Al-Generated Human Checking CRS Human Editing Time (s)

v 205.95
v 15.16
v v v 46.10
v v v 31.76
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1404
1405

Report-level Phrase-level
1406 ‘The thyroid gland was normal in size and shape, with heterogeneous glandular echogenicity, Multiple hypoechoic The larger one is in the
and scattered hypoechoic areas with unclear boundaries. Multiple hypoechoic nodules were nodules can be seen inthe  middle
observed within the left lobe, the largest of which was located in the central region, left lobe gland
1407 approximately 2DS in size, with clear boundaries and regular morphology. CDFI showed no . Weakly Anchored
blood flow signal. No obvious enlarged lymph nodes were found bilaterally in the neck. Coarse-Grained

1408 Concept-level o (GPT)

1409 Hyperechoic nodules Hypoechoic nodules

Sentence-level Weakly Anchored
Multiple hypoechoic nodules were observed within the left obe, the largest of which was
1410 located in the central region, approximately 2DS in size, with clear boundaries and regular Concept-level o (Anatomic-Finding Concept Unit)
morphology. CDFI showed no blood flow signal. Coarse-Grained  Leftlobe - multiple Left lobe nodule - the larger Fine-Grained
1411 hypoechoic nodules one i located in the middle

Strongly Anchored
1412

a natomical

1413 J Concepts Sonce

1414 ° Transformer

1415 Reports QY deepseci Embedding Clustering Dictionary

1416
1417
1418
1419
1420
1421

1422 <Input Image>: <Instruction>:

By analyzing the images and using the relevant information to generate a detailed medical report.

"Q

1423
<Initial Generation>:

1424 The thyroid gland was normal in size and shape. A hypoechoic nodule, approximately 2DS in size, with clear boundaries and regular morphology,
was visible in both lobes. COF| revealed minimal peripheral blood flow

1426 [Both lobos ofthethyroid gland] need f be (2}

Generation 1: examined

A hypoechoic nodule with a size of approximately 2DS and clear boundaries can ,‘,
1 427 be seen at the lower pole of the left lobe 4

Generation 2:

Multiple hypoechoic nodules can be seen in both lobes. The larger one in the left Present [both lobes of the thyroid gland]
1 42 8 I (multiple hypoechoic nodules are seen).

lobe is located in the middle and lower part, about _2DS_ in size.
1429 <tmstructon>:

<Image ion under Image

1 430 By analyzing the images and using the relevant information to generate a detailed medical report. Information: Present [both lobes of the thyroid gland], (multiple hypoechoic nodules are
seen).
1431 <Final Generation>:
The thyroid gland was normal in size and <hapc MURiple hypoechole nodules were present in both lobes . the larger of which were located at the lower pole. The larger nodules in the left lobe
1432 were approximately 2DS in diameter, and in the right lobe, approximately 2DS in diameter. 1< noculcs hac lear boundaries and reqular morshology. and COF| revealed no clear blood fow
signal.

1433
1434 <Ground Truth>:

The thyrold gland was normal in <ize and <hapc MUltiple hypoechoie nodules were visible in both Iobes. The larger nodules were located at the lower pole of the left lobe, approximately
1435 2D sk Thelaroes hodlles Werelocated atth lawet poleafthe iohtlabe:approximately 208 Inslce. These nodules had clear boundaries and regular morphology. CDFI revealed nio -

1436

1437
1438
1439
1440
1441
1442

1443 a + J Anatomical PS
1444 B Concepts Sentence °e
1445 ° Transformer . [ J
1446 Reports Q¥ deepseckc Embedding Clustering Dictionary
1447 |_3 Ground Truth thyroid gland 1
1448 The thyroid gland is normal in size and shape. Multiple hypoechoic- are 1:,‘;“1”:;::;1“ o o EIOU= "4 4 @ HSM i
. h . and shape H
1449 present in , the larger of which are located at the lower pole. > ® @ |
~ n ASs= "~ ® s i
" mam !
1450 [ir% Prediction Mapping #-8 & B °e ;
1451 The thyroid gland is normal in size and shape. Multiple hypoechoic- are )
1452 visible in the -, the largest of which is located in the middle, approximately BLEUIL 0.6579 o o EIOU 0.5000
2DS in size. BLEU4  0.4687 ASS  0.3842
1453 ROUGE-L 0.7133 STS 0.8830 HSM 0.4383

1454
1455
1456

- similarity metric calculation (English-only version).
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Ground Truth

Breast: All layers of soft tissue were clearly visualized,
with no significant abnormal echogenicity in the skin or
subcutaneous fat. The glands were regularly arranged
bilaterally, with uniform internal echogenicity. No ductal
dilatation or clear space-occupying lesions were
observed, and CDFI revealed no abnormal blood flow
signals. Bilateral axillary scans revealed no enlarged
lymph nodes.

The liver is plump and has a smooth capsule. A slightly
hyperechoic nodule, approximately 2DS in size, with
well-defined borders and a regular shape, is visible in
the left lobe. Posterior echogenicity is enhanced, and
CDFI reveals detectable peripheral blood flow. The
remaining parenchyma is finely echogenic, with unclear
visualization of the portal venous system and enhanced
echo contrast between the liver and kidneys. No
intrahepatic or extrahepatic bile duct dilatation is
observed. The internal diameter of the main portal vein
is within the normal range. The gallbladder is normal in
size and shape, with a smooth, thin wall and no obvious
abnormal echogenicity within the lumen. The pancreas
is plump, with slightly enhanced parenchymal
echogenicity and a narrow pancreatic duct. No clear

space-occupying lesion is observed within the pancreas.

The spleen is normal in size and shape, with a uniform
parenchymal echogenicity and no obvious space-
occupying lesion within the spleen.

SFT

Scanning the area indicated by the patient on the outer
side of the left breast, a relatively strong echo nodule

AFCU SFT + CRS

Breast: All layers of soft tissue were clearly visualized,
with no significant abnormal echogenicity in the skin or

was seen in the subcutaneous fat layer, about _3DS_in
size, with clear boundaries and regular shape. CDFI
showed detectable blood flow signals.

The liver is plump, with a smooth capsule and densely
enhanced echogenicity. The portal venous system is

subcutaneous fat. The glands were structurally
disorganized bilaterally, with heterogeneous internal
echogenicity. No clear space-occupying lesions were
observed, and CDFI revealed no abnormal blood flow
signals. Bilateral axillary scans revealed no enlarged
lymph nodes.

The liver is plump and has a smooth capsule. A cystic

structure approximately 2DS in size is visible in the left
lobe, with well-defined borders and i

unclear, and liver and kidney echo contrast is
The intrahepatic and extrahepatic bile ducts are not
dilated. The internal diameter of the main portal vein is
within the normal range. The gallbladder is normal in
size and shape, with a thin, less smooth wall. Multiple
hyperechoic nodules, the largest of which is
approximately 2DS in diameter, are visible on the cyst
wall. These nodules are silent and do not move with
changes in body position. The pancreas is normal in
size and shape, with a uniform echogenicity and a
narrow pancreatic duct. No clear space-occupying
lesions are observed. The spleen is normal in size and
shape, with a uniform echogenicity and no obvious
space-occupying lesions.

28

echogenicity posteriorly. CDFI reveals no blood flow
within it. The remaining parenchyma is finely echogenic,
with the portal venous system less clearly visualized.
Hepatic and renal echo contrast is enhanced. No
intrahepatic or extrahepatic bile duct dilatation is
observed. The internal diameter of the main portal vein
is within the normal range. The gallbladder is normal in
size and shape, with a smooth, thin wall and no obvious
abnormal echogenicity within the lumen. The pancreas
is normal in size and shape, with a uniform echogenicity
of the parenchyma and a narrow pancreatic duct. No
clear space-occupying lesion is observed within the
parenchyma. The spleen is normal in size and shape,
with a uniform echogenicity of the parenchyma and no
obvious space-occupying lesion.
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Methods Seed Metric Average
SFT Report ~ Sentence Prompt  AFCU Prompt  origin Qwen 8B BLEU-1 BLEU-4 METEOR ROUGE-L BLEU-1 BLEU-4 METEOR ROUGE-L
Vv - 0.7404 0.5998 0.4270 0.7709 0.7404 0.5998 0.4270 0.7709
v v A 0 0.7267  0.5968 0.3970 0.7717
Vv Vv Vv 1 0.7267 0.5968 0.3970 0.7717
Vv Vv A 2 0.7296  0.5982 0.3973 0.7701 0.7317  0.6002 0.3988 0.7707
Vv Vv Vv 3 0.7397 0.6067 0.4017 0.7697
v Vv v 4 0.7359 0.6024 0.4008 0.7704
Vv v v 0 0.7577 0.6252 0.4348 0.7811
Vv Vv A 1 0.7589  0.6207 0.4308 0.7789
Vv Vv A 2 0.7587  0.6203 0.4303 0.7789 0.7552  0.6149 0.4285 0.7751
Vv v Vv 3 0.7592 0.6209 0.4308 0.7792
Vv Vv i 4 0.7415  0.5874 0.4157 0.7574
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