
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHECKMATE! WATERMARKING GRAPH DIFFUSION
MODELS IN POLYNOMIAL TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Watermarking provides an effective means for data governance. However, con-
ventional post-editing graph watermarking approaches degrade the graph quality
and involve NP-hard subroutines. Alternatively, recent approaches advocate for
embedding watermarking patterns in the noisy latent during data generation from
diffusion models, but remain uncharted for graph models due to the hardness of
inverting the graph diffusion process. In this work, we propose CheckWate:
the first watermarking framework for graph diffusion models embedding check-
erboard watermark and providing polynomial time verification. To address NP-
completeness due to graph isomorphism, CheckWate embeds the watermark
into the latent eigenvalues, which are isomorphism-invariant. To detect the wa-
termark through reversing the graph diffusion process, CheckWate leverages
the graph eigenvectors to approximately dequantize the discrete graph back to
the continuous latent, with theoretical guarantees on the detectability and de-
quantization error. We further introduce a latent sparsification mechanism to en-
hance the robustness of CheckWate against graph modifications. We evaluate
CheckWate on four datasets and four graph modification attacks, against three
generation time watermark schemes. CheckWate achieves remarkable gener-
ation quality while being detectable under strong attacks such as isomorphism,
whereas the baselines are unable to detect the watermark. Code available at:
https://anonymous.4open.science/r/checkwate.

1 INTRODUCTION

Watermarking is a long-established method for data owners to verify the ownership of various data
types (Cox et al., 2002) and it has recently been adapted to verify synthetic data from generative
models (Yang et al., 2024). While graphs are used extensively for modeling real-world applica-
tions (Simonovsky & Komodakis, 2018) and synthetic graphs are increasingly adopted for knowl-
edge discovery (Jo et al., 2023), a significant gap exists in watermarking solutions for them, espe-
cially for synthetic graphs. The conventional approaches (Zhao et al., 2015; Eppstein et al., 2016)
embed watermarks in graphs via post-editing, which reduces the graph quality and requires expo-
nential time verification. In contrast, modern watermarking methods (Yang et al., 2024; Wen et al.,
2023; Zhu et al., 2025) embed the watermark at sampling-time in the noisy latents of diffusion
models. These methods have the advantages of quality conservation and robust detectability at the
expense of inverting the diffusion process. However, their effectiveness has only been validated on
modalities other than synthetic graphs.

In contrast to images and tables, graphs can be represented in multiple adjacency matrixes via iso-
morphism, making differentiating (un)watermarked graphs hard. Fig. 1 illustrates an example of
how node indices can be arbitrarily swapped without changing the structure of the graph. The Graph
Isomorphism (GI) problem, i.e., determining whether two graphs are isomorphic, is one of the few
unresolved questions in complexity theory, as it is not whether it can be solved in P (Babai, 2016;
Grohe & Schweitzer, 2020). While quasi-polynomial algorithms exist for small instances (Grohe &
Neuen, 2021), GI remains computationally infeasible for large graphs. Furthermore, when graphs
are modified through addition or deletion of edges, solving GI requires addressing the Graph Edit
Distance (GED) problem (Bunke, 1997), which is well-known to be NP-hard.

1

https://anonymous.4open.science/r/checkwate


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 01 0
1 00

0

1
0

1
0 0 0
0 1 0

1

1
0 0 1 0

1
11

0
1

0 1
0 1 0
10 0 0 0

01 01
1 0 0

1

0
0

0

1 1

Watermark
Extraction

TextWatermark
Extraction

(a) (b) (c)

Figure 1: An example of how Graph Isomorphism disrupts watermark patterns. (a) A graph G (b) A
valid representation of G, the watermarking pattern can be successfully extracted. (c) Using another
valid representation (isomorphism) of G disrupts the watermarking pattern.

The discrete nature of graphs presents another unique challenge to watermarking, as it complicates
watermark verification, particularly when coupled with the GI problem. As graphs are often repre-
sented via binary adjacency matrices, graph diffusion models, such as GruM (Jo et al., 2023), require
moving from the continuous space to the discrete one through a quantization step. When watermarks
are embedded in latents, the verification of watermarks needs to invert any graph back to its latents,
by first dequantizing the graph. Inverting this step requires matching the generated graph with its
corresponding dequantized version. This is computationally infeasible due to the complexity of the
GI and GED problems.

We introduce CheckWate, the first framework for watermarking graph diffusion models with a ro-
bust verification in polynomial time. CheckWate consists of three key components. (i) A checker-
board watermark technique that enables embedding watermarking on the noisy latent eigenvalues
at sampling-time. Since eigenvalues are isomorphism-invariant, this allows us to embed and extract
the watermark in polynomial time with no loss of generalization and without relying on any ap-
proximation. (ii) An approximate dequantization mechanism that enables the transition from the
discrete domain of the data to the continuous space of diffusion, thus accurate latent reconstruction
and watermark verification. (iii) A robust detection mechanism that further improves watermark
detection robustness, especially for mitigating false positive verification. Drawing upon matrix spar-
sification theory, we identify reconstruction errors within the noisy latent and impose constraints on
the distribution of their eigenvalues. Our work brings the following contributions:

• CheckWate is a non-blind graph watermark algorithm with verification in polynomial
time, circumventing NP-hardness from graph isomorphism.

• CheckWate detects the presence of a watermark by accurately inverting graph diffusion,
via an approximate dequantization mechanism with a theoretical error bound.

• CheckWate robustness against post-editing attacks is enhanced by a latent sparsification
mechanism.

• Extensive evaluation of CheckWate on the graph quality and watermark detectability on
four datasets and four graph attacks.

2 RELATED WORK

Graph Diffusion Models Graph synthesizers have been of high interest for the scientific commu-
nity in the past years. Graph diffusion models generate data starting from random (symmetric) noise.
Then, a trained neural network iteratively predicts the probability distribution of clean graphs and
moves toward such distribution via steps of Denoising Diffusion Probabilistic Model (DDPM) (Ho
et al., 2020). Depending on the model, this diffusion can either happen on the discrete or the contin-
uous space. GruM (Jo et al., 2023) introduced a novel diffusion model based on Denoising Diffusion
Bridge Models (DDBM) (Zhou et al., 2023) that performs diffusion on the latent continuous space
and achieves state-of-the-art generative performance. The denoising process of GruM is proven to
converge to the discrete space of the graphs adjacency matrix up to quantization.

Watermarking Synthetic Data Watermarking is one of the key techniques used for verifying the
ownership of synthetic data. Effective watermarking requires imperceptibility and robust detectabil-
ity. The watermark signals can be embedded during the model training, sampling-time, or even post-
data generation (He et al., 2024), having different degrees of tradeoff between the data quality and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Eigenvalues of Gaussian Orthogonal Ensembles. (b) Eigenvalues of Checkerboard Ensembles.

Figure 2: Distribution of eigenvalues of random matrices. (a) The eigenvalues of Gaussian Orthog-
onal Ensembles (N = 500) follow the Wigner semicircle law (bulk). (b) Checkerboard Ensembles
(N = 500, k = 450,W = (±1.5,±2.5)) have N−k eigenvalues outside the semicircle (blip).

robustness. Post-editing watermarks are the conventional methods applied on real graphs, leading to
significant quality degradation. To avoid this problem, newer methods such as TreeRing (Wen et al.,
2023) and Gaussian Shading (Yang et al., 2024) embed a pattern into the latent space. However,
TreeRing directly disrupts the Gaussian distribution of noise, limiting the randomness of sampling
and resulting in affecting model generative performance. Moreover, these techniques require to un-
dergo an implicit diffusion model such as Denoising Diffusion Implicit Model (DDIM) (Song et al.,
2020) or Denoising Bridge Implicit Model (DBIM) (Zheng et al., 2024) in order to be accurately in-
verted. Which are the implicit versions of DDPM and DDBM respectively (details in Appendix A).

Techniques similar to Gaussian Shading have been used to extend applicability to domains different
from images such as tabular data (Zhu et al., 2025) and time series (Soi et al., 2025). Nevertheless,
they still require to verify a pattern within the latent. This prevents the application of these methods
to the domain of graphs, as graph isomorphism enables representing the data in N ! ways.

Graph Watermarking The prior art on watermarking graphs centers on real graph, thus being
post-editing approaches. The long standing challenge is to determine two graphs are isomorphic
and only quasi-polynomial time solutions exist. Eppstein et al. (2016) further shows that when
undergoing adversarial attack, solving isomorphism requires to address the more complex graph
edit distance problem, which is NP-hard. Specifically, Zhao et al. (2015) and Eppstein et al. (2016)
provide post-editing applications for non-blind graph watermarking. However, Zhao et al. (2015)
makes assumptions on the graph node degree distribution to make the GED problem tractable, while
remaining exponential in the cost and not being applicable to all graphs. Eppstein et al. (2016)
provides an approximate NP-complete solution to GI in exponential time. Recently, KGMark (Peng
et al., 2025) addresses post-editing watermarking for knowledge graphs only, whereas Bourrée et al.
(2025) proposes watermark graphs in the Fourier spectrum assuming nodes are uniquely labeled.
All of these works make strong assumptions on the data or the attacks that can be performed by the
adversaries.

3 CHECKWATE

We start with preliminaries on random matrix theory in Section 3.1, before introducing the Check-
Wate methodology shown in Fig. 3. In Section 3.2, we first delve into the watermark injection and
detection mechanisms (steps 1⃝, 6⃝). Then, in Section 3.3, we discuss our proposed method for
inverting quantization (steps 3⃝, 4⃝). Finally, in Section 3.4, we cover our error mitigation strategy,
which prevents false positives under heavy adversarial perturbations. Further, we provide Check-
Wate pseudocode in Appendix D.

3.1 PRELIMINARIES ON RANDOM MATRIX THEORY

Graph diffusion models such as GruM rely on noisy latent variables modeled as Gaussian Orthog-
onal Ensembles (GOEs) (Anderson et al., 2010), i.e., symmetric Gaussian random matrices. The
following explains the fundamental properties of random matrix theory used in our framework.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

G
en

er
at

io
n

Watermark injection Denoising Diffusion Quantization

C
he

ck
er

bo
ar

d
G

au
ss

ia
n 

N
oi

se

1 2 3

2

3

1

4
5

0 01 0
1 00

0

1
0

1
0 0 0
0 1 0

1

1
0 0 1 0
1
11

D
et

ec
tio

n

Watermark detection Reverse Denoising Diffusion Approximate Dequantization456

2

4

3

1
5

0
1

0 1
0 1 0
10 0 0 0

01 01
1 0 0

1

0
0

0

1 1

Isomorphism
Attack

Figure 3: Pipeline of CheckWate. 1⃝Watermark injection. 2⃝ Denoising diffusion. 3⃝ Quan-
tization. 4⃝ Dequantization. 5⃝ Reverse denoising diffusion. 6⃝Watermark detection.

Spectral measure The spectrum of graphs and random matrices are essential in capturing informa-
tion on the graph structure (Van Mieghem, 2023). Eigenvalue distributions are typically divided into
two regimes: the bulk (of order O(

√
N)) and the blip (of order O(N)). For GOEs of size N ×N ,

all eigenvalues lie within the bulk. More precisely, when considering the normalized ensemble
XN = X/

√
N , the limiting spectral distribution ρ follows the Wigner semicircle law (Anderson

et al., 2010) with radius R = 2. Fig. 2a shows the distribution of eigenvalues from GOEs.

Checkerboard Ensembles (k,W )-checkerboard ensembles were introduced by Chen et al. (2020)
as a generalization of Burkhardt et al. (2018). Let N (0, 1) be the standard normal distribution.
Definition 3.1. Fix k ∈ N and a k-tuple of real numbers W = (W1, . . . ,Wk), then the N × N
(k,W )-checkerboard ensemble ((k,W )-CBE) is the ensemble of matrices C = (Cij) given by:

Cij = Cji =

{
N (0, 1) i ̸≡ j mod k

Wu i ≡ j ≡ u mod k, with u ∈ Zk

Checkerboard ensembles have k eigenvalues in the bulk, while the remaining N − k eigenvalues
are in the blip. More precisely, for each Wi ∈ W , if Wi appears ki times in the ensemble, ki
eigenvalues are of magnitude NWi/k + O(

√
N). Fig. 2b shows the eigenvalue distribution from

a Checkerboard Ensemble. For high enough k, Checkerboard ensembles allow to apply significant
changes to the ensemble spectrum while forcing limited modifications from regular Gaussian noise.
This allows strong detectability while preserving generation quality.

3.2 CHECKERBOARD WATERMARK

The key hurdle to embed and detect the watermark pattern on graphs lies in the inherent ambiguity
of graph representation, illustrated in Fig. 1. In contrast, taking the image as an example, pixel
positions cannot be freely permuted without severely degrading visual quality—or even altering the
picture’s entire meaning. This enables the application of pattern-based watermarks onto their latents,
such as Gaussian Shading (Yang et al., 2024) and TreeRing (Wen et al., 2023). Similarly, tabular
data can leverage column unambiguity to apply row-level watermark detection (Zhu et al., 2025).

To address this, CheckWate explores the properties of graph eigenvalues in both embedding and
detection phases. To embed the watermark, step 1⃝, we insert the checkerboard pattern in the noisy
latent of synthetic graph at sampling-time. This enables the presence of eigenvalues in the blip,
which are not expected in regular GOE, while applying minimal changes to the latent. Specifically,
applying minimal changes to the GOE, ensures that the generation quality is preserved. To detect
the checkerboard pattern, we first revert the graph to its noisy latent and then inspect the presence

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of eigenvalues in the blip regime. The advantages of leveraging the eigenvalues of the latent are
two-fold: polynomial time computation and isomorphism invariance. This allows to bypass the GI
problem and detect watermark in O(N3) with no approximation nor generalization loss.

Watermark injection 1⃝ We start graph generation via a random symmetric matrix GT in the latent
space. We define GT as checkerboard ensemble with W = (W1, . . . ,Wk) an array of size k:

GT
ij = GT

ji =

{
N (0, 1) i ̸≡ j mod k

Wu i ≡ j ≡ u mod k, with u ∈ Zk
(1)

Parameter tuning Both k and W are hyperparameters that determine the magnitude and frequency
of eigenvalues in the blip. They allow to balance generation quality with watermark detectability.
In general, checkerboard ensembles have N−k eigenvalues in the blip. Thus, a lower value of k
increases the watermark strength. Each of the eigenvalues in the blip has magnitude NWu/k +

O(
√
N). Thus, a larger Wu/k increases the watermark detectability. At the same time, having a

lower k increases the amount of non-gaussian entries and a larger Wu/k increases the deviation
from gaussian noise. Both affect negatively generation quality creating a tradeoff with detectability:
the larger Wu and the smaller k the stronger the watermark and the lower the quality.

Watermark detection 6⃝ To detect the watermark, we reverse the diffusion process and reconstruct
a noisy latent GT ′ ≈ GT . We detail the reconstruction process in Section 3.3. Then, we compute
the eigenvalues of the normalized GT ′

N = GT ′
/
√
N . If GT ′

is reconstructed from a watermarked
graph, we expect N−k eigenvalues to fall in the blip. Thus, we measure the (absolute) largest N−k
eigenvalues and expect them all to be≫ 2. If GT ′

is not reconstructed from a watermarked graph,
GT ′

is a GOE and we expect all of its eigenvalues to fall in the bulk, i.e., the largest N − k eigen-
values are ≤ 2. We derive the expected difference between the computed score of a watermarked
graph GW and a non watermarked one GNW to measure CheckWate detectability:
Theorem 3.1 (Watermark Detectability). Let GNW

N be a normalized Gaussian Orthogonal Ensem-
bles. Let GW

N be a N normalized (k,Wu)-Checkerboard Ensembles. Let λi(G) the i-th largest
eigenvalue of G. Detectability of CheckWate is defined as:

EGW
N ∼(k,Wu)-CBE

[∑N−k
i=1 λi

(
GW

N

)
(N − k)

]
−EGNW

N ∼GOE

[∑N−k
i=1 λi

(
GNW

N

)
(N − k)

]
=

√
NWu

k
+O(1)−O(k2)

(2)

We prove Theorem 3.1 in full in Appendix C.1. Equation 2 reinforces that the strength of Check-
Wate watermark is proportional to Wu and inversely proportional to k.

3.3 APPROXIMATE DEQUANTIZATION

Unlike other modalities, graphs are commonly represented via binary adjacency matrices. Hence,
generating graphs requires transitioning from the continuous space of denoising diffusion models
to the discrete space of binary adjacency matrices through quantization, step 3⃝. Inverting this step
amounts to matching an edited graph to its dequantized matrix, which reduces to the NP-complete
GI and GED problems. We further stress that it is not possible to accurately reconstruct the noisy
latent without taking into account quantization and demonstrate this in Table 1 of Section 4.

To overcome this, we provide a dequantization method, step 4⃝, that leverages fundamental proper-
ties of eigenvectors under permutation to approximately reconstruct the dequantized graph latent in
O(N3). We discuss next the basic properties of this approximation and derive the exact reconstruc-
tion error under the Frobenius norm.

Graph quantization 3⃝ After diffusion, the obtained graph G0 is composed of continuous values.
Thus, we require to quantize G0 to a 0-1 graph adjacency matrix. After this step, we obtain the
quantized adjacency matrix A:

A = quantize(G0),Aij ∈ {0, 1}
Approximate dequantization 4⃝ For a given graph A′, we need to verify the existence of a check-
erboard watermark. First, a graph A′ can be a different, i.e., permuted, representation of A:

A′ = PAP−1

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where P is an unknown permutation matrix. To accurately reconstruct the original noise GT in
continous space, we require the dequantized version of A′, i.e., G0′ = PG0P−1. Eigenvectors of
permuted graphs permute accordingly up to change of eigenbasis, i.e., VA′ = PVAQ ≈ PVA

where VA are the eigenvectors of A, and Q is a block-diagonal matrix that maps the eigenbasis
of A to the one of A′. More precisely, Q = diag(Q1, . . . ,Qm) with m the number of distinct
eigenvalues of A and each Qi being a rotation square matrix as large as the algebraic multiplicity of
eigenvalue λi, e(λi). We leverage this property and combine some algebraic simplification to obtain
the approximation of the permuted dequantized graph G0′ :
Theorem 3.2 (Approximate Dequantization). Let A′ be a permutation of A based on a permutation
matrix P. Let G0′ be a permutation of G0 on the same permutation matrix P. Then, G0′ can be
accurately approximated as:

G0′ ≈ VA′V−1
A G0VAV−1

A′ (3)

We prove Theorem 3.2 in Appendix C.2. In the special case in which all the eigenvalues are distinct,
Q is the identity matrix and equality for Equation 3 always holds. Further, the error given by the
approximation in Equation 3 can be explicitly derived as a function of Q:

Theorem 3.3 (Reconstruction Error). Let G0 and orthogonal matrix and G0′ computed as in Equa-
tion 3. Then the reconstruction error can be derived as:

∥G0′ −G0∥F =

m∑
r,s=1

(
∥Qr{V−1

A G0VA}r,sQ−1
s − {V−1

A G0VA}r,s∥2F
)1/2

(4)

We prove Theorem 3.3 in Appendix C.3. In general, the error increases with eigenvalue multiplicity:
the higher the multiplicity, the higher the error. The number of distinct eigenvalues of a graph is G,
e(G) ≥ d+1, where d is the graph diameter. Therefore, maximum multiplicity is always bounded by
N−d. Graphs sampled from the Barabasi-Albert model (Albert & Barabási, 2002) have d ≈ ln(N)

ln(pN) .

Diffusion inversion From here on, the diffusion process can be easily inverted following one of the
known paradigms of DDIM or DBIM (Wen et al., 2023; Yang et al., 2024; Zhu et al., 2025; Soi
et al., 2025). We detail diffusion implicit models and their inversion in Appendix A.

Authorship identification via hash and sign To enable identification of the watermark author we
use digital hash-based signature (Srivastava et al., 2023). Hash-based signatures are a wide-spread
cryptographic building block that provides authenticity, unforgeability, and undeniability (Srivastava
et al., 2023). The watermark author can hash-sign the key K = V−1

A G0VA which is then used to
enable reversibility of the diffusion process and reconstruct the noisy latent to extract the watermark.
We stress that accurately computing the dequantized matrix G0′

is essential to enable watermark
detectability as we demonstrate in our experiments in Section 4.

3.4 ROBUST DETECTION VIA LATENT SPARSIFICATION

Even under perfect reversal of the diffusion process, the reconstructed latent GT ′
might be subject

to several perturbations due to approximation errors stemming from Equation 3 and adversarial
perturbations on the graph A. Unlike watermark reconstructions in other modalities, where errors
remain largely localized, eigenvalues encode global structural dependencies within the matrix and
are thus far more sensitive to such disturbances. Consequently, the eigenvalues of the perturbed
GOE might fall out of the bulk regime, i.e., > 2, and lead to false positive behavior. To prevent
this, we apply a simple yet efficient robustness enhancing mechanism that replaces entries that were
unlikely generated in the original noisy latent:

GT ′

ij =

{
GT ′

ij max
(
ϕ(GT ′

ij ), δ(G
T ′

ij )
)
> θ

0 otherwise
(5)

Where ϕ(·) and δ(·) are the probability density functions of a normal Gaussian and a Dirac distribu-
tion, centered in 0 and W respectively. θ is a threshold parameter that determines the tolerance of the
anomaly detection mechanism. This leads to replacement of entries with values unlikely belonging
to the original noisy latent with zero entries, i.e., sparsification. Sparsifying the latent allows us to
better control the behavior of the eigenvalues and prevent their explosion outside of the bulk.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Rationale After this process, GT ′
is a sparse GOE. Let q be the number of non-zero elements per

matrix row. When q = N , GT ′
is a GOE and its eigenvalues follow the Wigner semicircle. When

q < N , most of the eigenvalues lie in the bulk, with a higher density around zero (Evangelou, 1992).
More precisely, for small values of q, the density of eigenvalues ρ is:

ρ(λ) ∝ 1

|λ| log (|λ|)3
(6)

as λ → 0 (Evangelou, 1992). While exponential tails develop outside of the bulk domain, for
high enough p these eigenvalues are rare and close enough to the bulk not to create any practical
problem for watermark detection even under heavy perturbations. We demonstrate this qualitatively
in Appendix H and with numerical results in Table 2.

4 EVALUATION

We consider four datasets from prior work on graph diffusion models (Jo et al., 2023; Vignac et al.,
2022; Martinkus et al., 2022): Planar, Tree, Stochastic Block Model (SBM), and Proteins (Dobson
& Doig). Because no prior semantic watermarking methods exist for graph diffusion, we adapt two
state-of-the-art baselines to the graph domain: Gaussian Shading (Yang et al., 2024) and TreeR-
ing (Wen et al., 2023). We additionally design a graph-specific baseline, Bipartite, which is graph-
invariant but severely compromises generative quality due to the high correlation of entries of the
noisy latents. Implementation details for all baselines, including Bipartite, are in Appendix B. Fi-
nally, None serves as the non-watermarked reference.

To evaluate generative performance, we follow the setting of Jo et al. (2023). We measure the
maximum mean discrepancy (MMD) of four graph statistics between the set of generated graphs
and the test set: degree (Deg.), clustering coefficient (Clus.), count of orbits with 4 nodes (Orb.), and
the eigenvalues of the graph Laplacian (Spec.). We also compute the percentage of valid, unique,
and novel (V.U.N.) graphs for which the validity is defined as satisfying the specific property of each
dataset. We evaluate watermark detectability via Z-score, which measures the distance between
the mean score of watermarked and non-watermarked data normalized by the standard deviation.

4.1 GENERATIVE QUALITY AND WATERMARK DETECTABILITY

We run experiments with no attack on all four datasets. Results are showcased in Table 1. First,
we can see that CheckWate achieves state-of-the-art generative quality. Namely, CheckWate
is the best performing watermarking method 10 times out of 20, and second-best 9 times out of the
remaining 10. The best baseline from the state-of-the-art is Gaussian Shading, which is a provably
loss-less watermarking. TreeRing and Bipartite, fall significantly behind, as they perform up to
10 times worse than the best watermarking method depending on the dataset and quality metric.
Both CheckWate and Gaussian Shading achieve generative performance comparable to the one
obtained without watermark. Under the Proteins dataset, CheckWate significantly outperforms
other baselines including None. We suggest that the enhanced variance obtained via the checkered
entries compensates the lack of randomness in the used implicit model.

For detectability, all methods achieve consistent results, except for TreeRing. Bipartite achieves
the best Z-score, but lacks generative quality. Gaussian Shading and CheckWate have compara-
ble Z-scores, except on Proteins where CheckWate significantly outperforms Gaussian Shading.
Finally, we emphasize the detectability obtained with No Dequantization. Not applying a dequanti-
zation leads to an almost complete –if not complete– loss of the watermark even under no attack.

4.2 ROBUSTNESS TO GRAPH PERTURBATIONS

We test watermark robustness under four graph-specific perturbations (Table 2): Isomorphism, Edge
Addition, Edge Deletion, and Node Deletion, each applied at strengths from 5% to 20%. Check-
Wate remains detectable under all experimented attacks, with the lowest Z-score (9.7) observed
for SBM under 20% node deletion. Bipartite is consistently the strongest watermarking method but
sacrifices generative quality. The state-of-the-art methods fail at achieving a statistically significant
watermark most of the times as TreeRing never reaches a positive Z-score, and Gaussian Shading

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Generative quality is reported as mean maximum discrepancy (MMD) and the ratio of
valid, unique, and novel (V.U.N.) samples. Watermark detectability is evaluated via the Z-score,
with results shown for both dequantized and non-dequantized graphs. Bold indicates the best result
and underline the second best; arrows specify if lower or higher values are preferable. We note with
a checkmark detectable Z-scores (> 10).

Dataset Watermark Quality Metrics Detectability (Z-Score)
Deg. ↓ Clus. ↓ Orb. ↓ Spec. ↓ V.U.N. (%) ↑ Dequant ↑ No Dequant. ↑

Planar
|V | = 64
Synthetic

None 0.0009 0.0373 0.0123 0.0078 72.5 – –
Gaussian Shading 0.0008 0.00367 0.0072 0.0093 62.5 57.6 ✓ 5.9
TreeRing 0.0104 0.1255 0.2122 0.0188 10 1.0 0.0
Bipartite 0.0007 0.0412 0.0653 0.0101 67.5 4999 ✓ 0.5
CheckWate (ours) 0.0008 0.0418 0.0137 0.0078 67.5 67.6 ✓ 0.7

Tree
|V | = 64
Synthetic

None 0.0007 0 0.0001 0.0126 55 – –
Gaussian Shading 0 0 0.0001 0.0090 67.5 59.0 ✓ 2.9
TreeRing 0.0002 0 0.0002 0.0122 42.5 1.1 0.0
Bipartite 0.0002 0 0.0002 0.0124 45 4968 ✓ 0.0
CheckWate (ours) 0.0004 0 0 0.0093 47.5 45.0 ✓ 0.3

SBM
44 ≤ |V | ≤ 187

Synthetic

None 0.005 0.0504 0.0439 0.0058 67.5 – –
Gaussian Shading 0.0105 0.0498 0.0629 0.0076 72.5 84.7 ✓ 10.7 ✓
TreeRing 0.0264 0.0612 0.1100 0.0112 52.5 0.6 0.0
Bipartite 0.1178 0.6432 0.1984 0.0742 0 915.8 ✓ 25.4 ✓
CheckWate (ours) 0.0041 0.0520 0.0552 0.0050 52.5 86.8 ✓ 0.0

Proteins
100 ≤ |V | ≤ 500

Real

None 0.4315 0.5436 1.3283 0.2450 – – –
Gaussian Shading 0.4358 0.5283 1.3332 0.2579 – 110.3 ✓ 1.4
TreeRing 0.4149 0.4137 1.3332 0.3009 – 1.5 0.0
Bipartite 0.5114 1.0123 1.4257 0.5636 – 1724.0 ✓ 2.2
CheckWate (ours) 0.0473 0.2156 0.5986 0.0440 – 404.7 ✓ 2.0

Table 2: Watermark detectability (Z-score) under perturbations. The higher the better. Bold denotes
best, underlined denotes second-best. ∥emax∥ is average maximum graph eigenvalue multiplic-
ity.We note with a checkmark detectable Z-scores (> 10).

D
at

as
et

Watermark ∥emax∥
Watermark Detectability (Z-Score ↑))

Isomorphism Edge Deletion Edge Addition Node Deletion
5% 10% 20% 5% 10% 20% 5% 10% 20%

Pl
an

ar

Gaussian Shading (57.6 ✓) 2.9 0 2.3 2.2 2.3 3.5 2.9 4.6 2.5 2.4 1.4
TreeRing (1.0) 2.8 0 0 0 0 0 0 0 0 0 0
Bipartite (4999 ✓) 3.0 548.5 ✓ 499.0 ✓ 477.2 ✓ 605.4 ✓ 211.6 ✓ 116.8 ✓ 39.8 ✓ 448.5 ✓ 528.6 ✓ 541.7 ✓
CheckWate (ours) (67.6✓) 2.9 41.8 ✓ 36.5 ✓ 35.6 ✓ 36.7 ✓ 32.6 ✓ 30.9 ✓ 21.8 ✓ 30.8 ✓ 31.5 ✓ 28.6 ✓

Tr
ee

Gaussian Shading (59.0 ✓) 8.6 0 2.8 2.3 1.2 3.1 1.9 1.7 2.3 1.7 1.1
TreeRing (1.1) 9.0 0 0 0 0 0 0 0 0 0 0
Bipartite (4967.7 ✓) 9.2 166.6 ✓ 111.4 ✓ 113.1 ✓ 119.9 ✓ 103.7 ✓ 83.3 ✓ 56.2 ✓ 133.9 ✓ 104.4 ✓ 118.9 ✓
CheckWate (ours) (45.0 ✓) 9.3 31.3✓ 28.8 ✓ 31.1 ✓ 30.5 ✓ 34.9 ✓ 35.7 ✓ 31.8 ✓ 24.3 ✓ 33.3 ✓ 23.8 ✓

SB
M

Gaussian Shading (85.1 ✓) 80.6 0 5.3 4.6 3.9 3.9 3.4 3.6 3.8 2.9 2.2
TreeRing (0.5) 80.8 0 0 0 0 0 0 0 0 0 0
Bipartite (894.6 ✓) 107.5 124.1 ✓ 54.6 ✓ 209.2 ✓ 20.5 ✓ 618.3 ✓ 246.5 ✓ 141.5 ✓ 623.2 ✓ 256.8 ✓ 17.5 ✓
CheckWate (ours) (86.8 ✓) 80.7 60.8 ✓ 50.4 ✓ 19.5 ✓ 15.6 ✓ 18.8 ✓ 10.6 ✓ 11.1 ✓ 32.8 ✓ 24.4 ✓ 9.7

Pr
ot

ei
ns

Gaussian Shading (119.3 ✓) 305.4 0.1 0.7 0.6 0 0.8 0.7 0.3 0.7 0.3 0
TreeRing (1.0) 339.0 0 0 0 0 0 0 0 0 0 0
Bipartite (1724.0 ✓) 481.1 1636.7 ✓ 1636.9 ✓ 1636.9 ✓ 1634.5 ✓ 1636.8 ✓ 1636.8 ✓ 1634.3 ✓ 1636.8 ✓ 1636.8 ✓ 1634.4 ✓
CheckWate (ours) (404.7 ✓) 267.8 128.4 ✓ 174.7 ✓ 112.0 ✓ 92.2 ✓ 166.3 ✓ 117.7 ✓ 59.7 ✓ 152.4 ✓ 71.1 ✓ 46.2 ✓

never surpasses a Z-score of 5.3. Notably, under isomorphism, they both consistently achieve a
Z-score of 0, confirming that they are not graph invariant. We also report the average maximum
eigenvalue multiplicity ∥emax∥, showing that generated graphs rarely have low multiplicity. This
reinforces the strength of our dequantization mechanism, even with the approximation in Equation 3.

4.3 ABLATION STUDIES

Ideal dequantization We perform experiments in which we assume the permutation matrix P to
be known. We dequantize G0′∗ = A′ − P

(
A−G0

)
P−1 and consider G0′∗ to be the ideal

result of dequantization. Table 3 showcases the results. This allows us to analyze the difference in
performance given by the approximation in Equation 3. CheckWate achieves enhanced watermark
strength, especially under heavier attacks. This can be explained as the eigenvectors of GT tend to
change more when under heavier perturbations, making the reconstruction from Equation 3 less
robust. Furthermore, we emphasize that isomorphism does not degrade CheckWate detectability,
proving graph-invariance of the checkerboard watermarking. We further see that the baseline that is

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Watermark detectability (Z-score) under perturbations with ideal dequantization. The
higher the better for all. Bold denotes best, underlined denotes second-best.

D
at

as
et

Watermark
Watermark Detectability (Z-Score ↑)

Isomorphism Edge Deletion Edge Addition Node Deletion
5% 10% 20% 5% 10% 20% 5% 10% 20%

Pl
an

ar

Gaussian Shading (41.6) 0.4 44.3 41.8 36.5 45.4 40.0 37.9 42.0 40.2 40.9
TreeRing (1.2) 0.0 1.0 0.8 0.4 1.1 1.0 0.7 0.8 0.5 0.0
Bipartite (4820.8) 4842.1 4790.6 4797.1 4424.3 3547.2 2052.4 858.0 4833.1 4866.8 3837.3
CheckWate (ours) (46.5) 46.5 45.6 48.7 52.8 45.4 37.7 20.8 38.1 37.3 37.7

Tr
ee

Gaussian Shading (40.0) 0.3 36.9 37.7 37.7 39.3 39.8 42.1 39.4 39.9 40.8
TreeRing (1.0) 0.0 0.7 0.7 0.5 1.0 0.9 0.9 0.7 0.5 0.2
Bipartite (2661.7) 2651.3 2683.4 2788.7 2697.1 2759.1 2741.8 2637.4 2642.4 2636.8 2718.7
CheckWate (ours) (33.2) 32.3 29.5 27.2 32.1 35.1 30.2 25.6 25.0 30.0 29.3

SB
M

Gaussian Shading (84.4) 0.3 74.1 73.8 67.1 70.4 69.0 77.1 73.7 69.9 75.4
TreeRing (1.0) 0.0 0.7 0.4 0.0 0.3 0.0 0.0 0.3 0.0 0.0
Bipartite (837.1) 837.1 993 1230.0 964.1 15721.4 31918.5 29797.2 944.5 7406.3 1002.2
CheckWate (ours) (86.8) 86.8 87.0 47.4 23.2 31.0 18.8 18.0 55.6 36.3 10.3

Pr
ot

ei
ns

Gaussian Shading (119.3) 11.0 150.8 151.2 161.3 150.6 153.7 152.5 152.9 153.7 153.3
TreeRing (1.0) 0.0 1.5 1.4 1.3 1.5 1.3 1.1 1.5 1.3 1.1
Bipartite (1724.0) 1729.8 1643.5 1647.3 1641.5 1652.6 1648.4 1641.3 1647.0 1645.3 1641.4
CheckWate (ours) (405.2) 405.0 406.9 290.0 200.1 337.8 146.0 93.9 370.9 144.0 89.0

Table 4: Watermark detectability (Z-score) under perturbations without sparsification mechanism.
The higher the better for all. Bold denotes best, underlined denotes second-best.

D
at

as
et

Watermark
Watermark Detectability (Z-Score ↑)

Isomorphism Edge Deletion Edge Addition Node Deletion
5% 10% 20% 5% 10% 20% 5% 10% 20%

Pl
an

ar

Gaussian Shading (32.0) 0.0 3.9 3.0 2.7 4.7 3.0 2.9 3.6 2.8 2.0
TreeRing (0.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bipartite (3527.4) 132.1 54.8 60.0 75.4 18.4 6.6 0.7 55.5 54.8 58.9
CheckWate (ours) (64.1) 35.0 37.4 35.2 32.4 0.0 0.0 0.0 32.2 29.9 29.1

Tr
ee

Gaussian Shading (28.3) 0.5 2.4 2.0 1.6 2.2 1.7 2.4 1.6 1.7 0.8
TreeRing (0.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bipartite (411.8) 5.5 5.0 3.4 3.8 4.1 3.3 2.3 4.1 4.6 3.8
CheckWate (ours) (49.9) 46.8 40.0 30.1 33.4 0.7 0.0 0.0 35.7 36.1 27.1

SB
M

Gaussian Shading (65.1) 0.0 6.2 4.5 3.2 3.7 3.0 2.5 4.6 3.2 2.5
TreeRing (0.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bipartite (737200.7) 127821.4 3150.6 2302.1 395.0 49141.5 0.0 0.0 175934 2985.9 14.2
CheckWate (ours) (86.8) 61.2 53.4 5.5 13.6 2.3 0.3 0.0 7.3 5.6 0.7

Pr
ot

ei
ns

Gaussian Shading (71.1) 0.2 0.5 0.4 0.1 0.4 0.6 0.3 0.4 0.3 0.0
TreeRing (0.0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Bipartite (97.8) 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3
CheckWate (ours) (410.9) 221.7 239.7 136.4 109.7 3.1 1.6 0.5 208.9 20.1 26.4

affected the most is Gaussian Shading. Albeit, it continues to have insufficient detectability when
under isomorphism as its watermark is not graph-invariant.

Robust detection mechanism Finally, we perform experiments with the robust detection mecha-
nism disabled. Results are showcased in Table 4. We can clearly see that most Z-scores are reduced.
Notably, under the edge addition attack, CheckWate is not detectable even under lighter attacks.
This happens as the reconstructed latent diverges from the GOE assumption. This leads to the eigen-
values diverging from the bulk. At the same time, applying the robust detection mechanism con-
strains the latent to the sparsified GOE, making its behavior predictable, and forcing the eigenvalues
to stay within the bulk. We showcase a qualitative comparison in Fig. 8 from Appendix H.

5 CONCLUSIONS

Motivated by the need of efficiently verifying ownership of synthetic graph data, we propose
CheckWate, the first sampling-time watermark for graph diffusion models. CheckWate embeds
a checkerboard pattern in the noisy latent and detects the watermark in polynomial time using the
noisy latent eigenvalues. The novel design of CheckWate leverages random matrix theory to solve
multiple hard graph watermarking challenges: bypassing NP-hardness of verifying graphs arising
from graph isomorphism, and dequantizing discrete and isomorphic graph representations. Our wa-
termark is not only theoretically grounded in watermark verification time and graph reconstruction
error, but also practically robust against graph-modifications. Our evaluation across four datasets

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

shows that CheckWate achieves state-of-the-art generative quality and remains detectable under
graph-specific attacks such as isomorphism, while watermarks of prior art are barely detectable. We
discuss limitations and future work in Appendix E.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we include: code of the proposed framework, pseu-
docode of watermark detection in appendix. All used datasets are publicly available and instructions
to reproduce our results are provided in the code repository.

ETHICS STATEMENT

Our proposed graph watermarking framework has broad applications in claiming ownership over
synthetic network data such as molecular structures used in drug discovery or material science ap-
plications and human interactions on social media, or professional networks.

This paper was written with the aid of publicly available LLMs in tasks such as grammar check,
spelling error, and minor rephrasing.

REFERENCES

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002. Publisher: APS.

Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random matrices. Number
118. Cambridge university press, 2010.

László Babai. Graph Isomorphism in Quasipolynomial Time, January 2016. URL http:
//arxiv.org/abs/1512.03547. arXiv:1512.03547 [cs].

Daniel J Bernstein. ChaCha, a variant of Salsa20.

Jade Garcia Bourrée, Anne-Marie Kermarrec, Erwan Le Merrer, and Othmane Safsafi. Fast In-
Spectrum Graph Watermarks, August 2025. URL http://arxiv.org/abs/2502.04182.
arXiv:2502.04182 [cs].

Gabriel Budel and Piet Van Mieghem. Detecting the number of clusters in a network. Jour-
nal of Complex Networks, 8(6):cnaa047, March 2021. ISSN 2051-1310, 2051-1329. doi: 10.
1093/comnet/cnaa047. URL https://academic.oup.com/comnet/article/doi/
10.1093/comnet/cnaa047/6161499.

H. Bunke. On a relation between graph edit distance and maximum common subgraph. Pat-
tern Recognition Letters, 18(8):689–694, August 1997. ISSN 01678655. doi: 10.1016/
S0167-8655(97)00060-3. URL https://linkinghub.elsevier.com/retrieve/
pii/S0167865597000603.

Paula Burkhardt, Peter Cohen, Jonathan DeWitt, Max Hlavacek, Steven J Miller, Carsten Sprunger,
Yen Nhi Truong Vu, Roger Van Peski, and Kevin Yang. Random matrix ensembles with split
limiting behavior. Random Matrices: Theory and Applications, 7(03):1850006, 2018. Publisher:
World Scientific.

Fangu Chen, Jiahui Yu, Steven J Miller, and Yuxin Lin. The limiting spectral measure for an ensem-
ble of generalized checkerboard matrices. arXiv preprint arXiv:2009.10833, 2020.

Ingemar Cox, Matthew Miller, Jeffrey Bloom, and Chris Honsinger. Digital watermarking. Journal
of Electronic Imaging, 11(3):414–414, 2002. Publisher: Society of Photo-Optical Instrumentation
Engineers.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783. Publisher: Elsevier.

10

http://arxiv.org/abs/1512.03547
http://arxiv.org/abs/1512.03547
http://arxiv.org/abs/2502.04182
https://academic.oup.com/comnet/article/doi/10.1093/comnet/cnaa047/6161499
https://academic.oup.com/comnet/article/doi/10.1093/comnet/cnaa047/6161499
https://linkinghub.elsevier.com/retrieve/pii/S0167865597000603
https://linkinghub.elsevier.com/retrieve/pii/S0167865597000603


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

David Eppstein, Michael T Goodrich, Jenny Lam, Nil Mamano, Michael Mitzenmacher, and Manuel
Torres. Models and algorithms for graph watermarking. In International Conference on Informa-
tion Security, pp. 283–301. Springer, 2016.

Ernesto Estrada and Juan A. Rodríguez-Velázquez. Spectral measures of bipartivity in com-
plex networks. Physical Review E, 72(4):046105, October 2005. ISSN 1539-3755, 1550-
2376. doi: 10.1103/PhysRevE.72.046105. URL https://link.aps.org/doi/10.
1103/PhysRevE.72.046105.

S. N. Evangelou. A numerical study of sparse random matrices. Journal of Statistical Physics,
69(1):361–383, October 1992. ISSN 1572-9613. doi: 10.1007/BF01053797. URL https:
//doi.org/10.1007/BF01053797.

Martin Grohe and Daniel Neuen. Recent Advances on the Graph Isomorphism Problem, January
2021. URL http://arxiv.org/abs/2011.01366. arXiv:2011.01366 [cs].

Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. Communications of the
ACM, 63(11):128–134, October 2020. ISSN 0001-0782, 1557-7317. doi: 10.1145/3372123.
URL https://dl.acm.org/doi/10.1145/3372123.

Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, and Guang Cheng. Watermarking Generative
Tabular Data, May 2024. URL http://arxiv.org/abs/2405.14018. arXiv:2405.14018
[cs].

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. arXiv
preprint arXiv:2302.03596, 2023.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE:
Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators.
In Proceedings of the 39th International Conference on Machine Learning, pp. 15159–15179.
PMLR, June 2022. URL https://proceedings.mlr.press/v162/martinkus22a.
html. ISSN: 2640-3498.

Hongrui Peng, Haolang Lu, Yuanlong Yu, Weiye Fu, Kun Wang, and Guoshun Nan. KGMark: A
Diffusion Watermark for Knowledge Graphs. arXiv preprint arXiv:2505.23873, 2025.

Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using
Variational Autoencoders, February 2018. URL http://arxiv.org/abs/1802.03480.
arXiv:1802.03480 [cs].

Zhi Wen Soi, Chaoyi Zhu, Fouad Abiad, Aditya Shankar, Jeroen M Galjaard, Huijuan Wang, and
Lydia Y Chen. TimeWak: Temporal Chained-Hashing Watermark for Time Series Data. arXiv
preprint arXiv:2506.06407, 2025.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Vikas Srivastava, Anubhab Baksi, and Sumit Kumar Debnath. An Overview of Hash Based Signa-
tures, 2023. URL https://eprint.iacr.org/2023/411. Publication info: Preprint.

Piet Van Mieghem. Graph spectra for complex networks. Cambridge university press, 2023.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-rings watermarks: Invis-
ible fingerprints for diffusion images. Advances in Neural Information Processing Systems, 36:
58047–58063, 2023.

11

https://link.aps.org/doi/10.1103/PhysRevE.72.046105
https://link.aps.org/doi/10.1103/PhysRevE.72.046105
https://doi.org/10.1007/BF01053797
https://doi.org/10.1007/BF01053797
http://arxiv.org/abs/2011.01366
https://dl.acm.org/doi/10.1145/3372123
http://arxiv.org/abs/2405.14018
https://proceedings.mlr.press/v162/martinkus22a.html
https://proceedings.mlr.press/v162/martinkus22a.html
http://arxiv.org/abs/1802.03480
https://eprint.iacr.org/2023/411


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zijin Yang, Kai Zeng, Kejiang Chen, Han Fang, Weiming Zhang, and Nenghai Yu. Gaussian shad-
ing: Provable performance-lossless image watermarking for diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12162–12171, 2024.

Xiaohan Zhao, Qingyun Liu, Haitao Zheng, and Ben Y Zhao. Towards graph watermarks. In
Proceedings of the 2015 ACM on Conference on Online Social Networks, pp. 101–112, 2015.

Kaiwen Zheng, Guande He, Jianfei Chen, Fan Bao, and Jun Zhu. Diffusion bridge implicit models.
arXiv preprint arXiv:2405.15885, 2024.

Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models.
arXiv preprint arXiv:2309.16948, 2023.

Chaoyi Zhu, Jiayi Tang, Jeroen M Galjaard, Pin-Yu Chen, Robert Birke, Cornelis Bos, Lydia Y
Chen, and others. Tabwak: A watermark for tabular diffusion models. In International Conference
on Learning Representations, pp. 1–28. OpenReview. net, 2025.

LIST OF SYMBOLS

δ(·) Probability density function of Dirac distribution

Λ The diagonal matrix of the eigenvalues, i.e., diag(λ1, . . . , λN )

λ Eigenvalue

A Binary graph adjacency matrix

A′ Binary graph adjacency matrix to verify

G0 Generated graph (in the continuous space)

GT Noisy latent

GT ′
Reconstructed noisy latent

Vx Eigenvectors of matrix X

XN A normalized matrix, i.e., XN = X/
√
N

Xij Entry i, j of matrix X

N (µ, σ) Gaussian distribution with mean µ and std σ

ϕ(·) Probability density function of Gaussian distribution

ρ(·) Probability density function of eigenvalues of a normalized matrix

diag(·) Diagonal matrix

e(λ) Algebraic multiplicity of eigenvalue λ

A BACKGROUND ON DIFFUSION MODELS

DDPM Diffusion models generate data starting from a noisy latent representation. Denoising Dif-
fusion Probabilistic Model (DDPM) (Ho et al., 2020) has been at the forefront of generation of
synthetic data. This framework aims at transitioning from a latent sampled from noise distribution
(zT ∼ N (0, 1)) to a sample of the data distribution z0 through a iterative process. More precisely,
at each step t, a neural network ϵθ predicts the noise ϵθ(t, zt) to predict the next sample zt−1 as:

zt−1 =
√
αt−1

(
zt −

√
1− αtϵθ(t, zt)√

αt

)
+

√
1− αt−1 − σ2

t · ϵθ(t, zt) + σtϵt (7)

where α1, . . . , αT are computed from a predefinied variance schedule. ϵt ∼ N (0, 1) is independent
standard Gaussian noise. σt is noise that yields diversification in the generative process.

DDIM By setting σt = 0 the generative process becomes deterministic, i.e., implicit. Meaning that,
for a starting noise zT , the generative process deterministically yields to the same z0. Notably, if the

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

size of the steps is small, i.e., large T , the generative process can be accurately reversed and zT can
be reconstructed from z0 via:

zt+1 =

√
αt+1

αt
zt +

(√
1 + αt+1 −

√
αt+1

αt
− αt+1

)
ϵθ(t, zt) (8)

based on the approximation ϵθ(t, zt) ≈ ϵθ(t − 1, zt−1). This paradigm is called the Denoising
Diffusion Implicit Model (DDIM) (Song et al., 2020). Due to its capability of reconstructing noisy
latent, it has been used as the backbone of multiple watermarking methodologies (Wen et al., 2023;
Yang et al., 2024; Zhu et al., 2025; Soi et al., 2025).

DDBM Denoising Diffusion Bridge Models (DDBM) (Zhou et al., 2023) generalize diffusion by al-
lowing the endpoints of the diffusion process to be arbitrary distributions rather than always starting
from random noise. This enables denoising diffusion to operate on usecases such as image editing.
DDBM learn a bridge score function s(t, x) via a neural network. Then, the reverse process can be
expressed as a stochastic differential equation (SDE):

dxt = [f(xt, t)− g(t)2s(xt, t)]dt+ g(t)dWt (9)

where f(x, t) and g(t)2 come from the forward reference diffusion process, and Wt is a standard
Wiener process that introduces diversification in the generative process.

A.1 GRAPH DIFFUSION MODELS

Discrete Graph Diffusion Some of the state-of-the-art diffusion models perform diffusion using
discrete graph representations in the latent space. DiGress (Vignac et al., 2022) is one of the most
popular examples. DiGress represents noisy latents as Erdős-Renyi (ER) random graphs in which
each edge is independently sampled with 50% chance. The generation follows a discrete denoising
diffusion process inspired by DDPM: at each timestep t, a neural network predicts a distribution
p(Gt−1|Gt), from which the next graph Gt−1 is sampled.

Continuous Graph Diffusion Other approaches operate on continuous graph representations.
GruM (Jo et al., 2023), for instance, models noisy latents as Gaussian Orthogonal Ensembles. Then,
the diffusion process is modeled through DDBM process that moves toward the target data dis-
tribution. At each step, Gt represents the mixture of the possible generated graphs. Relying on
the Ornstein-Ulhenback bridge process, GruM is shown to converge to the data distribution up to
quantization.

B BASELINES

Gaussian Shading (Yang et al., 2024) is a sampling-time watermarking framework designed
for images. The watermark is embedded in the latent using a secure stream cipher such as
ChaCha20 (Bernstein) to get a uniformly distributed random bits. The noisy latent is generated
from these bits using distribution preserving sampling. When the noisy latent is reconstructed, the
bits are reconstructed. Then, the author can prove their ownership by comparing them with the
ones generated by the secure stream cipher. Gaussian Shading is proven to deliver lossless gener-
ative performance but is not isomorphism invariant as the pattern designed by the stream cipher is
disrupted.

TreeRing (Wen et al., 2023) is a sampling-time watermarking framework designed for images.
TreeRing embeds the watermark in the Fourier space of the noisy latent. When the noisy latent is
reconstructed, the watermark is extracted via the Fourier transform. Then, its presence is detected
via L1 similarity from the original watermarking key and the reconstructed one. TreeRing yields
reduced generative performance as it heavily disrupts the initial latent from the Gaussian assumption.
Furthermore, it is not isomorphism invariant as its pattern is disrupted.

Bipartite is a graph-invariant baselines we developed based on bipartite graphs. We leverage the
fact that graph bipartivity can be verified regardless of the graph representation and that it is a mono-
tonic property. Meaning, a subgraph of a bipartite graph is still bipartite. It starts by generating a
complete bipartite graph of size N ×N . From its adjacency matrix, it performs distribution preserv-
ing sampling to generate the noisy latent. To detect the watermark, the noisy latent is reconstructed.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Then, we discretize the noisy latent as:

L =

{
0 if Φ(L) < 0.5

1 otherwise
Where Φ is the CDF of the standard normal distribution. To increase its robustness, we leverage
monotonicity to sample a subgraph of L

L =

{
0 if Φ(L) < 0.75

1 otherwise
Recall that monotonicity means that a subgraph of a bipartite graph is always bipartite. The score
of the watermark is computed via the spectral bipartivity β(z) (Estrada & Rodríguez-Velázquez,
2005). In general 1

2 < β(z) ≤ 1. With β(z) = 1 if and only if a graph is bipartite, and β(z) → 1
2

when z is the complete graph and N →∞. Bipartite leads to reduced generative performance as it
generates noisy latents of non-independent Gaussian noise. It is isomorphism invariant as bipartivity
is a graph property (Estrada & Rodríguez-Velázquez, 2005).

C PROOFS

C.1 PROOF OF THEOREM 3.1

From Chen et al. (2020) we know that the largest N −k eigenvalues are of magnitude:
√
NWu/k+

O(1). Hence,

EGW∼(k,W )-CBE

[∑N−k
i=1 λi

(
GW

)
(N − k)

]
=

(√
Nw/k +O(1)

)
(10)

We now derive the expected average magnitude of the largest N − k eigenvalues of the GOE. For
the sake of simplifying notation, let k′ = k

N ∈ [0, 1]

EGNW∼GOE

[∑N−k
i=1 λi

(
GNW

)
(N − k)

]
= E [PDFWigner(x) | 2k′ ≤ x ≤ 2] (11)

=

∫ 2

2k′ xPDFWigner(x)dx∫ 2

2k′ PDFWigner(x)dx
(12)

=

∫ 2

2k′ x
√
4−x2

2π dx

CDFWigner(2)− CDFWigner(k′)
(13)

=

(
4− 4k′2

)3/2
6π

[
1
2 −

2k′
√
4−4k′2

4π − arcsin ( 2k′
2 )

π

] (14)

≈ O(k′
2

) = O(k2) (15)
Finally, we can derive the watermark detectability of CheckWate.

E

[
N−k∑
i=1

λi(G
W )− λi(G

NW )

]
= E

[
N−k∑
i=1

λi(G
W )

]
− E

[
N−k∑
i=1

λi(G
NW )

]
(16)

=
√
Nw/k +O(1)−O(k2) (17)

C.2 PROOF OF THEOREM 3.2

With G0′ defined as in Section 3.3.
G0′ = PG0P−1 (18)

= (PVA)V
−1
A G0VA(PVA)−1 (19)

≈ (PVAQ)V−1
A G0VA(PVAQ)−1 (20)

= VA′V−1
A G0VAV−1

A′ (21)
Equality for Equation 20 holds whenever Q = I.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C.3 PROOF OF THEOREM 3.3

Whenever A has eigenvalue multiplicity > 1, the reconstruction error can be quantified as:

∥G0′ −G0∥F = ∥VAQV−1
A G0VAQ−1V−1

A −G0∥F (22)

= ∥V−1
A (VAQV−1

A G0VAQ−1V−1
A −G0)VA∥F (23)

= ∥QV−1
A G0VAQ−1 −V−1

A G0VA∥F (24)

=

m∑
r,s=1

(
∥QrG

′
r,sQ

−1
s −G′

r,s∥2F
)1/2

(25)

where ∥ · ∥F is the Frobenius norm.

D PSEUDOCODE

Algorithm 1 CheckWate Detection

Input: target graph A′, reference graph G0, denoising modelM
1: VA′ ← Eigenvectors (A′)
2: VA ← Eigenvectors

(
Quantize

(
G0

))
3: G0′ ← VA′V−1

A G0VAV−1
A′ {Equation 3}

4: for t← 1, 2, . . . , T do
5: Gt′ ←M−1

(
G(t−1)′

)
{Reverse DBIM}

6: end for
7: for (i, j) ∈ N ×N do
8: if max

(
ϕ(GT ′

ij ), δ(G
T ′

ij )
)
≤ θ then {Equation 5}

9: GT ′

ij ← 0
10: end if
11: end for
12: GT ′

N = GT ′
√
N

{Normalization}

13: BlipEigenvalues←
[
λ | λ ∈ Eigenvalues

(
GT ′

)
, |λ| ≫ 2

]
14: if |BlipEigenvalues| ≥ N − k then
15: Return SUCCESS
16: end if
17: Return FAIL

E LIMITATIONS

Watermark on discrete latents Some graph diffusion models such as DiGress (Vignac et al., 2022)
rely on discrete noisy latent and discrete denoising steps of DDPM. While inverting discrete denois-
ing diffusion remains an untackled problem, techniques similar to the checkerboard watermark of
CheckWate can also be applied to discrete noisy latents. The key idea of CheckWate watermark
lies in moving some of the eigenvalues outside of the bulk (i.e., Wigner semicircle) while applying
minimal changes to the latent. In the context of continuous latents, we achieve this by applying the
checkered entries. We believe that the same idea can be applied in discrete space in the following
way.

Eigenvalues of discrete noisy latents (i.e., Erdos-Renyi matrices) also follow the Wigner semicircle
law, similarly to GOEs. We are interested in moving some of these eigenvalues outside the bulk
regime. Budel & Van Mieghem (2021) studied the relationship between presence of communities
and eigenvalues in the blip. We suggest that enforcing the presence of communities in parts of
the noisy latent can be used to reproduce CheckWate behavior in the discrete scenario. This can
be leveraged to extend the checkered watermark behavior to discrete noisy latents. Furthermore,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

sparsifying ER graphs, reduces the magintude of its eigenvalues, similarly to the sparsified GOE.
Thus, even the robust detection mechanism CheckWate remains applicable.

Non-Blind Watermark Our watermark is non-blind, meaning that the original data is needed to ver-
ify the presence of the watermark. State-of-the-art watermarking methodologies for images, tabular
data, and time series provide blind watermarking, meaning that the watermark can be extracted and
verified even without the generated data. No watermarking framework for graph data currently sup-
ports blind watermarking. Addressing computational feasibility of non-blind graph watermarking
is a key step to enable future development in this field. Extending CheckWate to further support
blindness is an interesting research gap that will be addressed by future work.

Provable resistance to forgery CheckWate resistance to forgery relies on hardness of dequantiza-
tion. Despite our experiments in Table 1 show that not using the key leads to impossible verification,
it is not possible to prove forgery resistance by applying the key after the diffusion process.

F ABLATION STUDY ON DIFFERENT VALUES OF k, W

Here, we widen our results with an extensive analysis of how k and W can affect Z-score and
generative quality. The key observations are, as expected, generation quality degrades for larger
values W of and smaller k. Accordingly, Z-score increases when k is smaller and W larger. This
confirms the theory discussed in Section 3.2.

Table 5: Ablation study on different values for k,W on Planar dataset.

Parameters degree cluster orbit spectral V.U.N. Z-Score
k = 0.9,W = ±1.0 0.0006 0.0406 0.0039 0.0086 0.55 7.64
k = 0.9,W = ±2.0 0.0009 0.0446 0.0113 0.0068 0.65 38.76
k = 0.9,W = ±3.0 0.0007 0.053 0.0092 0.0087 0.675 95.47
k = 0.9,W = ±4.0 0.0011 0.0651 0.0154 0.0096 0.525 176.88

k = 0.7,W = ±1.0 0.0009 0.0424 0.0022 0.008 0.325 19.35
k = 0.7,W = ±2.0 0.0007 0.0541 0.0119 0.0099 0.4 83.17
k = 0.7,W = ±3.0 0.0015 0.0629 0.0283 0.0109 0.25 193.44
k = 0.7,W = ±4.0 0.0021 0.0779 0.0352 0.0111 0.175 349.78

k = 0.5,W = ±1.0 0.0007 0.0592 0.0046 0.0084 0.25 29.61
k = 0.5,W = ±2.0 0.0014 0.0664 0.0178 0.0114 0.275 126.95
k = 0.5,W = ±3.0 0.0021 0.0984 0.0354 0.0118 0.125 292.39
k = 0.5,W = ±4.0 0.0047 0.1028 0.0631 0.0121 0.275 525.72

k = 0.2,W = ±1.0 0.0031 0.2282 0.0197 0.0115 0 134.64
k = 0.2,W = ±2.0 0.007 0.259 0.0734 0.0167 0 561.77
k = 0.2,W = ±3.0 0.0132 0.2624 0.0435 0.0164 0 1288.26
k = 0.2,W = ±4.0 0.0198 0.2687 0.0729 0.0231 0 2303.01

G ROC CURVES

We report the ROC curves of the experiments from Table 1 and 2. We provide results under Planar
and SBM datasets (the latter one being the dataset with the lowest z-scores) with four different
attacks at their maximum strength:

All figures show an AUC of 1.0, which means CheckWate always manages to achieve 100% True
Positive Rate and 0% False Positive Rate.

We further provide the same ROC curves without the latent sparsification mechanism:

From the plots, we can see that under strong edge additions, the AUC of CheckWate reduces
severely: 0.5 for Planar and 0.75 for SBM. A result that indicates little to no discriminatory ca-
pability.

Furthermore, we would like to highlight figures in Appendix H, in which we perform qualitative
analysis on the eigenvalue distributions of our experiments. Especially, Fig. 8 showcases how the

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Ablation study on different values for k,W on Tree dataset.

Parameters degree cluster orbit spectral V.U.N. Z-Score
k = 0.9,W = ±1.0 0.0001 0 0 0.0093 0.55 6.07
k = 0.9,W = ±2.0 0.0002 0 0 0.0088 0.55 32.22
k = 0.9,W = ±3.0 0.0001 0.0001 0 0.0094 0.5 81.35
k = 0.9,W = ±4.0 0 0.0001 0 0.0093 0.65 152.06

k = 0.7,W = ±1.0 0 0.0001 0 0.0084 0.575 16.43
k = 0.7,W = ±2.0 0.0002 0.0001 0.0001 0.0092 0.55 73.77
k = 0.7,W = ±3.0 0.0002 0 0.0002 0.0089 0.35 172.15
k = 0.7,W = ±4.0 0.0001 0 0.0002 0.0088 0.25 316.53

k = 0.5,W = ±1.0 0.0004 0 0.0001 0.0096 0.65 25.04
k = 0.5,W = ±2.0 0 0.0001 0.0002 0.0117 0.55 113.12
k = 0.5,W = ±3.0 0.0003 0.0001 0.0003 0.0111 0.425 262.96
k = 0.5,W = ±4.0 0.0002 0.0005 0.0004 0.0093 0.325 471.28

k = 0.2,W = ±1.0 0.0001 0.1547 0.0002 0.0146 0.05 120.53
k = 0.2,W = ±2.0 0.0006 0.4638 0.0005 0.0148 0 514.98
k = 0.2,W = ±3.0 0.0007 0.5882 0.0009 0.0182 0 1162.53
k = 0.2,W = ±4.0 0.0008 0.6223 0.0015 0.0151 0 2068.21

Table 7: Ablation study on different values for k,W on SBM dataset.

Parameters degree cluster orbit spectral V.U.N. Z-Score
k = 0.9,W = ±1.0 0.0025 0.0488 0.0507 0.0064 0.775 5.67
k = 0.9,W = ±2.0 0.0021 0.0511 0.0574 0.0045 0.6 27.44
k = 0.9,W = ±3.0 0.0026 0.052 0.0676 0.0056 0.625 64.8
k = 0.9,W = ±4.0 0.0022 0.0514 0.0665 0.0056 0.6 117.22

k = 0.7,W = ±1.0 0.0035 0.0501 0.072 0.0067 0.725 13.26
k = 0.7,W = ±2.0 0.0048 0.0533 0.0517 0.0055 0.575 55.14
k = 0.7,W = ±3.0 0.004 0.055 0.075 0.0055 0.475 126.23
k = 0.7,W = ±4.0 0.0044 0.057 0.0855 0.0057 0.525 225.89

k = 0.5,W = ±1.0 0.0024 0.0524 0.0825 0.0049 0.775 20.29
k = 0.5,W = ±2.0 0.0044 0.0528 0.0829 0.0046 0.75 83.1
k = 0.5,W = ±3.0 0.0048 0.0576 0.0754 0.0058 0.625 188.22
k = 0.5,W = ±4.0 0.0048 0.058 0.0916 0.0055 0.6 336.24

k = 0.2,W = ±1.0 0.0029 0.0514 0.0783 0.0047 0.725 82.68
k = 0.2,W = ±2.0 0.0036 0.0507 0.0693 0.0063 0.575 339.44
k = 0.2,W = ±3.0 0.0033 0.0497 0.0485 0.0057 0.425 769.34
k = 0.2,W = ±4.0 0.0024 0.0502 0.0571 0.0065 0.3 1373.52

(a) (b) (c) (d)

Figure 4: ROC curves of CheckWate on Planar dataset with latent sparsification. (a) ROC curve
under no attack; (b) ROC curve under edge addition 20%; (c) ROC curve under edge removal 20%;
(d) ROC curve under node deletion 20%. AUC is 1.0, indicating perfect discriminatory capability.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) (b) (c) (d)

Figure 5: ROC curves of CheckWate on SBM dataset with latent sparsification. (a) ROC curve
under no attack; (b) ROC curve under edge addition 20%; (c) ROC curve under edge removal 20%;
(d) ROC curve under node deletion 20%. AUC is 1.0, indicating perfect discriminatory capability.

(a) (b) (c) (d)

Figure 6: ROC curves of CheckWate on Planar dataset without latent sparsification. (a) ROC
curve under no attack; (b) ROC curve under edge addition 20%; (c) ROC curve under edge removal
20%; (d) ROC curve under node deletion 20%. Under edge addition, AUC is 0.5, indicating limited
discriminatory capability.

(a) (b) (c) (d)

Figure 7: ROC curves of CheckWate on SBM dataset without latent sparsification. (a) ROC curve
under no attack (b) ROC curve under edge addition 20% (c) ROC curve under edge removal 20%
(d) ROC curve under node deletion 20%. Under edge addition, AUC is 0.74, indicating limited
discriminatory capability.

eigenvalues of the reconstructed latents tend to explode under edge additions when no latent sparsi-
fication is applied.

Altogether, these results show that: (i) CheckWate provides remarkable performance under TPR
and FPR; (ii) Latent sparsification is key for preventing performance degradation under major per-
turbations.

H QUALITATIVE RESULTS

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) (b)

(c) (d)

Figure 8: Comparison of eigenvalues with and without anomaly detection mechanism on Planar
dataset under edge addition attack (10%). (a) and (b) show reconstructed eigenvalues of No wa-
termark and CheckWate respectively, with anomaly detection. (c) and (d) show reconstructed
eigenvalues of No watermark and CheckWate respectively, without anomaly detection.

(a) Without watermark. (b) With CheckWate watermark.

Figure 9: Distribution of reconstructed eigenvalues on Planar dataset under no attack.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Without watermark. (b) With CheckWate watermark.

Figure 10: Distribution of reconstructed eigenvalues on Planar dataset under isomorphism.

(a) Without watermark. (b) With CheckWate watermark.

Figure 11: Distribution of reconstructed eigenvalues on Planar dataset under 20% edge removal.

(a) Without watermark. (b) With CheckWate watermark.

Figure 12: Distribution of reconstructed eigenvalues on Planar dataset under 20% edge addition.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Without watermark. (b) With CheckWate watermark.

Figure 13: Distribution of reconstructed eigenvalues on Planar dataset under 20% node deletion.

(a) Without watermark. (b) With CheckWate watermark.

Figure 14: Distribution of reconstructed eigenvalues on Tree dataset under no attack.

(a) Without watermark. (b) With CheckWate watermark.

Figure 15: Distribution of reconstructed eigenvalues on Tree dataset under isomorphism.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) Without watermark. (b) With CheckWate watermark.

Figure 16: Distribution of reconstructed eigenvalues on Tree dataset under 20% edge removal.

(a) Without watermark. (b) With CheckWate watermark.

Figure 17: Distribution of reconstructed eigenvalues on Tree dataset under 20% edge addition.

(a) Without watermark. (b) With CheckWate watermark.

Figure 18: Distribution of reconstructed eigenvalues on Tree dataset under 20% node deletion.

22


	Introduction
	Related Work
	CheckWate
	Preliminaries on Random Matrix Theory
	Checkerboard Watermark
	Approximate Dequantization
	Robust Detection via Latent Sparsification

	Evaluation
	Generative Quality and Watermark Detectability
	Robustness to Graph Perturbations
	Ablation Studies

	Conclusions
	Background on Diffusion Models
	Graph Diffusion Models

	Baselines
	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Pseudocode
	Limitations
	Ablation Study On Different Values Of k, W
	ROC Curves
	Qualitative results

