

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHECKMATE! WATERMARKING GRAPH DIFFUSION MODELS IN POLYNOMIAL TIME

Anonymous authors

Paper under double-blind review

ABSTRACT

Watermarking provides an effective means for data governance. However, conventional post-editing graph watermarking approaches degrade the graph quality and involve NP-hard subroutines. Alternatively, recent approaches advocate for embedding watermarking patterns in the noisy latent during data generation from diffusion models, but remain uncharted for graph models due to the hardness of inverting the graph diffusion process. In this work, we propose CheckWate: the first watermarking framework for graph diffusion models embedding checkerboard watermark and providing polynomial time verification. To address NP-completeness due to graph isomorphism, CheckWate embeds the watermark into the latent eigenvalues, which are isomorphism-invariant. To detect the watermark through reversing the graph diffusion process, CheckWate leverages the graph eigenvectors to approximately dequantize the discrete graph back to the continuous latent, with theoretical guarantees on the detectability and dequantization error. We further introduce a latent sparsification mechanism to enhance the robustness of CheckWate against graph modifications. We evaluate CheckWate on four datasets and four graph modification attacks, against three generation time watermark schemes. CheckWate achieves remarkable generation quality while being detectable under strong attacks such as isomorphism, whereas the baselines are unable to detect the watermark. Code available at: <https://anonymous.4open.science/r/checkwate>.

1 INTRODUCTION

Watermarking is a long-established method for data owners to verify the ownership of various data types (Cox et al., 2002) and it has recently been adapted to verify synthetic data from generative models (Yang et al., 2024). While graphs are used extensively for modeling real-world applications (Simonovsky & Komodakis, 2018) and synthetic graphs are increasingly adopted for knowledge discovery (Jo et al., 2023), a significant gap exists in watermarking solutions for them, especially for synthetic graphs. The conventional approaches (Zhao et al., 2015; Eppstein et al., 2016) embed watermarks in graphs via post-editing, which reduces the graph quality and requires exponential time verification. In contrast, modern watermarking methods (Yang et al., 2024; Wen et al., 2023; Zhu et al., 2025) embed the watermark at sampling-time in the noisy latents of diffusion models. These methods have the advantages of quality conservation and robust detectability at the expense of inverting the diffusion process. However, their effectiveness has only been validated on modalities other than synthetic graphs.

In contrast to images and tables, graphs can be represented in multiple adjacency matrixes via isomorphism, making differentiating (un)watermarked graphs hard. Fig. 1 illustrates an example of how node indices can be arbitrarily swapped without changing the structure of the graph. The **Graph Isomorphism** (GI) problem, i.e., determining whether two graphs are isomorphic, is one of the few unresolved questions in complexity theory, as it is not whether it can be solved in P (Babai, 2016; Grohe & Schweitzer, 2020). While quasi-polynomial algorithms exist for small instances (Grohe & Neuen, 2021), GI remains computationally infeasible for large graphs. Furthermore, when graphs are modified through addition or deletion of edges, solving GI requires addressing the *Graph Edit Distance* (GED) problem (Bunke, 1997), which is well-known to be NP-hard.

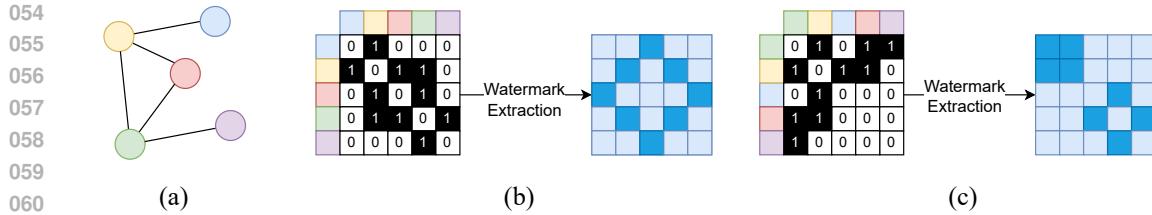


Figure 1: An example of how Graph Isomorphism disrupts watermark patterns. (a) A graph G (b) A valid representation of G , the watermarking pattern can be successfully extracted. (c) Using another valid representation (*isomorphism*) of G disrupts the watermarking pattern.

The discrete nature of graphs presents another unique challenge to watermarking, as it complicates watermark verification, particularly when coupled with the GI problem. As graphs are often represented via binary adjacency matrices, graph diffusion models, such as GruM (Jo et al., 2023), require moving from the continuous space to the discrete one through a quantization step. When watermarks are embedded in latents, the verification of watermarks needs to invert any graph back to its latents, by first **dequantizing** the graph. Inverting this step requires matching the generated graph with its corresponding dequantized version. This is computationally infeasible due to the complexity of the GI and GED problems.

We introduce **CheckWate**, the first framework for watermarking graph diffusion models with a robust verification in polynomial time. **CheckWate** consists of three key components. (i) A **checkerboard watermark** technique that enables embedding watermarking on the noisy latent eigenvalues at sampling-time. Since eigenvalues are isomorphism-invariant, this allows us to embed and extract the watermark in polynomial time with no loss of generalization and without relying on any approximation. (ii) An **approximate dequantization** mechanism that enables the transition from the discrete domain of the data to the continuous space of diffusion, thus accurate latent reconstruction and watermark verification. (iii) A **robust detection mechanism** that further improves watermark detection robustness, especially for mitigating false positive verification. Drawing upon matrix sparsification theory, we identify reconstruction errors within the noisy latent and impose constraints on the distribution of their eigenvalues. Our work brings the following contributions:

- CheckWate is a non-blind graph watermark algorithm with verification in polynomial time, circumventing NP-hardness from graph isomorphism.
- CheckWate detects the presence of a watermark by accurately inverting graph diffusion, via an approximate dequantization mechanism with a theoretical error bound.
- CheckWate robustness against post-editing attacks is enhanced by a latent sparsification mechanism.
- Extensive evaluation of CheckWate on the graph quality and watermark detectability on four datasets and four graph attacks.

2 RELATED WORK

Graph Diffusion Models Graph synthesizers have been of high interest for the scientific community in the past years. Graph diffusion models generate data starting from random (symmetric) noise. Then, a trained neural network iteratively predicts the probability distribution of clean graphs and moves toward such distribution via steps of *Denoising Diffusion Probabilistic Model* (DDPM) (Ho et al., 2020). Depending on the model, this diffusion can either happen on the discrete or the continuous space. GruM (Jo et al., 2023) introduced a novel diffusion model based on *Denoising Diffusion Bridge Models* (DDBM) (Zhou et al., 2023) that performs diffusion on the latent continuous space and achieves state-of-the-art generative performance. The denoising process of GruM is proven to converge to the discrete space of the graphs adjacency matrix up to quantization.

Watermarking Synthetic Data Watermarking is one of the key techniques used for verifying the ownership of synthetic data. Effective watermarking requires imperceptibility and robust detectability. The watermark signals can be embedded during the model training, sampling-time, or even post-data generation (He et al., 2024), having different degrees of tradeoff between the data quality and

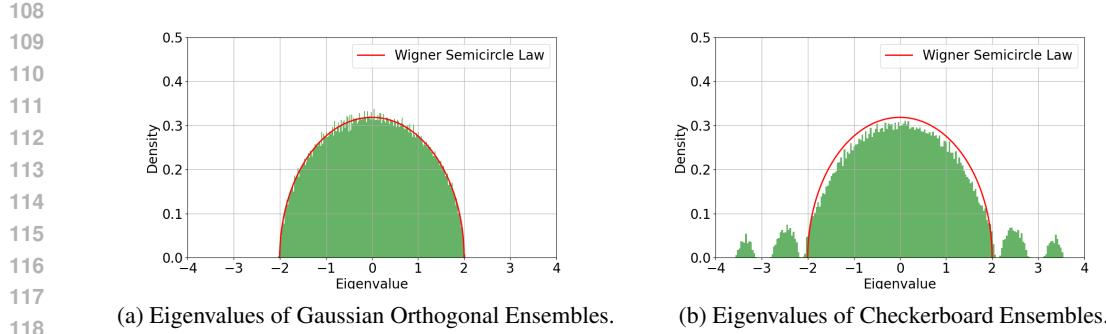


Figure 2: Distribution of eigenvalues of random matrices. (a) The eigenvalues of Gaussian Orthogonal Ensembles ($N = 500$) follow the Wigner semicircle law (*bulk*). (b) Checkerboard Ensembles ($N = 500, k = 450, W = (\pm 1.5, \pm 2.5)$) have $N-k$ eigenvalues outside the semicircle (*blip*).

robustness. Post-editing watermarks are the conventional methods applied on real graphs, leading to significant quality degradation. To avoid this problem, newer methods such as TreeRing (Wen et al., 2023) and Gaussian Shading (Yang et al., 2024) embed a pattern into the latent space. However, TreeRing directly disrupts the Gaussian distribution of noise, limiting the randomness of sampling and resulting in affecting model generative performance. Moreover, these techniques require to undergo an implicit diffusion model such as *Denoising Diffusion Implicit Model* (DDIM) (Song et al., 2020) or *Denoising Bridge Implicit Model* (DBIM) (Zheng et al., 2024) in order to be accurately inverted. Which are the implicit versions of DDPM and DDBM respectively (details in Appendix A).

Techniques similar to Gaussian Shading have been used to extend applicability to domains different from images such as tabular data (Zhu et al., 2025) and time series (Soi et al., 2025). Nevertheless, they still require to verify a pattern within the latent. This prevents the application of these methods to the domain of graphs, as graph isomorphism enables representing the data in $N!$ ways.

Graph Watermarking The prior art on watermarking graphs centers on real graph, thus being post-editing approaches. The long standing challenge is to determine two graphs are isomorphic and only quasi-polynomial time solutions exist. Eppstein et al. (2016) further shows that when undergoing adversarial attack, solving isomorphism requires to address the more complex graph edit distance problem, which is NP-hard. Specifically, Zhao et al. (2015) and Eppstein et al. (2016) provide post-editing applications for non-blind graph watermarking. However, Zhao et al. (2015) makes assumptions on the graph node degree distribution to make the GED problem tractable, while remaining exponential in the cost and not being applicable to all graphs. Eppstein et al. (2016) provides an approximate NP-complete solution to GI in exponential time. Recently, KGMark (Peng et al., 2025) addresses post-editing watermarking for knowledge graphs only, whereas Bourrée et al. (2025) proposes watermark graphs in the Fourier spectrum assuming nodes are uniquely labeled. All of these works make strong assumptions on the data or the attacks that can be performed by the adversaries.

3 CHECKWATE

We start with preliminaries on random matrix theory in Section 3.1, before introducing the CheckWate methodology shown in Fig. 3. In Section 3.2, we first delve into the watermark injection and detection mechanisms (steps ①, ⑥). Then, in Section 3.3, we discuss our proposed method for inverting quantization (steps ③, ④). Finally, in Section 3.4, we cover our error mitigation strategy, which prevents false positives under heavy adversarial perturbations. Further, we provide CheckWate pseudocode in Appendix D.

3.1 PRELIMINARIES ON RANDOM MATRIX THEORY

Graph diffusion models such as GruM rely on noisy latent variables modeled as Gaussian Orthogonal Ensembles (GOEs) (Anderson et al., 2010), i.e., symmetric Gaussian random matrices. The following explains the fundamental properties of random matrix theory used in our framework.

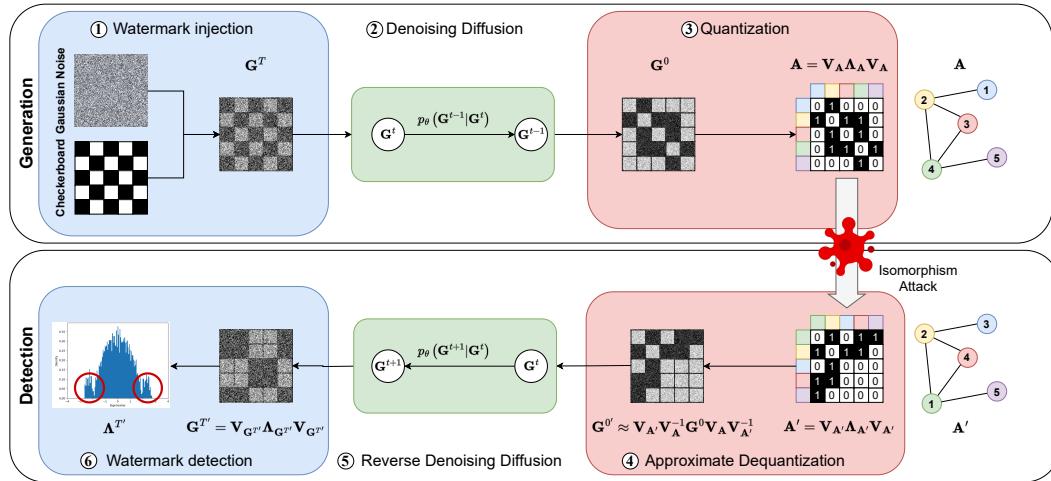


Figure 3: Pipeline of CheckWate. ① **Watermark injection**. ② **Denoising diffusion**. ③ **Quantization**. ④ **Dequantization**. ⑤ **Reverse denoising diffusion**. ⑥ **Watermark detection**.

Spectral measure The spectrum of graphs and random matrices are essential in capturing information on the graph structure (Van Mieghem, 2023). Eigenvalue distributions are typically divided into two regimes: the *bulk* (of order $\mathcal{O}(\sqrt{N})$) and the *blip* (of order $\mathcal{O}(N)$). For GOEs of size $N \times N$, all eigenvalues lie within the bulk. More precisely, when considering the normalized ensemble $\mathbf{X}_N = \mathbf{X}/\sqrt{N}$, the limiting spectral distribution ρ follows the *Wigner semicircle law* (Anderson et al., 2010) with radius $R = 2$. Fig. 2a shows the distribution of eigenvalues from GOEs.

Checkerboard Ensembles (k, W) -checkerboard ensembles were introduced by Chen et al. (2020) as a generalization of Burkhardt et al. (2018). Let $\mathcal{N}(0, 1)$ be the standard normal distribution.

Definition 3.1. Fix $k \in \mathbb{N}$ and a k -tuple of real numbers $W = (W_1, \dots, W_k)$, then the $N \times N$ (k, W) -checkerboard ensemble $((k, W)\text{-CBE})$ is the ensemble of matrices $\mathbf{C} = (C_{ij})$ given by:

$$C_{ij} = C_{ji} = \begin{cases} \mathcal{N}(0, 1) & i \not\equiv j \pmod k \\ W_u & i \equiv j \equiv u \pmod k, \text{ with } u \in \mathbb{Z}_k \end{cases}$$

Checkerboard ensembles have k eigenvalues in the bulk, while the remaining $N - k$ eigenvalues are in the blip. More precisely, for each $W_i \in W$, if W_i appears k_i times in the ensemble, k_i eigenvalues are of magnitude $NW_i/k + \mathcal{O}(\sqrt{N})$. Fig. 2b shows the eigenvalue distribution from a Checkerboard Ensemble. For high enough k , Checkerboard ensembles allow to apply significant changes to the ensemble spectrum while forcing limited modifications from regular Gaussian noise. This allows strong detectability while preserving generation quality.

3.2 CHECKERBOARD WATERMARK

The key hurdle to embed and detect the watermark pattern on graphs lies in the inherent ambiguity of graph representation, illustrated in Fig. 1. In contrast, taking the image as an example, pixel positions cannot be freely permuted without severely degrading visual quality—or even altering the picture’s entire meaning. This enables the application of pattern-based watermarks onto their latents, such as Gaussian Shading (Yang et al., 2024) and TreeRing (Wen et al., 2023). Similarly, tabular data can leverage column unambiguity to apply row-level watermark detection (Zhu et al., 2025).

To address this, CheckWate explores the properties of graph eigenvalues in both embedding and detection phases. To embed the watermark, step ①, we insert the checkerboard pattern in the noisy latent of synthetic graph at sampling-time. This enables the presence of eigenvalues in the blip, which are not expected in regular GOE, while applying minimal changes to the latent. Specifically, applying minimal changes to the GOE, ensures that the generation quality is preserved. To detect the checkerboard pattern, we first revert the graph to its noisy latent and then inspect the presence

of eigenvalues in the blip regime. The advantages of leveraging the eigenvalues of the latent are two-fold: polynomial time computation and isomorphism invariance. This allows to bypass the GI problem and detect watermark in $\mathcal{O}(N^3)$ with no approximation nor generalization loss.

Watermark injection ① We start graph generation via a random symmetric matrix \mathbf{G}^T in the latent space. We define \mathbf{G}^T as checkerboard ensemble with $W = (W_1, \dots, W_k)$ an array of size k :

$$\mathbf{G}_{ij}^T = \mathbf{G}_{ji}^T = \begin{cases} \mathcal{N}(0, 1) & i \not\equiv j \pmod{k} \\ W_u & i \equiv j \equiv u \pmod{k}, \text{ with } u \in \mathbb{Z}_k \end{cases} \quad (1)$$

Parameter tuning Both k and W are hyperparameters that determine the magnitude and frequency of eigenvalues in the blip. They allow to balance generation quality with watermark detectability. In general, checkerboard ensembles have $N - k$ eigenvalues in the blip. Thus, a lower value of k increases the watermark strength. Each of the eigenvalues in the blip has magnitude $NW_u/k + \mathcal{O}(\sqrt{N})$. Thus, a larger W_u/k increases the watermark detectability. At the same time, having a lower k increases the amount of non-gaussian entries and a larger W_u/k increases the deviation from gaussian noise. Both affect negatively generation quality creating a tradeoff with detectability: the larger W_u and the smaller k the stronger the watermark and the lower the quality.

Watermark detection ⑥ To detect the watermark, we reverse the diffusion process and reconstruct a noisy latent $\mathbf{G}^{T'} \approx \mathbf{G}^T$. We detail the reconstruction process in Section 3.3. Then, we compute the eigenvalues of the normalized $\mathbf{G}_N^{T'} = \mathbf{G}^{T'}/\sqrt{N}$. If $\mathbf{G}^{T'}$ is reconstructed from a watermarked graph, we expect $N - k$ eigenvalues to fall in the blip. Thus, we measure the (absolute) largest $N - k$ eigenvalues and expect them all to be $\gg 2$. If $\mathbf{G}^{T'}$ is not reconstructed from a watermarked graph, $\mathbf{G}^{T'}$ is a GOE and we expect all of its eigenvalues to fall in the bulk, i.e., the largest $N - k$ eigenvalues are ≤ 2 . We derive the expected difference between the computed score of a watermarked graph \mathbf{G}^W and a non watermarked one \mathbf{G}^{NW} to measure CheckWate detectability:

Theorem 3.1 (Watermark Detectability). *Let \mathbf{G}_N^{NW} be a normalized Gaussian Orthogonal Ensembles. Let \mathbf{G}_N^W be a N normalized (k, W_u) -Checkerboard Ensembles. Let $\lambda_i(\mathbf{G})$ the i -th largest eigenvalue of \mathbf{G} . Detectability of CheckWate is defined as:*

$$\mathbb{E}_{\mathbf{G}_N^W \sim (k, W_u)\text{-CBE}} \left[\frac{\sum_{i=1}^{N-k} \lambda_i(\mathbf{G}_N^W)}{(N - k)} \right] - \mathbb{E}_{\mathbf{G}_N^{NW} \sim \text{GOE}} \left[\frac{\sum_{i=1}^{N-k} \lambda_i(\mathbf{G}_N^{NW})}{(N - k)} \right] = \frac{\sqrt{N}W_u}{k} + \mathcal{O}(1) - \mathcal{O}(k^2) \quad (2)$$

We prove Theorem 3.1 in full in Appendix C.1. Equation 2 reinforces that the strength of CheckWate watermark is proportional to W_u and inversely proportional to k .

3.3 APPROXIMATE DEQUANTIZATION

Unlike other modalities, graphs are commonly represented via binary adjacency matrices. Hence, generating graphs requires transitioning from the continuous space of denoising diffusion models to the discrete space of binary adjacency matrices through quantization, step ③. Inverting this step amounts to matching an edited graph to its dequantized matrix, which reduces to the NP-complete GI and GED problems. We further stress that it is not possible to accurately reconstruct the noisy latent without taking into account quantization and demonstrate this in Table 1 of Section 4.

To overcome this, we provide a dequantization method, step ④, that leverages fundamental properties of eigenvectors under permutation to approximately reconstruct the dequantized graph latent in $\mathcal{O}(N^3)$. We discuss next the basic properties of this approximation and derive the exact reconstruction error under the Frobenius norm.

Graph quantization ③ After diffusion, the obtained graph \mathbf{G}^0 is composed of continuous values. Thus, we require to quantize \mathbf{G}^0 to a 0-1 graph adjacency matrix. After this step, we obtain the quantized adjacency matrix \mathbf{A} :

$$\mathbf{A} = \text{quantize}(\mathbf{G}^0), \mathbf{A}_{ij} \in \{0, 1\}$$

Approximate dequantization ④ For a given graph \mathbf{A}' , we need to verify the existence of a checkerboard watermark. First, a graph \mathbf{A}' can be a different, i.e., permuted, representation of \mathbf{A} :

$$\mathbf{A}' = \mathbf{P} \mathbf{A} \mathbf{P}^{-1}$$

270 where \mathbf{P} is an unknown permutation matrix. To accurately reconstruct the original noise \mathbf{G}^T in
 271 continuous space, we require the dequantized version of \mathbf{A}' , i.e., $\mathbf{G}^{0'} = \mathbf{P}\mathbf{G}^0\mathbf{P}^{-1}$. Eigenvectors of
 272 permuted graphs permute accordingly up to change of eigenbasis, i.e., $\mathbf{V}_{\mathbf{A}'} = \mathbf{P}\mathbf{V}_{\mathbf{A}}\mathbf{Q} \approx \mathbf{P}\mathbf{V}_{\mathbf{A}}$
 273 where $\mathbf{V}_{\mathbf{A}}$ are the eigenvectors of \mathbf{A} , and \mathbf{Q} is a block-diagonal matrix that maps the eigenbasis
 274 of \mathbf{A} to the one of \mathbf{A}' . More precisely, $\mathbf{Q} = \text{diag}(\mathbf{Q}_1, \dots, \mathbf{Q}_m)$ with m the number of distinct
 275 eigenvalues of \mathbf{A} and each \mathbf{Q}_i being a rotation square matrix as large as the algebraic multiplicity of
 276 eigenvalue $\lambda_i, e(\lambda_i)$. We leverage this property and combine some algebraic simplification to obtain
 277 the approximation of the permuted dequantized graph $\mathbf{G}^{0'}$:

278 **Theorem 3.2** (Approximate Dequantization). *Let \mathbf{A}' be a permutation of \mathbf{A} based on a permutation
 279 matrix \mathbf{P} . Let $\mathbf{G}^{0'}$ be a permutation of \mathbf{G}^0 on the same permutation matrix \mathbf{P} . Then, $\mathbf{G}^{0'}$ can be
 280 accurately approximated as:*

$$281 \quad \mathbf{G}^{0'} \approx \mathbf{V}_{\mathbf{A}'}\mathbf{V}_{\mathbf{A}}^{-1}\mathbf{G}^0\mathbf{V}_{\mathbf{A}}\mathbf{V}_{\mathbf{A}'}^{-1} \quad (3)$$

283 We prove Theorem 3.2 in Appendix C.2. In the special case in which all the eigenvalues are distinct,
 284 \mathbf{Q} is the identity matrix and equality for Equation 3 always holds. Further, the error given by the
 285 approximation in Equation 3 can be explicitly derived as a function of \mathbf{Q} :

286 **Theorem 3.3** (Reconstruction Error). *Let \mathbf{G}^0 and orthogonal matrix and $\mathbf{G}^{0'}$ computed as in Equa-
 287 tion 3. Then the reconstruction error can be derived as:*

$$288 \quad \|\mathbf{G}^{0'} - \mathbf{G}^0\|_F = \sum_{r,s=1}^m (\|\mathbf{Q}_r\{\mathbf{V}_{\mathbf{A}}^{-1}\mathbf{G}^0\mathbf{V}_{\mathbf{A}}\}_{r,s}\mathbf{Q}_s^{-1} - \{\mathbf{V}_{\mathbf{A}}^{-1}\mathbf{G}^0\mathbf{V}_{\mathbf{A}}\}_{r,s}\|_F^2)^{1/2} \quad (4)$$

292 We prove Theorem 3.3 in Appendix C.3. In general, the error increases with eigenvalue multiplicity:
 293 the higher the multiplicity, the higher the error. The number of distinct eigenvalues of a graph is \mathbf{G} ,
 294 $e(\mathbf{G}) \geq d+1$, where d is the graph diameter. Therefore, maximum multiplicity is always bounded by
 295 $N-d$. Graphs sampled from the Barabasi-Albert model (Albert & Barabási, 2002) have $d \approx \frac{\ln(N)}{\ln(pN)}$.

296 **Diffusion inversion** From here on, the diffusion process can be easily inverted following one of the
 297 known paradigms of DDIM or DBIM (Wen et al., 2023; Yang et al., 2024; Zhu et al., 2025; Soi
 298 et al., 2025). We detail diffusion implicit models and their inversion in Appendix A.

300 **Authorship identification via hash and sign** To enable identification of the watermark author we
 301 use digital hash-based signature (Srivastava et al., 2023). Hash-based signatures are a wide-spread
 302 cryptographic building block that provides authenticity, unforgeability, and undeniability (Srivastava
 303 et al., 2023). The watermark author can hash-sign the key $\mathbf{K} = \mathbf{V}_{\mathbf{A}}^{-1}\mathbf{G}^0\mathbf{V}_{\mathbf{A}}$ which is then used to
 304 enable reversibility of the diffusion process and reconstruct the noisy latent to extract the watermark.
 305 We stress that accurately computing the dequantized matrix $\mathbf{G}^{0'}$ is essential to enable watermark
 306 detectability as we demonstrate in our experiments in Section 4.

3.4 ROBUST DETECTION VIA LATENT SPARSIFICATION

309 Even under perfect reversal of the diffusion process, the reconstructed latent $\mathbf{G}^{T'}$ might be subject
 310 to several perturbations due to approximation errors stemming from Equation 3 and adversarial
 311 perturbations on the graph \mathbf{A} . Unlike watermark reconstructions in other modalities, where errors
 312 remain largely localized, eigenvalues encode global structural dependencies within the matrix and
 313 are thus far more sensitive to such disturbances. Consequently, the eigenvalues of the perturbed
 314 GOE might fall out of the bulk regime, i.e., > 2 , and lead to false positive behavior. To prevent
 315 this, we apply a simple yet efficient robustness enhancing mechanism that replaces entries that were
 316 unlikely generated in the original noisy latent:

$$317 \quad \mathbf{G}_{ij}^{T'} = \begin{cases} \mathbf{G}_{ij}^{T'} & \max(\phi(\mathbf{G}_{ij}^{T'}), \delta(\mathbf{G}_{ij}^{T'})) > \theta \\ 0 & \text{otherwise} \end{cases} \quad (5)$$

320 Where $\phi(\cdot)$ and $\delta(\cdot)$ are the probability density functions of a normal Gaussian and a Dirac distribu-
 321 tion, centered in 0 and W respectively. θ is a threshold parameter that determines the tolerance of the
 322 anomaly detection mechanism. This leads to replacement of entries with values unlikely belonging
 323 to the original noisy latent with zero entries, i.e., sparsification. Sparsifying the latent allows us to
 better control the behavior of the eigenvalues and prevent their explosion outside of the bulk.

324 **Rationale** After this process, $\mathbf{G}^{T'}$ is a sparse GOE. Let q be the number of non-zero elements per
 325 matrix row. When $q = N$, $\mathbf{G}^{T'}$ is a GOE and its eigenvalues follow the Wigner semicircle. When
 326 $q < N$, most of the eigenvalues lie in the bulk, with a higher density around zero (Evangelou, 1992).
 327 More precisely, for small values of q , the density of eigenvalues ρ is:

$$329 \quad \rho(\lambda) \propto \frac{1}{|\lambda| \log(|\lambda|)^3} \quad (6)$$

331 as $\lambda \rightarrow 0$ (Evangelou, 1992). While exponential tails develop outside of the bulk domain, for
 332 high enough p these eigenvalues are rare and close enough to the bulk not to create any practical
 333 problem for watermark detection even under heavy perturbations. We demonstrate this qualitatively
 334 in Appendix H and with numerical results in Table 2.

336 4 EVALUATION

339 We consider four **datasets** from prior work on graph diffusion models (Jo et al., 2023; Vignac et al.,
 340 2022; Martinkus et al., 2022): Planar, Tree, Stochastic Block Model (SBM), and Proteins (Dobson
 341 & Doig). Because no prior semantic watermarking methods exist for graph diffusion, we adapt two
 342 state-of-the-art **baselines** to the graph domain: *Gaussian Shading* (Yang et al., 2024) and *TreeRing*
 343 (Wen et al., 2023). We additionally design a graph-specific baseline, *Bipartite*, which is graph-
 344 invariant but severely compromises generative quality due to the high correlation of entries of the
 345 noisy latents. Implementation details for all baselines, including Bipartite, are in Appendix B. Fi-
 346 nally, *None* serves as the non-watermarked reference.

347 To evaluate **generative performance**, we follow the setting of Jo et al. (2023). We measure the
 348 maximum mean discrepancy (MMD) of four graph statistics between the set of generated graphs
 349 and the test set: degree (Deg.), clustering coefficient (Clus.), count of orbits with 4 nodes (Orb.), and
 350 the eigenvalues of the graph Laplacian (Spec.). We also compute the percentage of valid, unique,
 351 and novel (V.U.N.) graphs for which the validity is defined as satisfying the specific property of each
 352 dataset. We evaluate **watermark detectability** via Z-score, which measures the distance between
 353 the mean score of watermarked and non-watermarked data normalized by the standard deviation.

354 4.1 GENERATIVE QUALITY AND WATERMARK DETECTABILITY

356 We run experiments with no attack on all four datasets. Results are showcased in Table 1. First,
 357 we can see that CheckWate achieves state-of-the-art **generative quality**. Namely, CheckWate
 358 is the best performing watermarking method 10 times out of 20, and second-best 9 times out of the
 359 remaining 10. The best baseline from the state-of-the-art is Gaussian Shading, which is a provably
 360 loss-less watermarking. TreeRing and Bipartite, fall significantly behind, as they perform up to
 361 10 times worse than the best watermarking method depending on the dataset and quality metric.
 362 Both CheckWate and Gaussian Shading achieve generative performance comparable to the one
 363 obtained without watermark. Under the Proteins dataset, CheckWate significantly outperforms
 364 other baselines including None. We suggest that the enhanced variance obtained via the checkered
 365 entries compensates the lack of randomness in the used implicit model.

366 For **detectability**, all methods achieve consistent results, except for TreeRing. Bipartite achieves
 367 the best Z-score, but lacks generative quality. Gaussian Shading and CheckWate have compara-
 368 ble Z-scores, except on Proteins where CheckWate significantly outperforms Gaussian Shading.
 369 Finally, we emphasize the detectability obtained with *No Dequantization*. Not applying a dequan-
 370 tization leads to an almost complete –if not complete– loss of the watermark even under no attack.

371 4.2 ROBUSTNESS TO GRAPH PERTURBATIONS

373 We test watermark robustness under four graph-specific perturbations (Table 2): Isomorphism, Edge
 374 Addition, Edge Deletion, and Node Deletion, each applied at strengths from 5% to 20%. Check-
 375 Wate remains detectable under all experimented attacks, with the lowest Z-score (9.7) observed
 376 for SBM under 20% node deletion. Bipartite is consistently the strongest watermarking method but
 377 sacrifices generative quality. The state-of-the-art methods fail at achieving a statistically significant
 watermark most of the times as TreeRing never reaches a positive Z-score, and Gaussian Shading

378
379
380
381
382
383
384 Table 1: Generative quality is reported as mean maximum discrepancy (MMD) and the ratio of
385 valid, unique, and novel (V.U.N.) samples. Watermark detectability is evaluated via the Z-score,
386 with results shown for both dequantized and non-dequantized graphs. **Bold** indicates the best result
387 and underline the second best; arrows specify if lower or higher values are preferable. We note with
388 a checkmark detectable Z-scores (> 10).
389

384 Dataset	385 Watermark	386 Quality Metrics					387 Detectability (Z-Score)	
		Deg. \downarrow	388 Clus. \downarrow	Orb. \downarrow	Spec. \downarrow	V.U.N. (%) \uparrow	389 Dequant \uparrow	No Dequant. \uparrow
386 Planar 387 $ V = 64$ 388 Synthetic	389 <i>None</i>	390 0.0009	391 0.0373	392 0.0123	393 0.0078	394 72.5	395 —	396 —
	Gaussian Shading	<u>0.0008</u>	0.00367	0.0072	<u>0.0093</u>	<u>62.5</u>	57.6 ✓	5.9
	TreeRing	0.0104	0.1255	0.2122	0.0188	10	1.0	0.0
	Bipartite	0.0007	0.0412	0.0653	0.0101	67.5	4999 ✓	0.5
389 Tree 390 $ V = 64$ 391 Synthetic	392 <i>None</i>	393 0.0007	394 0	395 0.0001	396 0.0126	397 55	398 —	399 —
	Gaussian Shading	0	0	0.0001	0.0090	67.5	59.0 ✓	2.9
	TreeRing	<u>0.0002</u>	0	<u>0.0002</u>	0.0122	42.5	1.1	0.0
	Bipartite	<u>0.0002</u>	0	<u>0.0002</u>	0.0124	45	4968 ✓	0.0
393 SBM 394 $44 \leq V \leq 187$ 395 Synthetic	396 <i>None</i>	397 0.005	398 0.0504	399 0.0439	400 0.0058	401 67.5	402 —	403 —
	Gaussian Shading	<u>0.0105</u>	0.0498	<u>0.0629</u>	<u>0.0076</u>	72.5	84.7 ✓	10.7 ✓
	TreeRing	0.0264	0.0612	0.1100	0.0112	<u>52.5</u>	0.6	0.0
	Bipartite	0.1178	0.6432	0.1984	0.0742	0	915.8 ✓	25.4 ✓
397 Proteins 398 $100 \leq V \leq 500$ 399 Real	400 <i>None</i>	401 0.4315	402 0.5436	403 1.3283	404 0.2450	405 —	406 —	407 —
	Gaussian Shading	0.4358	0.5283	<u>1.3332</u>	<u>0.2579</u>	—	110.3 ✓	1.4
	TreeRing	<u>0.4149</u>	<u>0.4137</u>	<u>1.3332</u>	<u>0.3009</u>	—	1.5	0.0
	Bipartite	0.5114	1.0123	<u>1.4257</u>	0.5636	—	1724.0 ✓	2.2
401 CheckWate (ours)	402 <i>None</i>	403 0.0473	404 0.2156	0.5986	0.0440	405 —	404.7 ✓	2.0

401
402 Table 2: Watermark detectability (Z-score) under perturbations. The higher the better. **Bold** denotes
403 best, underlined denotes second-best. $\|e_{max}\|$ is average maximum graph eigenvalue multiplicity.
404 We note with a checkmark detectable Z-scores (> 10).
405

406 Dataset	407 Watermark	$\ e_{max}\ $	408 Isomorphism	409 Watermark Detectability (Z-Score \uparrow)						410 Node Deletion	
				411 Edge Deletion	412 5%	413 10%	414 20%	415 Edge Addition	416 5%	417 10%	
407 Planar	408 Gaussian Shading	409 <u>(57.6 ✓)</u>	410 2.9	411 0	412 2.3	413 2.2	414 2.3	415 3.5	416 2.9	417 4.6	418 2.5
	TreeRing	<u>(1.0)</u>	2.8	0	0	0	0	0	0	0	0
	Bipartite	<u>(4999 ✓)</u>	3.0	548.5 ✓	499.0 ✓	477.2 ✓	605.4 ✓	211.6 ✓	116.8 ✓	39.8 ✓	448.5 ✓
	CheckWate (ours)	<u>(67.6 ✓)</u>	2.9	<u>41.8 ✓</u>	<u>36.5 ✓</u>	<u>35.6 ✓</u>	<u>36.7 ✓</u>	<u>32.6 ✓</u>	<u>30.9 ✓</u>	<u>21.8 ✓</u>	<u>30.8 ✓</u>
409 Tree	410 Gaussian Shading	411 <u>(59.0 ✓)</u>	412 8.6	413 0	414 2.8	415 2.3	416 1.2	417 3.1	418 1.9	419 1.7	420 2.3
	TreeRing	<u>(1.1)</u>	9.0	0	0	0	0	0	0	0	0
	Bipartite	<u>(4967.7 ✓)</u>	9.2	<u>166.6 ✓</u>	<u>111.4 ✓</u>	<u>113.1 ✓</u>	<u>119.9 ✓</u>	<u>103.7 ✓</u>	<u>83.3 ✓</u>	<u>56.2 ✓</u>	<u>133.9 ✓</u>
	CheckWate (ours)	<u>(45.0 ✓)</u>	9.3	<u>31.3 ✓</u>	<u>28.8 ✓</u>	<u>31.1 ✓</u>	<u>30.5 ✓</u>	<u>34.9 ✓</u>	<u>35.7 ✓</u>	<u>31.8 ✓</u>	<u>24.3 ✓</u>
411 SBM	412 Gaussian Shading	413 <u>(85.1 ✓)</u>	414 80.6	415 0	416 5.3	417 4.6	418 3.9	419 3.9	420 3.4	421 3.6	422 3.8
	TreeRing	<u>(0.5)</u>	80.8	0	0	0	0	0	0	0	0
	Bipartite	<u>(894.6 ✓)</u>	107.5	<u>124.1 ✓</u>	<u>54.6 ✓</u>	<u>209.2 ✓</u>	<u>20.5 ✓</u>	<u>618.3 ✓</u>	<u>246.5 ✓</u>	<u>141.5 ✓</u>	<u>623.2 ✓</u>
	CheckWate (ours)	<u>(86.8 ✓)</u>	80.7	<u>60.8 ✓</u>	<u>50.4 ✓</u>	<u>19.5 ✓</u>	<u>15.6 ✓</u>	<u>18.8 ✓</u>	<u>10.6 ✓</u>	<u>11.1 ✓</u>	<u>32.8 ✓</u>
414 Proteins	415 Gaussian Shading	416 <u>(119.3 ✓)</u>	417 305.4	418 0.1	419 0.7	420 0.6	421 0	422 0.8	423 0.7	424 0.3	425 0.7
	TreeRing	<u>(1.0)</u>	339.0	0	0	0	0	0	0	0	0
	Bipartite	<u>(1724.0 ✓)</u>	481.1	1636.7 ✓	<u>1636.9 ✓</u>	<u>1636.9 ✓</u>	<u>1634.5 ✓</u>	<u>1636.8 ✓</u>	<u>1636.8 ✓</u>	<u>1634.3 ✓</u>	<u>1636.8 ✓</u>
	CheckWate (ours)	<u>(404.7 ✓)</u>	267.8	<u>128.4 ✓</u>	<u>174.7 ✓</u>	<u>112.0 ✓</u>	<u>92.2 ✓</u>	<u>166.3 ✓</u>	<u>117.7 ✓</u>	<u>59.7 ✓</u>	<u>152.4 ✓</u>

418 never surpasses a Z-score of 5.3. Notably, under isomorphism, they both consistently achieve a
419 Z-score of 0, confirming that they are not graph invariant. We also report the average maximum
420 eigenvalue multiplicity $\|e_{max}\|$, showing that generated graphs rarely have low multiplicity. This
421 reinforces the strength of our dequantization mechanism, even with the approximation in Equation 3.
422

423 4.3 ABLATION STUDIES

424 **Ideal dequantization** We perform experiments in which we assume the permutation matrix \mathbf{P} to
425 be known. We dequantize $\mathbf{G}^{0*} = \mathbf{A}' - \mathbf{P}(\mathbf{A} - \mathbf{G}^0)\mathbf{P}^{-1}$ and consider \mathbf{G}^{0*} to be the ideal
426 result of dequantization. Table 3 showcases the results. This allows us to analyze the difference in
427 performance given by the approximation in Equation 3. CheckWate achieves enhanced watermark
428 strength, especially under heavier attacks. This can be explained as the eigenvectors of \mathbf{G}^T tend to
429 change more when under heavier perturbations, making the reconstruction from Equation 3 less
430 robust. Furthermore, we emphasize that isomorphism does not degrade CheckWate detectability,
431 proving graph-invariance of the checkerboard watermarking. We further see that the baseline that is

432 Table 3: Watermark detectability (Z-score) under perturbations with *ideal dequantization*. The
 433 higher the better for all. **Bold** denotes best, underlined denotes second-best.

Dataset	Watermark	Isomorphism	Watermark Detectability (Z-Score \uparrow)									
			Edge Deletion			Edge Addition			Node Deletion			
			5%	10%	20%	5%	10%	20%	5%	10%	20%	
Planar	Gaussian Shading	(41.6)	0.4	44.3	41.8	36.5	45.4	40.0	37.9	42.0	40.2	40.9
	TreeRing	(1.2)	0.0	1.0	0.8	0.4	1.1	1.0	0.7	0.8	0.5	0.0
	Bipartite	(4820.8)	4842.1	<u>4790.6</u>	<u>4797.1</u>	<u>4424.3</u>	<u>3547.2</u>	<u>2052.4</u>	<u>858.0</u>	4833.1	4866.8	3837.3
	CheckWate (ours)	(46.5)	<u>46.5</u>	<u>45.6</u>	<u>48.7</u>	<u>52.8</u>	<u>45.4</u>	<u>37.7</u>	<u>20.8</u>	38.1	37.3	37.7
Tree	Gaussian Shading	(40.0)	0.3	36.9	37.7	37.7	39.3	39.8	42.1	39.4	39.9	40.8
	TreeRing	(1.0)	0.0	0.7	0.7	0.5	1.0	0.9	0.9	0.7	0.5	0.2
	Bipartite	(2661.7)	2651.3	<u>2683.4</u>	<u>2788.7</u>	<u>2697.1</u>	<u>2759.1</u>	<u>2741.8</u>	<u>2637.4</u>	2642.4	2636.8	2718.7
	CheckWate (ours)	(33.2)	<u>32.3</u>	29.5	27.2	32.1	35.1	30.2	25.6	25.0	30.0	29.3
SBM	Gaussian Shading	(84.4)	0.3	74.1	73.8	67.1	70.4	69.0	77.1	73.7	69.9	75.4
	TreeRing	(1.0)	0.0	0.7	0.4	0.0	0.3	0.0	0.0	0.3	0.0	0.0
	Bipartite	(837.1)	837.1	<u>993</u>	<u>1230.0</u>	<u>964.1</u>	<u>15721.4</u>	<u>31918.5</u>	<u>29797.2</u>	944.5	7406.3	1002.2
	CheckWate (ours)	(86.8)	<u>86.8</u>	<u>87.0</u>	<u>47.4</u>	<u>23.2</u>	31.0	18.8	18.0	55.6	36.3	10.3
Proteins	Gaussian Shading	(119.3)	11.0	150.8	151.2	161.3	150.6	<u>153.7</u>	<u>152.5</u>	152.9	<u>153.7</u>	<u>153.3</u>
	TreeRing	(1.0)	0.0	1.5	1.4	1.3	1.5	<u>1.3</u>	<u>1.1</u>	1.5	<u>1.3</u>	<u>1.1</u>
	Bipartite	(1724.0)	1729.8	<u>1643.5</u>	<u>1647.3</u>	<u>1641.5</u>	<u>1652.6</u>	<u>1648.4</u>	<u>1641.3</u>	1647.0	1645.3	1641.4
	CheckWate (ours)	(405.2)	<u>405.0</u>	<u>406.9</u>	<u>290.0</u>	<u>200.1</u>	<u>337.8</u>	<u>146.0</u>	<u>93.9</u>	<u>370.9</u>	<u>144.0</u>	<u>89.0</u>

448 Table 4: Watermark detectability (Z-score) under perturbations *without sparsification mechanism*.
 449 The higher the better for all. **Bold** denotes best, underlined denotes second-best.

Dataset	Watermark	Isomorphism	Watermark Detectability (Z-Score \uparrow)									
			Edge Deletion			Edge Addition			Node Deletion			
			5%	10%	20%	5%	10%	20%	5%	10%	20%	
Planar	Gaussian Shading	(32.0)	0.0	3.9	3.0	2.7	4.7	3.0	2.9	3.6	2.8	2.0
	TreeRing	(0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Bipartite	(3527.4)	132.1	<u>54.8</u>	<u>60.0</u>	<u>75.4</u>	<u>18.4</u>	<u>6.6</u>	<u>0.7</u>	55.5	54.8	58.9
	CheckWate (ours)	(64.1)	<u>35.0</u>	<u>37.4</u>	<u>35.2</u>	<u>32.4</u>	0.0	0.0	0.0	<u>32.2</u>	<u>29.9</u>	<u>29.1</u>
Tree	Gaussian Shading	(28.3)	0.5	2.4	2.0	1.6	2.2	1.7	2.4	1.6	1.7	0.8
	TreeRing	(0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Bipartite	(411.8)	5.5	5.0	3.4	3.8	4.1	3.3	2.3	4.1	4.6	3.8
	CheckWate (ours)	(49.9)	46.8	<u>40.0</u>	<u>30.1</u>	<u>33.4</u>	0.7	0.0	0.0	<u>35.7</u>	<u>36.1</u>	<u>27.1</u>
SBM	Gaussian Shading	(65.1)	0.0	6.2	4.5	3.2	3.7	3.0	2.5	4.6	3.2	<u>2.5</u>
	TreeRing	(0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Bipartite	(737200.7)	127821.4	<u>3150.6</u>	<u>2302.1</u>	<u>395.0</u>	<u>49141.5</u>	0.0	0.0	<u>175934</u>	<u>2985.9</u>	<u>14.2</u>
	CheckWate (ours)	(86.8)	<u>61.2</u>	<u>53.4</u>	<u>5.5</u>	<u>13.6</u>	2.3	0.3	0.0	7.3	5.6	0.7
Proteins	Gaussian Shading	(71.1)	0.2	0.5	0.4	0.1	0.4	0.6	0.3	0.4	0.3	0.0
	TreeRing	(0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Bipartite	(97.8)	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3	97.3
	CheckWate (ours)	(410.9)	<u>221.7</u>	<u>239.7</u>	<u>136.4</u>	<u>109.7</u>	<u>3.1</u>	<u>1.6</u>	<u>0.5</u>	<u>208.9</u>	<u>20.1</u>	<u>26.4</u>

467 affected the most is Gaussian Shading. Albeit, it continues to have insufficient detectability when
 468 under isomorphism as its watermark is not graph-invariant.

469 **Robust detection mechanism** Finally, we perform experiments with the robust detection mechanism
 470 disabled. Results are showcased in Table 4. We can clearly see that most Z-scores are reduced.
 471 Notably, under the edge addition attack, CheckWate is not detectable even under lighter attacks.
 472 This happens as the reconstructed latent diverges from the GOE assumption. This leads to the eigen-
 473 values diverging from the bulk. At the same time, applying the robust detection mechanism con-
 474 strains the latent to the sparsified GOE, making its behavior predictable, and forcing the eigenvalues
 475 to stay within the bulk. We showcase a qualitative comparison in Fig. 8 from Appendix H.

5 CONCLUSIONS

479 Motivated by the need of efficiently verifying ownership of synthetic graph data, we propose
 480 CheckWate, the first sampling-time watermark for graph diffusion models. CheckWate embeds
 481 a checkerboard pattern in the noisy latent and detects the watermark in polynomial time using the
 482 noisy latent eigenvalues. The novel design of CheckWate leverages random matrix theory to solve
 483 multiple hard graph watermarking challenges: bypassing NP-hardness of verifying graphs arising
 484 from graph isomorphism, and dequantizing discrete and isomorphic graph representations. Our wa-
 485 termark is not only theoretically grounded in watermark verification time and graph reconstruction
 486 error, but also practically robust against graph-modifications. Our evaluation across four datasets

486 shows that CheckWate achieves state-of-the-art generative quality and remains detectable under
 487 graph-specific attacks such as isomorphism, while watermarks of prior art are barely detectable. We
 488 discuss limitations and future work in Appendix E.
 489

490 **REPRODUCIBILITY STATEMENT**
 491

492 To ensure the reproducibility of our research, we include: code of the proposed framework, pseu-
 493 docode of watermark detection in appendix. All used datasets are publicly available and instructions
 494 to reproduce our results are provided in the code repository.
 495

496 **ETHICS STATEMENT**
 497

498 Our proposed graph watermarking framework has broad applications in claiming ownership over
 499 synthetic network data such as molecular structures used in drug discovery or material science ap-
 500 plications and human interactions on social media, or professional networks.
 501

502 This paper was written with the aid of publicly available LLMs in tasks such as grammar check,
 503 spelling error, and minor rephrasing.
 504

505 **REFERENCES**
 506

507 Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. *Reviews of*
 508 *modern physics*, 74(1):47, 2002. Publisher: APS.

509 Greg W Anderson, Alice Guionnet, and Ofer Zeitouni. *An introduction to random matrices*. Number
 510 118. Cambridge university press, 2010.

512 László Babai. Graph Isomorphism in Quasipolynomial Time, January 2016. URL <http://arxiv.org/abs/1512.03547>. arXiv:1512.03547 [cs].

514 Daniel J Bernstein. ChaCha, a variant of Salsa20.

516 Jade Garcia Bourrée, Anne-Marie Kermarrec, Erwan Le Merrer, and Othmane Safsafi. Fast In-
 517 Spectrum Graph Watermarks, August 2025. URL <http://arxiv.org/abs/2502.04182>.
 518 arXiv:2502.04182 [cs].

519 Gabriel Budel and Piet Van Mieghem. Detecting the number of clusters in a network. *Journal*
 520 *of Complex Networks*, 8(6):cnaa047, March 2021. ISSN 2051-1310, 2051-1329. doi: 10.
 521 1093/comnet/cnaa047. URL <https://academic.oup.com/comnet/article/doi/10.1093/comnet/cnaa047/6161499>.
 523

524 H. Bunke. On a relation between graph edit distance and maximum common subgraph. *Pat-
 525 tern Recognition Letters*, 18(8):689–694, August 1997. ISSN 01678655. doi: 10.1016/
 526 S0167-8655(97)00060-3. URL <https://linkinghub.elsevier.com/retrieve/pii/S0167865597000603>.
 527

528 Paula Burkhardt, Peter Cohen, Jonathan DeWitt, Max Hlavacek, Steven J Miller, Carsten Sprunger,
 529 Yen Nhi Truong Vu, Roger Van Peski, and Kevin Yang. Random matrix ensembles with split
 530 limiting behavior. *Random Matrices: Theory and Applications*, 7(03):1850006, 2018. Publisher:
 531 World Scientific.

532 Fangu Chen, Jiahui Yu, Steven J Miller, and Yuxin Lin. The limiting spectral measure for an ensem-
 533 ble of generalized checkerboard matrices. *arXiv preprint arXiv:2009.10833*, 2020.

535 Ingemar Cox, Matthew Miller, Jeffrey Bloom, and Chris Honsinger. Digital watermarking. *Journal*
 536 *of Electronic Imaging*, 11(3):414–414, 2002. Publisher: Society of Photo-Optical Instrumentation
 537 Engineers.

538 Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
 539 alignments. *Journal of molecular biology*, 330(4):771–783. Publisher: Elsevier.

540 David Eppstein, Michael T Goodrich, Jenny Lam, Nil Mamano, Michael Mitzenmacher, and Manuel
 541 Torres. Models and algorithms for graph watermarking. In *International Conference on Informa-*
 542 *tion Security*, pp. 283–301. Springer, 2016.

543

544 Ernesto Estrada and Juan A. Rodríguez-Velázquez. Spectral measures of bipartivity in com-
 545 plex networks. *Physical Review E*, 72(4):046105, October 2005. ISSN 1539-3755, 1550-
 546 2376. doi: 10.1103/PhysRevE.72.046105. URL <https://link.aps.org/doi/10.1103/PhysRevE.72.046105>.

547

548 S. N. Evangelou. A numerical study of sparse random matrices. *Journal of Statistical Physics*,
 549 69(1):361–383, October 1992. ISSN 1572-9613. doi: 10.1007/BF01053797. URL <https://doi.org/10.1007/BF01053797>.

550

551 Martin Grohe and Daniel Neuen. Recent Advances on the Graph Isomorphism Problem, January
 552 2021. URL <http://arxiv.org/abs/2011.01366>. arXiv:2011.01366 [cs].

553

554 Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. *Communications of the*
 555 *ACM*, 63(11):128–134, October 2020. ISSN 0001-0782, 1557-7317. doi: 10.1145/3372123.
 556 URL <https://dl.acm.org/doi/10.1145/3372123>.

557

558 Hengzhi He, Peiyu Yu, Junpeng Ren, Ying Nian Wu, and Guang Cheng. Watermarking Generative
 559 Tabular Data, May 2024. URL <http://arxiv.org/abs/2405.14018>. arXiv:2405.14018
 560 [cs].

561

562 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 563 *neural information processing systems*, 33:6840–6851, 2020.

564

565 Jaehyeong Jo, Dongki Kim, and Sung Ju Hwang. Graph generation with diffusion mixture. *arXiv*
 566 *preprint arXiv:2302.03596*, 2023.

567

568 Karolis Martinkus, Andreas Loukas, Nathanaël Perraудин, and Roger Wattenhofer. SPECTRE:
 569 Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators.
 570 In *Proceedings of the 39th International Conference on Machine Learning*, pp. 15159–15179.
 571 PMLR, June 2022. URL <https://proceedings.mlr.press/v162/martinkus22a.html>. ISSN: 2640-3498.

572

573 Hongrui Peng, Haolang Lu, Yuanlong Yu, Weiye Fu, Kun Wang, and Guoshun Nan. KGMark: A
 574 Diffusion Watermark for Knowledge Graphs. *arXiv preprint arXiv:2505.23873*, 2025.

575

576 Martin Simonovsky and Nikos Komodakis. GraphVAE: Towards Generation of Small Graphs Using
 577 Variational Autoencoders, February 2018. URL <http://arxiv.org/abs/1802.03480>.
 578 arXiv:1802.03480 [cs].

579

580 Zhi Wen Soi, Chaoyi Zhu, Fouad Abiad, Aditya Shankar, Jeroen M Galjaard, Huijuan Wang, and
 581 Lydia Y Chen. TimeWak: Temporal Chained-Hashing Watermark for Time Series Data. *arXiv*
 582 *preprint arXiv:2506.06407*, 2025.

583

584 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 585 *preprint arXiv:2010.02502*, 2020.

586

587 Vikas Srivastava, Anubhab Baksi, and Sumit Kumar Debnath. An Overview of Hash Based Signa-
 588 tures, 2023. URL <https://eprint.iacr.org/2023/411>. Publication info: Preprint.

589

590 Piet Van Mieghem. *Graph spectra for complex networks*. Cambridge university press, 2023.

591

592 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
 593 cal Frossard. Digress: Discrete denoising diffusion for graph generation. *arXiv preprint*
 594 *arXiv:2209.14734*, 2022.

595

596 Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-rings watermarks: Invis-
 597 ible fingerprints for diffusion images. *Advances in Neural Information Processing Systems*, 36:
 598 58047–58063, 2023.

594 Zijin Yang, Kai Zeng, Kejiang Chen, Han Fang, Weiming Zhang, and Nenghai Yu. Gaussian shad-
 595 ing: Provable performance-lossless image watermarking for diffusion models. In *Proceedings of*
 596 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12162–12171, 2024.
 597

598 Xiaohan Zhao, Qingyun Liu, Haitao Zheng, and Ben Y Zhao. Towards graph watermarks. In
 599 *Proceedings of the 2015 ACM on Conference on Online Social Networks*, pp. 101–112, 2015.

600 Kaiwen Zheng, Guande He, Jianfei Chen, Fan Bao, and Jun Zhu. Diffusion bridge implicit models.
 601 *arXiv preprint arXiv:2405.15885*, 2024.

602

603 Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models.
 604 *arXiv preprint arXiv:2309.16948*, 2023.

605

606 Chaoyi Zhu, Jiayi Tang, Jeroen M Galjaard, Pin-Yu Chen, Robert Birke, Cornelis Bos, Lydia Y
 607 Chen, and others. Tabwak: A watermark for tabular diffusion models. In *International Conference*
 608 *on Learning Representations*, pp. 1–28. OpenReview. net, 2025.

609

610 LIST OF SYMBOLS

611

612 $\delta(\cdot)$ Probability density function of Dirac distribution
 613

614 Λ The diagonal matrix of the eigenvalues, i.e., $\text{diag}(\lambda_1, \dots, \lambda_N)$
 615

616 λ Eigenvalue
 617

618 \mathbf{A} Binary graph adjacency matrix
 619

619 \mathbf{A}' Binary graph adjacency matrix to verify
 620

620 \mathbf{G}^0 Generated graph (in the continuous space)
 621

621 \mathbf{G}^T Noisy latent
 622

622 $\mathbf{G}^{T'}$ Reconstructed noisy latent
 623

623 \mathbf{V}_x Eigenvectors of matrix \mathbf{X}
 624

624 \mathbf{X}_N A normalized matrix, i.e., $\mathbf{X}_N = \mathbf{X}/\sqrt{N}$
 625

626 \mathbf{X}_{ij} Entry i, j of matrix \mathbf{X}
 627

627 $\mathcal{N}(\mu, \sigma)$ Gaussian distribution with mean μ and std σ
 628

628 $\phi(\cdot)$ Probability density function of Gaussian distribution
 629

629 $\rho(\cdot)$ Probability density function of eigenvalues of a normalized matrix
 630

631 $\text{diag}(\cdot)$ Diagonal matrix
 632

632 $e(\lambda)$ Algebraic multiplicity of eigenvalue λ
 633

634

635 A BACKGROUND ON DIFFUSION MODELS

636

637 **DDPM** Diffusion models generate data starting from a noisy latent representation. *Denoising Diffusion*
 638 *Probabilistic Model* (DDPM) (Ho et al., 2020) has been at the forefront of generation of
 639 synthetic data. This framework aims at transitioning from a latent sampled from noise distribution
 640 ($z_T \sim \mathcal{N}(0, 1)$) to a sample of the data distribution z_0 through a iterative process. More precisely,
 641 at each step t , a neural network ϵ_θ predicts the noise $\epsilon_\theta(t, z_t)$ to predict the next sample z_{t-1} as:

$$642 z_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{z_t - \sqrt{1 - \alpha_t} \epsilon_\theta(t, z_t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_\theta(t, z_t) + \sigma_t \epsilon_t \quad (7)$$

643

644 where $\alpha_1, \dots, \alpha_T$ are computed from a predefined variance schedule. $\epsilon_t \sim \mathcal{N}(0, 1)$ is independent
 645 standard Gaussian noise. σ_t is noise that yields diversification in the generative process.
 646

647 **DDIM** By setting $\sigma_t = 0$ the generative process becomes deterministic, i.e., implicit. Meaning that,
 648 for a starting noise z_T , the generative process deterministically yields to the same z_0 . Notably, if the

size of the steps is small, i.e., large T , the generative process can be accurately reversed and z_T can be reconstructed from z_0 via:

$$z_{t+1} = \sqrt{\frac{\alpha_{t+1}}{\alpha_t}} z_t + \left(\sqrt{1 + \alpha_{t+1}} - \sqrt{\frac{\alpha_{t+1}}{\alpha_t} - \alpha_{t+1}} \right) \epsilon_\theta(t, z_t) \quad (8)$$

based on the approximation $\epsilon_\theta(t, z_t) \approx \epsilon_\theta(t - 1, z_{t-1})$. This paradigm is called the *Denoising Diffusion Implicit Model* (DDIM) (Song et al., 2020). Due to its capability of reconstructing noisy latent, it has been used as the backbone of multiple watermarking methodologies (Wen et al., 2023; Yang et al., 2024; Zhu et al., 2025; Soi et al., 2025).

DDBM *Denoising Diffusion Bridge Models* (DDBM) (Zhou et al., 2023) generalize diffusion by allowing the endpoints of the diffusion process to be arbitrary distributions rather than always starting from random noise. This enables denoising diffusion to operate on usecases such as image editing. DDBM learn a bridge score function $s(t, x)$ via a neural network. Then, the *reverse process* can be expressed as a stochastic differential equation (SDE):

$$d\mathbf{x}^t = [f(\mathbf{x}^t, t) - g(t)^2 s(\mathbf{x}^t, t)] dt + g(t) d\mathbf{W}^t \quad (9)$$

where $f(x, t)$ and $g(t)^2$ come from the forward reference diffusion process, and \mathbf{W}^t is a standard Wiener process that introduces diversification in the generative process.

A.1 GRAPH DIFFUSION MODELS

Discrete Graph Diffusion Some of the state-of-the-art diffusion models perform diffusion using discrete graph representations in the latent space. DiGress (Vignac et al., 2022) is one of the most popular examples. DiGress represents noisy latents as Erdős-Renyi (ER) random graphs in which each edge is independently sampled with 50% chance. The generation follows a discrete denoising diffusion process inspired by DDPM: at each timestep t , a neural network predicts a distribution $p(\mathbf{G}^{t-1}|\mathbf{G}^t)$, from which the next graph \mathbf{G}^{t-1} is sampled.

Continuous Graph Diffusion Other approaches operate on continuous graph representations. GruM (Jo et al., 2023), for instance, models noisy latents as Gaussian Orthogonal Ensembles. Then, the diffusion process is modeled through DDBM process that moves toward the target data distribution. At each step, \mathbf{G}^t represents the mixture of the possible generated graphs. Relying on the Ornstein-Uhlenbeck bridge process, GruM is shown to converge to the data distribution up to quantization.

B BASELINES

Gaussian Shading (Yang et al., 2024) is a sampling-time watermarking framework designed for images. The watermark is embedded in the latent using a secure stream cipher such as ChaCha20 (Bernstein) to get a uniformly distributed random bits. The noisy latent is generated from these bits using distribution preserving sampling. When the noisy latent is reconstructed, the bits are reconstructed. Then, the author can prove their ownership by comparing them with the ones generated by the secure stream cipher. Gaussian Shading is proven to deliver lossless generative performance but is not isomorphism invariant as the pattern designed by the stream cipher is disrupted.

TreeRing (Wen et al., 2023) is a sampling-time watermarking framework designed for images. TreeRing embeds the watermark in the Fourier space of the noisy latent. When the noisy latent is reconstructed, the watermark is extracted via the Fourier transform. Then, its presence is detected via L1 similarity from the original watermarking key and the reconstructed one. TreeRing yields reduced generative performance as it heavily disrupts the initial latent from the Gaussian assumption. Furthermore, it is not isomorphism invariant as its pattern is disrupted.

Bipartite is a graph-invariant baselines we developed based on bipartite graphs. We leverage the fact that graph bipartivity can be verified regardless of the graph representation and that it is a monotonic property. Meaning, a subgraph of a bipartite graph is still bipartite. It starts by generating a complete bipartite graph of size $N \times N$. From its adjacency matrix, it performs distribution preserving sampling to generate the noisy latent. To detect the watermark, the noisy latent is reconstructed.

702 Then, we discretize the noisy latent as:

$$704 \quad L = \begin{cases} 0 & \text{if } \Phi(L) < 0.5 \\ 705 \quad 1 & \text{otherwise} \end{cases}$$

706 Where Φ is the CDF of the standard normal distribution. To increase its robustness, we leverage
707 monotonicity to sample a subgraph of L

$$708 \quad L = \begin{cases} 0 & \text{if } \Phi(L) < 0.75 \\ 709 \quad 1 & \text{otherwise} \end{cases}$$

710 Recall that monotonicity means that a subgraph of a bipartite graph is always bipartite. The score
711 of the watermark is computed via the spectral bipartivity $\beta(z)$ (Estrada & Rodríguez-Velázquez,
712 2005). In general $\frac{1}{2} < \beta(z) \leq 1$. With $\beta(z) = 1$ if and only if a graph is bipartite, and $\beta(z) \rightarrow \frac{1}{2}$
713 when z is the complete graph and $N \rightarrow \infty$. Bipartite leads to reduced generative performance as it
714 generates noisy latents of non-independent Gaussian noise. It is isomorphism invariant as bipartivity
715 is a graph property (Estrada & Rodríguez-Velázquez, 2005).

717 C PROOFS

719 C.1 PROOF OF THEOREM 3.1

721 From Chen et al. (2020) we know that the largest $N - k$ eigenvalues are of magnitude: $\sqrt{N}w_u/k +$
722 $\mathcal{O}(1)$. Hence,

$$723 \quad \mathbb{E}_{\mathbf{G}^W \sim (k, W)\text{-CBE}} \left[\frac{\sum_{i=1}^{N-k} \lambda_i(\mathbf{G}^W)}{(N-k)} \right] = \left(\sqrt{N}w_u/k + \mathcal{O}(1) \right) \quad (10)$$

726 We now derive the expected average magnitude of the largest $N - k$ eigenvalues of the GOE. For
727 the sake of simplifying notation, let $k' = \frac{k}{N} \in [0, 1]$

$$728 \quad \mathbb{E}_{\mathbf{G}^{NW} \sim \text{GOE}} \left[\frac{\sum_{i=1}^{N-k} \lambda_i(\mathbf{G}^{NW})}{(N-k)} \right] = \mathbb{E}[PDF_{Wigner}(x) \mid 2k' \leq x \leq 2] \quad (11)$$

$$731 \quad = \frac{\int_{2k'}^2 x PDF_{Wigner}(x) dx}{\int_{2k'}^2 PDF_{Wigner}(x) dx} \quad (12)$$

$$734 \quad = \frac{\int_{2k'}^2 x \frac{\sqrt{4-x^2}}{2\pi} dx}{CDF_{Wigner}(2) - CDF_{Wigner}(k')} \quad (13)$$

$$737 \quad = \frac{(4 - 4k'^2)^{3/2}}{6\pi \left[\frac{1}{2} - \frac{2k'\sqrt{4-4k'^2}}{4\pi} - \frac{\arcsin(\frac{2k'}{2})}{\pi} \right]} \quad (14)$$

$$740 \quad \approx \mathcal{O}(k'^2) = \mathcal{O}(k^2) \quad (15)$$

741 Finally, we can derive the watermark detectability of CheckWate.

$$743 \quad \mathbb{E} \left[\sum_{i=1}^{N-k} \lambda_i(G^W) - \lambda_i(G^{NW}) \right] = \mathbb{E} \left[\sum_{i=1}^{N-k} \lambda_i(G^W) \right] - \mathbb{E} \left[\sum_{i=1}^{N-k} \lambda_i(G^{NW}) \right] \quad (16)$$

$$746 \quad = \sqrt{N}w_u/k + \mathcal{O}(1) - \mathcal{O}(k^2) \quad (17)$$

748 C.2 PROOF OF THEOREM 3.2

749 With $\mathbf{G}^{0'}$ defined as in Section 3.3.

$$750 \quad \mathbf{G}^{0'} = \mathbf{P} \mathbf{G}^0 \mathbf{P}^{-1} \quad (18)$$

$$752 \quad = (\mathbf{P} \mathbf{V}_A) \mathbf{V}_A^{-1} \mathbf{G}^0 \mathbf{V}_A (\mathbf{P} \mathbf{V}_A)^{-1} \quad (19)$$

$$753 \quad \approx (\mathbf{P} \mathbf{V}_A \mathbf{Q}) \mathbf{V}_A^{-1} \mathbf{G}^0 \mathbf{V}_A (\mathbf{P} \mathbf{V}_A \mathbf{Q})^{-1} \quad (20)$$

$$754 \quad = \mathbf{V}_{A'} \mathbf{V}_A^{-1} \mathbf{G}^0 \mathbf{V}_A \mathbf{V}_{A'}^{-1} \quad (21)$$

755 Equality for Equation 20 holds whenever $\mathbf{Q} = \mathbf{I}$.

756 C.3 PROOF OF THEOREM 3.3
757758 Whenever \mathbf{A} has eigenvalue multiplicity > 1 , the reconstruction error can be quantified as:
759

760
$$\|\mathbf{G}^{0'} - \mathbf{G}^0\|_F = \|\mathbf{V}_\mathbf{A} \mathbf{Q} \mathbf{V}_\mathbf{A}^{-1} \mathbf{G}^0 \mathbf{V}_\mathbf{A} \mathbf{Q}^{-1} \mathbf{V}_\mathbf{A}^{-1} - \mathbf{G}^0\|_F \quad (22)$$

761
$$= \|\mathbf{V}_\mathbf{A}^{-1} (\mathbf{V}_\mathbf{A} \mathbf{Q} \mathbf{V}_\mathbf{A}^{-1} \mathbf{G}^0 \mathbf{V}_\mathbf{A} \mathbf{Q}^{-1} \mathbf{V}_\mathbf{A}^{-1} - \mathbf{G}^0) \mathbf{V}_\mathbf{A}\|_F \quad (23)$$

762
$$= \|\mathbf{Q} \mathbf{V}_\mathbf{A}^{-1} \mathbf{G}^0 \mathbf{V}_\mathbf{A} \mathbf{Q}^{-1} - \mathbf{V}_\mathbf{A}^{-1} \mathbf{G}^0 \mathbf{V}_\mathbf{A}\|_F \quad (24)$$

763
$$= \sum_{r,s=1}^m (\|\mathbf{Q}_r \mathbf{G}'_{r,s} \mathbf{Q}_s^{-1} - \mathbf{G}'_{r,s}\|_F^2)^{1/2} \quad (25)$$

764 where $\|\cdot\|_F$ is the Frobenius norm.
765766 D PSEUDOCODE
767768 **Algorithm 1** CheckWate Detection
769

770 **Input:** target graph \mathbf{A}' , reference graph \mathbf{G}^0 , denoising model \mathcal{M}

771 1: $\mathbf{V}_{\mathbf{A}'} \leftarrow \text{Eigenvectors}(\mathbf{A}')$

772 2: $\mathbf{V}_\mathbf{A} \leftarrow \text{Eigenvectors}(\text{Quantize}(\mathbf{G}^0))$

773 3: $\mathbf{G}^{0'} \leftarrow \mathbf{V}_{\mathbf{A}'} \mathbf{V}_\mathbf{A}^{-1} \mathbf{G}^0 \mathbf{V}_\mathbf{A} \mathbf{V}_{\mathbf{A}'}$ {Equation 3}

774 4: **for** $t \leftarrow 1, 2, \dots, T$ **do**

775 5: $\mathbf{G}^{t'} \leftarrow \mathcal{M}^{-1}(\mathbf{G}^{(t-1)'})$ {Reverse DBIM}

776 6: **end for**

777 7: **for** $(i, j) \in N \times N$ **do**

778 8: **if** $\max(\phi(\mathbf{G}_{ij}^{T'}), \delta(\mathbf{G}_{ij}^{T'})) \leq \theta$ **then** {Equation 5}

779 9: $\mathbf{G}_{ij}^{T'} \leftarrow 0$

780 10: **end if**

781 11: **end for**

782 12: $\mathbf{G}_N^{T'} = \frac{\mathbf{G}^{T'}}{\sqrt{N}}$ {Normalization}

783 13: $\text{BlipEigenvalues} \leftarrow [\lambda \mid \lambda \in \text{Eigenvalues}(\mathbf{G}^{T'}), |\lambda| \gg 2]$

784 14: **if** $|\text{BlipEigenvalues}| \geq N - k$ **then**

785 15: **Return** *SUCCESS*

786 16: **end if**

787 17: **Return** *FAIL*

793 E LIMITATIONS
794795 **Watermark on discrete latents** Some graph diffusion models such as DiGress (Vignac et al., 2022)
796 rely on discrete noisy latent and discrete denoising steps of DDPM. While inverting discrete denoising
797 diffusion remains an untackled problem, techniques similar to the checkerboard watermark of
798 CheckWate can also be applied to discrete noisy latents. The key idea of CheckWate watermark
799 lies in moving some of the eigenvalues outside of the bulk (i.e., Wigner semicircle) while applying
800 minimal changes to the latent. In the context of continuous latents, we achieve this by applying the
801 checkered entries. We believe that the same idea can be applied in discrete space in the following
802 way.
803804 Eigenvalues of discrete noisy latents (i.e., Erdos-Renyi matrices) also follow the Wigner semicircle
805 law, similarly to GOEs. We are interested in moving some of these eigenvalues outside the bulk
806 regime. Budel & Van Mieghem (2021) studied the relationship between presence of communities
807 and eigenvalues in the blip. We suggest that enforcing the presence of communities in parts of
808 the noisy latent can be used to reproduce CheckWate behavior in the discrete scenario. This can
809 be leveraged to extend the checkered watermark behavior to discrete noisy latents. Furthermore,

810 sparsifying ER graphs, reduces the magintude of its eigenvalues, similarly to the sparsified GOE.
 811 Thus, even the robust detection mechanism CheckWate remains applicable.
 812

813 **Non-Blind Watermark** Our watermark is non-blind, meaning that the original data is needed to verify
 814 the presence of the watermark. State-of-the-art watermarking methodologies for images, tabular
 815 data, and time series provide blind watermarking, meaning that the watermark can be extracted and
 816 verified even without the generated data. No watermarking framework for graph data currently supports
 817 blind watermarking. Addressing computational feasibility of non-blind graph watermarking
 818 is a key step to enable future development in this field. Extending CheckWate to further support
 819 blindness is an interesting research gap that will be addressed by future work.
 820

821 **Provable resistance to forgery** CheckWate resistance to forgery relies on hardness of dequantization.
 822 Despite our experiments in Table 1 show that not using the key leads to impossible verification,
 823 it is not possible to prove forgery resistance by applying the key after the diffusion process.
 824

825 F ABLATION STUDY ON DIFFERENT VALUES OF k, W

826 Here, we widen our results with an extensive analysis of how k and W can affect Z-score and
 827 generative quality. The key observations are, as expected, generation quality degrades for larger
 828 values W of and smaller k . Accordingly, Z-score increases when k is smaller and W larger. This
 829 confirms the theory discussed in Section 3.2.
 830

831 Table 5: Ablation study on different values for k, W on Planar dataset.
 832

Parameters	degree	cluster	orbit	spectral	V.U.N.	Z-Score
$k = 0.9, W = \pm 1.0$	0.0006	0.0406	0.0039	0.0086	0.55	7.64
$k = 0.9, W = \pm 2.0$	0.0009	0.0446	0.0113	0.0068	0.65	38.76
$k = 0.9, W = \pm 3.0$	0.0007	0.053	0.0092	0.0087	0.675	95.47
$k = 0.9, W = \pm 4.0$	0.0011	0.0651	0.0154	0.0096	0.525	176.88
$k = 0.7, W = \pm 1.0$	0.0009	0.0424	0.0022	0.008	0.325	19.35
$k = 0.7, W = \pm 2.0$	0.0007	0.0541	0.0119	0.0099	0.4	83.17
$k = 0.7, W = \pm 3.0$	0.0015	0.0629	0.0283	0.0109	0.25	193.44
$k = 0.7, W = \pm 4.0$	0.0021	0.0779	0.0352	0.0111	0.175	349.78
$k = 0.5, W = \pm 1.0$	0.0007	0.0592	0.0046	0.0084	0.25	29.61
$k = 0.5, W = \pm 2.0$	0.0014	0.0664	0.0178	0.0114	0.275	126.95
$k = 0.5, W = \pm 3.0$	0.0021	0.0984	0.0354	0.0118	0.125	292.39
$k = 0.5, W = \pm 4.0$	0.0047	0.1028	0.0631	0.0121	0.275	525.72
$k = 0.2, W = \pm 1.0$	0.0031	0.2282	0.0197	0.0115	0	134.64
$k = 0.2, W = \pm 2.0$	0.007	0.259	0.0734	0.0167	0	561.77
$k = 0.2, W = \pm 3.0$	0.0132	0.2624	0.0435	0.0164	0	1288.26
$k = 0.2, W = \pm 4.0$	0.0198	0.2687	0.0729	0.0231	0	2303.01

849 G ROC CURVES

850 We report the ROC curves of the experiments from Table 1 and 2. We provide results under Planar
 851 and SBM datasets (the latter one being the dataset with the lowest z-scores) with four different
 852 attacks at their maximum strength:
 853

854 All figures show an AUC of 1.0, which means CheckWate always manages to achieve 100% True
 855 Positive Rate and 0% False Positive Rate.
 856

857 We further provide the same ROC curves without the latent sparsification mechanism:
 858

859 From the plots, we can see that under strong edge additions, the AUC of CheckWate reduces
 860 severely: 0.5 for Planar and 0.75 for SBM. A result that indicates little to no discriminatory
 861 capability.
 862

863 Furthermore, we would like to highlight figures in Appendix H, in which we perform qualitative
 864 analysis on the eigenvalue distributions of our experiments. Especially, Fig. 8 showcases how the
 865

864
865
Table 6: Ablation study on different values for k, W on Tree dataset.

Parameters	degree	cluster	orbit	spectral	V.U.N.	Z-Score
$k = 0.9, W = \pm 1.0$	0.0001	0	0	0.0093	0.55	6.07
$k = 0.9, W = \pm 2.0$	0.0002	0	0	0.0088	0.55	32.22
$k = 0.9, W = \pm 3.0$	0.0001	0.0001	0	0.0094	0.5	81.35
$k = 0.9, W = \pm 4.0$	0	0.0001	0	0.0093	0.65	152.06
$k = 0.7, W = \pm 1.0$	0	0.0001	0	0.0084	0.575	16.43
$k = 0.7, W = \pm 2.0$	0.0002	0.0001	0.0001	0.0092	0.55	73.77
$k = 0.7, W = \pm 3.0$	0.0002	0	0.0002	0.0089	0.35	172.15
$k = 0.7, W = \pm 4.0$	0.0001	0	0.0002	0.0088	0.25	316.53
$k = 0.5, W = \pm 1.0$	0.0004	0	0.0001	0.0096	0.65	25.04
$k = 0.5, W = \pm 2.0$	0	0.0001	0.0002	0.0117	0.55	113.12
$k = 0.5, W = \pm 3.0$	0.0003	0.0001	0.0003	0.0111	0.425	262.96
$k = 0.5, W = \pm 4.0$	0.0002	0.0005	0.0004	0.0093	0.325	471.28
$k = 0.2, W = \pm 1.0$	0.0001	0.1547	0.0002	0.0146	0.05	120.53
$k = 0.2, W = \pm 2.0$	0.0006	0.4638	0.0005	0.0148	0	514.98
$k = 0.2, W = \pm 3.0$	0.0007	0.5882	0.0009	0.0182	0	1162.53
$k = 0.2, W = \pm 4.0$	0.0008	0.6223	0.0015	0.0151	0	2068.21

883
884
Table 7: Ablation study on different values for k, W on SBM dataset.

Parameters	degree	cluster	orbit	spectral	V.U.N.	Z-Score
$k = 0.9, W = \pm 1.0$	0.0025	0.0488	0.0507	0.0064	0.775	5.67
$k = 0.9, W = \pm 2.0$	0.0021	0.0511	0.0574	0.0045	0.6	27.44
$k = 0.9, W = \pm 3.0$	0.0026	0.052	0.0676	0.0056	0.625	64.8
$k = 0.9, W = \pm 4.0$	0.0022	0.0514	0.0665	0.0056	0.6	117.22
$k = 0.7, W = \pm 1.0$	0.0035	0.0501	0.072	0.0067	0.725	13.26
$k = 0.7, W = \pm 2.0$	0.0048	0.0533	0.0517	0.0055	0.575	55.14
$k = 0.7, W = \pm 3.0$	0.004	0.055	0.075	0.0055	0.475	126.23
$k = 0.7, W = \pm 4.0$	0.0044	0.057	0.0855	0.0057	0.525	225.89
$k = 0.5, W = \pm 1.0$	0.0024	0.0524	0.0825	0.0049	0.775	20.29
$k = 0.5, W = \pm 2.0$	0.0044	0.0528	0.0829	0.0046	0.75	83.1
$k = 0.5, W = \pm 3.0$	0.0048	0.0576	0.0754	0.0058	0.625	188.22
$k = 0.5, W = \pm 4.0$	0.0048	0.058	0.0916	0.0055	0.6	336.24
$k = 0.2, W = \pm 1.0$	0.0029	0.0514	0.0783	0.0047	0.725	82.68
$k = 0.2, W = \pm 2.0$	0.0036	0.0507	0.0693	0.0063	0.575	339.44
$k = 0.2, W = \pm 3.0$	0.0033	0.0497	0.0485	0.0057	0.425	769.34
$k = 0.2, W = \pm 4.0$	0.0024	0.0502	0.0571	0.0065	0.3	1373.52

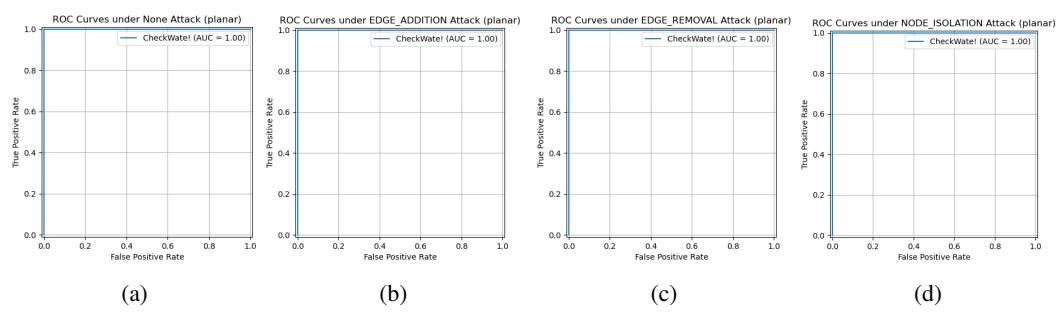
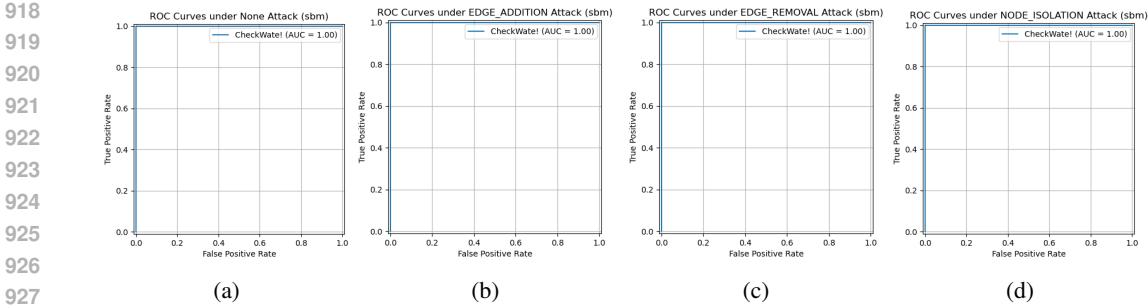
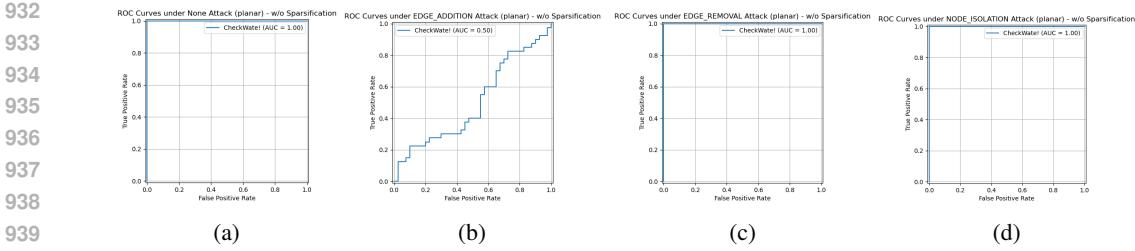


Figure 4: ROC curves of CheckWate on Planar dataset with latent sparsification. (a) ROC curve under no attack; (b) ROC curve under edge addition 20%; (c) ROC curve under edge removal 20%; (d) ROC curve under node deletion 20%. AUC is 1.0, indicating perfect discriminatory capability.



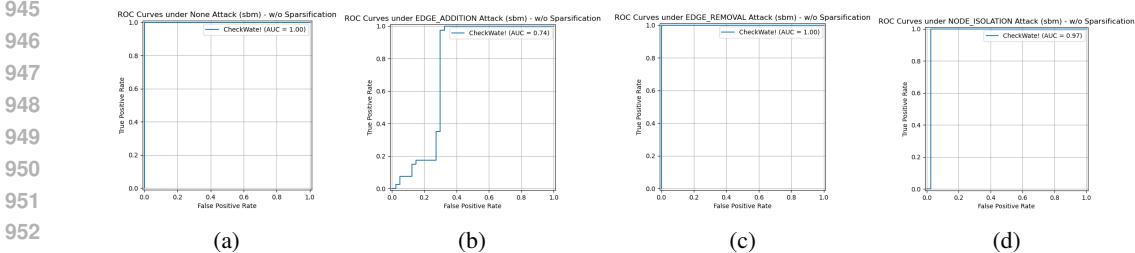
928
929
930
931

Figure 5: ROC curves of CheckWate on SBM dataset with latent sparsification. (a) ROC curve
under no attack; (b) ROC curve under edge addition 20%; (c) ROC curve under edge removal 20%;
(d) ROC curve under node deletion 20%. AUC is 1.0, indicating perfect discriminatory capability.



941
942
943
944

Figure 6: ROC curves of CheckWate on Planar dataset without latent sparsification. (a) ROC curve
under no attack; (b) ROC curve under edge addition 20%; (c) ROC curve under edge removal 20%;
(d) ROC curve under node deletion 20%. Under edge addition, AUC is 0.5, indicating limited
discriminatory capability.



954
955
956
957

Figure 7: ROC curves of CheckWate on SBM dataset without latent sparsification. (a) ROC curve
under no attack (b) ROC curve under edge addition 20% (c) ROC curve under edge removal 20%
(d) ROC curve under node deletion 20%. Under edge addition, AUC is 0.74, indicating limited
discriminatory capability.

958
959
960
961

eigenvalues of the reconstructed latents tend to explode under edge additions when no latent sparsification is applied.

962
963
964

Altogether, these results show that: (i) CheckWate provides remarkable performance under TPR
and FPR; (ii) Latent sparsification is key for preventing performance degradation under major per-
turbations.

H QUALITATIVE RESULTS

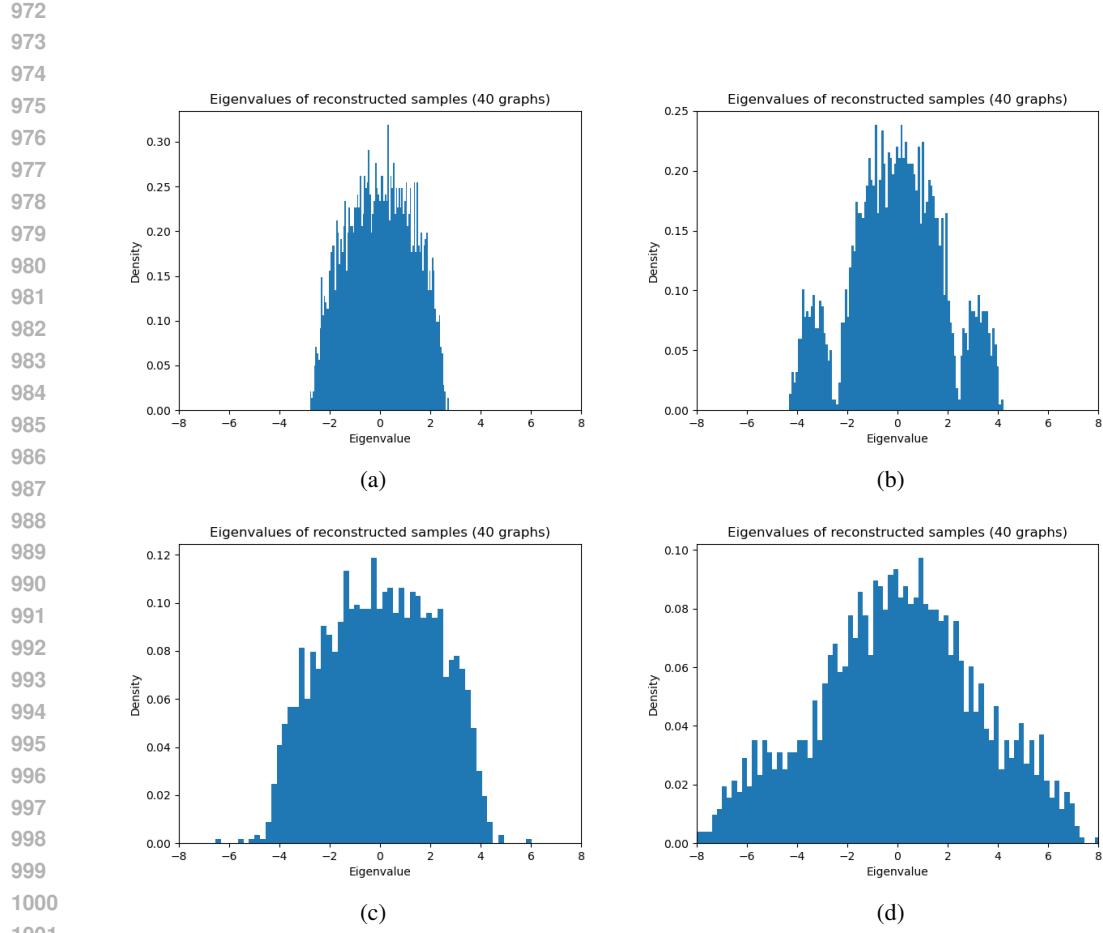


Figure 8: Comparison of eigenvalues with and without anomaly detection mechanism on Planar dataset under edge addition attack (10%). (a) and (b) show reconstructed eigenvalues of *No watermark* and *CheckWate* respectively, with anomaly detection. (c) and (d) show reconstructed eigenvalues of *No watermark* and *CheckWate* respectively, without anomaly detection.

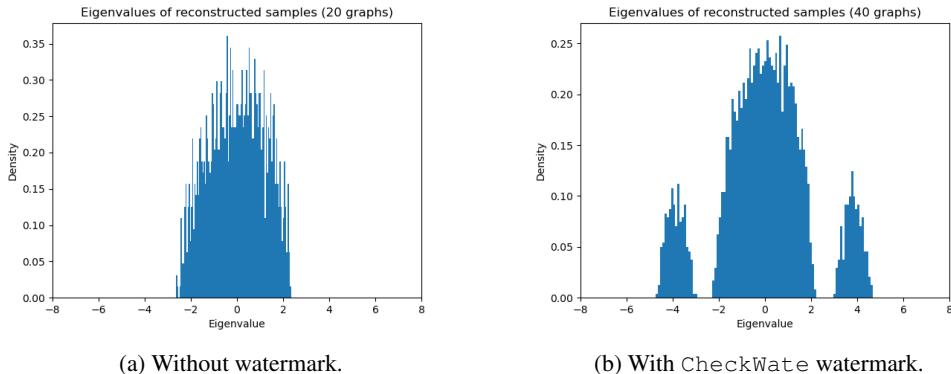


Figure 9: Distribution of reconstructed eigenvalues on Planar dataset under no attack.

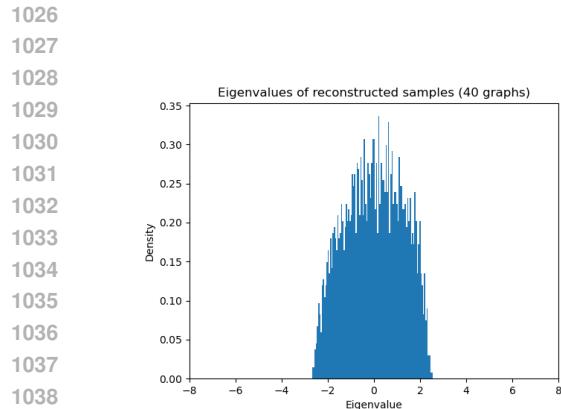
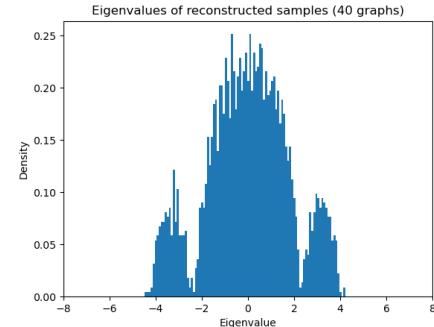


Figure 10: Distribution of reconstructed eigenvalues on Planar dataset under isomorphism.

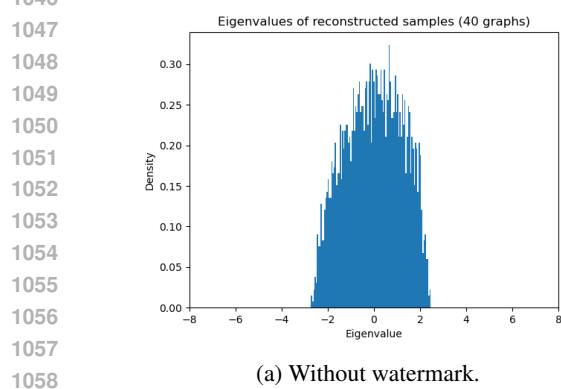
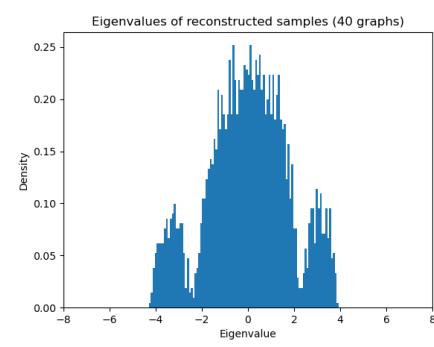


Figure 11: Distribution of reconstructed eigenvalues on Planar dataset under 20% edge removal.

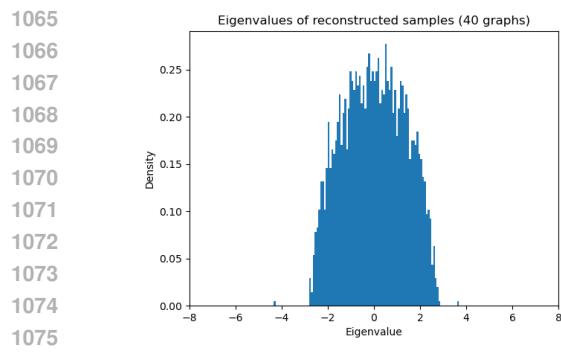
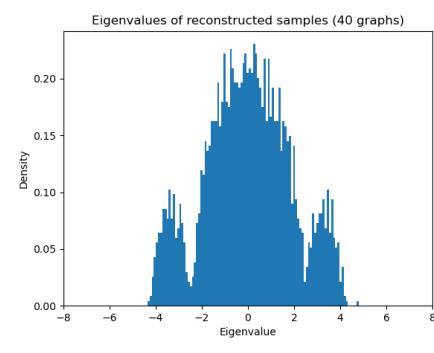
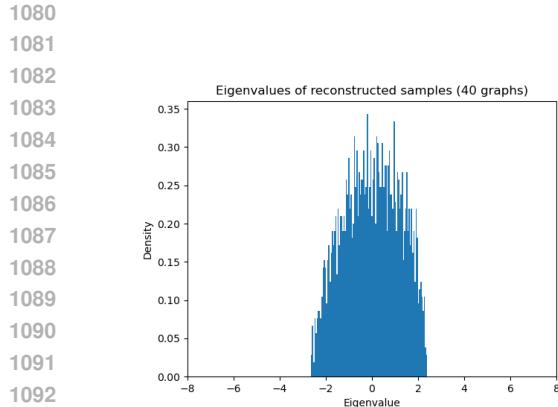
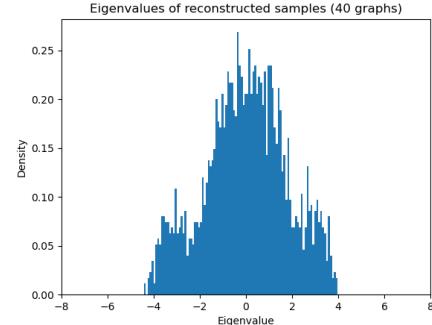


Figure 12: Distribution of reconstructed eigenvalues on Planar dataset under 20% edge addition.

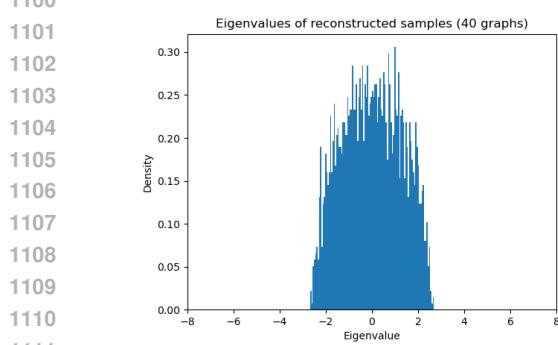


(a) Without watermark.

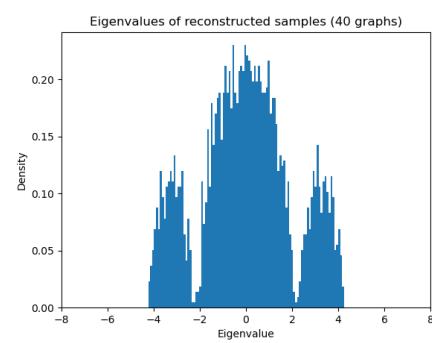


(b) With CheckWate watermark.

Figure 13: Distribution of reconstructed eigenvalues on Planar dataset under 20% node deletion.

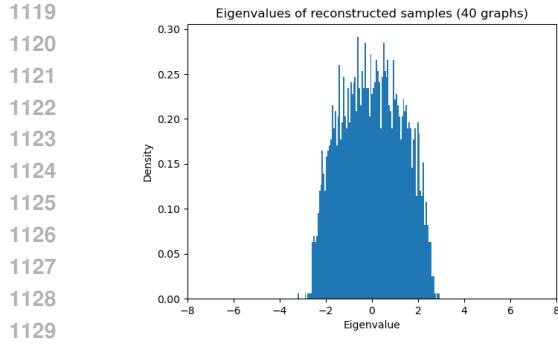


(a) Without watermark.

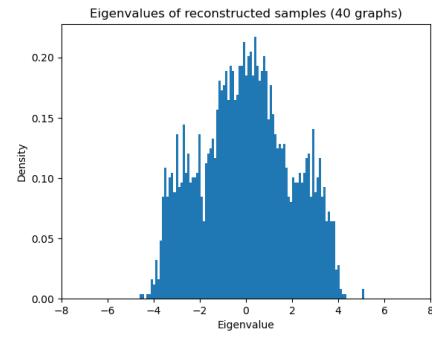


(b) With CheckWate watermark.

Figure 14: Distribution of reconstructed eigenvalues on Tree dataset under no attack.

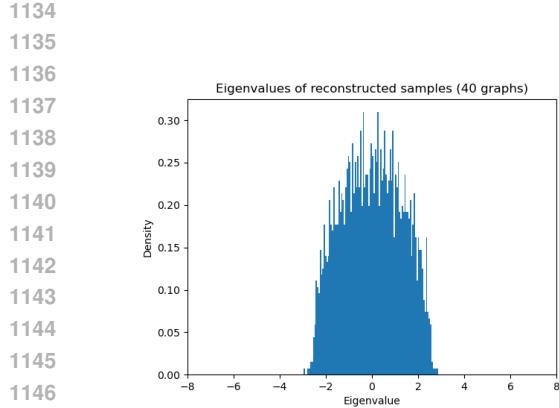


(a) Without watermark.

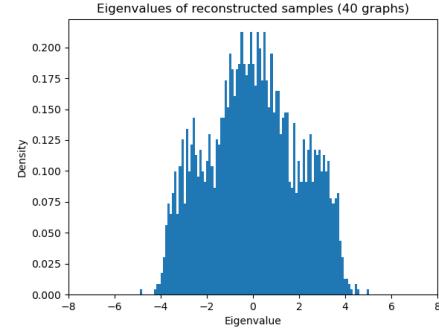


(b) With CheckWate watermark.

Figure 15: Distribution of reconstructed eigenvalues on Tree dataset under isomorphism.

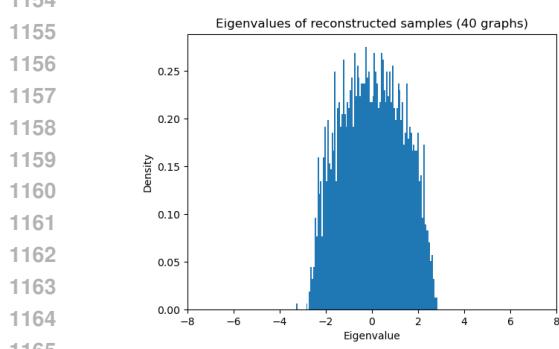


(a) Without watermark.

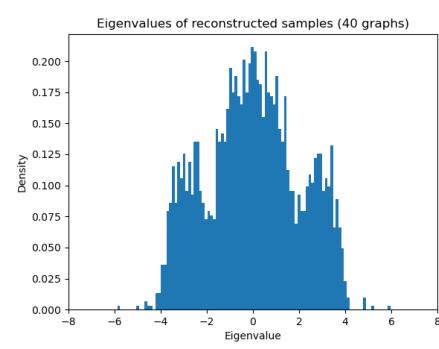


(b) With CheckWate watermark.

Figure 16: Distribution of reconstructed eigenvalues on Tree dataset under 20% edge removal.



(a) Without watermark.

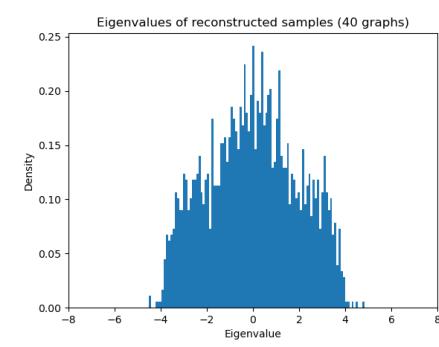


(b) With CheckWate watermark.

Figure 17: Distribution of reconstructed eigenvalues on Tree dataset under 20% edge addition.



(a) Without watermark.



(b) With CheckWate watermark.

Figure 18: Distribution of reconstructed eigenvalues on Tree dataset under 20% node deletion.

1184
 1185
 1186
 1187