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ABSTRACT

Watermarking provides an effective means for data governance. However, con-
ventional post-editing graph watermarking approaches degrade the graph quality
and involve NP-hard subroutines. Alternatively, recent approaches advocate for
embedding watermarking patterns in the noisy latent during data generation from
diffusion models, but remain uncharted for graph models due to the hardness of
inverting the graph diffusion process. In this work, we propose CheckWate:
the first watermarking framework for graph diffusion models embedding check-
erboard watermark and providing polynomial time verification. To address NP-
completeness due to graph isomorphism, CheckWate embeds the watermark
into the latent eigenvalues, which are isomorphism-invariant. To detect the wa-
termark through reversing the graph diffusion process, CheckWate leverages
the graph eigenvectors to approximately dequantize the discrete graph back to
the continuous latent, with theoretical guarantees on the detectability and de-
quantization error. We further introduce a latent sparsification mechanism to en-
hance the robustness of CheckWate against graph modifications. We evaluate
CheckWate on four datasets and four graph modification attacks, against three
generation time watermark schemes. CheckWate achieves remarkable gener-
ation quality while being detectable under strong attacks such as isomorphism,
whereas the baselines are unable to detect the watermark. Code available at:
https://anonymous.4open.science/r/checkwate.

1 INTRODUCTION

Watermarking is a long-established method for data owners to verify the ownership of various data
types (Cox et al., [2002) and it has recently been adapted to verify synthetic data from generative
models (Yang et all 2024). While graphs are used extensively for modeling real-world applica-
tions (Sitmonovsky & Komodakis| [2018) and synthetic graphs are increasingly adopted for knowl-
edge discovery (Jo et al., 2023)), a significant gap exists in watermarking solutions for them, espe-
cially for synthetic graphs. The conventional approaches (Zhao et al.| 2015} [Eppstein et al., [2016)
embed watermarks in graphs via post-editing, which reduces the graph quality and requires expo-
nential time verification. In contrast, modern watermarking methods (Yang et al.,[2024; |Wen et al.,
2023} Zhu et al., 2025) embed the watermark at sampling-time in the noisy latents of diffusion
models. These methods have the advantages of quality conservation and robust detectability at the
expense of inverting the diffusion process. However, their effectiveness has only been validated on
modalities other than synthetic graphs.

In contrast to images and tables, graphs can be represented in multiple adjacency matrixes via iso-
morphism, making differentiating (un)watermarked graphs hard. illustrates an example of
how node indices can be arbitrarily swapped without changing the structure of the graph. The Graph
Isomorphism (GI) problem, i.e., determining whether two graphs are isomorphic, is one of the few
unresolved questions in complexity theory, as it is not whether it can be solved in P (Babai, 2016;
Grohe & Schweitzer, [2020). While quasi-polynomial algorithms exist for small instances (Grohe &
Neuen, [2021), GI remains computationally infeasible for large graphs. Furthermore, when graphs
are modified through addition or deletion of edges, solving GI requires addressing the Graph Edit
Distance (GED) problem (Bunke} |1997), which is well-known to be NP-hard.
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Figure 1: An example of how Graph Isomorphism disrupts watermark patterns. (a) A graph G (b) A
valid representation of G, the watermarking pattern can be successfully extracted. (c) Using another
valid representation (isomorphism) of G disrupts the watermarking pattern.

The discrete nature of graphs presents another unique challenge to watermarking, as it complicates
watermark verification, particularly when coupled with the GI problem. As graphs are often repre-
sented via binary adjacency matrices, graph diffusion models, such as GruM (Jo et al.,[2023)), require
moving from the continuous space to the discrete one through a quantization step. When watermarks
are embedded in latents, the verification of watermarks needs to invert any graph back to its latents,
by first dequantizing the graph. Inverting this step requires matching the generated graph with its
corresponding dequantized version. This is computationally infeasible due to the complexity of the
GI and GED problems.

We introduce CheckWate, the first framework for watermarking graph diffusion models with a ro-
bust verification in polynomial time. CheckWate consists of three key components. (i) A checker-
board watermark technique that enables embedding watermarking on the noisy latent eigenvalues
at sampling-time. Since eigenvalues are isomorphism-invariant, this allows us to embed and extract
the watermark in polynomial time with no loss of generalization and without relying on any ap-
proximation. (ii) An approximate dequantization mechanism that enables the transition from the
discrete domain of the data to the continuous space of diffusion, thus accurate latent reconstruction
and watermark verification. (iii) A robust detection mechanism that further improves watermark
detection robustness, especially for mitigating false positive verification. Drawing upon matrix spar-
sification theory, we identify reconstruction errors within the noisy latent and impose constraints on
the distribution of their eigenvalues. Our work brings the following contributions:

* CheckWate is a non-blind graph watermark algorithm with verification in polynomial
time, circumventing NP-hardness from graph isomorphism.

* CheckWate detects the presence of a watermark by accurately inverting graph diffusion,
via an approximate dequantization mechanism with a theoretical error bound.

* CheckWate robustness against post-editing attacks is enhanced by a latent sparsification
mechanism.

* Extensive evaluation of CheckWate on the graph quality and watermark detectability on
four datasets and four graph attacks.

2 RELATED WORK

Graph Diffusion Models Graph synthesizers have been of high interest for the scientific commu-
nity in the past years. Graph diffusion models generate data starting from random (symmetric) noise.
Then, a trained neural network iteratively predicts the probability distribution of clean graphs and
moves toward such distribution via steps of Denoising Diffusion Probabilistic Model (DDPM) (Ho
et al.| [2020). Depending on the model, this diffusion can either happen on the discrete or the contin-
uous space. GruM (Jo et al.| |2023)) introduced a novel diffusion model based on Denoising Diffusion
Bridge Models (DDBM) (Zhou et al., 2023) that performs diffusion on the latent continuous space
and achieves state-of-the-art generative performance. The denoising process of GruM is proven to
converge to the discrete space of the graphs adjacency matrix up to quantization.

Watermarking Synthetic Data Watermarking is one of the key techniques used for verifying the
ownership of synthetic data. Effective watermarking requires imperceptibility and robust detectabil-
ity. The watermark signals can be embedded during the model training, sampling-time, or even post-
data generation (He et al.| [2024)), having different degrees of tradeoff between the data quality and
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(a) Eigenvalues of Gaussian Orthogonal Ensembles. (b) Eigenvalues of Checkerboard Ensembles.

Figure 2: Distribution of eigenvalues of random matrices. (a) The eigenvalues of Gaussian Orthog-
onal Ensembles (/N = 500) follow the Wigner semicircle law (bulk). (b) Checkerboard Ensembles
(N =500,k = 450, W = (£1.5,£2.5)) have N—k eigenvalues outside the semicircle (blip).

robustness. Post-editing watermarks are the conventional methods applied on real graphs, leading to
significant quality degradation. To avoid this problem, newer methods such as TreeRing
2023) and Gaussian Shading embed a pattern into the latent space. However,
TreeRing directly disrupts the Gaussian distribution of noise, limiting the randomness of sampling
and resulting in affecting model generative performance. Moreover, these techniques require to un-
dergo an implicit diffusion model such as Denoising Diffusion Implicit Model (DDIM)
[2020) or Denoising Bridge Implicit Model (DBIM) (Zheng et al.,[2024) in order to be accurately in-
verted. Which are the implicit versions of DDPM and DDBM respectively (details in Appendix [A).

Techniques similar to Gaussian Shading have been used to extend applicability to domains different
from images such as tabular data [2025) and time series [2025). Nevertheless,
they still require to verify a pattern within the latent. This prevents the application of these methods
to the domain of graphs, as graph isomorphism enables representing the data in N! ways.

Graph Watermarking The prior art on watermarking graphs centers on real graph, thus being
post-editing approaches. The long standing challenge is to determine two graphs are isomorphic
and only quasi-polynomial time solutions exist. [Eppstein et al.| (2016) further shows that when
undergoing adversarial attack, solving isomorphism requires to address the more complex graph
edit distance problem, which is NP-hard. Specifically, and [Eppstein et al.| (2016
provide post-editing applications for non-blind graph watermarking. However, Zhao et al.| (2015
makes assumptions on the graph node degree distribution to make the GED problem tractable, while

remaining exponential in the cost and not being applicable to all graphs. |[Eppstein et al.| (2016)

provides an approximate NP-complete solution to GI in exponential time. Recently, KGMark (Peng;
2025) addresses post-editing watermarking for knowledge graphs only, whereas[Bourrée et al.

(2025) proposes watermark graphs in the Fourier spectrum assuming nodes are uniquely labeled.
All of these works make strong assumptions on the data or the attacks that can be performed by the
adversaries.

3 CHECKWATE

We start with preliminaries on random matrix theory in[Section 3.1} before introducing the Check-
Wate methodology shown in[Fig. 3] In[Section 3.2} we first delve into the watermark injection and
detection mechanisms (steps (1), (6)). Then, in [Section 3.3] we discuss our proposed method for
inverting quantization (steps 3), @)). Finally, in we cover our error mitigation strategy,
which prevents false positives under heavy adversarial perturbations. Further, we provide Check—

Wate pseudocode in

3.1 PRELIMINARIES ON RANDOM MATRIX THEORY

Graph diffusion models such as GruM rely on noisy latent variables modeled as Gaussian Orthog-
onal Ensembles (GOEs) (Anderson et al., [2010), i.e., symmetric Gaussian random matrices. The
following explains the fundamental properties of random matrix theory used in our framework.
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Figure 3: Pipeline of CheckWate. (1) Watermark injection. (2) Denoising diffusion. 3) Quan-
tization. (4) Dequantization. (5) Reverse denoising diffusion. (¢) Watermark detection.

Spectral measure The spectrum of graphs and random matrices are essential in capturing informa-
tion on the graph structure (Van Mieghem, [2023)). Eigenvalue distributions are typically divided into
two regimes: the bulk (of order O(v/N)) and the blip (of order O(N)). For GOEs of size N x N,
all eigenvalues lie within the bulk. More precisely, when considering the normalized ensemble
Xy = X/V/N, the limiting spectral distribution p follows the Wigner semicircle law (Anderson
et al,[2010) with radius R = 2. shows the distribution of eigenvalues from GOEs.

Checkerboard Ensembles (k, W')-checkerboard ensembles were introduced by |Chen et al.| (2020)
as a generalization of Burkhardt et al|(2018). Let A/ (0, 1) be the standard normal distribution.

Definition 3.1. Fix k € N and a k-tuple of real numbers W = (W1, ..., Wy), then the N x N
(k, W)-checkerboard ensemble ((k, W )-CBE) is the ensemble of matrices C = (C;;) given by:

C.—C. — N(0,1) i#j mod k
W= T, i=j=u mod k, withu € Zy,

Checkerboard ensembles have k eigenvalues in the bulk, while the remaining N — k eigenvalues
are in the blip. More precisely, for each W; € W, if W, appears k; times in the ensemble, k;
eigenvalues are of magnitude NW;/k + O(v/N). shows the eigenvalue distribution from
a Checkerboard Ensemble. For high enough k, Checkerboard ensembles allow to apply significant
changes to the ensemble spectrum while forcing limited modifications from regular Gaussian noise.
This allows strong detectability while preserving generation quality.

3.2 CHECKERBOARD WATERMARK

The key hurdle to embed and detect the watermark pattern on graphs lies in the inherent ambiguity
of graph representation, illustrated in In contrast, taking the image as an example, pixel
positions cannot be freely permuted without severely degrading visual quality—or even altering the
picture’s entire meaning. This enables the application of pattern-based watermarks onto their latents,
such as Gaussian Shading (Yang et al., 2024) and TreeRing (Wen et al., [2023)). Similarly, tabular
data can leverage column unambiguity to apply row-level watermark detection (Zhu et al.| 2025)).

To address this, CheckWate explores the properties of graph eigenvalues in both embedding and
detection phases. To embed the watermark, step (1), we insert the checkerboard pattern in the noisy
latent of synthetic graph at sampling-time. This enables the presence of eigenvalues in the blip,
which are not expected in regular GOE, while applying minimal changes to the latent. Specifically,
applying minimal changes to the GOE, ensures that the generation quality is preserved. To detect
the checkerboard pattern, we first revert the graph to its noisy latent and then inspect the presence
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of eigenvalues in the blip regime. The advantages of leveraging the eigenvalues of the latent are
two-fold: polynomial time computation and isomorphism invariance. This allows to bypass the GI
problem and detect watermark in O(/N?) with no approximation nor generalization loss.

Watermark injection () We start graph generation via a random symmetric matrix G” in the latent
space. We define G as checkerboard ensemble with W = (W7, ..., W}) an array of size k:

GiTjGﬁ{N(O’l) 7 mod K . (1)
W, i=j=u mod k, withu € Zj

Parameter tuning Both £ and W are hyperparameters that determine the magnitude and frequency
of eigenvalues in the blip. They allow to balance generation quality with watermark detectability.
In general, checkerboard ensembles have N —k eigenvalues in the blip. Thus, a lower value of k
increases the watermark strength. Each of the eigenvalues in the blip has magnitude NW,, /k +
O(VN). Thus, a larger W, /k increases the watermark detectability. At the same time, having a
lower k increases the amount of non-gaussian entries and a larger W, /k increases the deviation
from gaussian noise. Both affect negatively generation quality creating a tradeoff with detectability:
the larger W,, and the smaller k the stronger the watermark and the lower the quality.

Watermark detection (6) To detect the watermark, we reverse the diffusion process and reconstruct
a noisy latent GT° ~ G”. We detail the reconstruction process in Section Then, we compute

the eigenvalues of the normalized G = G”'/v/N. If G is reconstructed from a watermarked
graph, we expect IV — k eigenvalues to fall in the blip. Thus, we measure the (absolute) largest N —k
eigenvalues and expect them all to be > 2. If GT’ is not reconstructed from a watermarked graph,
GT’ is a GOE and we expect all of its eigenvalues to fall in the bulk, i.e., the largest N — k eigen-
values are < 2. We derive the expected difference between the computed score of a watermarked
graph G" and a non watermarked one GM" to measure CheckWat e detectability:

Theorem 3.1 (Watermark Detectability). Let GJX,W be a normalized Gaussian Orthogonal Ensem-
bles. Let GY be a N normalized (k, W, )-Checkerboard Ensembles. Let \;(G) the i-th largest
eigenvalue of G. Detectability of CheckWate is defined as:

SEAEN] g[S e v,
(N —k) NIRRT (N =) K

+0(1)-0(k?)
2
We prove in full in Appendix [C.I] [Equation 2] reinforces that the strength of Check-

Wate watermark is proportional to W,, and inversely proportional to k.

EGVN‘/N(k,Wu)-CBE

3.3 APPROXIMATE DEQUANTIZATION

Unlike other modalities, graphs are commonly represented via binary adjacency matrices. Hence,
generating graphs requires transitioning from the continuous space of denoising diffusion models
to the discrete space of binary adjacency matrices through quantization, step (3). Inverting this step
amounts to matching an edited graph to its dequantized matrix, which reduces to the NP-complete
GI and GED problems. We further stress that it is not possible to accurately reconstruct the noisy
latent without taking into account quantization and demonstrate this in[Table 1|of [Section 4]

To overcome this, we provide a dequantization method, step (@), that leverages fundamental proper-
ties of eigenvectors under permutation to approximately reconstruct the dequantized graph latent in
O(N?). We discuss next the basic properties of this approximation and derive the exact reconstruc-
tion error under the Frobenius norm.

Graph quantization 3 After diffusion, the obtained graph G is composed of continuous values.
Thus, we require to quantize G° to a 0-1 graph adjacency matrix. After this step, we obtain the
quantized adjacency matrix A:

A = quantize(G"), A;; € {0,1}

Approximate dequantization (4 For a given graph A’, we need to verify the existence of a check-
erboard watermark. First, a graph A’ can be a different, i.e., permuted, representation of A:

A’ = PAP!
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where P is an unknown permutation matrix. To accurately reconstruct the original noise G”' in
continous space, we require the dequantized version of A’, i.e., GY = PGP L. Eigenvectors of
permuted graphs permute accordingly up to change of eigenbasis, i.e., Var = PVAQ ~ PV,
where V 4 are the eigenvectors of A, and Q is a block-diagonal matrix that maps the eigenbasis
of A to the one of A’. More precisely, Q = diag(Qjq, ..., Q,,) with m the number of distinct
eigenvalues of A and each Q; being a rotation square matrix as large as the algebraic multiplicity of
eigenvalue \;, e(\;). We leverage this property and combine some algebraic simplification to obtain
the approximation of the permuted dequantized graph G

Theorem 3.2 (Approximate Dequantization). Let A’ be a permutation of A based on a permutation
matrix P. Let GV be a permutation of G° on the same permutation matrix P. Then, G can be
accurately approximated as:

G” VoA VLIGOVAV,LE (3)

We prove [Theorem 3.2]in Appendix[C.2} In the special case in which all the eigenvalues are distinct,
Q is the identity matrix and equality for [Equation 3| always holds. Further, the error given by the

approximation in [Equation 3|can be explicitly derived as a function of Q:

Theorem 3.3 (Reconstruction Error). Let GO and orthogonal matrix and G® computed as in
[tion 31 Then the reconstruction error can be derived as:
m
/ _ _ _ 1/2
1G" ~G%lr = Y (IQAVA'G VAL Qs — {VA'GOVal]2) " (4)

r,s=1

We prove in Appendix|[C.3] In general, the error increases with eigenvalue multiplicity:
the higher the multiplicity, the higher the error. The number of distinct eigenvalues of a graph is G,

e(G) > d+1, where d is the graph diameter. Therefore, maximum multiplicity is always bounded by

N—d. Graphs sampled from the Barabasi-Albert model (Albert & Barabasi, 2002) have d ~ lgl(g,)) .

Diffusion inversion From here on, the diffusion process can be easily inverted following one of the
known paradigms of DDIM or DBIM (Wen et al., 2023 [Yang et al., [2024; |Zhu et al., 2025} |So1
et al| [2025). We detail diffusion implicit models and their inversion in[Appendix A]

Authorship identification via hash and sign To enable identification of the watermark author we
use digital hash-based signature (Srivastava et al., |2023). Hash-based signatures are a wide-spread
cryptographic building block that provides authenticity, unforgeability, and undeniability (Srivastava
et al., 2023). The watermark author can hash-sign the key K = V;lGOV A Which is then used to
enable reversibility of the diffusion process and reconstruct the noisy latent to extract the watermark.
We stress that accurately computing the dequantized matrix GY is essential to enable watermark
detectability as we demonstrate in our experiments in Section 4]

3.4 ROBUST DETECTION VIA LATENT SPARSIFICATION

Even under perfect reversal of the diffusion process, the reconstructed latent GT might be subject
to several perturbations due to approximation errors stemming from and adversarial
perturbations on the graph A. Unlike watermark reconstructions in other modalities, where errors
remain largely localized, eigenvalues encode global structural dependencies within the matrix and
are thus far more sensitive to such disturbances. Consequently, the eigenvalues of the perturbed
GOE might fall out of the bulk regime, i.e., > 2, and lead to false positive behavior. To prevent
this, we apply a simple yet efficient robustness enhancing mechanism that replaces entries that were
unlikely generated in the original noisy latent:

qr - [Gh max (e(G%).8(GE)) >
! 0 otherwise

&)

Where ¢(-) and §(-) are the probability density functions of a normal Gaussian and a Dirac distribu-
tion, centered in 0 and W respectively. @ is a threshold parameter that determines the tolerance of the
anomaly detection mechanism. This leads to replacement of entries with values unlikely belonging
to the original noisy latent with zero entries, i.e., sparsification. Sparsifying the latent allows us to
better control the behavior of the eigenvalues and prevent their explosion outside of the bulk.
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Rationale After this process, GT isa sparse GOE. Let ¢ be the number of non-zero elements per

matrix row. When ¢ = N, GT' is a GOE and its eigenvalues follow the Wigner semicircle. When
q < N, most of the eigenvalues lie in the bulk, with a higher density around zero (Evangeloul|1992).
More precisely, for small values of g, the density of eigenvalues p is:

(V) !

_ 6
X N Iog () ©

as A — 0 (Evangelou| [1992). While exponential tails develop outside of the bulk domain, for
high enough p these eigenvalues are rare and close enough to the bulk not to create any practical
problem for watermark detection even under heavy perturbations. We demonstrate this qualitatively
in Appendix [H|and with numerical results in

4 EVALUATION

We consider four datasets from prior work on graph diffusion models (Jo et al., 2023} |Vignac et al.|
20225 [Martinkus et al.| [2022): Planar, Tree, Stochastic Block Model (SBM), and Proteins (Dobson
& Doig). Because no prior semantic watermarking methods exist for graph diffusion, we adapt two
state-of-the-art baselines to the graph domain: Gaussian Shading (Yang et al., 2024) and TreeR-
ing (Wen et al., [2023)). We additionally design a graph-specific baseline, Bipartite, which is graph-
invariant but severely compromises generative quality due to the high correlation of entries of the
noisy latents. Implementation details for all baselines, including Bipartite, are in Fi-
nally, None serves as the non-watermarked reference.

To evaluate generative performance, we follow the setting of [Jo et al.| (2023). We measure the
maximum mean discrepancy (MMD) of four graph statistics between the set of generated graphs
and the test set: degree (Deg.), clustering coefficient (Clus.), count of orbits with 4 nodes (Orb.), and
the eigenvalues of the graph Laplacian (Spec.). We also compute the percentage of valid, unique,
and novel (V.U.N.) graphs for which the validity is defined as satisfying the specific property of each
dataset. We evaluate watermark detectability via Z-score, which measures the distance between
the mean score of watermarked and non-watermarked data normalized by the standard deviation.

4.1 GENERATIVE QUALITY AND WATERMARK DETECTABILITY

We run experiments with no attack on all four datasets. Results are showcased in First,
we can see that CheckWate achieves state-of-the-art generative quality. Namely, CheckWate
is the best performing watermarking method 10 times out of 20, and second-best 9 times out of the
remaining 10. The best baseline from the state-of-the-art is Gaussian Shading, which is a provably
loss-less watermarking. TreeRing and Bipartite, fall significantly behind, as they perform up to
10 times worse than the best watermarking method depending on the dataset and quality metric.
Both CheckWate and Gaussian Shading achieve generative performance comparable to the one
obtained without watermark. Under the Proteins dataset, CheckWate significantly outperforms
other baselines including None. We suggest that the enhanced variance obtained via the checkered
entries compensates the lack of randomness in the used implicit model.

For detectability, all methods achieve consistent results, except for TreeRing. Bipartite achieves
the best Z-score, but lacks generative quality. Gaussian Shading and CheckWate have compara-
ble Z-scores, except on Proteins where CheckWate significantly outperforms Gaussian Shading.
Finally, we emphasize the detectability obtained with No Dequantization. Not applying a dequanti-
zation leads to an almost complete —if not complete— loss of the watermark even under no attack.

4.2 ROBUSTNESS TO GRAPH PERTURBATIONS

We test watermark robustness under four graph-specific perturbations (Table 2)): Isomorphism, Edge
Addition, Edge Deletion, and Node Deletion, each applied at strengths from 5% to 20%. Check—
Wate remains detectable under all experimented attacks, with the lowest Z-score (9.7) observed
for SBM under 20% node deletion. Bipartite is consistently the strongest watermarking method but
sacrifices generative quality. The state-of-the-art methods fail at achieving a statistically significant
watermark most of the times as TreeRing never reaches a positive Z-score, and Gaussian Shading
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Table 1: Generative quality is reported as mean maximum discrepancy (MMD) and the ratio of
valid, unique, and novel (V.U.N.) samples. Watermark detectability is evaluated via the Z-score,
with results shown for both dequantized and non-dequantized graphs. Bold indicates the best result
and underline the second best; arrows specify if lower or higher values are preferable. We note with

a checkmark detectable Z-scores (> 10).

Quality Metrics

Detectability (Z-Score)

Dataset Watermark Deg.] Clus.] Orb.] Spec.| V.UN.(%)1T Dequant?T No Dequant. T

None 0.0009 0.0373 0.0123 0.0078 72.5 - -
Planar Gaussian Shading ~ 0.0008  0.00367 0.0072  0.0093 62.5 57.6 v 59
V] =64 TreeRing 0.0104 0.1255 02122 0.0188 10 1.0 0.0
Synthetic Bipartite 0.0007 0.0412  0.0653 0.0101 67.5 4999 v 0.5
CheckWate (ours) 0.0008 0.0418  0.0137 0.0078 67.5 67.6 v 0.7
None 0.0007 0 0.0001 0.0126 55 - -
Tree Gaussian Shading 0 0 0.0001  0.0090 67.5 59.0v 2.9
V] =64 TreeRing 0.0002 0 0.0002 0.0122 42.5 1.1 0.0
Synthetic Bipartite 0.0002 0 0.0002 0.0124 45 4968 v/ 0.0
CheckWate (ours) 0.0004 0 0 0.0093 475 45.0 v 0.3
None 0.005  0.0504 0.0439 0.0058 67.5 - -

SBM Gaussian Shading ~ 0.0105  0.0498  0.0629 0.0076 72.5 84.7 v 10.7 v
44 <|V| <187  TreeRing 0.0264 0.0612 0.1100 0.0112 525 0.6 0.0

Synthetic Bipartite 0.1178  0.6432  0.1984 0.0742 0 915.8 v 254 v
CheckWate (ours) 0.0041  0.0520  0.0552  0.0050 52.5 86.8 v 0.0
None 0.4315 0.5436  1.3283 0.2450 - - -
Proteins Gaussian Shading ~ 0.4358  0.5283  1.3332 0.2579 - 1103 v 1.4
100 < |[V] <500 TreeRing 0.4149  0.4137 13332 0.3009 - 1.5 0.0
Real Bipartite 05114 1.0123  1.4257 0.5636 - 1724.0 v 22
CheckWate (ours) 0.0473  0.2156 0.5986 0.0440 - 404.7 v 2.0

Table 2: Watermark detectability (Z-score) under perturbations. The higher the better. Bold denotes
best, underlined denotes second-best. ||€q.|| is average maximum graph eigenvalue multiplic-
ity.We note with a checkmark detectable Z-scores (> 10).

‘Watermark Detectability (Z-Score 1))

3

;é ‘Watermark [|€maz |l Isomorphism Edge Deletion Edge Addition Node Deletion

a pht 5% 10% 20% 5% 10% 20% 5% 10% 20%

. Gaussian Shading (57.6 V) 29 0 23 22 23 35 29 4.6 25 2.4 1.4

& TreeRing (1.0) 2.8 0 0 0 0 0 0 0 0 0 0

ET%. Bipartite (4999 v') 3.0 5485 v 499.0 v  4772v 6054 2116V 1168/ 398 v 4485 5286V 5417V
CheckWate (ours) (67.6v) 29 418 v 365V 356V 367V 326V 309 v 218V 308 v 315V 28.6 v
Gaussian Shading (59.0 V) 8.6 0 2.8 2.3 1.2 3.1 1.9 1.7 23 1.7 1.1

@ TreeRing (1.1) 9.0 0 0 0 0 0 0 0 0 0 0

£ Bipartite (4967.7 V') 9.2 166.6 v/ 14 v 131 v 1199 v 1037 v 833 vV 562 v 1339 v 1044 v 1189 v
CheckWate (ours)  (45.0 V) 9.3 313/ 28.8 v 311V 305V 349v 357V 318V 243V 3337 238V
Gaussian Shading 85.1v) 80.6 0 53 4.6 39 39 34 3.6 38 29 22

= TreeRing (0.5) 80.8 0 0 0 0 0 0 0 0 0 0

2 Bipartite (894.6 V) 107.5 12417 54.6 v 209.2 v 205 6183  2465v 1415 6232V 2568 v 175 v
CheckWate (ours) (86.8 v') 80.7 60.8 v/ 504 v 195v 156 v 188 v 106 v 111V 328V 244V 97

2 Gaussian Shading (1193 V) 305.4 0.1 0.7 0.6 0 0.8 0.7 0.3 0.7 0.3 0

5 TreeRing (1.0) 339.0 0 0 0 0 0 0 0 0 0 0

S Bipartite (17240 v)  481.1 1636.7 v 16369 v 16369 v 16345+ 1636.8 16368 16343 16368+ 16368 1634.4 v

2 CheckWate (ours) (404.7 V) 267.8 1284 v 1747 v 1120v 922V 1663v  117.7v 597 1524v 711V 46.2 v

never surpasses a Z-score of 5.3. Notably, under isomorphism, they both consistently achieve a
Z-score of 0, confirming that they are not graph invariant. We also report the average maximum
eigenvalue multiplicity ||€,qz||, showing that generated graphs rarely have low multiplicity. This
reinforces the strength of our dequantization mechanism, even with the approximation in[Equation 3}

4.3 ABLATION STUDIES

Ideal dequantization We perform experiments in which we assume the permutation matrix P to
be known. We dequantize G°* = A’ — P (A —G°) P~ and consider G%* to be the ideal
result of dequantization. showcases the results. This allows us to analyze the difference in
performance given by the approximation in[Equation 3] CheckWate achieves enhanced watermark
strength, especially under heavier attacks. This can be explained as the eigenvectors of G tend to
change more when under heavier perturbations, making the reconstruction from less
robust. Furthermore, we emphasize that isomorphism does not degrade CheckWate detectability,
proving graph-invariance of the checkerboard watermarking. We further see that the baseline that is
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Table 3: Watermark detectability (Z-score) under perturbations with ideal dequantization. The
higher the better for all. Bold denotes best, underlined denotes second-best.

3 Watermark Detectability (Z-Score 1)
g Watermark Isomorphism Edge Deletion Edge Addition Node Deletion
a ] piis 5% 10% 20% 5% 10% 20% 5% 10% 20%
_ Gaussian Shading (41.6) 0.4 443 41.8 36.5 454 40.0 379 42.0 40.2 40.9
& TreeRing (1.2) 0.0 1.0 0.8 0.4 1.1 1.0 0.7 0.8 0.5 0.0
n% Bipartite (4820.8) 4842.1 4790.6 4797.1 44243 35472 20524 858.0  4833.1 4866.8 3837.3
CheckWate (ours) (46.5) 46.5 45.6 48.7 52.8 45.4 37.7 20.8 38.1 373 37.7
Gaussian Shading (40.0) 0.3 369 377 37.7 39.3 39.8 42.1 394 399 40.8
8 TreeRing (1.0) 0.0 0.7 0.7 0.5 1.0 0.9 0.9 0.7 0.5 0.2
[g Bipartite (2661.7) 2651.3 2683.4 2788.7 2697.1 2759.1 2741.8 26374 26424 2636.8 2718.7
CheckWate (ours) (33.2) 323 29.5 272 32.1 35.1 30.2 25.6 25.0 30.0 293
Gaussian Shading (84.4) 0.3 74.1 73.8 67.1 70.4 69.0 77.1 73.7 69.9 754
= TreeRing (1.0) 0.0 0.7 0.4 0.0 0.3 0.0 0.0 0.3 0.0 0.0
2 Bipartite (837.1) 837.1 993 1230.0 964.1 157214 319185 297972 9445 7406.3 1002.2
CheckWate (ours) (86.8) 86.8 87.0 47.4 232 31.0 18.8 18.0 55.6 36.3 10.3
2 Gaussian Shading (119.3) 11.0 150.8  151.2 1613 150.6 153.7 152.5 1529 1537 1533
-5 TreeRing (1.0) 0.0 1.5 1.4 1.3 1.5 1.3 1.1 1.5 1.3 1.1
&g) Bipartite (1724.0) 1729.8 1643.5 1647.3 1641.5 1652.6 16484 1641.3 1647.0 16453 1641.4
A CheckWate (ours) (405.2) 405.0 4069  290.0  200.1 337.8 146.0 93.9 3709 1440 89.0

Table 4: Watermark detectability (Z-score) under perturbations without sparsification mechanism.
The higher the better for all. Bold denotes best, underlined denotes second-best.

3 Watermark Detectability (Z-Score 1)
% Watermark Isomorphism Edge Deletion Edge Addition Node Deletion
a P 5% 10% 20% 5% 10%  20% 5% 10%  20%
5 Gaussian Shading (32.0) 0.0 39 3.0 2.7 4.7 3.0 2.9 3.6 2.8 2.0
s TrpeR%ng (0.0) 0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0
f:“ Bipartite (3527.4) 132.1 54.8 60.0 75.4 18.4 6.6 0.7 55.5 548 589
CheckWate (ours) (64.1) 35.0 37.4 35.2 32.4 0.0 0.0 00 322 299  29.1
Gaussian Shading (28.3) 0.5 2.4 2.0 1.6 22 1.7 24 1.6 1.7 0.8
@ TreeRing (0.0) 0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0
ﬁ Bipartite (411.8) 55 5.0 34 3.8 4.1 33 23 4.1 4.6 3.8
CheckWate (ours) (49.9) 46.8 40.0 30.1 334 0.7 00 00 35.7 361 271
Gaussian Shading (65.1) 0.0 6.2 45 32 3.7 30 25 4.6 3.2 25
= TreeRing (0.0) 0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0
8 Bipartite (737200.7) 127821.4 3150.6 2302.1 395.0 49141.5 0.0 0.0 175934 29859 14.2
CheckWate (ours)  (86.8) 61.2 534 55  13.6 23 03 00 73 56 07
» Gaussian Shading (71.1) 0.2 0.5 0.4 0.1 0.4 06 03 0.4 0.3 0.0
}LE’ TreeRing (0.0) 0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0
S Bipartite (97.8) 97.3 97.3 97.3 97.3 97.3 97.3 973 97.3 973 973
A« CheckWate (ours) (410.9) 221.7 239.7 1364 109.7 3.1 1.6 05 2089 20.1 264

affected the most is Gaussian Shading. Albeit, it continues to have insufficient detectability when
under isomorphism as its watermark is not graph-invariant.

Robust detection mechanism Finally, we perform experiments with the robust detection mecha-
nism disabled. Results are showcased in We can clearly see that most Z-scores are reduced.
Notably, under the edge addition attack, CheckWate is not detectable even under lighter attacks.
This happens as the reconstructed latent diverges from the GOE assumption. This leads to the eigen-
values diverging from the bulk. At the same time, applying the robust detection mechanism con-
strains the latent to the sparsified GOE, making its behavior predictable, and forcing the eigenvalues
to stay within the bulk. We showcase a qualitative comparison in [Fig. 8| from [Appendix H}

5 CONCLUSIONS

Motivated by the need of efficiently verifying ownership of synthetic graph data, we propose
CheckWate, the first sampling-time watermark for graph diffusion models. CheckWate embeds
a checkerboard pattern in the noisy latent and detects the watermark in polynomial time using the
noisy latent eigenvalues. The novel design of CheckWate leverages random matrix theory to solve
multiple hard graph watermarking challenges: bypassing NP-hardness of verifying graphs arising
from graph isomorphism, and dequantizing discrete and isomorphic graph representations. Our wa-
termark is not only theoretically grounded in watermark verification time and graph reconstruction
error, but also practically robust against graph-modifications. Our evaluation across four datasets
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shows that CheckWate achieves state-of-the-art generative quality and remains detectable under
graph-specific attacks such as isomorphism, while watermarks of prior art are barely detectable. We

discuss limitations and future work in[Appendix E]

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we include: code of the proposed framework, pseu-
docode of watermark detection in appendix. All used datasets are publicly available and instructions
to reproduce our results are provided in the code repository.

ETHICS STATEMENT

Our proposed graph watermarking framework has broad applications in claiming ownership over
synthetic network data such as molecular structures used in drug discovery or material science ap-
plications and human interactions on social media, or professional networks.

This paper was written with the aid of publicly available LLMs in tasks such as grammar check,
spelling error, and minor rephrasing.
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LI1ST OF SYMBOLS

) Probability density function of Dirac distribution

S
A The diagonal matrix of the eigenvalues, i.e., diag(A1, ..., An)
A Eigenvalue

A Binary graph adjacency matrix

A’ Binary graph adjacency matrix to verify

GY Generated graph (in the continuous space)

GT Noisy latent

GT"  Reconstructed noisy latent

Vi Eigenvectors of matrix X

X v A normalized matrix, i.e., Xy = X/ VN

X;;  Entry 4, j of matrix X

N (u, o) Gaussian distribution with mean p and std o

¢(-)  Probability density function of Gaussian distribution

o(*) Probability density function of eigenvalues of a normalized matrix
diag(-) Diagonal matrix

e(A)  Algebraic multiplicity of eigenvalue A

A BACKGROUND ON DIFFUSION MODELS

DDPM Diffusion models generate data starting from a noisy latent representation. Denoising Dif-
fusion Probabilistic Model (DDPM) (Ho et al.| 2020) has been at the forefront of generation of
synthetic data. This framework aims at transitioning from a latent sampled from noise distribution
(zr ~ N(0,1)) to a sample of the data distribution zy through a iterative process. More precisely,
at each step ¢, a neural network €, predicts the noise €4 (¢, z;) to predict the next sample z;_1 as:

— T— et
Zi—1 = /1 (zt \/agteg( Zt)) + /1l =1 —0? - eq(t,2) + orey 7
t

where a, . .., ar are computed from a predefinied variance schedule. €, ~ A(0, 1) is independent
standard Gaussian noise. oy is noise that yields diversification in the generative process.

DDIM By setting o, = 0 the generative process becomes deterministic, i.e., implicit. Meaning that,
for a starting noise z7, the generative process deterministically yields to the same zg. Notably, if the

12
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size of the steps is small, i.e., large 7', the generative process can be accurately reversed and zp can
be reconstructed from zg via:

[a [a
Zty1 = ;Jrl zt + (\/ 1+ a1 — (t;l - Oét+1> eg(t, 21) ®)
t t

based on the approximation ey(t,z:) = €g(t — 1,2:;—1). This paradigm is called the Denoising
Diffusion Implicit Model (DDIM) (Song et al., [2020). Due to its capability of reconstructing noisy
latent, it has been used as the backbone of multiple watermarking methodologies (Wen et al., 2023}
Yang et al.| 2024; Zhu et al., 2025} |Soi et al., [2025).

DDBM Denoising Diffusion Bridge Models (DDBM) (Zhou et al.| [2023) generalize diffusion by al-
lowing the endpoints of the diffusion process to be arbitrary distributions rather than always starting
from random noise. This enables denoising diffusion to operate on usecases such as image editing.
DDBM learn a bridge score function s(¢, x) via a neural network. Then, the reverse process can be
expressed as a stochastic differential equation (SDE):

dx' = [f(x',t) — g(t)?s(x", t)]dt + g(t)dW* 9)

where f(x,t) and g(t)? come from the forward reference diffusion process, and W* is a standard
Wiener process that introduces diversification in the generative process.

A.1 GRAPH DIFFUSION MODELS

Discrete Graph Diffusion Some of the state-of-the-art diffusion models perform diffusion using
discrete graph representations in the latent space. DiGress (Vignac et al,|2022) is one of the most
popular examples. DiGress represents noisy latents as Erdés-Renyi (ER) random graphs in which
each edge is independently sampled with 50% chance. The generation follows a discrete denoising
diffusion process inspired by DDPM: at each timestep ¢, a neural network predicts a distribution
p(Gt1G?), from which the next graph G'~! is sampled.

Continuous Graph Diffusion Other approaches operate on continuous graph representations.
GruM (Jo et al., [2023)), for instance, models noisy latents as Gaussian Orthogonal Ensembles. Then,
the diffusion process is modeled through DDBM process that moves toward the target data dis-
tribution. At each step, G' represents the mixture of the possible generated graphs. Relying on
the Ornstein-Ulhenback bridge process, GruM is shown to converge to the data distribution up to
quantization.

B BASELINES

Gaussian Shading (Yang et al, 2024) is a sampling-time watermarking framework designed
for images. The watermark is embedded in the latent using a secure stream cipher such as
ChaCha20 (Bernstein) to get a uniformly distributed random bits. The noisy latent is generated
from these bits using distribution preserving sampling. When the noisy latent is reconstructed, the
bits are reconstructed. Then, the author can prove their ownership by comparing them with the
ones generated by the secure stream cipher. Gaussian Shading is proven to deliver lossless gener-
ative performance but is not isomorphism invariant as the pattern designed by the stream cipher is
disrupted.

TreeRing (Wen et al., 2023) is a sampling-time watermarking framework designed for images.
TreeRing embeds the watermark in the Fourier space of the noisy latent. When the noisy latent is
reconstructed, the watermark is extracted via the Fourier transform. Then, its presence is detected
via L1 similarity from the original watermarking key and the reconstructed one. TreeRing yields
reduced generative performance as it heavily disrupts the initial latent from the Gaussian assumption.
Furthermore, it is not isomorphism invariant as its pattern is disrupted.

Bipartite is a graph-invariant baselines we developed based on bipartite graphs. We leverage the
fact that graph bipartivity can be verified regardless of the graph representation and that it is a mono-
tonic property. Meaning, a subgraph of a bipartite graph is still bipartite. It starts by generating a
complete bipartite graph of size N x N. From its adjacency matrix, it performs distribution preserv-
ing sampling to generate the noisy latent. To detect the watermark, the noisy latent is reconstructed.

13
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Then, we discretize the noisy latent as:

_J0 if®(L) < 0.5

|1 otherwise
Where & is the CDF of the standard normal distribution. To increase its robustness, we leverage
monotonicity to sample a subgraph of L

0 if®(L) <0.75

|1 otherwise
Recall that monotonicity means that a subgraph of a bipartite graph is always bipartite. The score
of the watermark is computed via the spectral bipartivity 5(z) (Estrada & Rodriguez-Velazquez,
2005). In general 2 < (3(z) < 1. With 3(z) = 1 if and only if a graph is bipartite, and 3(z) — 3
when z is the complete graph and N — co. Bipartite leads to reduced generative performance as it

generates noisy latents of non-independent Gaussian noise. It is isomorphism invariant as bipartivity
is a graph property (Estrada & Rodriguez-Velazquez, 2005).

C PROOFS

C.1 PROOF OF[THEOREM 3.11

From Chen et al.[(2020) we know that the largest N — k eigenvalues are of magnitude: vV NW, /k +
O(1). Hence,

N—k y w
Egw ~(k,w)-cBE [W] = (\/Nw/k + O(U) (10)

We now derive the expected average magnitude of the largest N — k eigenvalues of the GOE. For
the sake of simplifying notation, let k' = & € [0, 1]

N—k NW
Eg~w wgoE lzl—?N _(k) ) =E[PDFwigner() | W < < 9] (11
- f22k' TPDFwgner(x)da )
f22k’ PDFWﬁgner(fU)d:L’
= Jo 57 de (13)
= CDFW7gner(2) - CDFWigner(k/)
(4 _ 4k‘/2)3/2
- in (27 (14)
67 |:% _ 2]@/\/? _ arcsmﬂ— X ]

Finally, we can derive the watermark detectability of CheckWate.

N—k N—k N—k
E Y MNGY)= NG| =E| > MGW)] 2103 Ai(GNW)] (16)
=1 =1 =1
=VNuw/k+0(1) — O(k?) (17)
C.2 PROOF OF[THEOREM 3.2
With G defined as in[Section 3.3
GY = pPG'P! (18)
= (PV4)VA'GOVA(PVA) ! (19)
~ (PVAQ)VL'G'VA(PVAQ) ™! (20)
=VaViG'VaV,) 2

Equality for holds whenever Q = 1.
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C.3 PROOF OF[THEOREM 3.3

Whenever A has eigenvalue multiplicity > 1, the reconstruction error can be quantified as:

IGY = Glr = [VAQVA'G'VAQ 'V, — G|l (22)
= [[VX'(VaQV,'G'VAQ 'V — G")Va4llr (23)
=QVA'G'VAQ ' - V'G V4| (24)
=Y (IQ,G,.Q. -G, |3)" (25)
r,s=1
where || - || is the Frobenius norm.

D PSEUDOCODE

Algorithm 1 CheckWate Detection

Input: target graph A, reference graph G, denoising model M

1: Va+ < Eigenvectors (A')
2: Vo < Eigenvectors (Quantize (GO))
3 GY — VA VLGOIV, {[Equation 3]}
4: fort <+ 1,2, ..., Tdo
55 G M1 (G(t_l)/> {Reverse DBIM }
6: end for
7: for (i, j) € N x N do
8: ifmax (cj)(GiTj/), §(GiTj')) < 0 then {{IEquation 5}
9: GT 0
10:  endif
11: end for
’ T
12: G% = Gﬁ {Normalization }

13: BlipEigenvalues < [)\ | A € Eigenvalues (GT/) L A > 2}

14: if |BlipEigenvalues| > N — k then
15: Return SUCCESS

16: end if

17: Return FAIL

E LIMITATIONS

Watermark on discrete latents Some graph diffusion models such as DiGress (Vignac et al., [2022)
rely on discrete noisy latent and discrete denoising steps of DDPM. While inverting discrete denois-
ing diffusion remains an untackled problem, techniques similar to the checkerboard watermark of
CheckWate can also be applied to discrete noisy latents. The key idea of CheckWate watermark
lies in moving some of the eigenvalues outside of the bulk (i.e., Wigner semicircle) while applying
minimal changes to the latent. In the context of continuous latents, we achieve this by applying the
checkered entries. We believe that the same idea can be applied in discrete space in the following
way.

Eigenvalues of discrete noisy latents (i.e., Erdos-Renyi matrices) also follow the Wigner semicircle
law, similarly to GOEs. We are interested in moving some of these eigenvalues outside the bulk
regime. Budel & Van Mieghem)| (2021) studied the relationship between presence of communities
and eigenvalues in the blip. We suggest that enforcing the presence of communities in parts of
the noisy latent can be used to reproduce CheckWate behavior in the discrete scenario. This can
be leveraged to extend the checkered watermark behavior to discrete noisy latents. Furthermore,
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sparsifying ER graphs, reduces the magintude of its eigenvalues, similarly to the sparsified GOE.
Thus, even the robust detection mechanism CheckWate remains applicable.

Non-Blind Watermark Our watermark is non-blind, meaning that the original data is needed to ver-
ify the presence of the watermark. State-of-the-art watermarking methodologies for images, tabular
data, and time series provide blind watermarking, meaning that the watermark can be extracted and
verified even without the generated data. No watermarking framework for graph data currently sup-
ports blind watermarking. Addressing computational feasibility of non-blind graph watermarking
is a key step to enable future development in this field. Extending CheckWate to further support
blindness is an interesting research gap that will be addressed by future work.

Provable resistance to forgery CheckWate resistance to forgery relies on hardness of dequantiza-
tion. Despite our experiments in[Table T|show that not using the key leads to impossible verification,
it is not possible to prove forgery resistance by applying the key after the diffusion process.

F ABLATION STUDY ON DIFFERENT VALUES OF k, W

Here, we widen our results with an extensive analysis of how k£ and W can affect Z-score and
generative quality. The key observations are, as expected, generation quality degrades for larger
values W of and smaller k. Accordingly, Z-score increases when k is smaller and W larger. This
confirms the theory discussed in Section[3.2]

Table 5: Ablation study on different values for k, W on Planar dataset.

Parameters degree cluster orbit spectral  V.U.N. Z-Score
k=09,W==£1.0 0.0006 0.0406 0.0039 0.0086 0.55 7.64
k=09, W =220 0.0009 0.0446 0.0113 0.0068 0.65 38.76
k=09, W ==£3.0 0.0007 0.053 0.0092 0.0087 0.675 9547
k=09,W ==+40 0.0011 0.0651 0.0154 0.0096 0.525 176.88

k=0.7W ==£1.0 0.0009 0.0424 0.0022 0.008 0.325 19.35
k=0.7W ==£2.0 0.0007 0.0541 0.0119 0.0099 0.4 83.17
k=0.7,W =43.0 0.0015 0.0629 0.0283 0.0109 0.25 193.44
k=07W ==+4.0 0.0021 0.0779 0.0352 0.0111 0.175 349.78

k=05W ==£1.0 0.0007 0.0592 0.0046 0.0084 0.25 29.61

k=0.5W =220 0.0014 0.0664 0.0178 0.0114 0.275 126.95
k=05W ==£3.0 0.0021 0.0984 0.0354 0.0118 0.125 292.39
k=0.5W =240 0.0047 0.1028 0.0631 0.0121 0.275 525.72

k=02W==£1.0 0.0031 0.2282 0.0197 0.0115 0 134.64
k=02W==£20 0.007 0259 0.0734 0.0167 O 561.77
k=02W =230 00132 02624 0.0435 0.0164 O 1288.26
k=02W =240 0.0198 0.2687 0.0729 0.0231 0 2303.01

G ROC CURVES

We report the ROC curves of the experiments from and 2] We provide results under Planar
and SBM datasets (the latter one being the dataset with the lowest z-scores) with four different
attacks at their maximum strength:

All figures show an AUC of 1.0, which means CheckWate always manages to achieve 100% True
Positive Rate and 0% False Positive Rate.

We further provide the same ROC curves without the latent sparsification mechanism:

From the plots, we can see that under strong edge additions, the AUC of CheckWate reduces
severely: 0.5 for Planar and 0.75 for SBM. A result that indicates little to no discriminatory ca-
pability.

Furthermore, we would like to highlight figures in in which we perform qualitative
analysis on the eigenvalue distributions of our experiments. Especially, showcases how the
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Table 6: Ablation study on different values for k£, W on Tree dataset.

Parameters degree cluster orbit spectral  V.U.N. Z-Score

k=09, W ==+1.0 0.0001 0 0 0.0093  0.55 6.07
k=09,W==+20 0.0002 0 0 0.0088  0.55 32.22
k=09,W ==£3.0 0.0001 0.0001 0 0.0094 0.5 81.35
k=09, W =240 0 0.0001 0 0.0093  0.65 152.06
k=07W==£10 0 0.0001 O 0.0084  0.575 16.43
k=0.7W ==£2.0 0.0002 0.0001 0.0001 0.0092 0.55 73.77
k=0.7,W =430 0.0002 0 0.0002 0.0089  0.35 172.15
k=07W =+40 0.0001 0 0.0002 0.0088  0.25 316.53
k=0.5W =210 0.0004 0 0.0001 0.0096  0.65 25.04
k=05W=+20 0 0.0001 0.0002 0.0117 0.55 113.12

k=05W ==£3.0 0.0003 0.0001 0.0003 0.0111 0425 262.96
k=0.5W =240 0.0002 0.0005 0.0004 0.0093 0325 471.28

k=02W==£1.0 0.0001 0.1547 0.0002 0.0146 0.05 120.53

k=02,W==£2.0 0.0006 04638 0.0005 0.0148 0 514.98
k=02W =430 0.0007 0.5882 0.0009 0.0182 0 1162.53
k=02W =240 0.0008 0.6223 0.0015 0.0151 0 2068.21

Table 7: Ablation study on different values for k, W on SBM dataset.

Parameters degree cluster orbit spectral  V.U.N. Z-Score
k=09, W ==x1.0 0.0025 0.0488 0.0507 0.0064 0.775  5.67
k=09,W==£2.0 0.0021 0.0511 0.0574 0.0045 0.6 27.44
k=09,W ==+3.0 0.0026 0.052 0.0676 0.0056 0.625 64.8
k=09, W =240 0.0022 0.0514 0.0665 0.0056 0.6 117.22

k=07W==£1.0 0.0035 0.0501 0.072 0.0067 0.725 13.26
k=0.7,W =220 0.0048 0.0533 0.0517 0.0055 0.575 55.14
k=0.7,W =430 0004 0055 0075 0.0055 0.475 126.23
k=0.7W ==+4.0 0.0044 0.057 0.0855 0.0057 0.525 225.89

k=0.5W =210 0.0024 0.0524 0.0825 0.0049 0.775  20.29
k=05W ==£2.0 0.0044 0.0528 0.0829 0.0046 0.75 83.1
k=05W ==£3.0 0.0048 0.0576 0.0754 0.0058  0.625 188.22
k=0.5W =240 0.0048 0.058 0.0916 0.0055 0.6 336.24

k=02W==£1.0 0.0029 0.0514 0.0783 0.0047 0.725  82.68
k=02W =220 0.0036 0.0507 0.0693 0.0063 0.575 339.44
k=02W =430 0.0033 0.0497 0.0485 0.0057 0.425 769.34
k=02W==+4.0 0.0024 0.0502 0.0571 0.0065 0.3 1373.52

ROC Curves under None Attack (planar) ROC Curves under EDGE_ADDITION Attack (planar) ROC Curves under EDGE_REMOVAL Attack (planar)  ROC Curves under NODE_ISOLATION Attack (planar)
10 10 10 10 =

— Checkwate! (AUC = 1.00) — CheckWate! (AUC = 1.00) — Checkwate! (AUC = 1.00) — CheckWate! (AUC = 1.00)

Figure 4: ROC curves of CheckWate on Planar dataset with latent sparsification. (a) ROC curve
under no attack; (b) ROC curve under edge addition 20%; (c) ROC curve under edge removal 20%;
(d) ROC curve under node deletion 20%. AUC is 1.0, indicating perfect discriminatory capability.
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ROC Curves under None Attack (sbm)
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Figure 5: ROC curves of CheckWate on SBM dataset with latent sparsification. (a) ROC curve
under no attack; (b) ROC curve under edge addition 20%; (c) ROC curve under edge removal 20%;
(d) ROC curve under node deletion 20%. AUC is 1.0, indicating perfect discriminatory capability.
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Figure 6: ROC curves of CheckWate on Planar dataset without latent sparsification. (a) ROC
curve under no attack; (b) ROC curve under edge addition 20%; (c) ROC curve under edge removal
20%; (d) ROC curve under node deletion 20%. Under edge addition, AUC is 0.5, indicating limited
discriminatory capability.
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Figure 7: ROC curves of CheckWate on SBM dataset without latent sparsification. (a) ROC curve
under no attack (b) ROC curve under edge addition 20% (c) ROC curve under edge removal 20%
(d) ROC curve under node deletion 20%. Under edge addition, AUC is 0.74, indicating limited
discriminatory capability.

eigenvalues of the reconstructed latents tend to explode under edge additions when no latent sparsi-
fication is applied.

Altogether, these results show that: (i) CheckWate provides remarkable performance under TPR
and FPR; (ii) Latent sparsification is key for preventing performance degradation under major per-
turbations.

H QUALITATIVE RESULTS

18



Under review as a conference paper at ICLR 2026

Eigenvalues of reconstructed samples (40 graphs) Eigenvalues of reconstructed samples (40 graphs)
0.25
0.30 1
0.20 4
0.25 9
0.20 4 0.15 4
Z =2
k] ]
< 2
& 015 g
0.10 §
0.10 4
0.05 4
0.05 o
0.00 + 0.00 +
-8 -6 6 8 -8 6 8
Eigenvalue Eigenvalue
(a) (b)
Eigenvalues of reconstructed samples (40 graphs) Eigenvalues of reconstructed samples (40 graphs)
0.12 q
0.10 4
0.08 o
k= =2
2 0,06 2
& 8
0.04 o
0.02 4
-8 0 2 8 -2 0
Eigenvalue Eigenvalue
© ()

Figure 8: Comparison of eigenvalues with and without anomaly detection mechanism on Planar
dataset under edge addition attack (10%). (a) and (b) show reconstructed eigenvalues of No wa-
termark and CheckWate respectively, with anomaly detection. (c) and (d) show reconstructed
eigenvalues of No watermark and CheckWate respectively, without anomaly detection.
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Figure 9: Distribution of reconstructed eigenvalues on Planar dataset under no attack.
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Figure 10: Distribution of reconstructed eigenvalues on Planar dataset under isomorphism.
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Figure 11: Distribution of reconstructed eigenvalues on Planar dataset under 20% edge removal.
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Figure 12: Distribution of reconstructed eigenvalues on Planar dataset under 20% edge addition.
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Figure 13: Distribution of reconstructed eigenvalues on Planar dataset under 20% node deletion.
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Figure 14: Distribution of reconstructed eigenvalues on Tree dataset under no attack.
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Figure 15: Distribution of reconstructed eigenvalues on Tree dataset under isomorphism.
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Figure 16: Distribution of reconstructed eigenvalues on Tree dataset under 20% edge removal.
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Figure 17: Distribution of reconstructed eigenvalues on Tree dataset under 20% edge addition.
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Figure 18: Distribution of reconstructed eigenvalues on Tree dataset under 20% node deletion.
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