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Abstract

Methods for knowledge editing and unlearning
in large language models seek to edit or remove
undesirable knowledge or capabilities without
compromising general language modeling perfor-
mance. This work investigates how mechanistic
interpretability—which, in part, aims to identify
model components (circuits) associated to spe-
cific interpretable mechanisms that make up a
model capability—can improve the precision and
effectiveness of editing and unlearning. We find
a stark difference in unlearning and edit robust-
ness when training components localized by dif-
ferent methods. We highlight an important distinc-
tion between methods that localize components
based primarily on preserving outputs, and those
finding high level mechanisms with predictable
intermediate states. In particular, localizing ed-
its/unlearning to components associated with the
lookup-table mechanism for factual recall 1) leads
to more robust edits/unlearning across different
input/output formats, and 2) resists attempts to re-
learn the unwanted information, while also reduc-
ing unintended side effects compared to baselines,
on both a sports facts dataset and the CounterFact
dataset across multiple models. We also find that
certain localized edits disrupt the latent knowl-
edge in the model more than any other baselines,
making unlearning more robust to various attacks.
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1. Introduction
Large language models (LLMs) often learn to encode unde-
sirable knowledge. The possibility of selectively editing or
unlearning this type of knowledge is viewed as paramount
for ensuring accuracy, fairness, and control of AI. Yet, edit-
ing and unlearning of knowledge from these models remains
challenging.

Common editing and unlearning methods often come at the
cost of affecting other general or tangential knowledge or
capabilities within the model. Moreover, the edits achieved
through these methods may not be robust – e.g., slight vari-
ations in the prompt formulation can often still elicit the
original fact or capability, or the original answers are still
present/extractable given white-box access.

Some recent work has explored editing or unlearning
techniques that rely on mechanistic interpretability meth-
ods attempting to trace which components of a network
store specific facts (Meng et al., 2023). These methods,
such as causal tracing or attribution patching, focus on
measuring how output or task accuracy is affected when
clean/corrupted input is patched into specific components.

We coin a new term to categorize localizations which
measure causal effects of components on only the output:
Output-Tracing localizations. The effectiveness of output-
tracing (OT) techniques like Causal Tracing for editing has
been questioned by Hase et al. (2023). Our research con-
firms these doubts, finding that localized editing and un-
learning of facts based on several existing OT methods often
perform equal to or worse than simply updating the entire
model. This is particularly evident when evaluating the ro-
bustness of edits against prompt variations and relearning,
and when probing for remaining latent knowledge.

Another style of interpretability techniques first breaks down
computations into high-level mechanisms with predictable
intermediate states. Based on such work by Nanda et al.
(2023); Geva et al. (2023), we link certain MLP layers to a
fact lookup (FLU) mechanism for facts used in our analysis,
that enrich the latent stream with subject attributes but don’t
directly write to the output.
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For unlearning and edits of these facts, we only modify
components that implement the FLU mechanism.

More broadly, we refer to editing and unlearning that acts
on components of the model identified by mechanistic in-
termediate component analysis as mechanistic unlearning.
We demonstrate that FLU mechanistic unlearning leads to
better trade-offs between edits/unlearning and maintaining
performance on general language modelling capabilities,
compared to edits done using OT or without any localiza-
tion. Further, it exhibits improved robustness to re-learning
and alternative prompting, and we demonstrate that the la-
tent knowledge is also perturbed.

Summary of Contributions

• We perform a rigorous evaluation of several standard
editing approaches on factual recall tasks, and we iden-
tify mechanisms for factual lookup and attribute extrac-
tion on Gemma-7B, Gemma-2-9B, and Llama-3-8B.
We demonstrate that gradient-based editing localized
on the factual lookup mechanism is more robust than
OT localizations and baselines across multiple datasets,
models, and evaluations.

• We demonstrate that it is more difficult to elicit the for-
gotten ground truth answers using alternative prompt-
ing with FLU localizations. We also demonstrate
slower or no relearning of the ground truth answers,
retraining edited models on half of the edited set and
evaluating them on the other half of the edited set.

• We analyze intermediate representations using probing,
and provide further evidence that editing with FLU
localization modifies the internal latent information to
reflect the desired edited answer more than other lo-
calizations and baselines. We also analyze the weights
that are modified for each localization, and find that
OT techniques and baselines modify the attribute ex-
traction mechanisms more than the fact lookup mecha-
nism.

• We show that editing and unlearning localized on these
mechanisms is more parameter efficient, by controlling
for the sizes of edits made to the model with weight
masking.

1.1. Related Work

Mechanistic Interpretability is a subfield of AI inter-
pretability, aiming to understand the internal processes of AI
models by attributing them to subnetworks (called circuits)
within the model (Olah et al., 2020). We focus on the factual
recall interpretability literature (Nanda et al., 2023; Geva
et al., 2023; Chughtai et al., 2024; Yu et al., 2023), which
studies methods that aim to discover mechanisms for the
retrieval and formatted extraction of factual information.

Output tracing methods aim to automatically find causally
important subnetworks of components for a task. Causal
Tracing (Meng et al., 2023) and Automated circuit discov-
ery (ACDC) (Conmy et al., 2023) utilize repeated activation
patching to attempt to find the subnetworks that are most
critical for the model’s output on that task. Efficient meth-
ods such as attribution patching (Nanda, 2023) and edge
attribution patching (Syed et al., 2023) are linear approx-
imations of activation patching for discovering important
components quickly.

Fact Editing and Machine Unlearning seek to modify
pre-trained models to eliminate or alter learned knowledge
such as capabilities or facts. Some prior approaches focus
on identifying and removing specific individual training data
points, aiming to obtain a model that is “similar” to one that
had never trained on these data points (Cao & Yang, 2015;
Xu et al., 2023). One formalization of unlearning to match a
retrained-from-scratch model is due to Ginart et al. (2019),
and is closely inspired by differential privacy (Dwork et al.,
2014).

Fact editing focuses on overwriting factual information
while preserving overall language generation ability. Meng
et al. (2023) attempts to identify MLP modules that are most
responsible for factual predictions via Causal Tracing and
then applies a rank-one transformation upon these modules
to replace factual associations.

In the context of LLMs and safety, techniques such as
Helpful-Harmless RLHF (Bai et al., 2022) and Represen-
tation Misdirection for Unlearning (Li et al., 2024b) aim
to suppress dangerous knowledge or harmful tendencies in
LLMs. Li et al. (2024a); Zou et al. (2023; 2024) approach
unlearning and dangerous knowledge suppression from a
top-down feature view, reading or suppressing linear fea-
tures related to memorized, harmful, and undesired concepts.
A related line of work on safety proposes methods making it
difficult to modify open models for use on harmful domains
(Tamirisa et al., 2024; Deng et al., 2024; Henderson et al.,
2023), including through adversarial relearning.

Failures of Unlearning and Editing have been shown
for both localized and nonlocalized methods. Patil et al.
(2023) extract correct answers to edited facts from the in-
termediate residual stream and through prompt rephrasing.
Yong et al. (2024) show that low-resource languages jail-
break models output unsafe content, and Lo et al. (2024);
Lermen et al. (2023); Deeb & Roger (2024) demonstrate
that relearning with a small amount of compute/data causes
models to regain undesirable knowledge/tendencies. Even
without explicit finetuning, Xhonneux et al. (2024) show
that in-context learning alone suffices to reintroduce undesir-
able knowledge despite the model being designed to refuse
to output such knowledge. Lee et al. (2024) shows that
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Figure 1. High level depiction of mechanistic unlearning. We localize components responsible for fact extraction/enrichment and modify
their weights to change the associations, in order to target internal latent representations rather than targeting the output. Graph inspired
by Nanda et al. (2023).

even after alignment techniques are applied to make models
nontoxic, toxicity representations are still present, just not
triggered - they argue that this is a reason that models lack
robustness and can still be jailbroken.

Hong et al. (2024) evaluates unlearning by measuring resid-
ual knowledge left in internal activations, and demonstrate
that current approaches fail to remove this residual knowl-
edge and thus can be exploited. They attempt unlearning by
targeting the MLPs these residual knowledge traces reside
in, but fail to find a non-oracle unlearning approach that
successfully removes residual information.

2. Methods
Our experiments are designed to test the effectiveness of
localization for editing of facts. In this section we describe
the tasks used and the localization and editing methods
evaluated.

2.1. Editing Tasks

We focus on editing subsets of two datasets: (1) Sports
Facts dataset from Nanda et al. (2023), which contains
subject-sport relations across three sports categories for
1567 athletes, and (2) the CounterFact dataset from Meng
et al. (2023).

Sports Facts: Sports-Athlete-Editing, Full-Sports-
Editing, and Sports-Unlearning tasks In the Sports
Facts dataset, we edit two general groups of factual associa-
tions.

For the first editing task, we edit factual associations for
a constant set of randomly selected athletes belonging to
any of the three sport categories. We test editing these sets
of associations by replacing their correct sports with one
of the other two incorrect sports (with equal probability).

To increase the comprehensiveness of our evaluation, we
run experiments with different forget set sizes: 16 athletes
and 64 athletes. We refer to this task as Sports-Athlete-
Editing. These chosen forget sets are constant between all
localizations. For the second editing task, we unlearn all
athlete-sport associations for athletes who play one sport.
In this case, we establish a forget set consisting of all the
athletes who play one sport (basketball, baseball, or foot-
ball), and we edit the association by replacing the athlete’s
correct sport with golf. For comprehensiveness, we vary
the sport that the forget set is constructed from. We refer to
this task as Full-Sports-Editing. Finally, we also design an
unlearning task, Sports-Unlearning, where the goal is to
unlearn associations for all athletes in one of the sports.

CounterFact-Editing and Sequential-CounterFact-
Editing task In the CounterFact dataset, following Geva
et al. (2023), we first filter the dataset for facts which
our models assign higher than 50% probability to the
right answer, which varies per model. The goal of our
CounterFact-Editing task is to edit a constant set of facts,
replacing the correct answers with an alternative false
target, with the retain set being the rest of the non-forget
facts. We vary forget set sizes to be of 16 and 64 facts. In
Sequential-CounterFact-Editing task, we edit a total of
64 facts by sequentially editing four randomly selected
subsets of 16 facts. We test sequential editing here because
facts from CounterFact can reside in different parts of
the model, so we wish to test if we can exploit different
localizations for different facts. These chosen forget sets
are constant between all localizations. We also scaled this
approach to 1000 facts while creating localizations for each
fact individually, showing a more automated approach to
edit facts robustly at scale.
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Models We implement editing on the Gemma-7B LLM,
the Gemma-2-9B LLM, and the Llama-3-8b LLM. We don’t
use the Pythia-2.8B (Biderman et al., 2023) and GPT-2 mod-
els tested in the previous fact interpretability literature be-
cause our larger models have stronger general capabilities
which we can measure for side effects, and also because
our larger models can provide factual knowledge in more
input/output formats for more robustness evaluations. All
graphs presented in the main text and appendix, unless oth-
erwise specified, are averaged over all three model types.

2.2. Localization Methods and Baselines

Given a model M : X 7→ L mapping sequence of tokens
X to logits L ∈ R|V | over vocabulary V , we consider M
to be a directed acyclic graph (C,E) with C being a set of
model components and E being edges between components.
Adopting notation from Elhage et al. (2021), we consider
the query, key, value, and output weights of each head along
with the input, gate, and output projection weights of each
MLP as components.

We are interested in finding S : C −→ R, a mapping of com-
ponents to their importance in a given task. A localization is
a set of components Cτ := {c : c ∈ C, |S(c)| > τ}, where
τ is a threshold. In practice, we fix τ such that Cτ contains
the same number of parameters in OT, FLU, and random
localizations. We use these efficient localization methods
for finding these mappings:

Output Tracing (OT) localization: Causal Tracing and
Attribution Patching First, we test Causal Tracing, a
method for finding components with high direct causal im-
portance for factual associations (Meng et al., 2023). We
also use Attribution Patching (Nanda, 2023) as a fast and
acceptably accurate approximation of causal tracing to auto-
matically localize over components with high direct and in-
direct importance. We additionally consider the versions of
these localizations with only MLPs (Causal Tracing MLPs
and Attribution Patching MLPs).

We hypothesize that these output-based techniques will pri-
oritize the shared extraction components and other mech-
anisms for reformatting predictions over the more diffuse
FLU components, and thus appear more precise yet leave
the underlying latent information present in the model. This
might decrease robustness under alternative extraction meth-
ods, thus motivating non-OT-based localization, described
next. We discuss the precise components/mechanisms high-
lighted by OT localizations in Appendix A.3.

Fact Lookup (FLU) localization: Next, we use manually
derived localizations for MLP layers. For Sports Facts,
our localization is inspired by Nanda et al. (2023), who
identified components in Pythia 2.8B responsible for token

concatenation, fact lookup, and attribute extraction. Their
work, along with Geva et al. (2023), demonstrates that the
fact-lookup stage enriches the latent representation of the
subject (athlete) with information about their corresponding
sport, while the attribute extraction stage extracts the latent
sport information and formats it in the final token position.
We replicate a key result of their work in our three models
by training logistic regression models (probes) to predict the
correct sport using the internal activations of the model taken
from different layers. We consider the FLU localization to
be the layers at which the probe accuracies rapidly increase
as these correspond to layers where representations of the
athletes are being enriched to encode the correct sport.

For CounterFact, we cannot use the probe technique since,
unlike Sports Facts, the correct answers for the dataset do
not fall into a few categories that we can train a probe for.
Instead, we first use path patching from Goldowsky-Dill
et al. (2023) to measure the direct importance of attention
heads and MLPs on the final logit difference between the
correct answer and a sample incorrect answer. Path patching
finds the effect of corrupting a single path from a sender
component to a receiver component on the final logits of
the model. Components that change the output significantly
without being mediated by other components do so by di-
rectly affecting the logits, and thus we consider them to
be responsible for extracting the facts encoded in the rep-
resentation into the answer logits. We thus refer to these
components as the “attribute extraction mechanism” Geva
et al. (2023). We use path patching again, this time patching
paths between MLPs and the attribute extraction mecha-
nism to find the components with the highest contribution
to the logit difference as mediated through the extraction
mechanisms. Such components enrich the token represen-
tations with the appropriate facts to then be extracted, and
thus we use them as our FLU localization. More details
about the manual analysis for both datasets is outlined in
Appendix A.2.1.

Importantly, FLU differs from OT techniques by focusing
on the causal effects of ablations upon intermediate repre-
sentations used by the factual recall mechanism, not just
the effects on the output. We hypothesize that the optimal
location for robust editing is in the fact lookup stage rather
than in the attribute extraction stage,as adversaries could po-
tentially devise alternative extraction methods if knowledge
remains in the latent stream. Therefore, our model edits are
focused exclusively on the fact lookup MLPs.

Baselines: Random-MLPs, Random, All-MLPs, and
Nonlocalized We additionally consider four baselines:
one corresponding to Cτ = C (i.e., no localization, op-
timizing all the components of the model), another that
randomly chooses components, another that trains all MLP
components, and another trains a random selection of MLP
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components. We test the last MLP baselines to determine if
our mechanistically localized MLPs are uniquely important
- we want to know if the same unlearning performance can
be achieved with just the heuristic that training only MLPs
improves robustness, or if mechanistic understanding of the
role of the component is crucial.

In Appendix A.5, we analyze the proportions of each mech-
anism (the extraction heads, extraction MLPs, and fact
lookup MLPs, by parameter count) that are present in each
localization.

The main text focuses on comparing FLU, Causal Trac-
ing, and Nonlocalized, while the appendix has the same
figures with all above localizations included, with the same
conclusions in every case.

2.3. Parameter Update Method

Once we have a localization Cτ , we run one of the un-
learning or editing methods, restricting weight updates to
only components in Cτ . We update weights using gradient
descent on a combination of loss functions.

Localized Fine-Tuning Following work by Lee et al.
(2023) and Panigrahi et al. (2023), we fine-tune the pa-
rameters within the localized components.

For editing, we use a loss function L = λ1Linjection +
λ2Lretain + λ3LSFT, where Linjection is a cross-entropy loss
on the forget facts maximizing the probability of the alter-
native new false target. Lretain is a cross-entropy loss on a
train split of the remaining facts, and LSFT is a cross-entropy
loss on the Pile dataset (Gao et al., 2020). We sweep over
learning rates and injection loss λs for three representative
localizations in Appendix A.6.

3. Editing Evaluation
In this section, we show the results of model editing with lo-
calization: we test localization techniques from Section 2.2,
and edit these localized components using fine-tuning (Sec-
tion 2.3). Here we focus on four main editing tasks: sports-
athlete-editing, full-sports-editing, counterfact-editing,
and sequential-counterfact-editing. We present augment-
ing results for sports-unlearning in Appendix A.1.

All the editing tasks are assessed based on prompt-
completion based and adversarial relearning evaluations.

3.1. Prompting-based Evaluation

Our prompting-based evaluation assesses an editing
method’s ability to forget or edit specific information while
retaining unrelated knowledge, measured by evaluating how
the model post-editing completes the prompts coming from
the forget set. We report how accurately it recalls the unde-

sired forgotten answer (forget accuracy), and how accurately
it recalls the new desired edited answer (edit accuracy). In
addition, we also measure the accuracy on facts not in the
forget set (maintain accuracy). In cases where a positive
result is lower accuracy, we use the term error to denote 1
- accuracy (e.g. forget error = 1 - forget accuracy). Well-
edited models should decrease forget accuracy, increase
forget error, and increase edit accuracy. Results of these
standard evaluations are reported in Appendix A.7.1.

Inspired by Patil et al. (2023) and Lynch et al. (2024), to en-
sure the editing process has not overfit to the specific format
of the original prompts, we incorporate a robustness check
using a multiple-choice question format (MCQ accuracy).
This helps determine to what extent the model edited the
information, and whether it can still access and utilize that
knowledge when prompted differently. In this MCQ evalu-
ation, the prompt also includes some in-context examples
of answering multiple choice questions correctly. On the
forget set, we refer to the accuracy of the model answering
with the ground truth as the MCQ Forget Accuracy (stronger
methods should decrease MCQ Forget Accuracy), and the
accuracy of the model answering with the new edited an-
swer’s choice as the MCQ Edit Accuracy (stronger methods
should increase MCQ Edit Accuracy).

Finally, we evaluate the models’ post-editing accuracy on
MMLU (Hendrycks et al., 2021) as a proxy for general
language understanding to measure unintended side effects.

3.1.1. SPORTS TASKS

Sports Prompting For the sports dataset, following
Nanda et al. (2023), we first evaluate the accuracy of our
models to complete the prompt, “Fact: [athlete] plays the
sport of”, with a one-shot example of Tiger Woods playing
golf given first. Note that this is the same prompt used for
the editing loss in the first place. For the MCQ evaluation,
we use choices of all four sports (football, baseball, bas-
ketball, and golf). We average accuracies over all models,
for Sports-Athlete-Editing we average over editing both 16
and 64 facts, and for Full-Sports-Editing we average over
editing Basketball, Baseball, and Football.

Sports Results As shown in Figure 2, our analysis re-
veals that editing employing FLU localization exhibits su-
perior performance in forgetting the original information
and adopting the edited information, across different prompt
formats. As explained in Section 3.1, better editing should
result in higher MCQ Forget Error, and higher MCQ Edit
Accuracy.

Figure 3 shows that FLU localized models are the best on
both fronts. The difference is especially significant in Fig-
ure 3a, where only FLU model edits generalize meaningfully
to MCQ, exceeding other localization methods by more than
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(a) Sports-Athlete-Editing (b) Full-Sports-Editing

Figure 2. Spider plots illustrating the advantages of FLU for editing Sports across adversarial prompting and relearning evaluations,
averaged over all three model types. (Left) The Sports-Athlete-Editing plot shows that FLU localization leads to editing that is the most
robust against MCQ prompting and relearning. (Right) The plot shows that most localizations perform approximately equivalently in the
Full-Sports-Editing task, with FLU localization slightly better for MCQ.

40% in MCQ Edit Accuracy.

A comprehensive comparison of all localization meth-
ods with multiple-choice prompting is available in Ap-
pendix A.7.2, further supporting our findings.

3.1.2. COUNTERFACT TASKS

CounterFact Prompting For CounterFact, we create an
MCQ evaluation with four choices for every question, ran-
domly ordering the true answer, the injected false answer,
and two other question-specific LLM-generated incorrect
answers. We also consider the original robustness and side
effect evaluations from the Meng et al. (2023) dataset: the
Paraphrase and Neighborhood facts accuracies. Answers of
edited facts are meant to generalize to the Paraphrase eval-
uation, which phrases the fact in a different but equivalent
way, so we report the Paraphrase Edit Accuracy (stronger
methods should increase Paraphrase edit accuracy). Edit-
ing should not generalize to the Neighborhood evaluation,
which presents similar but unrelated facts, so we report the
Neighborhood Edit Error which is lower if models incor-
rectly report the edited answer in unrelated facts.

We again also use an MCQ evaluation, where the choices
consist of the true answer, the injected false answer, and two
other question-specific LLM-generated incorrect answers.
We note that Paraphrase and Neighborhood evaluations ask
for the answer in the same original format, so they are
more in-distribution than MCQ. We average accuracies over
all models, and for CounterFact-Editing we average over
editing both 16 and 64 facts.

CounterFact Results Similar to our sports facts evalua-
tion, Figure 4 shows an overview of key performance met-
rics across localizations for CounterFact. We see that FLU
localization outperforms the baselines, being the only lo-

(a) Sports-Athlete-Editing

(b) Full-Sports-Editing

Figure 3. Bar charts showing results of MCQ evaluations, reporting
both the forget error and edit accuracy when prompted with MCQ,
averaged over three model types. For both (a) Sports-Athlete-
Editing and (b) Full-Sports-Editing, FLU localization answers
with the original answer the least (MCQ Forget Error) and answers
with the edited answer most accurately (MCQ Edit Accuracy).
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(a) CounterFact-Editing (b) Sequential-CounterFact-Editing

Figure 4. Spider plots illustrating the advantages of FLU for editing CounterFact across prompting evaluations, averaged over all three
model types. (Left) The CounterFact-Editing plot shows that FLU localization leads to editing that is the most robust against MCQ
prompting and Paraphrasing. (Right) The Sequential-CounterFact-Editing plot shows that FLU localization is the most robust against
MCQ prompting.

calization to maintain MCQ edit performance. Figure 5
illustrates the robustness of FLU editing in the MCQ and
Paraphrase evaluations. Edited models using FLU local-
ization answer less frequently with the original, incorrect
information (MCQ Forget Error) and more frequently pro-
vide the edited answer.

Furthermore, the Neighborhood Edit Error highlights that
other localization methods exhibit slightly more pronounced
side effects, inadvertently editing unintended, semantically
similar facts.

Interestingly, sequential editing displays marginally greater
robustness than nonsequential editing in MCQ when
comparing between CounterFact-Editing and Sequential-
CounterFact-Editing bars. This observation supports an
approach that editing large sets of facts can be made more
effective by partitioning the set and applying edits sequen-
tially. We present results comparing all localizations from
Section 2.2 across each prompt robustness evaluation in
Appendix A.7.2, with consistent conclusions.

3.2. Adversarial Relearning Evaluation

We measure the ability of our models to withstand adversar-
ial relearning, both to address the scenario in which adver-
saries may have fine-tuning access and as a measure for the
quality of editing. We replicate the methodology of Deeb &
Roger (2024), splitting our forget sets in two independent
halves, retraining with half of the ground truth labels, and
evaluating on the other half. This methodology aims to
discern whether the editing technique successfully removed
the underlying factual association or merely obfuscated its
direct retrieval while leaving it potentially susceptible to
recovery when doing partial retraining.

We retrain with a rank-512 LoRA across all linear modules,
with details available in Appendix A.7.3. We focus on the

(a) CounterFact-Editing

(b) Sequential-CounterFact-Editing

Figure 5. Bar charts showing results of MCQ, Paraphrase, and
Neighborhood prompt evaluations, averaged over all three model
types. For both (a) CounterFact-Editing and (b) Sequential-
CounterFact-Editing, FLU localization has the most robust edit
accuracy measured by MCQ and Paraphrase. FLU localization edit-
ing also does not incorrectly generalize to Neighborhood prompts.
Sequential editing is slightly more robust than nonsequential edit-
ing in MCQ when comparing between CounterFact-Editing and
Sequential-CounterFact-Editing bars.
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Sports-Athlete-Editing task, as in the other tasks it was
either too easy to relearn (Full-Sports-Editing) or too hard
to relearn any performance (all CounterFact tasks) across
all localizations. Relearning isn’t a valid evaluation for Full-
Sports-Editing because the facts are not independent, and
models should reasonably generalize from relearning on
half the basketball athletes to correctly answering the other
half of the basketball athletes.

Sports Results Our adversarial relearning experiments,
as depicted in Figure 6, reveal that retraining on a subset
of the original “forgotten” data can recover a significant
portion, as much as 63%, of the supposedly forgotten in-
formation when using OT methods like Causal Tracing and
Causal Tracing MLPs. This suggests that these methods
may simply mask direct retrieval of this information, leaving
the model susceptible to this information recovery through
retraining. In contrast, FLU localization exhibits greater
resilience to such adversarial relearning, with only about
20% of the forgotten information recovered. This indicates
that FLU localization may be more effective in targeting
and removing the underlying knowledge, making it harder
to recover through retraining.

Figure 6. Relearning recovers the least accuracy on the forget set
using FLU localizations. Relearning recovers significant accuracy
on the original forget set in OT localizations (Causal Tracing and
Causal Tracing MLPs).

We show results from Counterfact and from all localizations
in Appendix A.7.3.

3.3. Latent Knowledge Analysis

In this section, we provide more evidence of our hypothesis
that FLU unlearning targets the source of intermediate latent
knowledge. We analyze the Sports-Athlete-Editing task
again here because the ground truth and the edited answers
vary between one of only three possibilities.

We train logistic regression models (probes) (Alain & Ben-
gio, 2018) on prompt activations following every model
layer to predict the correct ground truth sport on the main-
tained set of athletes. This is possible since there are only
three possible sports, so we can train binary classification

probes for each sport and take the maximum classification
over the sports. This discovers internal representations of
the sport the model believes the answer to be: then, we apply
these probes on the activations of the forget set of athletes.

We present graphs averaged over models and over 16 and
64 facts in Appendix A.7.4. We also present probing
graphs for each individual model and all localizations in
Appendix A.7.4. We demonstrate that probes on FLU con-
sistently predict the forget sport less and the edit sport more
than any other localization.
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Figure 7. MCQ edit accuracy for Gemma-7B as number of facts
edited is increased to 1000 facts. FLU localization is the only
localization that preserves MCQ edit accuracy.

3.4. Fact Editing at Scale

We now examine the efficacy of our localization technique
when editing between 30 to 1000 facts at once. This section
also tests the use of an automated method of our ”man-
ual” FLU analysis. We automate our CounterFact analysis
from Appendix A.2.1 by simply restricting to MLPs that
have more than 2 standard deviation impact on the logit
difference. We also now calculate a localization for each
fact instead of taking the average across a batch of facts.
We improve efficiency and avoid having to edit individual
facts sequentially by batching facts with coincidentally the
same localization during the fact editing process. To save
computational resources, we perform this analysis on the
Gemma-7B model and only compare our localization with
the best baseline (all MLPs). In addition, we also test the
effect of allowing attention heads to be part of the localiza-
tion.

We see in Figure 7 that FLU localization preserves MCQ
edit accuracy while the baselines fall to random chance
levels. Figure 9 shows that FLU localization also has the
highest forget error across edited fact amounts. Finally, we
also provide latent knowledge analysis results at scale in
Figure 8, showing that the FLU localization prevents latent
knowledge extraction from being useful, and that including
attention heads in the localization yields poor results towards
the last layers of the model. We believe these results provide
evidence that our methodology works well at scale.
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Figure 8. Latent knowledge analysis across layers for Gemma-7B when editing varying amounts of CounterFact facts. FLU localization
and all MLPs maintain a random probe accuracy, resisting latent knowledge extraction unlike when including attention heads as part of
the localization.
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Figure 9. MCQ forget error for Gemma-7B when editing varying
amounts of CounterFact facts. FLU localization maintains a better
forget error than the baselines.

3.5. The Role of Parameter Count

In this section, we perform weight-masking involving train-
ing a binary differentiable mask over individual weights
of the model within the localized components, inspired by
weight pruning/masking work (Bayazit et al., 2023; Pani-
grahi et al., 2023), to quantify the size of edits with different
localizations and investigate which factual mechanisms are
targeted when editing with different localizations. In this
case, no weight updates are being performed. Rather, the
mask turns a subset of the weights to zero.

Controlling for Parameter Count Although we already
standardize the number of trainable parameters in most lo-
calizations, we additionally investigate if FLU editing is
better than other localization techniques when controlling
for the exact number of parameters that are masked. We
perform weight masking on the Sports-Unlearning, Sports-
Athlete-Editing, and CounterFact-Editing tasks. Detailed
results are reported in Appendix A.4. We find that when con-

trolling for the size of the localization FLU is consistently
more robust when subject to our suite of evaluations.

Other Localizations Affect the Extraction Mechanism
After training weight masks, we analyze the proportion of
each mechanism (fact lookup, attribution extraction) that is
masked by each localization’s weight mask in Appendix A.5.
We demonstrate that OT methods and nonlocalized editing
all modify a higher proportion of the extraction head/MLP
parameters than the fact lookup mechanism parameters, sup-
porting our claim that OT methods target extraction mecha-
nisms rather than fact lookup mechanisms.

4. Discussion
Recent work by Hase et al. (2023) argued that localiza-
tion is not useful for model editing. Our findings demon-
strate that the relationship between localization and fact
editing/unlearning is more nuanced, and reveals that not all
localization techniques are equal.

Our work evaluates the efficacy of different localization
methods for modifying factual associations. We demon-
strate clear benefits of localization for editing robustness
through localized fine-tuning on the FLU mechanism.

In Sections 3.3 and 3.5 and Appendix A.5, we provide
evidence that OT and baseline approaches fail to be robust
because they target extraction components, which fails to
generalize and does not target the source of knowledge in the
model. In contrast, FLU mechanistic understanding allows
us to target editing at the sites where knowledge is sourced,
which robustly prevents that information from entering the
latent stream in any format.
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Impact Statement
This paper advances the fields of interpretability and model
editing, both of which are relevant for ensuring the safety,
privacy, and fairness of models. We hope our methods
help model developers responsibly manage harmful knowl-
edge/behaviors.
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A. Appendix
A.1. Sports Unlearning Results

For unlearning on the Sports-Unlearning task, we use a loss function

L = λ1Lforget + λ2Lretain + λ3LSFT,

where Lforget is an unlearning loss on the Dforget subset of facts we want to forget, Lretain is a cross-entropy loss on the
remaining facts, and LSFT is a cross-entropy loss on the Pile dataset (Gao et al., 2020). The unlearning loss Lforget we use
is the log(1− p) measure (where p is the probability of the correct sport) from Mazeika et al. (2024) due to its empirical
stability and fewer side effects: vanilla gradient ascent more strongly incentivizes the model to have significantly lower
logprobs than wouldn’t be encountered in a model that has not been trained on the factual association, and it detracts from
model maintenance of Lretain and LSFT.

We present results on using various localizations on the Sports-Unlearning task in Table 1. The FLU localization allows
unlearning to be more robust to the MCQ prompt format while maintaining performance on the MMLU dataset.

Table 1. Localized fine-tuning accuracy on standard evaluations: unlearning all basketball athletes and retaining all other facts.

LOCALIZATION FORGET ↓ RETAIN ↑ MCQ ↓ MMLU ↑

ATTRIB. PATCHING 0.000 1.000 0.767 0.602
CAUSAL TRACING 0.201 0.998 0.849 0.611
FLU 0.002 0.995 0.110 0.613
RANDOM 0.952 0.980 0.822 0.612
ALL-MLPS 0.000 0.994 0.279 0.606
NONLOCALIZED 0.000 0.985 0.196 0.595

A.2. FLU Interpretability Analysis

A.2.1. SPORTS FACTS

We redo analysis from Nanda et al. (2023) on Gemma-7B, Gemma-2-9B, and Llama-3-8B. We train logistic regression
models (”probes”) to predict the correct sport given the internal representation of the model at a layer. We find that probes
predicting the correct sport increase in accuracy significantly in layers 2 through 7 in Gemma-7B and 2 through 8 for
Gemma-2-9B and Llama-3-8B (Figure 10).

Unlike Nanda et al. (2023), however, we find attention heads past layer 2 that impact the linear representation of attributes
and thus could potentially be important for fact lookup. However, because they could likely play a variety of other different
roles such as token concatenation, following the findings of Geva et al. (2023); Nanda et al. (2023) that MLPs do primary
factual representation enrichment, in this work we only consider the MLPs as our localization.
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Figure 10. Accuracy of probes predicting the correct sport across
layers for different models.

A.2.2. COUNTERFACT

We repeat analysis from Nanda et al. (2023) and Geva et al. (2023) on Gemma-2-9B. We first measure the effect on the
difference in logits between correct and incorrect answers of facts when patching the direct path of attention heads and
MLPs to the final output, shown in Figure 11. An attention head or MLP will have a large effect on the logit difference if it
is important in moving the factual information to the last token position or decoding it into the correct answer. We call these
components part of the ”fact extraction mechanism”, and aim to find the source of the factual information moved by this
mechanism.

To find this source, we patch the outputs of MLPs to this ”fact extraction mechanism” and measure the resultant change in
logit difference (Figure 12). An MLP would cause a large change in logit difference if it caused relevant representations to
form that are then moved by the ”fact extraction heads” to increase the probability of the correct output. We provide the logit
differences for all 64 facts along with just the first 16 facts, and see that the logit differences are similar across the dataset
splits. We take the MLPs with the highest change (> 0.02) and include them in our FLU localization of CounterFact.
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Figure 12. Logit difference when patching MLPs to the extrac-
tion mechanism found above for different models.

A.3. OT Selected Components

What MLPs do the automated OT methods localize? We explore the attribution scores of the automated localization
methods (causal tracing and attribution patching) on the MLPs to see if automated localization methods can detect the FLU
mechanism. In Figures 13 and 16, for Gemma-7B, we see that both CT and AP localizations target the later layer MLPs
instead of the FLU mechanism (Figure 13).
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Figure 13. Attribution scores on MLPs on sports facts for Gemma-7B.

For AP localization, this trend continues with Gemma-2-9B (Figure 14) and Llama-3-8B (Figure 15). However, CT
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localization does highlight some of the early layer MLPs that are in the FLU mechanism, especially for Gemma-2-9B.
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Figure 14. Attribution scores on MLPs on sports facts for Gemma-2-9B.
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Figure 15. Attribution scores on MLPs on sports facts for Llama-3-8B.

We repeat this analysis on CounterFact in Figures 16 to 18. Again we see AP localizations in particular assign higher scores
to later-layer MLPs, and CT only highlights FLU components on Gemma-2-9B, localizing other extraction layers on the
other models.
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Figure 16. Attribution scores on MLPs on CounterFact facts for Gemma-7B.

A.4. Weight Masking

In this section we employ weight masking to quantify the size of weight updates needed to unlearn/edit facts, for more direct
comparisons. Our loss function L = λ1Lforget + λ2Lretain + λ3LSFT + λ4Lreg now includes an L1 regularization term to
control the sparsity. We empirically evaluate how a learned binary mask over individual weights of the localized components
can produce editing/unlearning, and vary the size of this mask. “Manual Interp” refers to the FLU localization technique for
all the following results in this section.
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Figure 17. Attribution scores on MLPs on CounterFact facts for Gemma-2-9B.
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Figure 18. Attribution scores on MLPs on CounterFact facts for Llama-3-8B.

A.4.1. UNLEARNING SPORTS

We show standard evaluations across a sweep of discretization thresholds, which directly corresponds to the size of the
model edit. Figure 19 shows the accuracy on the forget and retain sets for unlearning basketball across different edit sizes.
Here, we see all methods being effective in unlearning basketball facts while retaining all other facts. While AP and CT
localizations cause the model to have zero accuracy on the in-distribution set with much fewer masked weights needed, when
checking for generalization using a multiple-choice format we clearly see that only manual localization has successfully
generalized the unlearning of basketball facts (Figure 19, right).
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Figure 19. (Left) Testing the models’ unlearning of basketball athletes against the number of weights masked. (Right) Testing the models’
unlearning of basketball athletes against the number of weights masked, in the MCQ prompt format.

We find similar results when testing for performance degradation on MMLU (because we have to evaluate many model
variations, we use a smaller MMLU test set from Polo et al. (2024)). While all localized methods perform well when
evaluated normally (Figure 20, left), Figure 20 (right) shows manual localization generalizes for minimizing loss of MMLU
capabilities while unlearning sports facts in the MCQ format compared to the other methods.
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Figure 20. Unlearning basketball facts. (Left) Measuring MMLU and forget set performance across different discretization thresholds.
(Right) Measuring MMLU and MCQ forget set performance across different discretization thresholds.
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Figure 21. Editing subset of athletes. (Left) Measuring accuracy on the forget set. (Right) Measuring accuracy on the forget set in the
MCQ prompt format.

A.4.2. EDITING ATHLETES

For editing the subset of athletes, Figure 21 shows that causal tracing localization causes the model to have 0% accuracy on
the forget set, and FLU and nonlocalized editing cause the model to have near guessing rate (33%) accuracy. However, only
manual localization minimizes loss of capabilities while editing the athlete subset (Figure 22).

Furthermore, no other method completely generalizes this unlearning to the MCQ prompt format (Figure 21), and manual
localization remains superior in minimizing loss of capabilities while unlearning the athlete subset (Figure 22, right).

A.4.3. EDITING COUNTERFACT

We find similar results for editing on the CounterFact dataset. However, we find minimal difference in MMLU accuracy in
all methods at all numbers of masked weights. Thus, we instead report the maintain and forget accuracies of these facts at
different discretization thresholds in Figure 23.

Additionally, we report a comparison of all localizations across discretization thresholds for normal and MCQ forget sets in
Figure 24 and Figure 25. We see that FLU outperforms all other methods of localization in preserving maintain accuracy
while decreasing forget accuracy.

We perform additional adversarial analysis of accuracies across different discretization thresholds. We report the ”paraphrase”
and ”neighborhood” adversarial results in Figure 26 and Figure 27, but find no significant results.

A.5. Mechanism Weight Analysis

We analyze the actual components localized by each localization type and our baselines, for the CounterFact editing task.
We seek to demonstrate that the OT localizations and baselines target extraction mechanisms rather than just the FLU
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Figure 22. Editing subset of athletes. (Left) Measuring MMLU and forget set performance across different discretization thresholds.
(Right) Measuring MMLU and MCQ forget set performance across different discretization thresholds.
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Figure 23. Editing CounterFact facts. (Left) Testing models accuracy on the normal forget set. (Right) Testing the models’ accuracy in
the MCQ prompt format.
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Figure 24. Accuracy on normal forget set vs on the maintain
set across localizations and discretization thresholds.
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Figure 25. Accuracy on multiple choice input vs on the main-
tain set across localizations and discretization thresholds.

mechanisms.

First, in Table 2, we compare the parameter counts of the part of each mechanism that is present in each localization.
Table 2 shows that causal tracing and attribution patching both have the potential to modify a considerable proportion of the
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Figure 26. Accuracy on paraphrased input vs on the maintain
set across localizations and discretization thresholds.
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Figure 27. Accuracy on ”neighborhood” input vs on the main-
tain set across localizations and discretization thresholds.

extraction heads and extraction MLPs.

Table 2. Comparison of total parameters of each mechanism that are present in each localization, for editing 16 facts from CounterFact

LOCALIZATION EXTRACTION HEADS EXTRACTION MLPS FACT LOOKUP

TOTAL 27,448,320 1,027,604,480 1,130,364,928
ATTRIB. PATCHING 13,724,160 (50.0%) 616,562,688 (60.0%) 102,760,448 (9.1%)
CAUSAL TRACING 8,234,496 (30.0%) 308,281,344 (30.0%) 411,041,792 (36.4%)
FLU 0 0 1,130,364,928 (100.0%)
ALL-MLPS 0 1,027,604,480 (100.0%) 1,130,364,928 (100.0%)
NONLOCALIZED 27,448,320 (100.0%) 1,027,604,480 (100.0%) 1,130,364,928 (100.0%)

Then, in Table 3, we compare the proportion of each mechanism that is masked when using a localized weight mask and
discretizing to about 6 million weights. This is one approximate metric for how much each mechanism is modified by the
localized editing. Table 3 demonstrates that attribution patching, causal tracing, and nonlocalized editing all modify a higher
proportion of the extraction head/MLP weights than the fact lookup mechanism weights.

Table 3. Comparison of parameters of each mechanism that are masked by a trained weight mask, discretized to about 6 million weights

LOCALIZATION TYPE EXTRACTION HEADS EXTRACTION MLPS FACT LOOKUP

TOTAL (BASELINE) 27,448,320 (100%) 1,027,604,480 (100%) 1,130,364,928 (100%)
ATTRIB. PATCHING 165,300 (0.60%) 1,479,877 (0.14%) 1,385,198 (0.12%)
CAUSAL TRACING 30,828 (0.11%) 1,491,040 (0.15%) 1,424,059 (0.13%)
FLU 0 (0.0%) 0 (0.0%) 6,248,039 (0.55%)
ALL-MLPS 0 (0.0%) 1,378,744 (0.13%) 1,663,772 (0.15%)
NONLOCALIZED 358,918 (1.3%) 1,198,211 (0.12%) 1,174,939 (0.10%)

This supports our argument that OT methods target high logit-diff extraction mechanisms, rather than the fact lookup
mechanisms that enrich the latent stream with the correct attributes, which decreases the robustness of edits/unlearning.
It is important to note that since our FLU localization is based on our discovered mechanisms, this does not serve as an
evaluation of FLU (since by definition FLU localization will only localize the FLU mechanism), but rather only of causal
tracing and attribution patching.

A.6. Hyperparameters

Across all tasks except Sequential-CounterFact-Editing and all models, we fine tune using 50 iterations of batch size 4 with
16 accumulation steps, using an AdamW optimizer (Kingma & Ba, 2017) with 0 weight decay and a cosine annealing
scheduler. For Gemma-2-9b, we are forced to use an 8-bit optimizer to fit our training in the memory of 1 GPU. We find
that the optimal learning rate is quite sensitive to the localization used and the edit task, so we first sweep over learning
rates to find reasonable learning rates. We sweep over the learning rates of 2e-6, 5e-6, 1e-5, 2e-5, 5e-5, and 1e-4, training
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models over 50 iterations with all λs set to 1. We also tune the λ1 parameter associated with the Linjection cross entropy loss.
We don’t tune the other λ parameters because they are all maintenance losses, and setting them to 1 works sufficiently to
maintain performance across almost all setups.

For the Sequential-CounterFact-Editing task, we use the same hyperparameters from the CounterFact-Editing task and we
train for 100 total iterations rather than 50, using 25 for each subset of 16 facts. We choose 25 iterations because it balances
between being half the number of iterations we typically use per subset of that size, and also double the number of steps
overall as we use in CounterFact-Editing.

To avoid leaking evaluation information through this sweep process, we optimize learning rate for the objective of
(1−Forget Set Ground Truth Accuracy)+Forget Set Edit Accuracy+Maintain Set Ground Truth Accuracy+Pile Accuracy,
avoiding any of our robustness metrics (one could view this sweep process as simply another part of the training process,
since we only use train-time information). We run sweeps for Causal Tracing, Manual Fact Lookup, and No Localization.
We then use the hyperparameters from Causal Tracing for Attribution Patching and Random (which all localize to MLPs
and attention components), we use the hyperparameters from Fact Lookup for Random MLPs, Causal Tracing MLPs, and
Attribution Patching MLPs (all localize to the same number of MLPs), and we use the hyperparameters from No Localization
for All MLPs (which have the largest number of active parameters).

A.6.1. SAMPLE HYPERPARAMETER SWEEP

In Table 4, we show the full results of one sweep, optimizing learning rate for editing 16 facts from CounterFact. Especially
for No Localization, some learning rates fail to edit in the correct answer with high accuracy, or fail to maintain accuracy on
the maintain set. In Table 5, we see that editing results are not particularly sensitive to the coefficient used with the injection
cross entropy loss.

Table 4. Gemma-7b learning rate sweep, editing 16 CounterFact facts.
Pile Accuracy ↑ Forget Accuracy ↓ Edit Accuracy ↑ Maintained Accuracy ↑ Overall Score ↑

FLU

LR 0.0001 0.488 0.000 1.000 0.698 3.186
LR 1e-05 0.513 0.000 1.000 0.975 3.488
LR 2e-05 0.542 0.000 1.000 0.950 3.492
LR 2e-06 0.499 0.007 0.961 0.869 3.323
LR 5e-05 0.520 0.000 1.000 0.822 3.342
LR 5e-06 0.528 0.000 0.999 0.980 3.507

Localized CT

LR 0.0001 0.462 0.001 0.999 0.697 3.157
LR 1e-05 0.513 0.000 1.000 0.984 3.496
LR 2e-05 0.507 0.000 1.000 0.961 3.467
LR 2e-06 0.540 0.036 0.921 0.849 3.274
LR 5e-05 0.488 0.000 1.000 0.846 3.334
LR 5e-06 0.537 0.000 1.000 0.982 3.519

Nonlocalized

LR 0.0001 0.062 0.032 0.557 0.094 1.680
LR 1e-05 0.520 0.000 1.000 0.892 3.412
LR 2e-05 0.479 0.001 0.998 0.807 3.284
LR 2e-06 0.529 0.000 1.000 0.982 3.510
LR 5e-05 0.046 0.034 0.710 0.092 1.815
LR 5e-06 0.536 0.000 1.000 0.988 3.524

A.6.2. ALL HYPERPARAMETERS USED

Table 6 has all learning rates used and Table 7 has all injection loss coefficients used.

A.7. Evaluation Details

A.7.1. DETAILS ON STANDARD PROMPT EVALUATIONS

We report standard metrics of Forget Error, Edit Accuracy, and Maintain Accuracy, in the same prompt format that the
models were trained on. These metrics are optimized by the loss, so we expect all localizations to do almost perfectly on
these evaluations. Figures 28 to 31 show that localizations perform approximately equivalently on these basic evaluations
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Table 5. Gemma-7b inject loss coefficient sweep, editing 16 CounterFact facts.
Pile Accuracy ↑ Forget Accuracy ↓ Edit Accuracy ↑ Maintained Accuracy ↑ Overall Score ↑

FLU

FC 0.1 0.538 0.000 0.998 0.990 3.525
FC 0.2 0.510 0.000 0.999 0.981 3.491
FC 0.5 0.508 0.000 0.999 0.985 3.493
FC 1 0.510 0.000 0.999 0.973 3.483
FC 2 0.532 0.000 1.000 0.984 3.515
FC 5 0.534 0.000 1.000 0.985 3.518

Localized CT

FC 0.1 0.532 0.004 0.995 0.983 3.506
FC 0.2 0.535 0.001 0.998 0.986 3.518
FC 0.5 0.524 0.000 0.999 0.974 3.497
FC 1 0.519 0.000 1.000 0.988 3.507
FC 2 0.536 0.000 1.000 0.979 3.514
FC 5 0.518 0.000 1.000 0.975 3.493

Nonlocalized

FC 0.1 0.525 0.001 0.998 0.969 3.492
FC 0.2 0.562 0.000 0.999 0.982 3.543
FC 0.5 0.524 0.000 1.000 0.962 3.486
FC 1 0.531 0.000 1.000 0.980 3.511
FC 2 0.514 0.000 1.000 0.978 3.492
FC 5 0.528 0.000 1.000 0.975 3.503

Table 6. Optimal learning rates for different models, task types, and localizations.
Model 64 athletes to random sport Basketball Athletes to Golf 16 CounterFact facts 64 CounterFact facts

Gemma

FLU 1 × 10−5 2 × 10−5 5 × 10−6 1 × 10−5

Localized CT 1 × 10−5 5 × 10−6 5 × 10−6 2 × 10−5

Nonlocalized 2 × 10−6 5 × 10−6 5 × 10−6 2 × 10−6

Gemma 2

FLU 1 × 10−5 5 × 10−5 5 × 10−5 2 × 10−5

Localized CT 5 × 10−5 5 × 10−5 5 × 10−5 2 × 10−5

Nonlocalized 2 × 10−5 1 × 10−5 5 × 10−6 5 × 10−6

Llama 3

FLU 5 × 10−5 5 × 10−5 1 × 10−4 5 × 10−5

Localized CT 1 × 10−4 5 × 10−5 2 × 10−5 5 × 10−5

Nonlocalized 2 × 10−5 1 × 10−5 2 × 10−5 1 × 10−5

Table 7. Optimal inject loss coefficients for different models, task types, and localizations.
Model 64 athletes to random sport Basketball Athletes to Golf 16 CounterFact facts 64 CounterFact facts

Gemma

FLU 5.0 5.0 0.1 2.0
Localized CT 0.1 1.0 0.2 1.0
Nonlocalized 0.2 1.0 0.2 1.0

Gemma 2

FLU 1.0 5.0 2.0 0.5
Localized CT 5.0 5.0 2.0 2.0
Nonlocalized 5.0 5.0 1.0 1.0

Llama 3

FLU 5.0 0.2 1.0 0.2
Localized CT 2.0 1.0 0.1 2.0
Nonlocalized 2.0 0.1 2.0 0.2

across all tasks.
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Figure 28. Standard Prompting results for Sports-Athlete-Editing, across all localizations.

Figure 29. Standard Prompting results for Full-Sports-Editing, across all localizations.

Figure 30. Standard Prompting results for CounterFact-Editing, across all localizations.

A.7.2. DETAILS ON ADVERSARIAL PROMPT EVALUATIONS

We report the adversarial prompt evaluations from Section 3.1 across all localizations. Figures 32 to 35 all show that FLU
localization is more robust in MCQ compared to every other localization (significantly stronger for CounterFact). Figures 34
and 35 show that FLU localization is optimal in Paraphrase and Neighborhood in all cases except for Paraphrase compared
to the Random localization in Sequential-CounterFact-Editing.
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Figure 31. Standard Prompting results for Sequential-CounterFact-Editing, across all localizations.

Figure 32. Adversarial Prompting results for Sports-Athlete-Editing, across all localizations.

A.7.3. DETAILS ON ADVERSARIAL RELEARNING

We retrain the model for 20 iterations with cross-entropy on half of the forget set (along with a standard retain and SFT
loss), adding up all losses with loss coefficient 1.

We present relearning results for all localizations averaged over models. As shown in Figure 36, the FLU localization
remains optimal, although the baselines of Nonlocalized, All MLPs, Random, and Random MLPs are competitive.

We also present relearning results on the other tasks. As mentioned in Section 3.2, since Full-Sports-Editing forget facts are
not independent, we don’t expect valid results from relearning. Thus, in Figure 37, we see that every localization regains
100% editing accuracy.

On CounterFact-Editing and Sequential-CounterFact-Editing, as shown in Figures 38 and 39, none of the localizations
relearn more than 7% accuracy, suggesting adversarial relearning was not a sufficiently strong enough evaluation for these
tasks. Regardless, FLU localization is either the most or second-most robust localization to relearning, although localizations
don’t differ by much.
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Figure 33. Adversarial Prompting results for Full-Sports-Editing, across all localizations.

Figure 34. Adversarial Prompting results for CounterFact-Editing, across all localizations.

Figure 35. Adversarial Prompting results for Sequential-CounterFact-Editing, across all localizations.
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Figure 36. Relearning results for Sports-Athlete-Editing, across all localizations.

Figure 37. Relearning results for Full-Sports-Editing.

Figure 38. Relearning results for CounterFact-Editing.

Figure 39. Relearning results for Sequential-CounterFact-Editing.
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A.7.4. DETAILS ON LATENT KNOWLEDGE

In Figure 40, the probes on FLU consistently predict the forget sport less and the edit sport more than in any other localization,
especially in early layers. Furthermore, the FLU probe classifications for the most part monotonically converge from their
nonzero starting accuracy to 0 (for forget accuracy) and 1 (for edit accuracy).

Every other localization has much higher peak probe classification forget accuracy in the early layers, especially the OT
localizations which have peak classification forget accuracy of almost 100%. This strongly suggests that these models still
significantly represent the ground truth answer rather than the edit answer in early layers.

Figure 40. Linear probes applied to the forget set, classifying model activations after various layers. (Left) The line graph shows that
some localizations still represent almost completely correct forget set knowledge in early layers, especially OT, while FLU localizations
represent this original knowledge the least. (Right) The line graph shows that FLU localizations represent the edited rather than original
answer earlier and more consistently throughout layers than any other localization.

We present the probing classification accuracies for the three models separately here, as well as for all localizations we
previously left out.

Figure 41. Linear probes applied to the forget set across all models, classifying model activations after various layers.

In Gemma-7b and Llama-3-8b, FLU probing is the most monotonic and the best in the early layers, either steadily decreasing
to 0 for forget accuracy or increasing to 1 for edit accuracy, with the least extreme peaks. In Gemma-2-9b, the Nonlocalized,
All MLPs, and Random MLPs baselines are competitive with FLU. The other OT localization, Attribution Patching, has
100% probing forget accuracy across many layers, suggesting it represents the ground truth answer very clearly.
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Figure 42. Linear probes applied to the forget set on Gemma-7B with 28 layers.

Figure 43. Linear probes applied to the forget set on Gemma-2-9b with 42 layers.

Figure 44. Linear probes applied to the forget set on Llama-3-8b with 32 layers.

A.8. Soft Prompt Evaluations

Because many localizations seem to be weak to prompting schemes, we attempt a simple adaptive attack of soft prompts,
where we optimize the continuous embeddings at the end of the prompt to recover the correct answer on half of our forget
set. We then evaluate the model’s performance on the other half, with this soft prompt in place (Lester et al., 2021). We
average over evaluations from four soft prompts. Soft prompt evaluations can be considered to be a more narrow form of
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few-shot finetuning, that is closer to searching for prompts that recover the model’s knowledge.

We find limited soft prompt success: across most tasks and models, we don’t recover much held-out forget set accuracy.
On the Sports-Athlete-Editing, CounterFact-Editing, and Sequential-CounterFact-Editing tasks, Figures 45, 47 and 48
show that all localizations don’t significantly improve in Forget Accuracy over random chance, or are about equal between
localizations, after soft prompts are applied. In Figure 46, specifically for Gemma-2 on Sports-Athlete-Editing we see some
reasonable results with softprompts that are able to recover over 60% Forget Accuracy on OT localizations, while FLU,
Nonlocalized, and All MLPs remain under 40% Forget Accuracy.

Figure 45. Metrics with soft prompts applied for Sports-Athlete-Editing, averaged over all models.

Figure 46. Metrics with soft prompts applied for Sports-Athlete-Editing for Gemma-2-9b.
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Figure 47. Metrics with soft prompts applied for CounterFact-Editing, averaged over all models.

Figure 48. Metrics with soft prompts applied for Sequential-CounterFact-Editing, averaged over all models.
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