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Abstract

Gaussian approximations are often used for developing the theory of how neural1

networks scale as the number of neurons grows large. However, it is known that2

these approximations break down as depth increases due to the accumulation of3

approximation errors. To remedy this, we provide a new family of distributions4

that appear naturally in neural networks and provide more accurate approximations5

than the usual Gaussian approximation. We develop a method for obtaining the6

probability density function via Hermite polynomials and connect this to the7

classical Edgeworth expansion.8

1 Introduction9

One mathematical method to advance the theoretical understanding of neural networks is through10

neural scaling limits. In the same way that statistical mechanics understands physical phenomena11

by considering large numbers of particles, this area of research understands neural networks by12

considering networks with large numbers of neurons. A common theoretical tool in this area are13

Gaussian limit, which approximate behaviour when the number of neurons in each layer grows to14

infinity [MRH+18, JGH18, LXS+19, Yan19, GHLG23].15

However, for finite networks, the Gaussian approximation is only approximate! For a fully connected16

network with n neurons in each layer, microscopic errors of size 1/n in each approximation can17

accumulate through the L layers of a deep neural network and yield macroscopic effects when18

the depth-to-width ratio L/n is large. Many recent authors have noticed this effect and explored19

different ways to obtain corrections when network depth is on the same order as the network width20

[HN20a, HN20b, Yai20, RYH22, SK22a, SK22b, JN24].21

In this article, we investigate a method to understand these 1/n-sized fluctuations away from the22

simple Gaussian approximation. We develop a general family of distributions, which we call para-23

Gaussian distributions, that capture the non-Gaussian corrections via the characteristic function,24

see Section 2. We also show how to use the Hermite polynomials to explicitly evaluate the density25

function that arises for the special case of ReLU networks with one input in Section 3 and two inputs26

in Section 4. The error achieved by these methods is lower order than the Gaussian approximation,27

and is small enough to maintain accuracy as one passes through many layers of the neural network.28

Thus, it is possible to use the techniques developed here to precisely analyse how non-Gaussian29

distributions arise in deep neural networks as depth increases.30

2 Para-Gaussian Distributions31

Definition 1. Let I be some index set. We say that the I-indexed random vector {zα}α∈I ∈ RI is32

para-Gaussian (with associated kernels K and C and scaling parameter n) if there exist symmetric33
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positive-definite {K(α, β)}α,β∈I and collection {C(α, β; γ, δ)}α,β,γ,δ∈I such that as n → ∞ we34

have the following form of the characteristic function for z for any λ⃗ ∈ R|I|:35

E

[
exp

∑
α∈I

zαλα

]
= exp

(
−1

2
λ⃗TKλ⃗

)1 +
1

8n

∑
α,β,γ,δ∈I

λαλβλγλδC(α, β; γ, δ) + o

(
1

n

) .

(1)

Note that when C ≡ 0, this is simply the characteristic function of a I-indexed Gaussian random36

vector. The factor C therefore creates a 1/n-sized perturbation around the ordinary Gaussian37

distribution. Our main general theorem is the following result, which shows that fully connected38

neural networks naturally create para-Gaussian distributions on initialisation.39

Theorem 2. Let I be an index set and let {zα}α∈I be any I-indexed random vector. Assume that40

distribution {zα}α∈I has finite exponential moments exponential moments of all order.41

Suppose that z·,1, z·,2, . . . , z·,n are n independent and identically distributed (iid) copies of {zα}α∈I .42

(We think of α as indexing various inputs to the neural network, and 1 ≤ i ≤ n as indexing neurons43

in a layer of the network.) Define a new collection of random variables {zα,i}α∈I,i∈[n] by passing44

through one layer of a neural net with non-linearity φ on initialization as follows:45

z′α,i :=
1√
n

n∑
j=1

Wijφ (zα,j) ,

where Wij iid standard N(0, 1) Gaussians. Then the output z′α,1, z
′
α,2, . . . , z

′
α,n are iid and the46

distribution {z′α}α∈I of each element is para-Gaussian with kernels K ′ and C ′ given explicitly by:47

K ′(α, β) = E [φ(zα)φ(zβ)] , C ′(α, β, γ, δ) = E [φ (zα)φ (zβ)φ (zγ)φ (zδ)]−K ′(α, β)K ′(γ, δ).

Theorem 2 shows that if we have an index set I of inputs to a neural network, then the operation48

of moving from one layer of i.i.d. neuron values z to the next layer of neuron values z′ results49

in a para-Gaussian distribution. By iterating this, we see that all the layers of the neural network50

will be para-Gaussian on initialization, with various kernels K,C depending on the layer depth.51

To understand the dependence on depth therefore, one has only to analyze the functions K and52

C, which will evolve through the layers of the network. This presents a way of understanding the53

evolution of the distribution in deep networks through the characteristic function. This is in contrast54

to previous work that has analyzed the non-Gaussian phenomenon through the lens of the moments55

of the distributions [HN20b, Yai20, RYH22]. One advantage of using the characteristic function56

directly is that it is possible to directly recover the probability density using the Hermite orthogonal57

polynomials. This idea is demonstrated below.58

3 A Single Input: Connection to Edgeworth Expansions59

In the special case that the index set I = {1} is a single point, we are dealing with simple R valued60

random variables. The law z′ ∈ R is simply a random sum:61

z′ =
1√
n

n∑
i=1

Wiφ(zi), (2)

where Wi are iid standard Gaussian random variables. The fact that z′ converges to a Gaussian62

random variable as n → ∞ is the classical Central Limit Theorem (CLT). The para-Gaussian63

correction term in this case is C(1, 1; 1, 1) = E
[
φ(z)4

]
− E

[
φ(z)2

]2
. For the special case that64

φ(x) =
√
2(x)+ is the calibrated ReLU non-linearity, and the input z is a standard N(0, 1) Gaussian,65

one can calculate by elementary means that C(1, 1; 1, 1) = 5. In Appendix A.3, we show how to66

compute the density of this para-Gaussian distribution in this case, and find that the density is given67

in terms of the 4-th order Hermite polynomial H4(x) = x4 − 6x2 + 3 as follows:68

ρparaGaussian(x) = e−
1
2x

2

(
1 +

5

8n
H4(x) + o(1/n)

)
(3)
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Figure 1: Monte Carlo simulations comparing the 1D para-Gaussian distribution prediction (3) in the
case of a single input |I| = 1 when n = 20, compared to the pure Gaussian density (2π)−1/2e−x2/2.
218 Monte Carlo samples of (2) are simulated and Kernel Density Estimation is used to obtain
ρMonteCarlo. DKL = DKL(ρApprox, ρMonteCarlo) is calculated with respect to reference probabil-
ity measure ρMonteCarlo.

In Figure 1 we empirically show that the 1/n correction term in the para-Gaussian distribution69

matches Monte Carlo simulations much more accurately than the pure Gaussian approximation. This70

is comparable to similar plots in [Yai20] which are derived using the moments of the distribution71

instead of through developing a formula for the density function with the Hermite polynomials.72

The formula for the density for the para-Gaussian distribution of this special case matches the classical73

Edgeworth expansion for the sum (2) [Hal13]. Edgeworth expansions provide a series expansion74

in 1/n that better approximate random sums; the classical CLT is the 0-th order term only. The75

para-Gaussian distribution in this case is the distribution which includes 1st correction term of the76

Edgeworth expansion. Because of this connection, one can think of the idea of a para-Gaussian77

distribution from Section 2 as a generalization of the classical Edgeworth expansion to multi-variable78

situations.79

4 Two Inputs: Multivariate Hermite Polynomials80

In the case where the index set is two points, I = {1, 2}, we are looking at vectors with two81

components. For concreteness, we again consider the case where φ(x) =
√
2(x)+ is the calibrated82

ReLU. By scaling z1, z2 by constant factors, one can assume without loss of generality that K(1, 1) =83

E[z21 ] = 1,K(2, 2) = E[z22 ] = 1 and find θ ∈ (0, π) so that K(1, 2) = E[z1z2] = cos(θ). In this84

case, we develop the following formula for the 2D probability density function for the output z′.85

Figure 4 shows Monte Carlo simulations of this denisty with input θ = 0.55 to confirm again that86

the para-Gaussian distribution is more accurate than the pure Gaussian distribution. The probability87

density function we find is:88

ρparaGaussian(x1, x2) = ρGaussian,θ′(x1, x2)

(
1 +

1

n
Hθ(x1, x2) + o(1/n)

)
(4)

89

where θ′ is the angle between the outputs z′1, z
′
2 given in (6), and ρGaussian,θ′ is the 2d Gaussian density90

with covariance structure K =

(
1 cos(θ′)

cos(θ′) 1

)
, and where the Hermite correction Hθ is:91

Hθ(x1, x2) =
1

8 sin4(θ)

4∑
a=1

Ĉ(a)H
(− cos θ)
4


(
sin θ +

cos2(θ)

sin(θ)

)
x1 −

cos(θ)

sin(θ)
x2︸ ︷︷ ︸

a times

,
1

sin(θ)
x2 −

cos(θ)

sin(θ)
x1︸ ︷︷ ︸

4−a times
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Figure 2: Comparing the error sizes of the Gaussian and para-Gaussian approximation (4) in the two
variable case I = {1, 2}. For this experiment, θ = 0.55, n = 20, and ρMonteCarlo estimated from
218 Monte Carlo samples by using Kernel Density Estimation. DKL = DKL(ρApprox, ρMonteCarlo)
is calculated with respect to reference probability measure ρMonteCarlo.

where Ĉ(a) is the sum of C(α, β, γ, δ) over indices with a number of 1s and H
(B)
4 are 4th order92

multidimensional Hermite polynomial given explicitly as follows:93

H
(B)
4 (U,U, U, U) = U4 − 6U2 + 3, H

(B)
4 (V, V, V, V ) = V 4 − 6V 2 + 3

H
(B)
4 (U,U, U, V ) = U3V − 3UV − 3BU2 + 3B, H

(B)
4 (U, V, V, V ) = UV 3 − 3UV − 3BV 2 + 3B

H
(B)
4 (U,U, V, V ) = U2V 2 − V 2 − U2 − 4BUV + 2B2 + 1.

These Hermite polynomials are a special case of the more general multi-variable Hermite polynomials94

[Sob63], which we define combinatorially in terms of a collection of 4 Gaussian random variables95

X1, X2, X3, X4 and the correlation function {µa,b}1≤a,b≤4, µa,b = E[XaXb]:96

H
(µa,b)
4 (x1, x2, x3, x4) = x1x2x3x4 − x1x2µ3,4 − x1x3µ2,4 − x1x4µ2,3 (5)

− x2x3µ1,4 − x2x4µ1,3 − x2x4µ1,3 + µ1,2µ3,4 + µ1,3µ2,4 + µ1,4µ2,3.

The classical 4th order Hermite polynomial H4(x) corresponds to the case where all X1 = X2 =97

X3 = X4 so that µa,b = 1 always. In our use case, the random variables are repeated (the first one a98

times and the second one 4− a times) and the correlation between them is taken to be − cos θ, which99

yields the formulas given in (5).100

4.1 Computing K ′ and C ′101

We now compute the kernels K ′ and C ′ in the bivariate case for the ReLU when the input z is102

itself para-Gaussian and assume without loss of generality1 that K =

(
1 cos(θ)

cos(θ) 1

)
for some103

θ ∈ [0, π]. By iterating these calculations, one can compute in principle the para-Gaussian kernels104

for any layer of a deep neural network105

Theorem 3. With the setup of Theorem 2, in the case that I = {1, 2}, we have K ′ =106 (
1 cos(θ′)

cos(θ′) 1

)
, where107

cos(θ′) =
sin(θ) + (π − θ) cos(θ)

π
(6)

+
1

n
· 1

4 sin(θ)
(C(1, 1, 1, 1) cos(2θ)− 4C(1, 1; 1, 2) cos(θ) + [2C(1, 1; 2, 2) + C(1, 2; 1, 2)])

(7)
1This can be achieved by replacing zα by zα√

Var(zα)
, which corresponds to dividing K by Var(z1)Var(z2).
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Moreover, let r be the number of 1’s in (α, β, γ, δ). Then108

C ′(α, β, γ, δ) = Γr(θ)− cos(θ′)1α̸=β+1γ ̸=δ

where109

Γr(θ) =


6 if r ∈ {0, 4}
9 sin(θ)+sin(3θ)+12(π−θ) cos(θ)

2π if r ∈ {1, 3}
6 sin(2θ)+4(π−θ)(cos(2θ)+2)

2π if r = 2.

(8)

In order to prove Theorem 3, we need to compute expressions of the form E [f(z⃗ ′)], for different110

functions f . The following result gives us a recipe of doing so.111

Proposition 4. Let z⃗ be a random vector in R2 with a para-Gaussian distribution with kernels112

K =

(
1 cos(θ)

cos(θ) 1

)
and C ∈ R4×4. For any function f : R2 −→ R,113

E [f(z⃗)] = E
[
f(ζ⃗)

]
+ o(

1

n
) (9)

+
1

8n sin(θ)4

∑
α,β,γ,δ

C(α, β; γ, δ)E

H4

R sin(θ − α)︸ ︷︷ ︸
a times

, R sin(α)︸ ︷︷ ︸
b times

 f (R cos(α), R cos(θ − α))


where a and b count the number of occurrences of 1 and 2 in (α, β, γ, δ) respectively, ζ⃗ is a centred114

two-dimensional Gaussian with covariance matrix K and R and α are independent random variables115

with Raleigh (scale 1) and uniform [0, 2π] distribution respectively.116

Equation (4) follows from Proposition 4 by choosing f to be a suitable indicator function. A sketch117

of the proof of Proposition 4 is given in Appendix A.2. The remainder of this paper sketches the118

proof of Theorem 3 by applying Proposition 4 to compute K ′ and C ′.119

4.1.1 Formula for K ′120

In order to compute the kernel K, we first compute the diagonal (Lemma 5) and then the off-diagonal121

terms (Lemma 6).122

Lemma 5. We have K ′(1, 1) = K ′(2, 2) = 1123

Proof. The fact that K ′(1, 1) = K ′(2, 2) follows from symmetry. To compute K ′(1, 1) we apply124

Proposition 4 to the function f(z1, z2) = φ(z1)
2 First note that by calibration of the ReLU φ,125

E[φ(ζ1)
2] = 1.

For the order- 1
n corrections, we first observe that the only non-zero term in (9) is when α = β =126

γ = δ = 1 (i.e. a = 4) (for example by appealing to Proposition 7 in Appendix ?? and a limiting127

argument). For the remaining term, (9) yields128

E [H4 (ζ1) f(ζ1)] = E
[
H4 (ζ1)φ

2(ζ1)
]
= 2E

[
H4(|ζ1|)|ζ1|21ζ1>0

]
= 2E[1ζ1>0]E

[
H4(|ζ1|)|ζ1|2

]
= 0

where we have used the fact that |ζ1| and 1ζ1>0 are independent, that x2 lies in the linear span129

of {H0(x), H2(x)} and that the Hermite polynomials are orthogonal with respect to the Gaussian130

measure.131

Lemma 6. We have K ′(1, 2) = K ′(2, 1) = cos(θ′) with θ′ as in (6).132

Proof. For the constant term, using the fact that ζ⃗ = (R cos(α), R sin(α)) and that ER2 = 2,133

E[φ(ζ1)φ(ζ2)] = ER,α [φ(R cos(α))φ (R cos (θ − α))]

= 2E[R2]Eα

[
cos (α) cos (θ − α) 1{−π/2+θ<α<π/2}

]
=

2

π

π/2∫
−π/2+θ

cos(α) cos(θ − α)dα = J1,1(θ).
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For the order- 1
n term, we need to consider three cases: a = 0, a = 1 and a = 2. The remaining two134

cases follow by symmetry. We show the case a = 0, the others are by a similar computation. In the135

following, we use the fact that (ER2,ER4,ER6) = (2, 8, 48) for the Raleigh-distributed random136

variable R and that R and α are independent:137

E [H4 (R sin(α))φ (R cos(α))φ (R cos(θ − α))]

=
√
2
2
E
[(
R6 sin(α)4 − 6R4 sin(α)2 + 3R2

)
cos(α− θ) · cos (α) 1{−π

2 +θ<α<π
2 }

]
= 2Eα

[(
48 sin(α)4 − 6 · 8 sin(α)2 + 3 · 2

)
cos(α− θ) · cos (α) 1{−π

2 +θ<α<π
2 }

]
=

1

π

π/2∫
−π

2 +θ

cos(4α) cos (α− θ) cos (α) dα =
sin3(θ) cos(2θ)

π
.

Using a similar computation we obtain − cos(θ) sin3(θ)
π for a = 1 and sin3(θ)

π for a = 2.138

4.1.2 Formula for C ′139

To compute the C ′(α, β; γ, δ) terms, it remains to compute E
[
φ (z′α)φ

(
z′β

)
φ
(
z′γ
)
φ (z′δ)

]
for all140

α, β, γ, δ ∈ {1, 2}. By symmetry, this only depends on the number of indices equal to 1. Let us141

denote that number by r, so that there are r 1’s and 4− r 2’s in (α, β, γ, δ).142

By Proposition 4 applied to the function f(z) = φ(z1)
rφ(z2)

4−r,143

E
[
φ (z′α)φ

(
z′β

)
φ
(
z′γ
)
φ (z′δ)

]
= Γr(θ) +O(1/n),

where Γr(θ) = E
[
φ (ζ1)

r
φ (ζ2)

4−r
]

(recall that ζ⃗ is a centred Gaussian with correlation matrix144

K).145

When r = 0 or r = 4, we get Γr(θ) = E[φ(ζ1)
4] = 6. For r ∈ {1, 2, 3}, by writing (ζ1, ζ2) =146

(W1, cos(θ)W1 + sin(θ)W2) for a standard Gaussian (W1,W2) so that (W1,W2) = R(cosα, sinα)147

for R,α as in Proposition 4 (and arguing similarly to the proof of Lemma 6),148

Γr(θ) = E
[
ϕ(R cosα)rϕ (R (cos(θ) cos(α) + sin(θ) sin(α)))

4−r
]

=
16

π

∫ π/2

−π/2+θ

cos(α)r cos (θ − α)
4−r

dα

Evaluating each this integrals for each r ∈ {1, 2, 3} yields (8).149

5 Conclusion150

We have developed a framework using para-Gaussian distributions for approximating the behaviour151

of neurons in deep neural networks that takes into account small 1/n-sized corrections beyond the152

Gaussian law. We have also demonstrated how one can recover the density of these distributions by153

use of the Hermite polynomials in simple cases. We believe that this provides a first step towards154

using this method to understanding what happens in networks as depth increases, by iterating the155

evolution C,K → K ′, C ′ over many layers. By generalising these results to larger input index sets,156

|I| ≥ 3, one may also understand how the joint distribution for many points evolves.157
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A Proof Ideas161

A.1 Sketch of Proof of Theorem 2162

Sketch Proof of Theorem 2. In the following argument we omit the bounds required to deal with163

the CLT approximation. Let G denote the σ-algebra generated by the z⃗. Then, using the iterated164

conditional expectation,165

E
[
exp

(
ı
〈
λ⃗, z⃗ ′

〉)]
= E

[
E
[
exp

{
ı
〈
λ⃗, z⃗ ′

〉} ∣∣G]] .
Now, conditional on G, the z′α are mean zero Gaussian with covariance166

Σαβ := E
[
z′αz

′
β

∣∣G] = 1

n
φ(zα)φ(zβ).

Thus the conditional expectation on the right-hand side is given by167

E
[
exp

{
ı
〈
λ⃗, z⃗ ′

〉} ∣∣G] = exp

{
−1

2
λTΣλ

}
= exp

−1

2
· 1
n

∑
(α,β)

(λαλβ)φ(zα)φ(zβ)

 ,

where we have used the fact that Eeiλ·X = exp
{
− 1

2λΣλ
}

for a multivariate centred Gaussian X168

with covariance matrix Σ. Now by the CLT applied to the z (which are sums of unconditionally i.i.d.169

random variables):170

1

n
φ(zα) · φ(zβ) ≈ E [φ(zα,1)φ(zβ,1)] +

1√
n
Gα,β = K(α, β) +

1√
n
Gα,β

where ≈ means equality up to lower order terms in n and the Gα,β are centred normals with the171

covariance structure Cov(Gα,β , Gγ,δ) = C(α, β, γ, δ). Therefore, up to corrections of order 1
n ,172

E
[
exp

(
ı
〈
λ⃗, z⃗′

〉)]
≈ E

exp
−1

2
·
∑
(α,β)

(λαλβ)

(
K(α, β) +

1√
n
Gα,β

)


= exp

{
−1

2
· λTKλ

}
E

exp
∑

α,β

Mα,βGα,β


 ,

where Mα,β = − 1
2
√
n
λαλβ . Now, using the fact that E [exp {G}] = exp

{
1
2Var(G)

}
for a centred173

Gaussian G,174

E
[
exp

(
ı
〈
λ⃗, z⃗ ′

〉)]
≈ exp

{
−1

2
· λTKλ

}
exp

1

2
Var

∑
α,β

Mα,βGα,β


= exp

{
−1

2
· λTKλ

}
exp

1

2

∑
α,β

∑
γ,δ

Mα,βC(α, β, γ, δ)Mγ,δ


= exp

{
−1

2
· λTKλ

}
exp

1

2
· 1

4n

∑
α,β,γ,δ

C (α, β, γ, δ)λαλβλγλδ


as claimed.175

A.2 Sketch proof of Proposition 4176

The proof is split into two parts. The first is a formula for the expectation of f(z⃗) when f is four177

times differentiable:178
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Proposition 7. Let I z⃗ be a random vector in RI with a para-Gaussian distribution with kernels K179

and C. For any function f ∈ C4(RI),180

E [f(z⃗)] = E
[
f(ζ⃗)

]
+

1

4

1

2n

∑
α,β,γ,δ∈I4

C(α, β; γ, δ)E
[
(∂α∂β∂γ∂δf) (ζ⃗)

]
+ o(

1

n
)

where ζ⃗ is an I-indexed centred Gaussian with covariance kernel K.181

Proof. For any function, let f̂ denote the Fourier transform of f and write d = |I|. In particular, the182

characteristic function ϕ of z⃗ ′ can then be written ϕ = ĝz⃗ where gz⃗ is the density of the law of z⃗ ′183

with respect to the d-dimensional Lebesgue measure. Now Theorem 2 gives us a formula for the184

characteristic function ϕ of z⃗ ′. In order to use it to compute the expectation of f(z⃗ ′) we use the185

Parseval formula and the Taylor expansion exp( A
2n ) = 1 + A

2n + O( 1
n2 ) to obtain (denoting by ≈186

equality up O( 1
n2 ) terms),187

Ef(z⃗ ′) =

∫
Rd

f̂(λ⃗)ϕ(λ⃗) dλ⃗

≈
∫
Rd

f̂(λ⃗) exp

(
− (2π)d

2
λ⃗TKλ

)
dλ⃗

+
1

8n

∑
α,β,γ,δ∈I

C ′(α, β; γ, δ)

∫
(2π)2df̂(λ⃗)λαλβλγλδ exp

(
− (2π)d

2
λTKλ

)
dλI

The result now follows by recognising λαλβλγλδ f̂(λ⃗) as the Fourier transform of ∂α∂β∂γ∂δf and188

then applying the Parseval formula again.189

Unfortunately the expression in Proposition 7 is not sufficient for us because the ReLU function ϕ is190

not differentiable. In order to get rid of the derivatives, we use a multidimensional integration-by-parts191

formula for the Gaussian law (see Lemma 9 below). It is this formula that leads to the appearance of192

the Hermite polynomials and leads us to the following result:193

Proposition 8. For α, β, γ, δ ∈ {1, 2} let a be the number of 1’s in (α, β, γ, δ). Then,194

E
[
(∂α∂β∂γ∂δf) (ζ⃗)

]
=

1

sin4(θ)
E

H4

sin θW1 − cos θW2︸ ︷︷ ︸
a times

, W2︸︷︷︸
4−a times

 f (W1, cos(θ)W1 + sin(θ)W2)

 ,

where (W1,W2) is a two-dimensional mean zero, identity covariance matrix Gaussian.195

By combining Propositions 7 and 8, we obtain Proposition 4 for four times differentiable functions.196

This can then be extended to all measurable functions for which the expectations in (9) are finite by a197

density argument.198

Thus complete this section by sketching the proof of Proposition 8. A key ingredient is the following199

integration by parts formula.200

Lemma 9. For any a, b ∈ R, any suitable function g : R2 −→ R and any polynomial π ∈ R[x1,, x2]201

we have202

E [π (W1,W2) (a∂1 + b∂2) g(W1,W2)] = E [(aT1 + bT2) (π)[W1,W2] · g(W1,W2)] ,

and hence, choosing π = 1,203

E [(a∂1 + b∂2) g(W1,W2)] = E [(aT1 + bT2) (1)[W1,W2] · g(W1,W2)] = E [H(aW1 + bW2)g(W1,W2)]

where (Tαf)(w1,w2) = wαf(w1, w2)− ∂αf(w1, w2).204

Proof. The second equality follows from the definition of the multivariable Hermite polynomials. For205

the first equality we may take without loss of generality a = 1 and b = 0 (by linearity and symmetry).206
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Let ρ denote the density of (W1,W2). Applying integration by parts, the chain rule and then the207

identity ∂1ρ(w1, w2) = −w1ρ(w1, w2), we obtain208

E [∂1g(W1,W2)] =

∫
R2

π(w1, w2) (∂1g) (w1, w)ρ(w1, w2) dw

= −
∫
R2

∂1 (πρ) (w1, w2) g (w1, w2) dw

= −
∫
R2

[(∂1π) ρ+ π∂1ρ] (w1, w2) g (w1, w2) dw

=

∫
R2

(w1 − ∂1π(w1, w2)) g (w1, w2) ρ (w1, w2) dw

= E [T1(π) (W1,W2) g (W1,W2)] .

209

The proof of Proposition 8 now follows by repeatedly applying Lemma 9 and by using the interaction210

between the multidimensional Hermite polynomials and the operators T .211

A.3 Proof of (2)212

To prove (2), we appeal to Proposition 7 with I = {1}. As mentioned in the paragraph after (2),213

we have C(1, 1, 1, 1) = 5 in that case. An application of the one-dimensional Gaussian integration214

by parts formula (which Lemma 9 generalises) allows to remove the four derivatives and to obtain215

the fourth Hermite polynomial. The density of the law is then computed by choosing f a suitable216

indicator function.217
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