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Abstract

Gaussian approximations are often used for developing the theory of how neural
networks scale as the number of neurons grows large. However, it is known that
these approximations break down as depth increases due to the accumulation of
approximation errors. To remedy this, we provide a new family of distributions
that appear naturally in neural networks and provide more accurate approximations
than the usual Gaussian approximation. We develop a method for obtaining the
probability density function via Hermite polynomials and connect this to the
classical Edgeworth expansion.

1 Introduction

One mathematical method to advance the theoretical understanding of neural networks is through
neural scaling limits. In the same way that statistical mechanics understands physical phenomena
by considering large numbers of particles, this area of research understands neural networks by
considering networks with large numbers of neurons. A common theoretical tool in this area are
Gaussian limit, which approximate behaviour when the number of neurons in each layer grows to
infinity [MRH+18, JGH18, LXS+19, Yan19, GHLG23].

However, for finite networks, the Gaussian approximation is only approximate! For a fully connected
network with n neurons in each layer, microscopic errors of size 1/n in each approximation can
accumulate through the L layers of a deep neural network and yield macroscopic effects when
the depth-to-width ratio L/n is large. Many recent authors have noticed this effect and explored
different ways to obtain corrections when network depth is on the same order as the network width
[HN20a, HN20b, Yai20, RYH22, SK22a, SK22b, JN24].

In this article, we investigate a method to understand these 1/n-sized fluctuations away from the
simple Gaussian approximation. We develop a general family of distributions, which we call para-
Gaussian distributions, that capture the non-Gaussian corrections via the characteristic function,
see Section 2. We also show how to use the Hermite polynomials to explicitly evaluate the density
function that arises for the special case of ReLU networks with one input in Section 3 and two inputs
in Section 4. The error achieved by these methods is lower order than the Gaussian approximation,
and is small enough to maintain accuracy as one passes through many layers of the neural network.
Thus, it is possible to use the techniques developed here to precisely analyse how non-Gaussian
distributions arise in deep neural networks as depth increases.

2 Para-Gaussian Distributions

Definition 1. Let I be some index set. We say that the I-indexed random vector {zα}α∈I ∈ RI is
para-Gaussian (with associated kernels K and C and scaling parameter n) if there exist symmetric
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positive-definite {K(α, β)}α,β∈I and collection {C(α, β; γ, δ)}α,β,γ,δ∈I such that as n → ∞ we
have the following form of the characteristic function for z for any λ⃗ ∈ R|I|:

E

[
exp

∑
α∈I

zαλα

]
= exp

(
−1

2
λ⃗TKλ⃗

)1 +
1

8n

∑
α,β,γ,δ∈I

λαλβλγλδC(α, β; γ, δ) +O

(
1

n2

) .

(1)

Note that when C ≡ 0, this is simply the characteristic function of a I-indexed Gaussian random
vector. The factor C therefore creates a 1/n-sized perturbation around the ordinary Gaussian
distribution. Our main general theorem is the following result, which shows that fully connected
neural networks naturally create para-Gaussian distributions on initialisation.
Theorem 2. Let I be an index set and let {zα}α∈I be any I-indexed random vector. Assume that
distribution {zα}α∈I has finite exponential moments of all order.

Suppose that z·,1, z·,2, . . . , z·,n are n independent and identically distributed (iid) copies of {zα}α∈I .
(We think of α as indexing various inputs to the neural network, and 1 ≤ i ≤ n as indexing neurons
in a layer of the network.) Define a new collection of random variables {z′α,i}α∈I,i∈[n] by passing
through one layer of a neural net with non-linearity φ on initialization as follows:

z′α,i :=
1√
n

n∑
j=1

Wijφ (zα,j) ,

where Wij iid standard N(0, 1) Gaussians. Then the output z′α,1, z
′
α,2, . . . , z

′
α,n are iid and the

distribution {z′α}α∈I of each element is para-Gaussian with kernels K ′ and C ′ given explicitly by:

K ′(α, β) = E [φ(zα)φ(zβ)] , C ′(α, β, γ, δ) = E [φ (zα)φ (zβ)φ (zγ)φ (zδ)]−K ′(α, β)K ′(γ, δ).

Theorem 2 shows that if we have an index set I of inputs to a neural network, then the operation
of moving from one layer of i.i.d. neuron values z to the next layer of neuron values z′ results
in a para-Gaussian distribution. By iterating this, we see that all the layers of the neural network
will be para-Gaussian on initialization, with various kernels K,C depending on the layer depth.
To understand the dependence on depth therefore, one has only to analyze the functions K and
C, which will evolve through the layers of the network. This presents a way of understanding the
evolution of the distribution in deep networks through the characteristic function. This is in contrast
to previous work that has analyzed the non-Gaussian phenomenon through the lens of the moments of
the distributions [HN20b, Yai20, RYH22]. More recent work [DHM+24] uses techniques from field
theory in physics to also understand non-Gaussian phenomenon more precisly as a series expansion.
The main contribution of our work is to explicitly recover the probability density using the Hermite
orthogonal polynomials. For multiple points, where |I| > 2, multivariable generalizations of the
Hermite polynomials are necessary which significantly complicate the calculations.

3 A Single Input: Connection to Edgeworth Expansions

In the special case that the index set I = {1} is a single point, we are dealing with simple R valued
random variables. The law of z′ ∈ R is simply a random sum:

z′ =
1√
n

n∑
i=1

Wiφ(zi), (2)

where Wi are iid standard Gaussian random variables. The fact that z′ converges to a Gaussian
random variable as n → ∞ is the classical Central Limit Theorem (CLT). The para-Gaussian
correction term in this case is C(1, 1; 1, 1) = E

[
φ(z)4

]
− E

[
φ(z)2

]2
. For the special case that

φ(x) =
√
2(x)+ is the calibrated ReLU non-linearity, and the input z is a standard N(0, 1) Gaussian,

one can calculate by elementary means that C(1, 1; 1, 1) = 5. In Appendix A.3, we show how to
compute the density of this para-Gaussian distribution in this case, and find that the density by:

ρparaGaussian(x) = e−
1
2x

2

(
1 +

5

8n
H4(x) +O

(
1

n2

))
, (3)
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Figure 1: Monte Carlo simulations comparing the 1D para-Gaussian distribution prediction (3) in the
case of a single input |I| = 1 when n = 20, compared to the pure Gaussian density (2π)−1/2e−x2/2.
218 Monte Carlo samples of (2) are simulated and Kernel Density Estimation is used to obtain
ρMonteCarlo. DKL = DKL(ρApprox, ρMonteCarlo) is calculated with respect to reference probabil-
ity measure ρMonteCarlo.

where H4(x) = x4 − 6x2 + 3 is the 4th order Hermite polynomial.

In Figure 1 we empirically show that the 1/n correction term in the para-Gaussian distribution
matches Monte Carlo simulations much more accurately than the pure Gaussian approximation. This
is comparable to similar plots in [Yai20] which are derived using the moments of the distribution
instead of through developing a formula for the density function with the Hermite polynomials.

The formula for the density for the para-Gaussian distribution of this special case matches the classical
Edgeworth expansion for the sum (2) [Hal13]. Edgeworth expansions provide a series expansion
in 1/n that better approximate random sums; the classical CLT is the 0-th order term only. The
para-Gaussian distribution in this case is the distribution which includes 1st correction term of the
Edgeworth expansion. By this connection, one can think of the idea of a para-Gaussian distribution
from Section 2 as a generalization of the classical Edgeworth expansion to multi-variable situations.

4 Two Inputs: Multivariate Hermite Polynomials

In the case where the index set is two points, I = {1, 2}, we are looking at vectors with two
components. For concreteness, we again consider the case where φ(x) =

√
2(x)+ is the calibrated

ReLU. By scaling z1, z2 by constant factors, one can assume without loss of generality that K(1, 1) =
E[z21 ] = 1,K(2, 2) = E[z22 ] = 1 and find θ ∈ (0, π) so that K(1, 2) = E[z1z2] = cos(θ). In this
case, we develop the following formula for the 2D probability density function for the output z′.
Figure 4 shows Monte Carlo simulations of this denisty with input θ = 0.55 to confirm again that
the para-Gaussian distribution is more accurate than the pure Gaussian distribution. The probability
density function we find is:

ρparaGaussian(x1, x2) = ρGaussian,θ′(x1, x2)

(
1 +

1

n
Hθ(x1, x2) +O

(
1

n2

))
(4)

where θ′ is the angle between the outputs z′1, z
′
2 given in (6), and ρGaussian,θ′ is the 2d Gaussian density

with covariance structure K =

(
1 cos(θ′)

cos(θ′) 1

)
, and where the Hermite correction Hθ is:

Hθ(x1, x2) =
1

8 sin4(θ)

4∑
a=1

Ĉ(a)H
(− cos θ)
4


(
sin θ +

cos2(θ)

sin(θ)

)
x1 −

cos(θ)

sin(θ)
x2︸ ︷︷ ︸

a times

,
1

sin(θ)
x2 −

cos(θ)

sin(θ)
x1︸ ︷︷ ︸

4−a times


3



Figure 2: Comparing the error sizes of the Gaussian and para-Gaussian approximation (4) in the two
variable case I = {1, 2}. For this experiment, θ = 0.55, n = 20, and ρMonteCarlo estimated from
218 Monte Carlo samples by using Kernel Density Estimation. DKL = DKL(ρApprox, ρMonteCarlo)
is calculated with respect to reference probability measure ρMonteCarlo.

where Ĉ(a) is the sum of C(α, β, γ, δ) over indices with a number of 1s and H
(B)
4 are 4th order

multidimensional Hermite polynomial given explicitly as follows:

H
(B)
4 (U,U, U, U) = U4 − 6U2 + 3, H

(B)
4 (V, V, V, V ) = V 4 − 6V 2 + 3

H
(B)
4 (U,U, U, V ) = U3V − 3UV − 3BU2 + 3B, H

(B)
4 (U, V, V, V ) = UV 3 − 3UV − 3BV 2 + 3B

H
(B)
4 (U,U, V, V ) = U2V 2 − V 2 − U2 − 4BUV + 2B2 + 1.

These Hermite polynomials are a special case of the more general multi-variable Hermite polynomials
[Sob63], which we define combinatorially in terms of a collection of 4 Gaussian random variables
X1, X2, X3, X4 and the correlation function {µa,b}1≤a,b≤4, µa,b = E[XaXb]:

H
(µa,b)
4 (x1, x2, x3, x4) = x1x2x3x4 − x1x2µ3,4 − x1x3µ2,4 − x1x4µ2,3 (5)

− x2x3µ1,4 − x2x4µ1,3 − x2x4µ1,3 + µ1,2µ3,4 + µ1,3µ2,4 + µ1,4µ2,3.

The classical 4th order Hermite polynomial H4(x) corresponds to the case where all X1 = X2 =
X3 = X4 so that µa,b = 1 always. In our use case, the random variables are repeated (the first one a
times and the second one 4− a times) and the correlation between them is taken to be − cos θ, which
yields the formulas given in (5).

4.1 Computing K ′ and C ′

We now compute the kernels K ′ and C ′ in the bivariate case for the ReLU when the input z is itself

para-Gaussian and assume by rescaling the zα that K =

(
1 cos(θ)

cos(θ) 1

)
for some θ ∈ [0, π]. By

iterating these calculations, one can compute in principle the para-Gaussian kernels for any layer of a
deep neural network
Theorem 3. With the setup of Theorem 2, in the case that I = {1, 2}, we have K ′ =(

1 cos(θ′)
cos(θ′) 1

)
, where

cos(θ′) =
sin(θ) + (π − θ) cos(θ)

π
(6)

+
1

n
· 1

4 sin(θ)
(C(1, 1, 1, 1) cos(2θ)− 4C(1, 1; 1, 2) cos(θ) + [2C(1, 1; 2, 2) + C(1, 2; 1, 2)])

(7)
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Moreover, let r be the number of 1’s in (α, β, γ, δ). Then

C ′(α, β, γ, δ) = Γr(θ)− cos(θ′)1α̸=β+1γ ̸=δ

where

Γr(θ) =


6 if r ∈ {0, 4}
9 sin(θ)+sin(3θ)+12(π−θ) cos(θ)

2π if r ∈ {1, 3}
6 sin(2θ)+4(π−θ)(cos(2θ)+2)

2π if r = 2.

(8)

In order to prove Theorem 3, we need to compute expressions of the form E [f(z⃗ ′)], for different
functions f . The following result gives us a recipe of doing so.
Proposition 4. Let z⃗ be a random vector in R2 with a para-Gaussian distribution with kernels

K =

(
1 cos(θ)

cos(θ) 1

)
and C ∈ R4×4. For any function f : R2 −→ R,

E [f(z⃗)] = E
[
f(ζ⃗)

]
+ o(

1

n
) (9)

+
1

8n sin(θ)4

∑
α,β,γ,δ

C(α, β; γ, δ)E

H4

R sin(θ − α)︸ ︷︷ ︸
a times

, R sin(α)︸ ︷︷ ︸
b times

 f (R cos(α), R cos(θ − α))


where a and b count the number of occurrences of 1 and 2 in (α, β, γ, δ) respectively, ζ⃗ is a centred
two-dimensional Gaussian with covariance matrix K and R and α are independent random variables
with Raleigh (scale 1) and uniform [0, 2π] distribution respectively.

Equation (4) follows from Proposition 4 by choosing f to be a suitable indicator function. A sketch
of the proof of Proposition 4 is given in Appendix A.2. The remainder of this paper sketches the
proof of Theorem 3 by applying Proposition 4 to compute K ′ and C ′.

4.1.1 Formula for K ′

In order to compute the kernel K, we first compute the diagonal (Lemma 5) and then the off-diagonal
terms (Lemma 6).
Lemma 5. We have K ′(1, 1) = K ′(2, 2) = 1

Proof. The fact that K ′(1, 1) = K ′(2, 2) follows from symmetry. To compute K ′(1, 1) we apply
Proposition 4 to the function f(z1, z2) = φ(z1)

2 First note that by calibration of the ReLU φ,

E[φ(ζ1)
2] = 1.

For the order- 1
n corrections, we first observe that the only non-zero term in (9) is when α = β =

γ = δ = 1 (i.e. a = 4) (for example by appealing to Proposition 7 in Appendix A.2 and a limiting
argument). For the remaining term, (9) yields

E [H4 (ζ1) f(ζ1)] = E
[
H4 (ζ1)φ

2(ζ1)
]
= 2E

[
H4(|ζ1|)|ζ1|21ζ1>0

]
= 2E[1ζ1>0]E

[
H4(|ζ1|)|ζ1|2

]
= 0

where we have used the fact that |ζ1| and 1ζ1>0 are independent, that x2 lies in the linear span
of {H0(x), H2(x)} and that the Hermite polynomials are orthogonal with respect to the Gaussian
measure.

Lemma 6. We have K ′(1, 2) = K ′(2, 1) = cos(θ′) with θ′ as in (6).

Proof. For the constant term, using the fact that ζ⃗ = (R cos(α), R sin(α)) and that ER2 = 2,
E[φ(ζ1)φ(ζ2)] = ER,α [φ(R cos(α))φ (R cos (θ − α))]

= 2E[R2]Eα

[
cos (α) cos (θ − α) 1{−π/2+θ<α<π/2}

]
=

2

π

π/2∫
−π/2+θ

cos(α) cos(θ − α)dα = J1,1(θ).
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For the order- 1
n term, we need to consider three cases: a = 0, a = 1 and a = 2. The remaining two

cases follow by symmetry. We show the case a = 0, the others are by a similar computation. In the
following, we use the fact that (ER2,ER4,ER6) = (2, 8, 48) for the Raleigh-distributed random
variable R and that R and α are independent:

E [H4 (R sin(α))φ (R cos(α))φ (R cos(θ − α))]

=
√
2
2
E
[(
R6 sin(α)4 − 6R4 sin(α)2 + 3R2

)
cos(α− θ) · cos (α) 1{−π

2 +θ<α<π
2 }

]
= 2Eα

[(
48 sin(α)4 − 6 · 8 sin(α)2 + 3 · 2

)
cos(α− θ) · cos (α) 1{−π

2 +θ<α<π
2 }

]
=

1

π

π/2∫
−π

2 +θ

cos(4α) cos (α− θ) cos (α) dα =
sin3(θ) cos(2θ)

π
.

Using a similar computation we obtain − cos(θ) sin3(θ)
π for a = 1 and sin3(θ)

π for a = 2.

4.1.2 Formula for C ′

To compute the C ′(α, β; γ, δ) terms, it remains to compute E
[
φ (z′α)φ

(
z′β

)
φ
(
z′γ
)
φ (z′δ)

]
for all

α, β, γ, δ ∈ {1, 2}. By symmetry, this only depends on the number of indices equal to 1. Let us
denote that number by r, so that there are r 1’s and 4− r 2’s in (α, β, γ, δ).

By Proposition 4 applied to the function f(z) = φ(z1)
rφ(z2)

4−r,

E
[
φ (z′α)φ

(
z′β

)
φ
(
z′γ
)
φ (z′δ)

]
= Γr(θ) +O(1/n),

where Γr(θ) = E
[
φ (ζ1)

r
φ (ζ2)

4−r
]

(recall that ζ⃗ is a centred Gaussian with correlation matrix
K).

When r = 0 or r = 4, we get Γr(θ) = E[φ(ζ1)
4] = 6. For r ∈ {1, 2, 3}, by writing (ζ1, ζ2) =

(W1, cos(θ)W1 + sin(θ)W2) for a standard Gaussian (W1,W2) so that (W1,W2) = R(cosα, sinα)
for R,α as in Proposition 4 (and arguing similarly to the proof of Lemma 6),

Γr(θ) = E
[
ϕ(R cosα)rϕ (R (cos(θ) cos(α) + sin(θ) sin(α)))

4−r
]

=
16

π

∫ π/2

−π/2+θ

cos(α)r cos (θ − α)
4−r

dα

Evaluating each this integrals for each r ∈ {1, 2, 3} yields (8).

5 Conclusion

We have developed a framework using para-Gaussian distributions for approximating the behaviour
of neurons in deep neural networks that takes into account small 1/n-sized corrections beyond the
Gaussian law. We have also demonstrated how one can recover the density of these distributions by
use of the Hermite polynomials in simple cases. We believe that this provides a first step towards
using this method to understanding what happens in networks as depth increases, by iterating the
evolution C,K → K ′, C ′ over many layers. By generalising these results to larger input index sets,
|I| ≥ 3, one may also understand how the joint distribution for many points evolves.
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A Proof Ideas

A.1 Sketch of Proof of Theorem 2

Sketch Proof of Theorem 2. In the following argument we omit the bounds required to deal with
the CLT approximation. Let G denote the σ-algebra generated by the z⃗. Then, using the iterated
conditional expectation,

E
[
exp

(
ı
〈
λ⃗, z⃗ ′

〉)]
= E

[
E
[
exp

{
ı
〈
λ⃗, z⃗ ′

〉} ∣∣G]] .
Now, conditional on G, the z′α are mean zero Gaussian with covariance

Σαβ := E
[
z′αz

′
β

∣∣G] = 1

n
φ(zα)φ(zβ).

Thus the conditional expectation on the right-hand side is given by

E
[
exp

{
ı
〈
λ⃗, z⃗ ′

〉} ∣∣G] = exp

{
−1

2
λTΣλ

}
= exp

−1

2
· 1
n

∑
(α,β)

(λαλβ)φ(zα)φ(zβ)

 ,

where we have used the fact that Eeiλ·X = exp
{
− 1

2λΣλ
}

for a multivariate centred Gaussian X
with covariance matrix Σ. Now by the CLT applied to the z (which are sums of unconditionally i.i.d.
random variables):

1

n
φ(zα) · φ(zβ) ≈ E [φ(zα,1)φ(zβ,1)] +

1√
n
Gα,β = K(α, β) +

1√
n
Gα,β

where ≈ means equality up to lower order terms in n and the Gα,β are centred normals with the
covariance structure Cov(Gα,β , Gγ,δ) = C(α, β, γ, δ). Therefore, up to corrections of order 1

n ,

E
[
exp

(
ı
〈
λ⃗, z⃗′

〉)]
≈ E

exp
−1

2
·
∑
(α,β)

(λαλβ)

(
K(α, β) +

1√
n
Gα,β

)


= exp

{
−1

2
· λTKλ

}
E

exp
∑

α,β

Mα,βGα,β


 ,

where Mα,β = − 1
2
√
n
λαλβ . Now, using the fact that E [exp {G}] = exp

{
1
2Var(G)

}
for a centred

Gaussian G,

E
[
exp

(
ı
〈
λ⃗, z⃗ ′

〉)]
≈ exp

{
−1

2
· λTKλ

}
exp

1

2
Var

∑
α,β

Mα,βGα,β


= exp

{
−1

2
· λTKλ

}
exp

1

2

∑
α,β

∑
γ,δ

Mα,βC(α, β, γ, δ)Mγ,δ


= exp

{
−1

2
· λTKλ

}
exp

1

2
· 1

4n

∑
α,β,γ,δ

C (α, β, γ, δ)λαλβλγλδ


as claimed.

A.2 Sketch proof of Proposition 4

The proof is split into two parts. The first is a formula for the expectation of f(z⃗) when f is four
times differentiable:
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Proposition 7. Let I z⃗ be a random vector in RI with a para-Gaussian distribution with kernels K
and C. For any function f ∈ C4(RI),

E [f(z⃗)] = E
[
f(ζ⃗)

]
+

1

8n

∑
α,β,γ,δ∈I4

C(α, β; γ, δ)E
[
(∂α∂β∂γ∂δf) (ζ⃗)

]
+O(

1

n2
)

where ζ⃗ is an I-indexed centred Gaussian with covariance kernel K.

Proof. For any function, let f̂ denote the Fourier transform of f and write d = |I|. In particular, the
characteristic function ϕ of z⃗ ′ can then be written ϕ = ĝz⃗ where gz⃗ is the density of the law of z⃗ ′

with respect to the d-dimensional Lebesgue measure. Now Theorem 2 gives us a formula for the
characteristic function ϕ of z⃗ ′. In order to use it to compute the expectation of f(z⃗ ′) we use the
Parseval formula and the Taylor expansion exp( A

2n ) = 1 + A
2n + O( 1

n2 ) to obtain (denoting by ≈
equality up O( 1

n2 ) terms),

Ef(z⃗ ′) =

∫
Rd

f̂(λ⃗)ϕ(λ⃗) dλ⃗

≈
∫
Rd

f̂(λ⃗) exp

(
− (2π)d

2
λ⃗TKλ

)
dλ⃗

+
1

8n

∑
α,β,γ,δ∈I

C ′(α, β; γ, δ)

∫
(2π)2df̂(λ⃗)λαλβλγλδ exp

(
− (2π)d

2
λTKλ

)
dλI

The result now follows by recognising λαλβλγλδ f̂(λ⃗) as the Fourier transform of ∂α∂β∂γ∂δf and
then applying the Parseval formula again.

Unfortunately the expression in Proposition 7 is not sufficient for us because the ReLU function ϕ is
not differentiable. In order to get rid of the derivatives, we use a multidimensional integration-by-parts
formula for the Gaussian law (see Lemma 9 below). It is this formula that leads to the appearance of
the Hermite polynomials and leads us to the following result:
Proposition 8. For α, β, γ, δ ∈ {1, 2} let a be the number of 1’s in (α, β, γ, δ). Then,

E
[
(∂α∂β∂γ∂δf) (ζ⃗)

]
=

1

sin4(θ)
E

H4

sin θW1 − cos θW2︸ ︷︷ ︸
a times

, W2︸︷︷︸
4−a times

 f (W1, cos(θ)W1 + sin(θ)W2)

 ,

where (W1,W2) is a two-dimensional mean zero, identity covariance matrix Gaussian.

By combining Propositions 7 and 8, we obtain Proposition 4 for four times differentiable functions.
This can then be extended to all measurable functions for which the expectations in (9) are finite by a
density argument.

Thus complete this section by sketching the proof of Proposition 8. A key ingredient is the following
integration by parts formula.
Lemma 9. For any a, b ∈ R, any suitable function g : R2 −→ R and any polynomial π ∈ R[x1,, x2]
we have

E [π (W1,W2) (a∂1 + b∂2) g(W1,W2)] = E [(aT1 + bT2) (π)[W1,W2] · g(W1,W2)] ,

and hence, choosing π = 1,

E [(a∂1 + b∂2) g(W1,W2)] = E [(aT1 + bT2) (1)[W1,W2] · g(W1,W2)] = E [H(aW1 + bW2)g(W1,W2)]

where (Tαf)(w1,w2) = wαf(w1, w2)− ∂αf(w1, w2).

Proof. The second equality follows from the definition of the multivariable Hermite polynomials. For
the first equality we may take without loss of generality a = 1 and b = 0 (by linearity and symmetry).
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Let ρ denote the density of (W1,W2). Applying integration by parts, the chain rule and then the
identity ∂1ρ(w1, w2) = −w1ρ(w1, w2), we obtain

E [∂1g(W1,W2)] =

∫
R2

π(w1, w2) (∂1g) (w1, w)ρ(w1, w2) dw

= −
∫
R2

∂1 (πρ) (w1, w2) g (w1, w2) dw

= −
∫
R2

[(∂1π) ρ+ π∂1ρ] (w1, w2) g (w1, w2) dw

=

∫
R2

(w1 − ∂1π(w1, w2)) g (w1, w2) ρ (w1, w2) dw

= E [T1(π) (W1,W2) g (W1,W2)] .

The proof of Proposition 8 now follows by repeatedly applying Lemma 9 and by using the interaction
between the multidimensional Hermite polynomials and the operators T .

A.3 Proof of (2)

To prove (2), we appeal to Proposition 7 with I = {1}. As mentioned in the paragraph after (2),
we have C(1, 1, 1, 1) = 5 in that case. An application of the one-dimensional Gaussian integration
by parts formula (which Lemma 9 generalises) allows to remove the four derivatives and to obtain
the fourth Hermite polynomial. The density of the law is then computed by choosing f a suitable
indicator function.
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