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Abstract

While deep learning models have seen increasing applications in protein science, few have

been implemented for protein backbone generation—an important task in structure-based

problems such as active site and interface design. We present a new approach to building

class-specific backbones, using a variational auto-encoder to directly generate the 3D coor-

dinates of immunoglobulins. Our model is torsion- and distance-aware, learns a high-resolu-

tion embedding of the dataset, and generates novel, high-quality structures compatible with

existing design tools. We show that the Ig-VAE can be used with Rosetta to create a compu-

tational model of a SARS-CoV2-RBD binder via latent space sampling. We further demon-

strate that the model’s generative prior is a powerful tool for guiding computational protein

design, motivating a new paradigm under which backbone design is solved as constrained

optimization problem in the latent space of a generative model.

Author summary

Many essential biochemical processes are governed by protein-protein interactions

(PPIs), and our ability to make binding proteins that modulate PPIs is crucial to the crea-

tion of therapeutics and the study of cell-signaling. One critical aspect of PPI design is to

capture protein conformational flexibility. Deep generative models are a class of mathe-

matical models that are able to synthesize novel data from a finite set of training examples.

Here, we make advances in computational protein design methodology by developing a

deep generative model that creates protein backbones adopting the immunoglobulin fold,

which is found in natural binding proteins such as antibodies. While generative models

have been powerful in tasks such as image generation, using them to create proteins has

remained a challenge. We solve this problem with a new model that allows for the direct

generation of novel 3D molecules and show that they are of high chemical accuracy. Gen-

erated structures work well with existing protein design methods such as Rosetta, provid-

ing access to a large collection of novel immunoglobulin structures. Finally, we present a

new protein design framework, called “generative design,” that shows how deep genera-

tive models such as ours can be applied to virtually any protein design problem.
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1. Introduction

Over the past two decades, structure-based protein design has provided novel solutions to

challenging problems such as enzyme catalysis, viral inhibition, de novo structure generation

and more [1,2,3,4,5,6,7,8,9]. In the vast majority of successful design examples using the popu-

lar Rosetta framework, the protein design process consists of two steps: (1) generation of a pro-

tein backbone, and (2) design of a sequence that minimizes the folded-state energy of the

generated backbone. During the first step, backbone conformations are massively sampled

without amino acid identity to search for templates that can host features such as catalytic

sites, or loop conformations suited to particular functions. In the second step, sequences are

chosen to both sustain the folded-state structure and provide the chemical elements that per-

form the desired function.

While many methods have been developed to perform sequence design [10,11], few are

capable of generating backbones. Currently the majority of design templates are generated

using fragment sampling in combination with expert-specified topologies of loop and second-

ary structure elements. Creating novel backbones for which there exist a foldable sequence

remains one of the greatest challenges in protein engineering, and most engineering endeavors

rely only on native structures as templates. In this study, we focus on this task of protein back-

bone generation, and seek to develop a method that allows us to: (1) generate novel, designable

structures from the limited set of existing structural data, and (2) generate backbones that sat-

isfy user-specified design criteria.

With recent advances in deep learning technology, machine learning tools have seen

increasing applications in protein science, with deep neural networks being applied to tasks

such as sequence design [11], fold recognition [12], binding site prediction [13], and structure

prediction [14,15]. Generative models, which approximate the distributions of the data they

are trained on, have garnered interest as a data-driven way to create novel proteins. Unfortu-

nately the majority of protein-generators create 1D amino acid sequences [16,17,18,19] mak-

ing them unsuitable for problems that require structure-based solutions such as designing

protein-protein interfaces.

A major challenge in the field of 3D deep learning arises from the fact that 3D coordinates

lack rotational and translational invariance, making generalizable feature learning and genera-

tion difficult. To address this challenge, our own group was the first to report a Generative

Adversarial Network (GAN) that generated 64-residue peptide backbones using a distance

matrix representation [20] that preserved the desired invariances. 3D coordinates were recov-

ered using a convex optimization algorithm [20] and later, a learned coordinate recovery mod-

ule [21]. Despite its novelty, the GAN method was accompanied by several difficulties. First,

the generated distance matrices were not Euclidean-valid, and thus it was not possible to

recover 3D coordinates that perfectly satisfied the generated distances. Second, because of the

redundancy of the distance matrix representation under reflection, the quality of the torsion

distributions were often degraded, leading to loss of important biochemical features, such as

hydrogen-bonding, in many outputs. Ultimately, the pure distance-based representation of

our GAN yielded structures that, while novel, were often chemically unrealistic and unsuitable

for design [22]. Although a few other algorithms that generate contacts have been reported

[23,20,21,24], all of these methods require external tools to build or recover 3D coordinates.

Here, we present a new variational autoencoder (VAE) [25] architecture that is the first to

perform direct 3D coordinate generation of full-atom protein backbones, circumventing the

need to recover coordinates from pairwise distance constraints and avoiding the problem of

distance matrix validity [26]. Our model is novel in that it provides a loss function that is rota-

tionally and translationally invariant, while also having torsional awareness and the ability to
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directly generate 3D coordinates. We train our VAE using a unique loss function, which for-

mulates coordinate generation as the solution to the joint problems of distance matrix recon-

struction and torsion angle inference, both of which preserve the desired invariances. With the

intention of delivering high-quality, immediately designable templates, our model performs

class-specific generation of immunoglobulin (Ig) proteins, which are comprised of a two-layer

β-sandwich structure supporting variable loop regions. Immunoglobulins are highly versatile

in their target-binding capabilities, serving as core components in naturally occurring antibod-

ies and in biologics such as ScFv’s [27], nanobodies [28,29,30], and more.

Importantly, our model motivates a conceptually new way of solving protein design problems.

Because the Ig-VAE generates coordinates directly, all of its outputs are fully differentiable

through the coordinate representation. This allows us to use the Ig-VAE’s generative prior to con-

strain structure generation with any differentiable coordinate-based heuristic, such as Rosetta

energy, backbone shape constraints, packing metrics, and more. By constraining and optimizing a

structure in the VAE latent space, designers are able to specify any desired structural features

while the model creates the rest of the molecule. As an example of this approach, we use the Ig-

VAE to perform constrained loop generation, towards epitope-specific antibody design. Our tech-

nology ultimately paves the way for a novel approach to protein design in which backbone con-

struction is solved via constrained optimization in the latent space of a generative model. In

contrast to conventional methods [31,32], we term this approach “generative design.”

2. Methods

2.1 Dataset

All training data were collected from the antibody structure database AbDb/abYbank [33].

The training set is comprised of 10768 individual immunoglobulin domains, 4154 of which

are non-sequence-redundant, including single-domain antibodies. Redundancy was deter-

mined by specification in the AbDb/abYbank database, which is based on sequence identity in

the loop regions [33]. To construct a non-redundant dataset, single chains were sampled from

each AbDb/abYbank cluster and sequences were further checked for redundancy in the loop

regions to ensure that the single-domain sequences adhered to the AbDb/abYbank criteria.

Domains that were missing residues were excluded, and sequence-redundant structures were

included in the training set to allow the network to learn small backbone fluctuations, which

are highly relevant to backbone design. For benchmarking we used only sets of structures sam-

pled from the non-redundant subset of AbDb/abYbank. The training set covers 99.935% of the

AbDb/abYbank database as of July 2019, and only 7 structures were excluded due to mid-

chain missing residues. Structures in the dataset vary in length from 89 to 138 residues, with

most falling between 114 and 130. Since the input of our model was fixed at 128 residues (512

atoms), structures larger than 128 were center-cropped. Structures smaller than 128 were

“structurally padded” by using RosettaRemodel to append dummy residues to the N and C ter-

mini. The reconstruction loss of the padded regions was down-weighted to zero over the

course of training (see S1 Methods in S1 File), and treated analogously to conventional zero-

padding during analysis. All structures were idealized and relaxed under the Rosetta energy

function with constraints to starting coordinates [10]. This relaxation step was done to remove

any potential confounding factors resulting from various crystal structure optimization

procedures.

2.2 Model architecture and training

While designing our model we sought to implement three features we feel are essential to any

deep-learning-based backbone generator. First, we wanted to preserve rotational and
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translational invariance in our loss functions to allow for generalizable feature learning across

limited datasets. Second, we wanted our model to be torsion-aware, as torsion angles play a

crucial role in determining a protein’s fold as well as structural quality. Last, we wanted our

model to directly generate 3D coordinates to avoid any auxiliary coordinate recovery pro-

cesses, and to make structure generation end-to-end differentiable. Full differentiability allows

us to gradient-optimize a latent vector while subjecting generated structures to arbitrary design

constraints. Many iterations of trial-and-error yielded the model training scheme shown in

Fig 1, which satisfies all three properties.

Like classical VAEs [25] our model minimizes a reconstruction loss and a KL-divergence

loss that constrains the latent embeddings to be isotropic gaussian. During training, a distance

matrix is first obtained from the coordinates of the training data. This distance matrix is

ordered by residue, and comprised of backbone atoms following the order: N, Cα, C, O. Like a

conventional VAE, the encoder module compresses the distance matrix into the latent space,

and the decoder is tasked with reconstructing the input data. Crucially however, the output of

the decoder is not a distance matrix, but rather the 3D coordinates of the reconstructed struc-

ture. A reconstructed distance matrix is computed from the coordinates using a differentiable

function, and loss is backpropagated from distance matrix to distance matrix, across the coor-

dinate representation. Note that this reconstruction loss does not specify the absolute position

of the coordinates and thus preserves the required invariances. Factoring through an explicit

coordinate representation allows us to integrate a torsion loss, which we formulate as a super-

vised-learning objective; the network infers the correct torsion distribution from the distance

matrix. This loss is computed via the coordinate representation and backpropagated through

to the decoder network, and is also rotationally and translationally invariant.

2.3 Loss-Function

To describe the loss function we adopt the following notation:

x : Coordinate Data:

Fig 1. VAE Training Scheme. The flow of data is shown with black arrows, and losses are shown in blue. First, Ramachandran angles

and distance matrices are computed from the full-atom backbone coordinates of a training example. The distance matrix is passed to the

encoder network (E), which generates a latent embedding that is passed to the decoder network (D). The decoder directly generates

coordinates in 3D space, from which the reconstructed Ramachandran angles and distance matrix are computed. Errors from both the

angles and distance matrix are back-propagated through the 3D coordinate representation to the encoder and decoder. Note that both

the torsion and distance matrix losses are rotationally and translationally invariant, and that the coordinates of the training example are

never seen by the model. The shown data are real inputs and outputs of the VAE for the immunoglobulin chain in PDB:4YXH(L).

https://doi.org/10.1371/journal.pcbi.1010271.g001
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z � Nð0; IÞ : Latent Vector:

qy : Encoder:

p� : Decoder:

x0 ¼ p�ðqyðxÞÞ : Reconstructed Coordinates:

zx ¼ qyðxÞ : Latent Embedding of x

The full loss function can be written in classical VAE form as:

Ly;� ¼
1

ndata

X

x2data

ReconLossy;�ðxÞ þ l KLðqyðzjxÞ jj pðzÞÞ

The reconstruction loss is comprised of distance matrix (Dist) and torsion (Tors) compo-

nents:

ReconLossy;� ¼ wdist Distðx; x
0Þ þ wtorsTorsðx; x

0Þ

The Tors term is computed as the L2 distance between the unit sphere projections of the

real and reconstructed backbone torsion angles. The Dist term is comprised of three terms,

each of which are L2 losses between different components of the real and reconstructed dis-

tance matrices. Additional details are provided in the S1 Methods in S1 File.

We found that early in training, the torsion loss must be up-weighted relative to the dis-

tance loss in order to achieve correct stereochemistry, as molecular handedness cannot be

uniquely determined from pairwise distances alone. Decreasing the torsion weight later in

training led to improvements in local structure quality. A detailed description of the loss

weighting schedule is included in the S1 Methods in S1 File. We note that both the distance

and torsion losses are rotationally and translationally invariant, so the absolute position of the

output coordinates is determined by the model itself. While coordinates of the training exam-

ples are never seen by the model directly, the model learns a natural alignment of structures

along the core β-strands.

3. Results

3.1. Overview

To assess the utility our model, we studied the Ig-VAE’s performance on several tasks. The

first of these is data reconstruction, which reflects the ability of the model to compress struc-

tural features into a low-dimensional latent space (Section 3.2). This functionality is an under-

lying assumption of generative sampling, which requires that the latent space capture the

scope of structure variation with sufficient resolution. Next, we assessed the quality and nov-

elty of the generated structures, characterizing the chemical validity of the samples (Section

3.3), while also evaluating the quality of interpolations between embedded structures (Section

3.4). We visualize the distribution of embeddings within the latent space to better understand

its structure, and to determine if the sampling distribution is well-supported (Section 3.4). We

ultimately challenge the Ig-VAE with a real design task; specifically, generation of a novel

backbone with high shape-complementarity to the ACE2 epitope of the SARS-CoV2-RBD

[34] (Section 3.5.1). To evaluate the general utility of our approach, we investigated whether
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we could leverage the model’s generative prior to perform backbone design subject to a set of

local, human-specified constraints (Section 3.5.2).

3.2 Structure embedding and reconstruction

A core feature of an effective VAE is the model’s ability to embed and reconstruct data. High

quality reconstructions indicate that a model is able to capture and compress structural fea-

tures into a low-dimensional representation, which is a prerequisite for generation by latent

space sampling. To evaluate this functionality, we reconstructed 500 randomly selected struc-

tures and compared the real and reconstructed distributions of backbone torsion angles, pair-

wise distances, bond lengths, and bond angles (Fig 2). The structurally padded “dummy”

regions were excluded from this analysis.

The distance and torsion distributions are shown in Fig 2A, where we observe that the real

and reconstructed data agree well. On average, pairwise distances smaller than 10Å tended to

be reconstructed slightly smaller than the actual distances, while larger distances tended to be

reconstructed slightly larger (Fig 2B, reconstructed). ϕ and ψ torsions tended within * 10˚ of

the real angles, while ω angles tended to fall within * 3˚. Examples of reconstructed back-

bones are shown in the top row of Fig 2C. These data demonstrate that the Ig-VAE accurately

performs full-atom reconstructions over a range of loop conformations. Larger versions of the

reconstruction images are provided in S3 Fig.

In order to use generated backbones in conjunction with existing protein design tools, it is

crucial that our model produce structures with near-chemically-valid bond lengths and bond

angles. Otherwise, large movements in the backbone can occur as a result of energy-based cor-

rections during the design process, leading to the loss of model-generated features. The bond

length and bond angle distributions are depicted in Fig 2D. The majority of bond length

reconstructions were within * 0.1 Å of ideal lengths, while bond angles tended to be

within * 10˚ of their ideal angles. We found that a constrained optimization step using the

Rosetta centroid-energy function (see S1 Methods in S1 File) could be used to effectively refine

the outputs. This refinement process kept structures close to their output conformations (Fig

2C, bottom) while correcting for non-idealities in the bond lengths and bond angles (Fig 2D,

green). Refinement did not improve backbone reconstruction accuracy (Fig 2B, refined), but

did improve chemical validity, implying that our model outputs could be refined with Rosetta

without washing-out generated structural features. An additional analysis comparing errors

between the β- and loop-regions is provided in S1 Fig.

Our analysis of the reconstructions reveal that the Ig-VAE can be used to obtain high-reso-

lution structure embeddings that are likely useful in various learning tasks on 3D protein data.

These results support our later conclusion that the Ig-VAE embedding space can be leveraged

to generate structures with high atomic precision, while also showing that the KL-regulariza-

tion imposed on the latent embeddings does not overpower the autoencoding functionality of

the VAE.

3.3 Structure generation

To determine whether the Ig-VAE could generate novel, realistic Ig backbones, we sampled

500 structures from the latent space of the model and compared their feature distributions to

500 non-redundant structures from the dataset. Each generated structure was cropped based

on its nearest neighbor in the training set (See S1 Methods in S1 File). In Fig 3A we show over-

lays of the distance and torsion distributions for the real and generated structures. The gener-

ated torsions were more variable than the real torsions, with more residues falling outside the

range of the training data. The real and generated distance distributions agreed well. We note

PLOS COMPUTATIONAL BIOLOGY Ig-VAE: Generative modeling of protein structure by direct 3D coordinate generation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010271 June 27, 2022 6 / 18

https://doi.org/10.1371/journal.pcbi.1010271


that in the<5Å regime there are several spikes in the distance distribution found in the real,

reconstructed, and generated distributions (Figs 2A, 3A, S1 and S2). These spikes are not arti-

facts, but rather characteristic regularities found in real proteins that serve as good indicators

of structure resolution. For example, in real structures Cα atoms are found at regular intervals

of * 3.8Å, and Cα-N (non-bonded) atoms are always * 2.4Å apart. Bond lengths, β-strands,

helices are also examples of recurring-distance structures in this region.

Fig 2. Analysis of Full-Atom Reconstructions. Reconstruction data for 500 randomly chosen, non-redundant structures in the training

set. (A) Overlays of the pairwise distance and Ramachandran distributions of the real and reconstructed data. (B) A table of the

reconstruction errors in pairwise distance and Ramachandran angle before and after refinement. The distance errors are reported as per-

pairwise-distance error averaged over all structures in the dataset, and analogously for the angle errors. (C) Overlays of the real (blue),

reconstructed (pink) and refined (green) structures. (D) Overlays of the bond length and bond angle distributions of the real,

reconstructed and refined data. Overall, structures are accurately reconstructed, and errors in atom placement are small enough that

they can be corrected with minimal changes to the model outputs.

https://doi.org/10.1371/journal.pcbi.1010271.g002
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Visual assessment of the backbone ensembles (Fig 3B) revealed that the two were simi-

larly variable, suggesting that our model captures much of the structural variation found in

the training set. The generated structures exhibited good chemical-bond geometries (Fig

3C, red) that were slightly noisier but comparable to those of the reconstructed backbones

(Fig 2D). Once again, we found that constrained refinement using Rosetta could improve

chemical bond geometries (Fig 3C, green), with minimal changes to the generated

Fig 3. Analysis of Generative Sampling. Data for 500 of randomly selected non-redundant training samples and generated structures.

(A) Overlays of the pairwise distance and Ramachandran distributions of the real and generated data. (B) A comparison of the real and

generated structural ensembles. (C) Overlays of the bond length and bond angle distributions of the real, generated and refined data. (D)

The left panel shows a plot of the post-refinement per-residue centroid energy against normalized nearest neighbor distance for the

generated structures. The nearest neighbor distance is computed as the minimum Frobenius distance between the generated distance

matrix and all distance matrices in the training set. Each point is colored based on whether the nearest neighbor is a heavy or light chain

Ig. The center panel shows an overlay of the generated structures (pink) and their nearest neighbors (blue) in the training set. These six

structures were selected using a combination of centroid energy, nearest neighbor distance, heavy/light classification, and manual

inspection. The right panel shows sequence design results for structures III and VI. The energies in the left panel are centroid energies,

while the energies in the right panel are full-atom Rosetta energies using the ref2015 score function.

https://doi.org/10.1371/journal.pcbi.1010271.g003
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structures. An additional analysis comparing errors between the β- and loop-regions is pro-

vided in S2 Fig.

To assess both the novelty and viability of the generated examples, we evaluated structures

based on two criteria: (1) post-refinement energy and (2) nearest-neighbor distance. Energies

were normalized by residue-count to account for variable structure sizes. Nearest-neighbor

distance was computed as a length-normalized Frobenius distance between Cα-distance

matrices. For notational convenience, nearest-neighbor distances were normalized between 0

and 1. We avoid the use of the classical Cα-RMSD, because it is neither an alignment-free nor

a length-invariant metric, and because it lacks sufficient precision to make meaningful com-

parisons between Ig structures. Nearest neighbors are identified using Cα distances instead of

full-atom (N, Cα, C, O) distances, because Cα distance tends to underestimate uniqueness,

making our uniqueness check more stringent. In the full-atom case, small errors over more

atoms tend to add up and inflate overall distance.

We found that there was a positive correlation between energy and nearest-neighbor dis-

tance (Fig 3D), implying that while our model is able to generate structures that differ from

any known examples, there is a concurrent degradation in quality when structures drift too far

from the training data. Despite this, we found that a significant number of generated structures

had novel loop shapes, achieved favorable energies, and retained Ig-specific structural features.

Six of these examples are shown as raw model outputs, overlaid with their nearest neighbors in

the center panel of Fig 3D. Both heavy and light-chain-like structures exhibited dynamic loop

structures, and the model appears to performs well in generating both long and short loops.

Larger images of the generated examples are provided in S4 Fig.

To assess whether the generated loop conformations could be sustained by an amino acid

sequence, we used Rosetta FastDesign [35,36] to create full-length sequences for the selected

backbones. The outputs of two representative design trajectories are shown in the right panel

of Fig 3D. The design process yielded energetically favorable sequences with loops supported

by features such as hydrophobic packing, π-π stacking and hydrogen bonding. Overall these

results suggest that the Ig-VAE is capable of generating novel, high-quality backbones that are

chemically accurate, and that can be used in conjunction with existing design protocols to

obtain biochemically realistic sequences.

3.4 Latent space analysis and interpolation

While the results of the preceding section suggest that the Ig-VAE is able to produce novel

structures, an important feature of any generative model is the ability to interpolate smoothly

between examples in the latent space. In design applications this functionality allows for dense

structural sampling, and modeling of transitions between distinct structural features.

A linear interpolation between two randomly selected embeddings is shown in Fig 4A. The

majority of interpolated structures adopt realistic conformations, retaining characteristic back-

bone hydrogen bonds while transitioning smoothly between different loop conformations (Fig

4C). Structures along the interpolation trajectory were able to achieve negative post-refine-

ment energies (Fig 4B), with the highest energy structure corresponding to the most unrealistic

portion of the trajectory (Fig 4A and 4B, index 20).

To better understand the structure of the embedding space, we visualized the training data

embeddings (Fig 4D) using two dimensionality-reduction methods: t-distributed stochastic

neighbor embedding (tSNE) [37] and principal components analysis (PCA) [38]. The top

panel depicts a tSNE decomposition of the embedding means (without variance) for the 4154

non-redundant structures in the dataset. K-means clustering (k = 40) revealed distinct clusters

that roughly correlated with loop structure, suggesting a correspondence between latent space
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position and semantically meaningful features (Fig 4D, insert). In the bottom panel, we visual-

ized sampled embeddings for the same set of structures, sampling 5 embeddings per example.

PCA revealed a spherical, densely populated embedding space, suggesting that the isotropic

gaussian sampling distribution is well supported. The PCA results also suggest that the KL-loss

was sufficiently weighted during training.

Overall these results support the conclusions of the previous section, demonstrating that

the Ig-VAE exhibits the features expected of a properly-functioning generative model, and that

sampling from a gaussian prior is well motivated. The smooth interpolations agree with the

observation that our model is capable of generating novel structures, which are expected to

arise by sampling from interpolated regions between the various embeddings.

3.5 Towards epitope-specific generative design

3.5.1 Computational design of a SARS-CoV2 binder. While antibodies are usually com-

prised of two Ig domains, there also exist a large number of single-domain antibodies in the

form of camelids [39] and Bence Jones proteins [40]. To test the utility of our model in a real-

Fig 4. Latent Space Analysis and Interpolation. (A) Linear interpolation between two randomly selected embeddings. The starting and

ending structures are 1TQB(H) and 5JW4(H) respectively. The backbones are unaltered, full-atom model outputs. Structures are colored

by residue index in reverse rainbow order. (B) Centroid energy profiles of the structures from panel A after constrained refinement. (C)

Higher frequency overlays of 80 sequential structures in the unrefined interpolation trajectory. The roman numerals correspond to the

blue labels in panel A. A lighter shade of blue indicates an earlier structure while the darker shade indicates a later structure. Structure

transitions are smooth and follow a near-continuous trajectory. (D) The top panel shows a tSNE dimensionality reduction of the

embedding means of the 4154 non-redundant structures in the training set. Colorings correspond to k-means clusters (k = 40) of the

post-tSNE data, and ten structures from three clusters are visualized to the right. The bottom panel depicts a principal components

reduction of the latent space, showing five sampled data points per non-redundant structure.

https://doi.org/10.1371/journal.pcbi.1010271.g004
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world design problem, we challenged the Ig-VAE to generate a single-domain-binder to the

ACE2 epitope of the SARS-CoV2 receptor binding domain (RBD), an epitope which is of sig-

nificant interest in efforts towards resolving the 2019/20 coronavirus pandemic [34].

To do this, we first generated 5000 backbones by random sampling of the latent space dis-

tribution. To find candidates with high shape complementarity to the ACE2 epitope, we used

PatchDock [41] to dock each generated structure against the RBD. To make the search

sequence agnostic, both proteins were simulated as poly-valines during this step. We then

selected Ig’s that bound the ACE2 epitope specifically, and used FastDesign to optimize the

sequences of the binding interfaces, and design full-length sequences across the entire protein.

Two Ig’s that exhibited good shape complementarity to the ACE2 epitope and adopted unique

loop conformations are shown in Fig 5A. After sequence design these candidates achieved

favorable energies and complex ddG’s of -37.6 and -53.1 Rosetta Energy Units (Fig 5A,

designed). Using RosettaDock [42,43], we were able to accurately recover the designed inter-

faces as the energy minimum of a blind global docking trajectory, suggesting that the binders

are specific to their cognate epitopes (Fig 5A, recovered, docking).

These results demonstrate that the latent space of our generative model can be leveraged to

create novel binding proteins that are otherwise unobtainable by discrete sampling of real

structures. While we believe that designed proteins must be experimentally validated, our data

suggest that generative models can provide compelling design candidates by computational

design standards, making the method worthy of larger-scale and broader experimental testing.

Our data also demonstrate the compatibility of the Ig-VAE with established design suites like

Rosetta, which have conventionally relied on real proteins as templates.

3.5.2 Generative design. The functional elements of a protein are often localized to spe-

cific regions. Antibodies are one example of this, where binding is attributable to a set of sur-

face-localized loops, as well as enzymes, which depend on the positioning of catalytic residues

to form an active site. Despite this apparent simplicity, natural proteins carry evolution-opti-

mized features that are required to host functional elements. The protein design process often

seeks to mimic this organization, requiring the engineering of supporting elements centered

around a desired feature. While logical, designing supportive features is almost always a diffi-

cult task, requiring large amounts of experience and manual tuning.

Motivated by these difficulties, we sought to investigate whether the generative prior of our

model could be leveraged to create structures that conform to a human-specified feature with-

out specification of other supporting features. To test this, we specified a 12-residue antibody

loop shape as pairwise Ca distances. We then sampled 100 random latent initializations and

applied the constraints to the generated structures. Next, we optimized the structures via gradi-

ent descent, backpropagating constraint errors to the latent vectors through the decoder net-

work. From 100 initializations, we were able to recover the target loop shape in 62 trajectories,

with the vast majority of structures retaining high quality, realistic features. We visualize one

trajectory in the center panel of Fig 5B. While the middle Ig-loop (Fig 5B, blue) is being con-

strained, the other loops move to adopt sterically compatible conformations and the angles of

the β-strands change to support the new loop shapes. We note that the latent-vector optimiza-

tion problem is non-convex, which is why we require multiple random initializations [44,45].

Importantly, the recovered backbones in the generated ensemble differ from the originating

structure (Fig 5B, orange). These data suggest that our model can be used to create backbones

that satisfy specific design constraints, while also providing a distribution of compatible sup-

porting elements. We emphasize that this procedure is not limited to distance constraints, and

can be done using any differentiable coordinate-based heuristic such as shape complementar-

ity [46], volume constraints, Rosetta energy [47], and more. With a well-formulated loss func-

tion, which warrants a study in itself, it is possible to “mold” the loops of an antibody to a
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target epitope, or even the backbone of an enzyme around a substrate of choice. Our example

demonstrates a novel formulation of protein design as a constrained optimization problem in

the latent space of a generative model. In contrast to methods that require manual curation of

each part of a protein, we term our approach “generative design,” where the requirement of

human-specified heuristics constitutes the “design” element, and using a generative model to

fill in the details of the structure constitutes the “generative” element.

4. Discussion

While a protein’s fold dictates the range of functions that it can host, both sequence features

and structural features within a fold are crucial in dictating function. In the case of antibodies,

Fig 5. Towards Epitope-Specific Generative Design. (A) Design of two generated immunoglobulin (Ig) structures, I and II, targeting

the ACE2 epitope of the SARS-CoV2 receptor binding domain (RBD). The left-most column shows an alignment of the unrefined

generated structures (pink) to their respective nearest neighbors (blue) in the training set. The second column depicts the designed

interfaces with the full-sequence Ig’s shown in green. The SARS-Cov2-RBD is rendered as a white surface, with the ACE2 epitope shown

in yellow. The ddG’s and Rosetta energies (ref2015) of the Ig’s are shown below each complex. The third column depicts the lowest

energy structures from a RosettaDock global-docking trajectory. The recovered Ig structures are shown in orange. The right-most

column shows the full docking trajectory (100,000 decoys), with the lowest energy structures shown as red dots. (B) Ig-backbone design

by constrained latent vector optimization. The loop constraints are taken from PDB:5X2O(L, 32–44) with the target shape shown by

orange spheres. The constrained regions of the optimization trajectory are shown in blue. In the post-optimization ensemble the full

5X2O(L) backbone is shown in orange. The ensemble depicts the outputs of 62 optimization trajectories (out of 100 initialized) that

successfully recovered the target loop shape.

https://doi.org/10.1371/journal.pcbi.1010271.g005
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structural variation in the loop regions plays an especially important role, often determining

target compatibility and specificity [48,49]. Although fragment sampling of existing structures

has allowed us to engineer a wide range of folds [1,2,3], it remains a challenge to reliably gener-

ate novel Ig-loops outside the realm of known structures, making binder design for novel tar-

gets difficult.

In this study we have approached this problem by training a deep generative model that

generates Ig structures with novel loop shapes, drawing only from existing structural data. We

demonstrate that the structural distribution captured by our VAE can be used for backbone

design, which we pose as a conditional generation problem solved via constrained optimiza-

tion in the model’s latent space. Specifically, the generative prior provided by the Ig-VAE

restricts backbone conformations to the regime of the Ig-fold, and the latent space search effec-

tively generates structures conforming to user-specified features. This scheme, which we term

"generative design", is possible because our model generates 3D coordinates directly, as a result

of innovations that allow for rotational and translational invariance, and torsional awareness

during training.

We speculate that distogram and distribution-based representations used in structure-pre-

diction methods such as trRosetta [15] and DeepAb [50] can be also used for training. These

distributions are used to capture uncertainty that is important in structure prediction, while in

VAE training, where data compression/reconstruction is the goal, the noise in this representa-

tion may become a disadvantage due to lack of precision. In addition, when building structures

with distribution-representations [51], the process often requires some form of stochastic

recovery, for example using Rosetta, making it unsuited towards design tasks requiring optimi-

zation by backpropagation through 3D coordinates. Graphs have also been used for CDR3

design via joint iterative prediction of sequence and structural coordinates [52]. Compared to

our method which adheres to the de novo approach of full-backbone generation and back-

bone-conditioned sequence design, graphs appear promising for tasks that require local rede-

sign of existing structures where the context of a pre-built backbone is important. Such

methods may be used in conjunction with our own model to improve local sampling.

All in all, the Ig-VAE yields a powerful tool for creating single-domain antibodies, and

allows for high-throughput construction of epitope-tailored, structure-guided libraries. With

such a tool, it may be possible to circumvent screening of fully randomized libraries, a large

proportion of which are usually insoluble or fundamentally incompatible with the target of

interest [53,54,55,56]. Importantly, our approach is not specific to Ig’s, and can be applied to

any fold-class well represented in structural databases such as enzymes, nucleic acid binding

domains and more.

Conceptually, our study offers important insight into the massive possibilities of deep gen-

erative modeling in protein design. Generative design provides a new approach that is highly

flexible, allowing for the arbitrary specification of locally desired features, while leveraging the

model to "fill in" the ancillary parts of the molecule. This functionality is mathematically

grounded in the framework of conditional probability, making it fully data-guided while

requiring minimal human intuition compared to conventional backbone design methods.

Overall, our work is of significant interest to both protein engineers and machine learning

scientists as the first successful example of 3D deep generative modeling applied to protein

backbone design. We speculate that our scheme will motivate further study of class-specific

generative models, as well as development of differentiable loss functions that can be used, for

example, to morph enzymes to host small molecule binding sites, or even mold the loops of

antibodies to the surfaces of targets.
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Supplemental information

Details regarding model training, dataset construction, and interface design are provided in

the Supplemental Information. Rosetta commands and interpolation movies are provided in

S1 File.

Supporting information

S1 File. interpolation.mov. mov format of the interpolation movie for the trajectory analyzed

in Fig 4. interpolation.mp4. mp4 format of the interpolation movie for the trajectory analyzed

in Fig 4. patchdock_output_I.pdb. The raw patchdock output used for design I in Fig 5. patch-
dock_output_II.pdb. The raw patchdock output used for design II in Fig 5. S1 Methods.
Detailed documentation of model training, architecture, and all design protocols used in the

study. supplemental_methods_attachment.zip. Scripts and commands used for design. Refer-

enced by supplemental_methods_rev.pdf.

(ZIP)

S1 Fig. Comparison of Reconstruction Behavior in Beta and Loop Regions. Reconstruction

data for 500 randomly chosen, non-redundant structures in the training set, plotted separately

for the beta and loop regions. The top row in each section shows, overlays of the pairwise dis-

tance and Ramachandran distributions of the real and reconstructed data. The bottom rows

show overlays of the bond length and bond angle distributions of the real, reconstructed and

refined data. Real data are shown in blue, reconstructed in pink, and refined in green. In the

bottom right of each section we show a table of the reconstruction errors in pairwise distance

and Ramachandran angle before and after refinement. The distance errors are reported as per-

pairwise-distance error averaged over all structures in the dataset, and analogously for the

angle errors.

(TIF)

S2 Fig. Comparison of Generation Behavior in Beta and Loop Regions. Data for 500 of ran-

domly selected non-redundant training samples and generated structures, plotted separately

for the beta and loop regions. The top row in each section shows, overlays of the pairwise dis-

tance and Ramachandran distributions of the real and reconstructed data. The bottom rows

show overlays of the bond length and bond angle distributions of the real, reconstructed and

refined data. Real data are shown in blue, reconstructed in pink, and refined in green.

(TIF)

S3 Fig. Larger Rendering of Reconstructed Examples. A higher resolution rendering of the

reconstruction examples shown in Fig 2C for two heavy-chain and two light-chain examples.

Real structures are shown in blue, reconstructed structures are shown in pink, and refined

structures are shown in green.

(TIF)

S4 Fig. Larger Rendering of Generated Examples. A higher resolution rendering of the gen-

erated examples shown in Fig 3D (Center), selected based on the analysis in Fig 3D (Left), for

two heavy-chain and two light-chain examples. Real structures are shown in blue, recon-

structed structures are shown in pink, and refined structures are shown in green. Each align-

ment shows an overlay of the generated structures (pink) and their nearest neighbors (blue) in

the training set. The roman numerals correspond to the same structures as in Fig 3D.

(TIF)
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