
Published as a conference paper at ICLR 2022

LEARNING TRANSFERABLE REWARD FOR QUERY
OBJECT LOCALIZATION WITH POLICY ADAPTATION

Tingfeng Li†§∗, Shaobo Han†, Martin Renqiang Min†, Dimitris N. Metaxas§
†NEC Labs America, §Department of Computer Science, Rutgers University
{tl601,dnm}@cs.rutgers.edu, {shaobo,renqiang}@nec-labs.com

ABSTRACT

We propose a reinforcement learning based approach to query object localization,
for which an agent is trained to localize objects of interest specified by a small
exemplary set. We learn a transferable reward signal formulated using the exem-
plary set by ordinal metric learning. Our proposed method enables test-time policy
adaptation to new environments where the reward signals are not readily available,
and outperforms fine-tuning approaches that are limited to annotated images. In
addition, the transferable reward allows repurposing the trained agent from one
specific class to another class. Experiments on corrupted MNIST, CU-Birds, and
COCO datasets demonstrate the effectiveness of our approach 1.

1 INTRODUCTION

There is increasing interest in designing machine learning models that can be adapted to unseen
environments or repurposed for new tasks, with only minimal human guidance (Vinyals et al., 2016;
Snell et al., 2017; Finn et al., 2017; Sun et al., 2020; Hansen et al., 2021). To this end, a small
set of examples can not only serve the purpose of implicitly generalizing a trained model to a new
environment during training time, but also enable the learner to update its learning objectives during
test time.

In this paper, we focus on a reinforcement learning (RL) formulation to the problem of query object
localization, in which an agent is trained to localize the target object specified by a small set of
exemplary images. Instead of using fixed bounding box proposals, our vision-based agent can be
viewed as a proactive information gatherer (Guo, 2003), which actively interacts with an image
environment; Furthermore, it follows a class-specific localization policy, and thus is more suitable for
aerial imagery (Xia et al., 2018), robotic manipulation (Kalashnikov et al., 2018), or embodied AI
(Savva et al., 2019) tasks.

During the test time of query object localization, the queried object class to localize may be novel,
or the background environment may undergo substantial changes, hindering the applicability of
class-agnostic agents with a fixed policy. In addition, in standard RL settings for object localization,
the reward signal is often available, so fine-tuning methods (Julian et al., 2020) can effectively
adapt agents to new environments and yield improved performance; On the contrary, in query object
localization, the reward signal is not available at test time, because the bounding box annotations are
to be found by the localization agent on test images.

To address these problems, we propose an ordinal metric learning based framework for learning
an implicitly transferable reward signal defined with a small exemplary set. An ordinal embedding
network is pre-trained with data augmentation under a loss function designed to be relevant to the RL
task. The reward signal allows explicit updates of the controller in the policy network with continual
training during test time. Compared to fine-tuning approaches, the agent can get exposed to new
environments more extensively with unlimited usage of test images. Informed by the exemplary set
precisely, the agent is adapted to the changes of the localization target.

Our contributions in this paper are summarized as follows: (1) We propose a novel ordinal metric
learning based RL framework to learn a transferable reward signal defined with a small exemplary

∗Work done as an intern at NEC Labs America
1Code available at https://github.com/litingfeng/Localization-by-OrdEmbed

1

https://github.com/litingfeng/Localization-by-OrdEmbed

Published as a conference paper at ICLR 2022

set for query object localization; (2) Our RL framework enables test-time policy adaptation to
new environments where there is no readily available reward signal; (3) Our learned transferable
reward allows repurposing a trained agent from localizing one specific class to another; (4) Extensive
experiments on several datasets demonstrate the effectiveness of our proposed approach.

2 RELATED WORK

2.1 OBJECT LOCALIZATION

Compared to bounding-box regression approaches (Redmon et al., 2016; Ren et al., 2016), deep
RL based object localization approaches (Caicedo & Lazebnik, 2015; Jie et al., 2016) have the
advantage of being region-proposal free, with customized search paths for each image environment.
The specificity of an agent purely depends on the classes of bounding-boxes used in the reward. They
can be made class-specific (Caicedo & Lazebnik, 2015), but the agent for each class would need to
be trained separately.

Despite the rise of crowdsourcing platforms, obtaining ample amount of bounding-box annotations
remains costly and error-prone. Furthermore, the quality of annotations often varies, and precise
annotations for certain object class may require special expertise from annotators. The emergence of
weakly supervised object localization (WSOL) (Song et al., 2014; Oquab et al., 2015; Zhou et al.,
2016) methods alleviates the situation, in which image class labels are used to derive bounding
box annotations. It is known that WSOL methods have drawbacks of overly relying on inter-class
discriminative features and failing to generalize to classes unseen during the training phase.

We argue that intra-class similarity is a more natural objective for the problem of localizing objects
belonging to a target class. "Query object localization" emphasizes more about the class-specific
nature of a localization task, with the relevance defined by the similarity to query images. A similar
problem is image co-localization (Tang et al., 2014; Wei et al., 2017), in which the task is to
identify the common objects within a set of images. Co-localization approaches exploit the common
characteristics across images to localize objects. Being unsupervised, co-localization approaches
could suffer from ambiguity if there exist multiple common objects or parts, e.g., bird head and body
(Jaderberg et al., 2015), which may provide unwanted common objects as output.

2.2 POLICY ADAPTATION

There seems to be a contradiction between the goals of training an agent with high task-specificity
and better generalization performance to new situations at the same time. The key to reconcile these
two goals lies in the usage of a small set of examples. There has been a paradigm shift from training
static models defined with parameters to dynamic ones defined together with a support set (Vinyals
et al., 2016; Snell et al., 2017), proved to be very effective in few-shot classification.

Besides the efforts of employing meta learning to adjust models, fine-tuning on a pre-trained model
(Oquab et al., 2014; Finn et al., 2017; Julian et al., 2020) has also been widely used in transferring
knowledge from data-abundant to data-scarce tasks. When reward signal is not available, (Hansen

Figure 1: RL-based query object localization: training and adaptation. Image-box pairs are only
available in the training phase. Test environments include images without box annotations and an
exemplary set specifying a different task objective. Thus, the trained policy needs to be adapted.

2

Published as a conference paper at ICLR 2022

et al., 2021) proposed a policy adaptation approach, in which the intermediate representation is
fine-tuned via optimizing a self-supervised auxiliary loss while the controller is kept fixed. Our work
shares the same motivation of test-time training (Sun et al., 2020), but we focus instead on the settings
where the controller needs to be adapted or even repurposed for new tasks.

3 LEARNING TRANSFERABLE REWARD FOR LOCALIZING QUERY OBJECTS

3.1 RL FORMULATION FOR QUERY OBJECT LOCALIZATION

Given a set of images I with known class labels, the task of query object localization is to find the
location b of the bounding box most relevant to the query object, specified in a small set of exemplary
images E . Following the Markov Decision Process (MDP) framework for object localization (Caicedo
& Lazebnik, 2015; Jie et al., 2016), this task can be formulated as a RL problem. In the training phase,
a localization agent learns to take actions of moving the bounding box to maximize a reward function
reflecting localization accuracy. In the test phase, the agent is informed by a small test exemplary set
about a new task objective. Figure 1 shows an overview of the query object localization problem and
the RL formulation, with components listed as follows.

• Environment: Raw pixels of a single image Ii, without candidate proposal boxes.
• Action: Discrete actions facilitating a top-down search, including five scaling: scale towards

top left/right, bottom left/right, center; eight translation transformations: move left/right/up/-
down, enlarge width/height, reduce width/height; plus one stay action.

• State: Pooled features from the current box and an internal state within RNN that encodes
information from history observations.

• Reward: Improvements the agent made in localizing the query images (in different tasks).

3.2 PRE-TRAINING ORDINAL REWARD SIGNAL

For training an agent to localize different objects according to queries, the reward function needs to
be transferable. Existing deep RL approaches for object localization (Caicedo & Lazebnik, 2015; Jie
et al., 2016) use its ground-truth object bounding box gi as the reward signal,

R = sign(IoU(bt, gi)− IoU(bt−1, gi)), (1)

where IoU(bt, gi) denotes the Intersection-over-Union (IoU) between the current window bt and
the corresponding ground-truth box gi

2, and IoU(b, g) = area(b ∩ g)/area(b ∪ g). Similar to the
bounding box regression approaches which learn a mapping ϕ : I 7→ g, the image and box must be
paired. However, annotated image-box pairs (I, g) may be scarce in both the training and testing
phases. The reward signal defined in Eq. 1 is instance-wise, which is not transferable across images.

To address this problem, a natural idea is to define the reward signal based on learned representations
of the cropped images by current window bt and the ground-truth window g. Given their M -
dimensional representations bt and g produced by an embedding function f : RD 7→ RM from
D- dimensional image feature vectors, a distance function d : RM × RM 7→ [0,+∞) returns the
embedding distance d(bt,g). However, an embedding distance based on off-the-shelf pre-trained
networks is not adequate, since it may not decrease monotonically as the agent approaches to the
ground-truth box g. As a result, the embedding distance based reward signal may be less effective
than Eq. 1 (as shown in Section 4). Therefore, an embedding function customized for the downstream
RL-based localization task is needed.

Ordinal metric learning. We propose to use an ordinal embedding based reward signal. For any two
perturbed boxes bj , bk from ground truth g, embeddings bj,bk,g are learned, such that the relative
preferences between any pair of boxes are preserved in the Euclidean space,

ρj > ρk ⇔ ||bj − g|| < ||bk − g||, ∀j, k ∈ C, (2)

where ρj and ρk denote the preference (derived from either IoU to ground-truth box or ordinal
feedback from user), and C is an ordinal constraint set constructed by sampling box pairs around

2Bounding box are denoted by lowercase lightface letters, e.g., g, while embedding vectors are denoted by
boldface letters, e.g., g ∈ Rd is a d-dimensional vector.

3

Published as a conference paper at ICLR 2022

g. This problem is originally posed as non-metric multidimensional scaling (Agarwal et al., 2007;
Jamieson & Nowak, 2011). Although we apply a very simple pairwise-based approach, there exist
other extensions such as the listwise-based (Cao et al., 2007), quadruplet-based (Terada & Luxburg,
2014) and landmark-based (Anderton & Aslam, 2019; Ghosh et al., 2019) approaches.

Loss function. In this paper, we define preference ρ as the IoU of box b to the ground-truth box
g, i.e., ρ = IoU(b, g). We choose to optimize a triplet loss (Hermans et al., 2017) for learning the
desired embeddings,

Ltriplet =
∑

anchor, ordinal pairs

max
(
m+ d(a,p)− d(a,n), 0

)
, (3)

where a is the “anchor" embedding that will be discussed in detail later, p,n are the “positive" and
“negative" embeddings for boxes with larger and smaller IoUs with ground truth box g, respectively,
m is a margin hyper-parameter. We learn an embedding space consistent with local ordinal constraints
on positive and negative data obtained via data augmentation such as box perturbation.

Box Perturbation Assuming the training exemplary set Etrain contains both image I and box g,
we adopt a tailored data augmentation scheme - box perturbation, in which a pair of boxes are
randomly sampled from I with different IoUs to g. We compare the efficiency of sampling schemes
on generating augmented bounding box pairs, (a) Random sampling, where the pair of boxes are
generated completely randomly, and (b) Group-based sampling, where dense boxes with variant
scales are first generated, and then divided into M = 10 groups according to the IoU with ground-
truth box. Each group has an IoU interval of 1/M . The sampling is first done on the group level, i.e.,
2 out of M , then sample one box from each group. Thus, the sampled boxes are likely to cover more
diverse cases comparing to random sampling. We have found that using IoU-based partition scheme
is more effective than random sampling.

The choice of anchor. The anchor embedding a in Eq. 3 is not restricted to the cropped image
from the same image. For example, it could be replaced by the prototype embedding (Snell et al.,
2017) of the exemplary set E , c = 1/|E|

∑
i∈E gi, where gi is the embedding of the cropped image

Ii by ground-truth box gi. If images from multiple classes are of interest, the prototype can be
further made to be class-dependent, or clustering-based. A prototype as the anchor enables test-time
policy adaptation without image-box pairs in the exemplary set Etest. In comparison, supervised
methods such as Faster RCNN would require image-box pairs for fine-tuning on new tasks. In some
experiments (Appendix B.1), we find that using prototype-based embedding as the anchor could lead
to better generalization performance than using g. It is also interesting to explore other treatment on
the exemplary set, such as permutation-invariant architectures (Zaheer et al., 2017; Ilse et al., 2018;
Lee et al., 2019).

3.3 LOCALIZATION AGENT TRAINING

As discussed in Section 3.2, we use the ordinal embedding rather than the bounding box coordinates
to quantify the improvement that an agent makes, and the continuous-valued reward for the agent

Figure 2: (a) Modules for ordinal representation learning. The RoI encoder extracts RoI feature that
will be used as the state representation for localization. The projection head learns ordinal embedding
b for computing reward. (b) Controller network. In each step, the agent takes the output from the RoI
encoder as state, while it also maintains an internal hidden state hr within a RNN, which encodes
information from history observations. Then it outputs the action for next step.

4

Published as a conference paper at ICLR 2022

moving from state s′ to s takes the following form,

R(s, s′) = ||bt−1 − c|| − ||bt − c||, (4)

where c is the prototype embedding, bt is the embedding of the cropped region at step t. We expect
positive reward if the embedding distance between cropped image bt and query image a is decreased.

State representation. Note that a good representation for defining reward may not necessarily be
a good state representation at the same time - it may not contain enough information guiding the
agent taking the right actions. Chen et al. (2020) suggests that adding a projection head between the
representation and the contrastive loss substantially improves the quality of the learned representation.
We find that the use of projection head is crucial in balancing the two objectives in our task. The
network architecture is shown in Figure 2(a), in which an MLP projection head is attached after an
(Region of Interest) RoI encoder. The ROIAlign module handles boxes of different sizes.

Policy network. Starting from a whole image as input, the agent is trained to select actions to
transform the current box at each step, maximizing the total discounted reward. We use policy
gradient based on a recurrent neural network (RNN) (Mnih et al., 2014) with a vector of history
actions and states. More detailed architecture can be found in Figure 2(b) and Appendix Figure 6.
For all experiments, we apply policy gradient (REINFORCE) (Williams, 1992) with entropy loss
regularization to encourage exploration. The main algorithm is outlined in Algorithm 1.

Algorithm 1: Training localization agent using the proposed ordinal reward signal.
Require : initial policy πθ , batch size N , pre-trained RoI encoder e and projection head h, learning rate α
Output :policy network πθ

for sampled minibatch {xk}Nk=1 do
for k=1,...N do

Construct an exemplary set Ebatch
gj ← h(e(xk, gj)) // compute the ordinal embedding in Figure 2(a)
ck ← 1

|Ebatch|
∑

j∈Ebatch
gj // compute the prototype vector

τk ← { s1, a1, ...sT , aT } by running policy πθ // sample trajectory
bt ← take action at, and compute embedding h(e(xk, bt)) for current window bt
Rt

k ← ∥bt−1 − ck∥ − ∥bt − ck∥ // compute reward in equation 4
end
θ ← θ + α∇θ

∑N
k=1

[
log πθ

(∑T
t′=t γ

t′−tRt
k

)
− λ · πθ log πθ

]
// policy update

end

3.4 TEST-TIME ADAPTATION

During test time, the agent has the option of further updating the policy network using the received
reward from Eq. 4. To match test conditions, the training batch is split into two groups, and c
is computed on a small subset that does not overlap with the training images to localize; During
test-time adaptation, c becomes the prototype of the test exemplary set Etest. Different from Etrain,
only cropped images are needed in Etest as shown in Figure 1.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the generalization ability of the ordinal embedding as well as the perfor-
mance of the trained localization agent on both source and target domains. The embedding-based
reward not only improves the RL training, but also enables test-time adaptation of the learned policy.
Experimental results demonstrate the effectiveness of our approach, with empirical comparisons to
fine-tuning, co-localization, few-shot and Faster RCNN object detection baselines.

Implementation details. To evaluate the learned ordinal embedding, we use OrdAcc defined as the
percentage of images within which the preference between a pair of perturbed boxes is correctly
predicted. To evaluate object localization performance, we use the Correct Localization (CorLoc)
(Deselaers et al., 2012) metric, which is defined as the percentage of images correctly localized
according to the criterion IoU(bp, g) ≥ 0.5, where bp is the predicted box and g is the ground-truth

5

Published as a conference paper at ICLR 2022

box. Mean and standard deviation (displayed as subscript) are reported from 10 independent runs.
We evaluate our approach on distorted versions of the MNIST handwriting, the CUB-200-2011 birds
(Wah et al., 2011), and the COCO (Lin et al., 2014) dataset. For the MNIST dataset, we use three
convolutional layers with ReLU activation after each layer as the image encoder. For the CUB and
the COCO datasets, we adopt layers before conv5_3 of VGG-16 pre-trained on ImageNet as the
encoder, unless otherwise specified. More details are presented in Appendix A.2.

4.1 POLICY ADAPTATION DURING TEST TIME

We demonstrate the performance improvement with test-time policy adaptation. Through all the
experiments, we assume source domain contains abundant data annotations, and target domain
annotations are only available in an exemplary set of size 5. We compare our policy adaptation
scheme with a standard fine-tuning scheme on the pre-trained policy network.

Results on the corrupted MNIST dataset. For the new class adaptation experiment, we use 50
“digit 4 images under random patch background noises" to train the ordinal embedding and the
localization agent. The results on policy adaptation to new digits (other than 4) are shown in Table 1.
Row 1 illustrates the transferability of the ordinal embedding reward, trained prototype embedding of
a subgroup without the training instance, and evaluated using instance embedding from the same test
image (“OrdAcc"). Rows 2 to 4 list the resulting localization accuracy after direct generalization
(“before"), fine-tuning on the exemplary set (“fine-tune"), and adaptation using all test images
(“adapt"), respectively. Our policy adaptation approach produces a substantial improvement over
direct generalization, while fine-tuning approach experiences overfitting on the limited exemplary set.
For the background adaptation experiment, we train on 50 digit-3 images under random patch noise,
and test on digit-2 images under all four noises. The localization accuracy on both source and new
backgrounds environment are shown in Table 2, significant improvements are achieved using our
policy adaptation scheme.

Table 1: OrdAcc (%) and CorLoc (%) on new digits environment.

0 1 2 3 5 6 7 8 9 mean

OrdAcc 91.90.7 90.32.9 92.11.8 92.00.2 92.70.6 92.60.2 90.70.7 92.00.7 90.50.7 91.60.5

before 94.20.6 84.11.5 88.71.7 86.51.8 81.21.4 91.90.3 89.50.7 93.01.0 90.80.4 88.91.0
fine-tune 93.32.5 80.43.9 84.53.5 84.91.5 78.82.7 87.32.9 82.25.4 87.74.5 85.65.3 83.74.5
adapt 99.80.2 95.60.6 98.10.4 97.90.4 88.30.5 99.10.2 98.60.9 99.80.3 99.20.4 97.40.4

Table 2: CorLoc (%) when adapted to other background on corrupted MNIST dataset.

adapt random patch clutter impulse noise gaussian noise mean

97.60.4 39.60.5 22.10.7 66.22.0 56.4
✓ 100.00.0 97.40.3 99.90.1 100.00.0 99.3

Results on the CUB dataset. We also evaluate the policy adaptation performance on the CUB dataset.
The localization agent is trained on 15 species from the “Warbler" class, and adapted to different
classes of “Warbler" (5 new species), “Wren", “Sparrow", “Oriole", “Kingfisher", “Vireo", and “Gull".
Each test class contains a single bird class. We also implement deep descriptor transforming (DDT)
(Wei et al., 2017), a deep learning based co-localization approach, and add it to the comparison.

Table 3: CorLoc (%) when adapted to other species/classes on CUB dataset.

adapt warbler (new) wren sparrow oriole kingfisher vireo gull mean

DDT 73.8 78.6 71.2 74.5 78.0 69.2 93.3 76.9
85.51.1 82.92.6 81.33.7 77.90.7 78.90.6 82.24.6 86.33.5 82.1Ours ✓ 89.71.1 91.01.1 89.31.8 85.00.8 85.94.4 90.00.9 93.90.5 89.3

Results on the COCO dataset. Given a target domain that one would like to deploy models to,
a natural question is whether one should collect labeled data from an abundant number of source
domains or from one specific class with potential lower data collection cost. On the COCO dataset,
we train on one of the five classes: cat, cow, dog, horse, zebra, then adapt to another four classes.
The results are shown in Figure 3. The models perform best using ordinal embedding reward with

6

Published as a conference paper at ICLR 2022

18.1 19.0

22.9

15.8

33.3

ours-before ours-adapt iou-before iou-adapt

C
or

Lo
c

(%
)

Figure 3: CorLoc (%) Comparison with IoU-based reward on COCO dataset. “ours": ordinal
embedding based reward; “iou": IoU based reward, ImageNet pre-trained embedding. Dotted lines
are the results of directly training on target class, using embedding based reward but from a ImageNet
pre-trained model, indicating the advantage of our approach, with ordinal embedding learned from a
single source class and policy adaptation.

adaptation (see “ours-adapt"). It shows that, although an agent is trained in a highly specialized way
on only one-source tasks, it can still be flexibly generalized to different target tasks. One interesting
observation is that, it is easy to transfer from other four classes to zebra, but not vice versa. A possible
explanation might be that, the embedding net is biased on textures, and texture information is less
adaptable than shape information.

4.2 COMPARISON TO FEW-SHOT OBJECT DETECTORS

Few-shot object detection (Kang et al., 2019; Yan et al., 2019; Wang et al., 2019; 2020) methods are
similar to our work in adapting models to a new test case with the help of limited annotations, but they
have a different requirement on the number of training classes. Being different in the generalization
mechanism, they usually require multiple classes in both stages of training and fine-tuning. On the
COCO dataset, we compared the performance of our methods with TFA (Wang et al., 2020), and
Meta-RCNN (Yan et al., 2019), on the same one-way 5-shot test setting. TFA adopts two-stage
finetuning of object detector, while Meta-RCNN incorporates additional meta-learner to acquire
class-level meta knowledge for generalization to novel classes. These two few-shot baselines are
trained on 60 base classes and fine-tuned on all 80 classes, while our model is trained from one single
class of the 5 classes randomly selected from the base classes set: elephant, sheep, giraffe, laptop and
suitcase. Table 4 shows that with ordinal embedding, our agent achieves better performance even
without adaptation, and the performance can be further improved after adaptation.

Table 4: CorLoc (%) Adaptation comparison with other methods on COCO dataset. "TFA w/ fc":
TFA with a cosine similarity based box classifier; "TFA w/ cos": TFA with a normal FC-based
classifier; "FRCN+ft-full": Meta-RCNN with Faster RCNN as detector and finetuning both the
feature extractor and the box predictor.

target cat dog cow horse mean

FRCN+ft-full (Yan et al., 2019) 13.1 3.1 3.7 7.4 6.8
TFA w/ fc (Wang et al., 2020) 29.1 13.0 5.0 10.7 14.4
TFA w/ cos (Wang et al., 2020) 28.0 10.3 4.5 8.9 12.9
Ours-before 23.0 20.6 24.5 21.2 22.3
Ours-adapt 40.3 33.5 43.1 40.2 39.3

4.3 COMPARE WITH SUPERVISED BASELINE - FASTER RCNN

We compare our framework with a strong supervised object localization baseline, Faster RCNN (Ren
et al., 2016). Both methods are trained in one class (foreground vs. background as the classification
labels in Faster RCNN) and adapted to a different class. We fine-tune the pre-trained VGG-16 model
and test on each of the five classes: cow, cat, dog, horse, zebra. The results on source domain are

7

Published as a conference paper at ICLR 2022

shown in Table 5. It shows that Faster RCNN can also be made into a class-specific model and it still
yields superior performance on source domain. On the target domain, we fine-tune Faster RCNN
using only query set for each target class. The results are shown in Table 6. It can be seen that
our method works better on new classes with test-time adaptation over the traditional fine-tuning of
Faster RCNN. Note that fine-tuning requires image-box pairs in the target domain while our policy
adaptation approach does not.

Table 5: CorLoc (%) comparison with Faster RCNN on source domain.

method cow cat dog horse zebra

Faster RCNN (Ren et al., 2016) 70.37 89.82 85.81 92.65 85.71
ours 70.37 68.46 61.26 61.28 79.36

Table 6: CorLoc (%) comparison with Faster RCNN fine-tuned on target domain.

before fine-tune before adapt after fine-tune after adapt

Faster RCNN ours Faster RCNN ours

cat ->horse 20.93 33.32 37.73 51.89
cow ->horse 54.79 48.41 68.04 46.80
cog ->horse 38.52 41.50 58.01 55.89
zebra ->horse 1.12 10.29 6.04 39.22
cat ->cow 40.52 50.85 58.55 58.58
dog ->cow 54.55 54.63 70.11 62.86
horse ->cow 72.11 59.52 75.35 64.83
zebra ->cow 1.23 8.14 5.86 35.56
cow ->cat 46.12 39.84 53.85 46.42
dog ->cat 67.62 57.97 77.07 63.12
horse ->cat 36.67 44.25 36.67 53.39
zebra ->cat 0.55 10.45 4.09 35.73
cat->dog 58.98 47.81 66.50 48.94
cow ->dog 45.85 37.28 51.69 42.33
horse ->dog 41.04 39.07 47.69 44.77
zebra ->dog 0.68 7.74 3.4 17.73
cat ->zebra 10.64 57.58 37.97 70.28
cow ->zebra 4.42 39.64 19.64 65.80
dog ->zebra 2.29 35.27 15.88 63.91
horse ->zebra 7.86 66.82 29.3 72.83

mean 30.32±25.0 39.51±17.9 41.17±25.3 52.04±13.9

4.4 ABLATION STUDIES

We analyze the effectiveness of ordinal embedding and RL component separately on COCO dataset
(Appendix B.1 provides more in-depth analysis on the corrupted MNIST dataset, including policy
gradient vs. deep Q-Network, continuous vs. binary reward). First, we remove RL, and substitute it
with a simple linear search approach. Specifically, we adopt selective search (Uijlings et al., 2013) for
candidate boxes generation. The candidate boxes are ranked according to their embedding distances
to the prototype, and the one with the smallest embedding distance is returned as the final output. We
consider two backbone networks as the embedding, including ImageNet pre-trained VGG-16 and
Faster RCNN VGG-16 trained locally on COCO dataset. We also compare both with and without
the ordinal component, making it a 2 × 2 ablation study. It can be seen from the blue and green
bars from Figure 4 and Appendix Figure 10 that with ordinal structure, the ranking method performs
much better. We find that pre-training with the proposed ordinal loss significantly improves the rank
consistency of these backbone networks (Appendix B.1).

In contrast, being able to learn across different images, the RL localization agent shows more tolerance
to the defects of the reward function. We analyze the benefits of RL component. From both Figure 4
and Figure 10, when using ordinal embedding, the model with RL is generally better than ranking,
especially after adaptation.

Ordinal component is necessary for several possible reasons. First, the ordinal component makes
the generic pre-trained network more specific to the downstream object localization task. Second, it

8

Published as a conference paper at ICLR 2022

Figure 4: CorLoc (%) comparison with ranking method using Faster RCNN pre-trained backbone.

helps remove the dataset bias if the pre-trained network is non-native. Third, ordinal pre-training
encourages the reward signal to reflect step-by-step improvements.

Encouraged by the strong baseline performance of Faster RCNN on both source and target domain
(detailed in Table 5 and Table 6), we investigate whether it is adequate to use Faster RCNN embedding
in the RL reward function, with or without ordinal pre-training. Since Faster RCNN emebedding is
also trained for object localization on the COCO dataset, it can separate out the effects of the ordinal
pre-training component better. The result are shown in Table 7. It can be seen that without ordinal
pre-training, the performance degrades significantly and the CorLoc is much lower even in source
domain. More results of different backbones are presented in Appendix Table 15 and Table 16, from
which the test-time adaptation still brings a large margin of improvement.

Table 7: CorLoc (%) RL with Faster RCNN embedding w/ and w/o ordinal pre-training on source
domain.

method cow cat dog horse zebra

Faster RCNN backbone 25.93 13.17 12.16 16.18 28.57
Faster RCNN backbone + Ord 66.67 72.46 61.59 60.29 71.25

5 CONCLUSION AND FUTURE WORK

We propose an ordinal representation learning based reward, for training a localization agent to
search queried objects of interest. In particular, we use a small exemplary set as a guidance signal
for delivering learning objectives without ambiguity. Meanwhile, we use test image environments to
inform the agent about the domain shifts, without requiring image-box pairs during test time.

Instead of jointly training a localization and classification model, we learn box annotations from
image class labels, in a similar spirit to weakly-supervised learning. Empirically, we focus extensively
on the transfer learning setting from one single data abundant training task to data-scarce (one-
way few-shot) test tasks (Taylor & Stone, 2009; Zhu et al., 2020). To make a trained RL agent
generalizable to new unseen test cases, one can either expose the agent to as many cases as possible
during training, or make the agent more specific but adaptable upon changed scenarios. Our approach
belongs to the latter.

The transferability of our reward signal from training to test crucially relies on the generalization
ability of the learned ordinal representation. If the ordinal preference does not hold in the test domain,
the proposed test-time policy adaptation scheme will not work. By adapting the representation with
self-supervised objectives (Hansen et al., 2021), this issue might be remedied.

Although our work focuses on the generalization ability of a single object localizer, extensions to
multiple objects can possibly be done by applying it multiple times and marking the found regions, in
a similar manner as (Caicedo & Lazebnik, 2015). Curriculum learning with a designed sequence of
targets in the exemplary set may guide the agent toward solving challenging localization tasks. We
leave those extensions for future study.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGEMENT

This research has been partially funded by the following grants ARO MURI 805491, NSF IIS-
1793883, NSF CNS-1747778, NSF IIS 1763523, DOD-ARO ACC-W911NF, NSF OIA-2040638 to
D. Metaxas. We would like to thank anonymous reviewers for their comments and suggestions.

REFERENCES

Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert Lanckriet, David Kriegman, and Serge Belongie.
Generalized non-metric multidimensional scaling. In Artificial Intelligence and Statistics, pp.
11–18. PMLR, 2007.

Jesse Anderton and Javed Aslam. Scaling up ordinal embedding: A landmark approach. In Interna-
tional Conference on Machine Learning, pp. 282–290. PMLR, 2019.

Juan C Caicedo and Svetlana Lazebnik. Active object localization with deep reinforcement learning.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 2488–2496, 2015.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In International Conference on Machine Learning, pp. 129–136,
2007.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning,
pp. 1597–1607. PMLR, 2020.

Thomas Deselaers, Bogdan Alexe, and Vittorio Ferrari. Weakly supervised localization and learning
with generic knowledge. International Journal of Computer Vision, 100(3):275–293, 2012.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR, 2017.

Nikhil Ghosh, Yuxin Chen, and Yisong Yue. Landmark ordinal embedding. In Advances in Neural
Information Processing Systems, volume 32, 2019.

AnYuan Guo. Decision-theoretic active sensing for autonomous agents. In International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 1002–1003, 2003.

Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A Efros, Lerrel
Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment. In International
Conference on Learning Representations, 2021.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In Proceedings of
the IEEE International Conference on Computer Vision, pp. 2961–2969, 2017.

Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person
re-identification. arXiv preprint arXiv:1703.07737, 2017.

Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learning.
In International Conference on Machine Learning, pp. 2127–2136. PMLR, 2018.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer
networks. In Proceedings of the 28th International Conference on Neural Information Processing
Systems-Volume 2, pp. 2017–2025, 2015.

Kevin G Jamieson and Robert D Nowak. Low-dimensional embedding using adaptively selected
ordinal data. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 1077–1084. IEEE, 2011.

Zequn Jie, Xiaodan Liang, Jiashi Feng, Xiaojie Jin, Wen Lu, and Shuicheng Yan. Tree-structured
reinforcement learning for sequential object localization. In Advances in Neural Information
Processing Systems, pp. 127–135, 2016.

10

Published as a conference paper at ICLR 2022

Ryan Julian, Benjamin Swanson, Gaurav S Sukhatme, Sergey Levine, Chelsea Finn, and Karol
Hausman. Never stop learning: The effectiveness of fine-tuning in robotic reinforcement learning.
In Conference on Robot Learning, 2020.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–673.
PMLR, 2018.

Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, and Trevor Darrell. Few-shot object
detection via feature reweighting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 8420–8429, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
Conference on Machine Learning, pp. 3744–3753. PMLR, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In European
Conference on Computer Vision, pp. 740–755, 2014.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent models of visual
attention. In Proceedings of the 27th International Conference on Neural Information Processing
Systems-Volume 2, pp. 2204–2212, 2014.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1717–1724, 2014.

Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Is object localization for free? - weakly-
supervised learning with convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 685–694, 2015.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(6):1137–1149, 2016.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9339–9347, 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
4080–4090, 2017.

Hyun Oh Song, Ross Girshick, Stefanie Jegelka, Julien Mairal, Zaid Harchaoui, and Trevor Darrell.
On learning to localize objects with minimal supervision. In International Conference on Machine
Learning, pp. 1611–1619. PMLR, 2014.

11

Published as a conference paper at ICLR 2022

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In International Conference on
Machine Learning, pp. 9229–9248. PMLR, 2020.

Kevin Tang, Armand Joulin, Li-Jia Li, and Li Fei-Fei. Co-localization in real-world images. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1464–1471,
2014.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(7), 2009.

Yoshikazu Terada and Ulrike Luxburg. Local ordinal embedding. In International Conference on
Machine Learning, pp. 847–855. PMLR, 2014.

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective
search for object recognition. International Journal of Computer Vision, 104(2):154–171, 2013.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in Neural Information Processing Systems, 29:3630–3638, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-UCSD
birds-200-2011 dataset, 2011.

Xin Wang, Thomas Huang, Joseph Gonzalez, Trevor Darrell, and Fisher Yu. Frustratingly simple
few-shot object detection. In International Conference on Machine Learning, pp. 9919–9928,
2020.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Meta-learning to detect rare objects. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9925–9934,
2019.

Xiu-Shen Wei, Chen-Lin Zhang, Yao Li, Chen-Wei Xie, Jianxin Wu, Chunhua Shen, and Zhi-
Hua Zhou. Deep descriptor transforming for image co-localization. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence, pp. 3048–3054, 2017.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3-4):229–256, 1992.

Gui-Song Xia, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo, Mihai Datcu, Marcello
Pelillo, and Liangpei Zhang. DOTA: A large-scale dataset for object detection in aerial images. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983,
2018.

Xiaopeng Yan, Ziliang Chen, Anni Xu, Xiaoxi Wang, Xiaodan Liang, and Liang Lin. Meta R-CNN:
Towards general solver for instance-level low-shot learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9577–9586, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems, 2017.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2921–2929, 2016.

Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement learning: A
survey. CoRR, abs/2009.07888, 2020.

12

Published as a conference paper at ICLR 2022

A APPENDIX: IMPLEMENTATION DETAILS

A.1 ALGORITHM PIPELINE

General supervised training methods are usually class-agnostic and require exposure to a large number
of training classes, box-image pairs, and foreground and background variations in order to generalize
well. In contrast, we allow specialized agent to be trained, with the ability of adaptation to changes
during the test time. Our approach is based on the feature similarity with query images, which departs
from previous bounding-box regression and RL approaches based on objectiveness. Compared to
general supervised training or fine-tuning methods, our approach is able to flexibly make use of
various types of data in these phases. This is summarized in Table 8.

Table 8: Breaking up the requirements on data and labels in training and adaptation
Supervised methods Our approach

Training Fine-tuning Ordinal embedding Agent training Test-time adaptation
Image-box pairs ✓ ✓ ✓ ✗ ✗

Unlabeled images ✗ ✗ ✗ ✓ ✓
Exemplar images ✗ ✗ ✓ ✓ ✓

Our agent can both take human feedback in terms of the exemplary set and perform test-time policy
adaptation using unlabeled test data. It includes three stages: ordinal representation pre-training, RL
agent training, and test-time adaptation. Details are as follows:

Stage 1: Pre-train ordinal embedding for state representation and reward In this stage, we
assume pairs of ground-truth bounding box and training image are available. We train the ordinal
embedding by attaching a projection head after RoI encoder, as Figure 5 shows. RoI encoder is
composed of image encoder and a RoIAlign layer (He et al., 2017). It extracts corresponding bounding
box feature directly from image feature output by image encoder. After training, all the modules are
fixed. The output of RoI Encoder then becomes the state for agent, and output of projection head is
then used for reward computation.

On Corrupted MNIST (cMNIST) dataset, we attach a decoder in order to train the encoder, but
discard it during inference. The loss function is defined as

L = Lreconstruct + λ1 · Ltriplet, (5)

where we set λ1 = 0.1, and Lreconstruct is mean square error loss to measure the reconstruction
ability of the autoencoder. On CUB and COCO dataset, we adopt the pre-trained ImageNet encoder,
thus no additional decoder is needed. The triplet loss Ltriplet is optimized, such that the embedding
of positive bounding boxes are closer to the embedding of anchor than negative boxes. Different from
traditional definition of triplet loss, our positive and negative boxes are not fixed. When comparing
two perturbed boxes, the positive box is always the one with larger IoU. Thus, a box with IoU=0.2
could be positive box if the negative box has even smaller IoU. The anchor box is not restricted to
ground truth box of the image instance. For example, we use the mean vector of ordinal embeddings
in this paper, computed from ground-truth boxes of images from the exemplary set.

Figure 5: Learning RoI Encoder and Projection Head.

13

Published as a conference paper at ICLR 2022

Table 9: Network and loss updating details for different stages of the method
Configuration Training Testing of the RL agent

Modules Objective Network Exemplary set Ordinal pre-training Policy training before adaptation after adaptation
ROI Encoder NA∗ VGG-16/ViT Etrain Frozen Frozen Frozen Frozen

Projection Head Ordinal loss Ltriplet MLP Etrain Train Frozen Frozen Frozen
Controller Reward RNN Etest NA Train Frozen Updated

* For cMNIST dataset, ROI encoder is trained under loss Eq.5. For other datasets, we directly load the off-the-shelf pre-trained network.

Stage 2: Localization agent training In this stage, we assume the ground-truth bounding box
is available for each training image. All the models are trained and tested on the same datasets as
stage 1. We fix all the layers in RoI encoder and projection head. The adopted RNN model is shown
in Figure 6. In each step, the agent takes the RoI encoder output eroi and the hidden state of RNN
ht−1, concatenated as the state representation. Then it predicts the action for next step by sampling
according to the logits. The loss is defined as

Lagent = Lpolicy + λ2 · Lentropy,

Lentropy = −π log π, Lpolicy = −(R− R̄) · log π (6)

where Lentropy prevents the agent from being stuck in the local minimum, π is the policy, and R is the
reward defined in Eq. 4.

Figure 6: Policy network architecture.

Stage 3: Test-time adaptation To adapt to new class, we make use of a limited number of
groundtruth-box cropped images in the test exemplary set. We leverage abundant unlabelled images
and this exemplary set to update the agent. We fix the RoI encoder and projection head, and only
update the agent. The process is almost the same as stage 2, except that c in reward (Eq. 4) is the
prototype of the test exemplary set.

In summary, the configuration of different model components and how they are updated is listed in
Table 9. The losses for each dataset and training stage are in Table 10.

Table 10: Summary of losses used on different datasets.
dataset loss
cMNIST L = Lreconstruct + λ1 · Ltriplet, λ1 = 0.1
CUB L = Ltripletstage 1
COCO L = Ltriplet

cMNIST Lagent = Lpolicy + λ2 · Lentropy, λ2 = 6
CUB Lagent = Lpolicy + λ2 · Lentropy, λ2 = 0.5stage 2
COCO Lagent = Lpolicy + λ2 · Lentropy, λ2 = 0.5
cMNIST Lagent = Lpolicy + λ2 · Lentropy, λ2 = 0.5
CUB Lagent = Lpolicy + λ2 · Lentropy, λ2 = 0.5stage 3
COCO Lagent = Lpolicy + λ2 · Lentropy, λ2 = 0.5

14

Published as a conference paper at ICLR 2022

A.2 EXPERIMENTS DETAILS

For MNIST, we use three convolutional layers with ReLU activation after each layer as image encoder,
while the same but mirrored structure as decoder to learn an autoencoder, and then attach ROIAlign
layer followed by two fully connected (fc) layers as projection head for ordinal reward learning.
For the CUB and the COCO datasets, we adopt layers before conv5_3 of VGG-16 pre-trained on
ImageNet as encoder unless otherwise specified. The projection head uses the same structure as
before but with more units for each fc layer. All of our models were trained with the Adam optimizer
(Kingma & Ba, 2015). We set margin m = 60 in all the experiments heuristically. All the models
take less than one hour to finish training, implemented on PyTorch on a single NVIDIA A100 GPU.

We list experiment details for the datasets used in Section 4 as follows.

Corrupted MNIST Dataset. Examples of the four types of corrupted MNIST (cMNIST) images
are shown in Figure 7. In stage 1 and 2, we randomly sample 50 images of one class in original
MNIST training set, and add noise as our training set. During testing, the models are evaluated on
all the corrupted MNIST test set. In stage 3, to adapt to a new digit, we annotate a limited number
of images as exemplary set for adaptation and use all the (corrupted) MNIST training set from that
digit. We then test the agent on all (corrupted) MNIST test set of the same digit. There is no overlap
between the training and test set used in stage 3.

Figure 7: Corrupted MNIST Datasets: 28× 28 digits on four kinds of 84× 84 noisy background.

CUB Dataset. In stage 1 and 2, we train on 15 warbler classes with class id between 158 and 172.
There are 896 images in total. Then test the models on 5 new warbler classes with class id between
178 and 182, resulting in 294 images in total. In stage 3, the number and class ids of images for each
class are presented in Table 11. We also randomly select limited number of images as exemplary set
and use all unlabled data for adaptation. The CorLoc is calculated using all the images of this class.

Table 11: Number of images for training and testing in stage 3 on CUB dataset.

warbler wren sparrow oriole kingfisher vireo gull

cls id [178, 182] [193, 197] [114, 119] [95, 98] [79, 83] [151, 157] [59, 64]
#images 294 299 357 239 300 409 359

COCO Dataset. For the results of Figure 3, we train on one of the five classes: cat, cow, dog, horse,
zebra, then adapt to another four classes. The detailed number of each class for training and testing
in stage 1 and 2 is shown in Table 12.

Table 12: Number of images for training and testing in stage 1, 2 on COCO dataset.

cat cow dog horse zebra elephant giraffe laptop sheep suitcase

train 3619 649 3701 1524 611 973 1146 2844 260 1402
test 167 27 148 68 21 32 40 163 18 61

In stage 3, the agent is tested on new classes in target domain, within which we annotate limited
number of images for adaptation. In comparison with few-shot object detection experiment, the
models in stage 1 and 2 are trained using one single class of the 5 classes: elephant, sheep, giraffe,
laptop and suitcase. Then being adapted to the four classes in Table 4. Note that the five classes are
in the base classes, and the four classes are in the novel classes used in other methods. Thus, it’s

15

Published as a conference paper at ICLR 2022

harder to transfer from one single class to another due to scarcity of training data and training class.
Table 4 reports the average CorLoc from the five classes to each target class. We also provide the
results of each source class in Table 13. From this table, we can see that transferring from related
classes with target class usually performs better. For example, the CorLoc from laptop and suitcase
are lower than other three animal classes, especially before adaptation. After adaptation, the gap
becomes smaller.

Table 13: CorLoc(%) Adaptation comparison with other methods on COCO dataset per class results.

before adapt after adapt

cat dog cow horse cat dog cow horse

elephant 41.25 38.45 59.94 54.27 48.00 45.66 65.64 59.19
giraffe 17.91 19.18 22.19 26.25 42.89 31.88 35.59 53.68
laptop 13.87 4.57 3.24 1.58 34.93 15.67 29.43 20.34
sheep 29.10 34.13 36.98 33.14 46.01 36.64 49.92 46.26
suitcase 12.99 6.43 11.71 4.99 37.99 37.56 43.14 25.98

Selective localization. We investigate the agent’s ability in localizing the object specified by the
query set, when the set of images have two common objects. We use random patched MNIST, where
each image has digit 3 and digit 4. First, the RoI encoder and projection head are trained with an
additional contrastive loss to enlarge the distance between the two digits in embedding space,

lossembed = lossrec + λtrip · losstrip + λcontr · losscontr, (7)

where losstrip = losstrip3
+ losstrip4

, learning two local ordinal structure around each class center
in embedding space. We set the margin for both triplet losses as 10, and the margin for contrastive
loss as 320 heuristically. We found that the larger the gap between the two margins, the better the
performance. Detailed results can be found in Table 17 and its related discussion. After learning the
RoI encoder and projection head, we train the agent with the reward defined with Eq. 4 in Sect. 3.3,
where c is the prototype embedding of the targeted digit exemplary set (exemplary size is 5).

Figure 8: Selective localization vs. co-localization on two-digits data with random patch background.

Figure 8 shows an illustrative example of query object localization with task adaptation. Given
two common objects coexisting in the image environment, the agent is trained to pick up one
from the two during training, while quickly adapt to pick another one during testing. Different
from unsupervised co-localization approaches (Wei et al., 2017) relying on low-level image clues
to distinguish foreground and background, our learning objectives can be specified explicitly by
switching the train/test exemplary sets. With test-time adaptation, our agent can handle even partially
conflicting learning objectives.

16

Published as a conference paper at ICLR 2022

B ADDITIONAL EXPERIMENTS

B.1 ABLATION OF ORDINAL EMBEDDING AND RL

Setting and main results on corrupted MNIST dataset. We analyze the effectiveness of using
ordinal embedding in terms of representation and reward first on synthetic datasets of corrupted
MNIST digits under cluttered, random patch, Gaussian, or impulse noises (see Figure 7 in Appendix
for examples). We want to find the answers to two main questions listed below:

1. Is the embedding distance based reward signal as effective as the IoU counterpart?
2. Does the ordinal triplet loss benefit the state representation learning?

Accordingly, we consider baselines in which embeddings are trained with only autoencoder or jointly
with the ordinal projection head. Besides, we also compare our embedding distance based reward
against the IoU based reward used in Caicedo & Lazebnik (2015). Without loss of generality, the
agent is trained on images of digit 4, and tested on images from all rest classes. In particular,
we are interested in evaluating the sample efficiency of different approaches. The results under
different training set sizes are shown in Figure 9. To distract the localization agent, cluttered noises
with random 6× 6 crops of digits are added to the background. All comparisons are based on the
policy gradient (PG) method. With ordinal embedding present in both the representation and reward
(“AE+Ord+Embed"), our model performance is consistently better than other settings, especially
when the training set size is small. The benefit of a triplet loss is demonstrated by the comparison
between “AE+Ord+IoU" and “AE+IoU". Intuitively, the similarity to a queried object is also a more
natural goal than objectives defined by bounding boxes IoU, which is used in both generic object
detection or localization and previous RL-based approaches.

Figure 9: Comparison under different training set sizes. "AE+IoU": autoencoder, IoU based reward;
"AE+Embed": autoencoder, embedding distance based reward; "AE+Ord+IoU": autoencoder and
ordinal projection head, IoU based reward; "AE+Ord+Embed": autoencoder and ordinal projection
head, embedding distance based reward. (a) Test performance on the trained digits 4, (b) Average test
performance on the other nine digits.

Signed reward or not. Another intriguing question is that other than benefiting state representation
learning, whether the embedding-based reward itself can bring any additional benefits than the IoU-
based reward. From Figure 9, there is a large gap between “AE+Ord+Embed" and “AE+Ord+IoU",
especially when the training set size is small. This is counter-intuitive as the ordinal reward is
trained with supervision from IoU in embedding space, supposably it shall not bring any additional
information. To further analyze this phenomenon, we take the sign operation off in Eq. 1 and retrain
the agent. In an experiment with 50 training images, without sign operation, the localization accuracy
increases from 90.92% to 94.36% on test digit 4, and from 82.43% to 88.64% on other digit test
set. Perhaps, this improvement can be attributed to more informative feedback provided by the
continuous-valued, unsigned reward.

On policy vs. off policy. Many deep RL approaches are in favor of using deep Q-Network (DQN)
to train an agent. Different from Caicedo & Lazebnik (2015) and Jie et al. (2016), we apply Policy
Gradient (PG) to optimize it. Besides, we adopt a top-down search strategy through a RNN, while
they used a vector of history actions to encode memory. We evaluate these design choices with four
baselines, with "AE+IoU" setting, and trained on the same 600 sampled cluttered digit 4 images. As

17

Published as a conference paper at ICLR 2022

Table 14 shows, the agent achieves the best performance with "PG+RNN". We find that empirically,
with history action vectors the accuracy becomes worse when the agent is trained by DQN.

Table 14: CorLoc(%): DQN (with/without history action vector) vs. PG (with/without RNN)

Method DQN DQN+History PG PG+RNN

Digit 4 88.801.6 86.544.3 88.982.9 94.680.9
Other digits 84.212.0 81.753.4 81.912.7 89.051.7

Figure 10: CorLoc(%) comparison with ranking method using ImageNet pre-trained backbone.

More results on COCO dataset. Figure 10 provides results using ImageNet pre-trained VGG-
16 network as backbone with the same training strategy as Figure 4. To further demonstrate the
effectiveness of ordinal embedding, we compute the Spearman’s Rho rank correlation between
embedding distance to the prototype and IoU to the ground-truth. The results are shown in Figure
11. Here we also add CLIP (Radford et al., 2021) pre-trained ViT as backbone for comparison. The
rank correlation is smaller than −0.7 on all backbones with ordinal embedding, exhibiting ordinal
embedding preserves the IoU order, thus is better for the ranking purpose. Although pretty effective,
embedding distance is still not a perfect indicator of the ranking of IoU. Thus, directly formulate the
object localization problem as a search problem leads to suboptimal localization accuracy.

Table 15: CorLoc(%) compare backbones on source domain.

backbone cow cat dog horse zebra

ImageNet pre-trained VGG-16 70.37 68.46 61.26 61.28 79.36
Faster RCNN pre-trained VGG-16 66.67 72.46 61.59 60.29 71.25
CLIP pre-trained ViT 74.07 82.64 70.95 76.47 80.95

B.2 COMPARE DIFFERENT OFF-THE-SHELF NETWORKS AS THE BACKBONE

It is interesting to study the choices of off-the-shelf pre-trained networks as the backbone, such as
CLIP or supervised embedding provided by Faster RCNN or a classification network. Since these
networks have been exposed to large-scale dataset, it is interesting to see whether policy adaptation
is still needed. We compare different backbones on both source domain and target domain using
our method. Table 15 reports the CorLoc of training and testing on source domain. The large-scale
pre-traind ViT backbone consistently performs the best, comparing to the other two VGG-16 models.
Table 16 compares the backbones on target domain with new classes. The test-time adaptation still
brings a large margin of improvement. Interestingly, we also found that the Faster-RCNN embedding
offers the best performance on the target domain before adaptation, while the ViT network trained
on CLIP dataset provides the best performance after adaptation, indicating different generalization
mechanisms. They both outperform the ImageNet backbone initially considered.

18

Published as a conference paper at ICLR 2022

Figure 11: Rank correlations between embedding distance and IoU: using different embedding
functions such as ImageNet and Faster RCNN, with or without the ordinal pre-training, and ViT.

Table 16: CorLoc(%) compare backbones on target domain.

before adapt after adapt

ImageNet
VGG-16

Faster
RCNN
VGG-16

CLIP ViT ImageNet
VGG-16

Faster
RCNN
VGG-16

CLIP ViT

cat->horse 33.32 35.50 18.42 51.89 47.64 56.41
cow ->horse 48.41 54.55 53.67 46.80 59.61 63.06
dog ->horse 41.50 46.48 15.70 55.89 56.83 58.62
zebra ->horse 10.29 16.86 6.74 39.22 34.19 46.39
cat ->cow 50.85 42.99 36.26 58.58 53.26 55.52
dog ->cow 54.63 58.65 43.50 62.86 64.15 58.76
Horse ->cow 59.52 61.32 52.54 64.83 65.23 68.16
Zebra ->cow 8.14 11.92 7.19 35.56 38.26 52.65
cow ->cat 39.84 47.39 38.79 46.42 51.15 61.67
dog ->cat 57.97 63.84 66.60 63.12 65.18 76.83
horse ->cat 44.25 47.67 27.80 53.39 52.96 63.87
zebra ->cat 10.45 17.67 2.47 35.73 31.40 49.12
cat->dog 47.81 45.61 49.69 48.94 49.83 61.75
cow ->dog 37.28 37.64 30.13 42.33 37.10 50.94
horse ->dog 39.07 40.76 23.89 44.77 40.69 55.68
zebra ->dog 7.74 11.83 2.88 17.73 30.64 36.48
cat ->zebra 57.58 15.82 22.59 70.28 45.83 69.39
cow ->zebra 39.64 60.55 37.75 65.80 64.21 72.18
dog ->zebra 35.27 18.25 15.33 63.91 58.16 67.59
horse ->zebra 66.82 56.63 61.37 72.83 68.74 75.01

19

Published as a conference paper at ICLR 2022

B.3 THE EFFECTS OF MARGIN

The margin in triplet loss is selected heuristically. It is not sensitive except in the selective localization
experiment (Figure 8), where there are two different digits in each image. For this experiment,
we trained two ordinal structures around each digit using triplet loss with margin m1, and add
additional contrastive loss with margin m2 to separate the centers of the two different digits as far as
possible. And we found out that the model works best when m2 ≫ m1. In our experiment, we set
m1 = 10,m2 = 320. The results of using different set of m1 and m2 are presented in Table 17.

Table 17: Results of different margin configuration in selective localization.

m1 10 10 10 10 10
m2 60 70 80 160 320

CorLoc(%) 86.54 87.92 88.32 91.39 98.52

B.4 SIZE OF TRAINING SET

In this experiment, we train on class giraffe in stage 1 and 2, then adapt to cat, cow, dog and horse.
We set the training set size as [200, 500, 700, 1146], exemplary set size as 5. We compare our after
adaptation results with TFA w/ fc (Wang et al., 2020) one-way 5-shot setting, where their model is
trained on all 60 base classes, while ours is only trained on one of the base classes. Figure 12 shows
the results, in which the dotted lines are the results of TFA w/ fc. Ours performs much better than
their method. Except on cat class, ours is better than theirs with only 200 images for training.

Figure 12: Results using different training set size in stage 1, 2.

B.5 SIZE OF EXEMPLARY SET

We also compare the effect of different size of exemplary set during training and adaptation on
CUB-warbler dataset. During training stage, we use shuffle proto training strategy, and set exemplary
set size as 2, 5, 15, 25. The results without adaptation on test set are in Table 18. Both OrdAcc
and CorLoc increase with exemplary set size. For adaptation stage, the range of exemplary set size
is from 2 to 200. And the results are in Table 19. The test performance does not increase much
with the exemplary set size. One possible explanation is that the data points in embedding space are
compact, thus prototype doesn’t change much when increasing exemplary set size. We will analyze
the influence of multiple prototypes per class in future experiments.

B.6 PROTOTYPE SELECTION

We further evaluate the choice of anchor in the triplet loss for both the pre-training of state representa-
tion and the ordinal reward for the training of agent. We study (i) whether ordinal embedding can be

20

Published as a conference paper at ICLR 2022

Table 18: Effect of exemplary set size during training stage.

Size OrdAcc(%) CorLoc(%)

2 94.39±1.7 84.18±6.5

5 94.83±2.0 88.10±0.2

15 95.69±1.7 89.22±1.9

25 93.82±1.0 89.64±2.3

Table 19: Effect of exemplary set size during adaptation.

Size 2 5 50 100 150 200

CorLoc(%) 89.12±1.9 89.67±1.1 90.15±0.8 90.36±0.5 89.63±0.2 90.14±0.5

trained in reference to an anchor from a different image instances, (ii) whether it is advantageous to
use the prototype embedding of an exemplary set, rather than instance embeddings, and (iii) whether
mimicking the test condition in training yields any improvement.

Table 20: Anchor choice comparison. Note that in evaluations the OrdAcc is always computed using
instance as anchor.

Mode OrdAcc(%) CorLoc(%)

Self 97.2±0.7 61.0±2.0

Proto 95.2±1.6 77.9±0.4

Shuffle self 92.4±1.4 73.8±2.5

Shuffle proto 96.2±1.5 88.1±0.2

We use the CUB-Warbler dataset with more foreground background variations than the corrupted
MNIST dataset. The training and test set contains 15 and 5 disjoint fine-grained classes respectively,
resulting 896 images for training (viewed as a single class) and 294 for testing. Table 20 shows
the OrdAcc and CorLoc in four settings. “Self" uses the embedding from images cropped by the
ground-truth box from the same instance; “Shuffle self" uses the ground-truth box cropped image
emebedding from a different instance; Similarly, “Proto" uses the prototype of a subgroup containing
the training instance within the same batch; “Shuffle proto (SP)" uses the prototype of a subgroup
from a different batch without the training instance. Results suggest that this training strategy brings
compactness to the training set, constructing an ordinal structure around the cluster. For “Shuffle
proto", while the OrdAcc is lower than others, its CorLoc is the best with large margin. Matching
the condition between training and testing indeed improves generalization to new classes on this
dataset.

B.7 ANNOTATION REFINEMENT

Annotation collection plays an important role in building machine learning systems. It is one task that
could benefit greatly from automation, especially in cost-sensitive applications. The human labeling
efforts can be reduced, not only in terms of the number of annotate samples per class, number of
annotate classes (one-class at the minimum), but also the level of accuracy required. We explore the
direction of iterative refinement of annotation quality with minimal human guidance. Given an agent
trained extensively with inexact human annotations, can we adapt it to refine the annotation with
a few well-annotated examples? We purposefully enlarge the ground truth bounding boxes in the
corrupted MNIST and CUB datasets, and adapt the trained agent using the original ground truth box
in an exemplary set of size 5.

For corrupted MNIST dataset, the agent, RoI encoder and projection head are first trained with 50
digit 3 images with loose (38×38) bounding box annotation. Then the agent is adapted to digit
1 images, where the exemplary size=5, and the ground-truth boxes are 28×28. For CUB dataset,
during training, the ground-truth box in each resized 224×224 image is expanded 10 pixels each side.
During adaptation we use the original ground-truth boxes. In adaptation from entire body to head
experiment on CUB dataset, we train on original entire body ground-truth bounding box. During
adaptation, 15 randomly sampled exemplar images are annotated with head bounding box. The agent

21

Published as a conference paper at ICLR 2022

is trained to adapt to localize head by minimizing the distance between embedding of predicted box
and prototype of head embeddings. The results are shown in Figure 13 (left panel). Preliminary
results with agent trained on the entire bird body and adapt to bird head are shown in Figure 13 (right
panel), with a few successful cases on the first row and failure cases on the second row.

Figure 13: Annotation refinement. Left: Loose to tight transfer. Right: entire body to head transfer.

B.8 FEW-SHOT LOCALIZATION ON OMNIGLOT

The proposed ordinal reward signal also makes our approach amenable to few-shot training, when
only a small subset of training images per class are annotated. Different from the transfer learning
setting, in few-shot setting limited annotations across multiple classes are available during training.
The ordinal reward can be viewed as meta information. We evaluate our method under few-shot
setting on corrupted Omniglot dataset (Lake et al., 2015) and CUB-warbler dataset. For Omniglot,
We put each 28×28 character in 84×84 random patch background. The train and test set contains 25
different classes respectively, thus 500 images for each set. We randomly sample 100 iterations for
training and testing. For CUB-warbler datset, as we did in Sect. 4.2 we train on the same 15 species
from the “Warbler" class, and adapted to 5 new species of “Warbler", thus 896 and 294 images
respectively. We randomly sample 100 and 50 iterations for training and testing. We use 5-shot 5-way,
set exemplary set size as 5, and use proto training strategy for both dataset. The results are shown in
Table 21. As an implicit meta learning method, our approach achieves 99.94% and 90.52% CorLoc
on the two datasets. We can also leverage explicit meta learning method, such as MAML (Finn et al.,
2017) to further improve the results. We will leave this part as future work. Although initial results
are promising, more efforts are needed to validate whether the proposed RL approach can achieve
state-of-the-art performance, but it is beyond the scope of this work.

Table 21: Evaluation under few-shot localization setting.

Dataset OrdAcc(%) CorLoc(%)

Omniglot 95.11±0.6 99.94±0.1

CUB-warbler 91.28±0.9 90.52±0.7

22

Published as a conference paper at ICLR 2022

C INTERMEDIATE RESULTS

The agent tends to predict expected actions to transform the box so that it can finally get to the target
location. It can also be observed from Figure 14 that the embedding distance between predicted
boxes and ground-truth boxes is in agreement with the corresponding IoU. This further demonstrates
the effectiveness of the localization agent.

Figure 14: Starting from the whole image, the agent is able to localize digit 4 within 10 steps. Each
row shows localizing one image, and each column is a time step. Green box means ground-truth
bounding box.

Figure 15: The IoU relation between ground-truth and predicted box is accurately represented in
embedding space. Left: the embedding distance between ground-truth and predicted box in each
step. Right: the IoU between ground-truth and predicted box in each step.

23

	Introduction
	Related Work
	Object localization
	Policy adaptation

	Learning Transferable Reward for Localizing Query Objects
	RL formulation for query object localization
	Pre-training ordinal reward signal
	Localization agent training
	Test-time adaptation

	Experimental Results
	Policy adaptation during test time
	Comparison to few-shot object detectors
	Compare with supervised baseline - Faster RCNN
	Ablation studies

	Conclusion and Future Work
	Appendix: Implementation Details
	Algorithm Pipeline
	Experiments Details

	Additional Experiments
	Ablation of Ordinal Embedding and RL
	Compare different off-the-shelf networks as the backbone
	The effects of Margin
	Size of training set
	Size of Exemplary Set
	Prototype Selection
	Annotation refinement
	Few-Shot Localization on Omniglot

	Intermediate Results

