
Cluster-Learngene: Inheriting Adaptive Clusters for
Vision Transformers

Qiufeng Wang1,2, Xu Yang1,2†
, Fu Feng1,2, Jing Wang1,2, and Xin Geng1,2†

1School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
2Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary

Applications, Southeast University, Ministry of Education, China
{qfwang, xuyang_palm, fufeng, wangjing91, xgeng}@seu.edu.cn

Abstract

In recent years, the merging of vast datasets with powerful computational resources
has led to the emergence of large pre-trained models in the field of deep learning.
However, the common practices often overgeneralize the applicability of these
models, overlooking the task-specific resource constraints. To mitigate this issue,
we propose Cluster-Learngene, which effectively clusters critical internal modules
from a large ancestry model and then inherits them to initialize descendant models
of elastic scales. Specifically, based on the density characteristics of attention heads,
our method adaptively clusters attention heads of each layer and position-wise
feed-forward networks (FFNs) in the ancestry model as the learngene. Moreover,
we introduce priority weight-sharing and learnable parameter transformations that
expand the learngene to initialize descendant models of elastic scales. Through
extensive experimentation, we demonstrate that Cluster-Learngene not only is more
efficient compared to other initialization methods but also customizes models of
elastic scales according to downstream task resources.

1 Introduction

The evolution of deep learning has been profoundly influenced by the confluence of expansive data
sources and robust computational capabilities. This collaboration has given rise to large pre-trained
foundation models [11, 10, 41, 5], particularly those built upon the Transformer [47, 11], such as
the Vision Transformers (ViTs) [11]. The pre-trained foundation models, being widely deployed in
various devices like smartphones or edge devices, serve as the initialization point [16, 2, 19, 64, 49, 50]
for diverse downstream applications. However, this dominant methodology implicitly assumes that a
one-size-fits-all approach, i.e., the whole foundation model is universally apt for every application,
neglecting the specific resource constraints (e.g., memory, FLOPs, or latency) inherent to certain
downstream tasks. Furthermore, not all tasks demand the full power of these extensive foundation
models. This naturally raises a pivotal question: Can we extract and harness the condensed part of
these foundation models to achieve a harmonious balance between accuracy and resource efficiency?

To achieve the goal of efficiently initializing models, [49, 50] introduce the innovative Learngene
framework inspired by the observation of genes (cf. Fig. 1 (a)). As showcased in Fig. 1 (b), Learngene
framework is designed in two pivotal stages. In the first stage, the significant knowledge is condensed
from a large ancestry model into a more compact part termed as learngene. In the next stage, this
learngene is inherited to initialize the descendant models of elastic scales. * Previous works [49, 50]

†Corresponding authors.
*The terms "foundation model" and "ancestry model," as well as "downstream model" and "descendant

model," are interchangeably utilized unless distinctions are explicitly mentioned.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Gene

Evolution

Hunt fish by
the river

Hunt rabbit on
the plateau

Hunt sheep in
the grassland

Layer 0

Layer 1

Layer 2

Layer 3

…

Layer L

(a)

Descendant
model 1

Ancestry
Model

Learngene

Descendant
model 2

Descendant
model 3

(b) (c) (d)

Initialize

Inherit

Condense

Figure 1: (a) The ancestry of biological organisms condenses evolutionary information into
information-dense genes to initialize their diverse descendants [62, 17]. (b) The Learngene frame-
work condenses the significant knowledge from an ancestry model into a more compact part termed
learngene and then inherited to initialize the descendant models of elastic scales. (c) The density of
attention heads across the different layers of the ancestry model, which employs the DeiT-B [46]. (d)
An illustration of our idea.

predominantly focus on extracting a few integral layers as the learngene and manually stacking them
with the randomly initialized layers.

However, such approaches struggle with inherent limitations: (i) The strategy of extracting certain
integral layers overlooks the potential existence of learngene within these layers, leading to the
preservation of many redundant weights. (ii) The approach of manually stacking the learngene with
randomly initialized layers lacks the adaptability to scale the model, preventing the initialization of
downstream models with custom dimensions.

As mentioned earlier, the Learngene framework aims to preserve the most generalizable part of the
ancestry model while eliminating redundant weights that weaken representational capacity. Recent
studies [42, 56] have visualized the mean attention distance of ViTs, offering deeper insights into
weight redundancy among attention heads across different layers. As illustrated in Fig. 1 (c), the
lower layers focus on both local and global perspectives, leading to a more sparse density of attention
heads. Conversely, the higher layers prioritize a global context, resulting in a compact density. A
notable observation is the repetitive functionality across many attention heads especially in the higher
layers, which inevitably leads to weight redundancy.

Inspired by the above observation, we propose the Cluster-Learngene, an innovative approach that
adaptively extracts internal modules in ViTs as the learngene, e.g., attention heads and position-wise
feed-forward networks (FFNs). Firstly, to extract the cluster centroids of the attention heads (i.e.,
head centroids) across each layer of the ancestry model, we cluster the attention heads within
each layer of the ancestry model based on their density characteristics. As depicted in Fig. 1 (c-d),
the attention heads in the first layer exhibit a sparse density, resulting in five clusters, whereas the
attention heads in the last layer cluster more compactly, forming a single group. Furthermore, our
method includes clustering FFNs by assessing the distance density of head centroids in adjacent
layers of the ancestry model. Specifically, when the distance density of head centroids in adjacent
layers is similar, we inherit the FFN from the shallower of these adjacent layers (i.e., FFN centroid)
as the learngene. As illustrated in Fig. 1 (c), the similar densities of attention heads in the 7-th and
8-th layers lead to proximate head centroids, enabling these layers to only require the inheritance from
the 7th layer as the FFN centroid. Overall, Cluster-Learngene extracts critical parameters containing
significant knowledge, as the extracted part represents attention heads/FFNs with similar semantics.

In the inheriting stage, to achieve the initialization of descendant models with varying number of
attention heads, we adopt the priority weight-sharing. We start by ranking the head centroids based
on the size of their respective clusters, arranging them in descending order of priority. Subsequently,
we perform weight-sharing by distributing these head centroids to initialize the attention heads
of the descendant models. If the number of attention heads in a specific layer aligns perfectly
with the number of centroids, they are evenly shared. However, if they fail to align perfectly, any
remaining centroids are shared according to the remainder. Moreover, we apply learnable parameters
to transform FFN centroids into multiple FFNs, thus enabling the initialization of descendant models
with elastic scales.

2

Our contributions can be summarized as follows: (i) We propose the adaptive clustering to extract the
head and FFN centroids as the learngene, ensuring the preservation of significant knowledge within
the ancestry model. (ii) To achieve the initialization of descendant models, we introduce priority
weight-sharing that favors head centroids within larger clusters and employ learnable parameters to
transform the FFN centroids into multiple FFNs. (iii) Comprehensive experimental evaluations across
datasets of different scales reveal that Cluster-Learngene not only outperforms traditional initialization
strategies but also stands toe-to-toe with more resource-demanding fine-tuning methodologies.

2 Related Work

Model Initialization: Over the years, various initialization techniques have been proposed including
the popular random initialization, Xavier initialization [13] and the Kaiming initialization [19].
Recently, the use of pre-trained foundation models has gained prominence as an initialization strategy
before fine-tuning for specific tasks [11, 10, 41, 57, 37, 5, 61, 22, 15, 53, 33, 32, 7, 18, 39, 54, 29, 25,
26, 51, 28, 44, 55, 59, 40, 58, 36, 31, 21, 60]. However, such an approach necessitates pre-training
separate models for each downstream task, which can lead to substantial computational resource
consumption. In contrast, Cluster-Learngene presents a unique model initialization method that
alleviates the need for multiple pre-training steps.

Density-based Clustering: Clustering aims to group similar data points together while separating
dissimilar ones. A wide array of approaches has been explored, including partitioning-based cluster-
ing [14, 1, 27], hierarchical clustering [35, 8, 65, 52], and density-based clustering [23, 43, 6, 3], and
so on. In particular, density-based clustering operates by taking into account the density relationships
between data points to form clusters. Inspired by this, our method adopts a similar principle by
assessing the density of attention heads to retain essential head centroids that represent significant
knowledge.

3 Methodology

Learngene framework is primarily divided into two phases in Fig. 1 (b): the significant knowledge is
condensed from an ancestry model into a more compact part termed as learngene and then inherited
to initialize the descendant models of assorted scales. Specifically, in phase 1, our Cluster-Learngene
selects mean attention distance as the density metric and uses it to cluster the attention heads of each
layer and FFNs in the ancestry model as the learngene, because they can effectively represent attention
heads/FFNs with similar semantics. The pseudocode for this phase is presented in Algorithm 1. In
phase 2, to initialize the descendant models, we employ priority weight-sharing of head centroids for
varying number of attention heads as illustrated in Fig.2 and leverage learnable parameters to expand
the FFN centroids into multiple FFNs. Next, we briefly introduce some preliminaries related to ViTs.

3.1 Preliminary

In the ViT architecture, an input image is first divided into N non-overlapping patches, and each patch
is linearly embedded into a flat vector of size D. The ViT encoder consists of alternating layers of
multi-head self-attention (MSA) and FFN blocks. Let H denote the total number of heads in each layer.
For the hth head, the query Qh ∈ RN×dk , key Kh ∈ RN×dk , and value Vh ∈ RN×dv are linearly
generated through learned weight matrices WQ

h ∈ RD×dk , WK
h ∈ RD×dk , and WV

h ∈ RD×dv ,
where dk and dv are the dimensions of the key and value vectors, respectively. The SA mechanism of
the i-th head can be represented as:

Ah = Attention(Qh,Kh,Vh) = softmax
(
QhK

⊤
h√

dk

)
Vh. (1)

MSA allows the model to jointly attend to information at different positions from different represen-
tational subspaces at different positions:

MultiHead(Q,K,V) = Concat(A1, . . . ,AH)WO, (2)

where WO ∈ RHdv×D is a learned weight matrix. Besides, the FFN can be formulated as:

FFN(x) = ReLU(xW1 + b1)W2 + b2, (3)

3

Algorithm 1: Adaptively Cluster for MSA

1 Input: Number of layers as L, set of attention heads in the lth layer as Sl, radius as Eps, density
threshold as MinHds, and distance function as Dist.

2 Output: The centroids of attention head in all clusters.
3 Initialize all attention heads as unvisited and an empty list for clusters
4 for l = 1, . . . , L do
5 foreach attention head a in Sl do
6 if a is not visited then
7 Mark a as visited, NeighborHds← all attention heads within Eps distance of a
8 end
9 if number of NeighborHds ≥MinHds then

10 C ← new cluster, Add a to cluster C // Start a new cluster
11 foreach attention head b in NeighborHds do

// Expand neighborhood
12 if b is not visited then
13 Mark b as visited
14 NeighborHds′ ← all attention heads within Eps distance of b
15 end
16 if number of NeighborHds′ ≥MinHds then
17 NeighborHds = NeighborHds ∪NeighborHds′

18 end
19 if b is not yet a member of any cluster then Add b to cluster C
20 end
21 Add C to the list of clusters // Consolidate clusters
22 end
23 end
24 end

where x ∈ RN×D is the input, W1 ∈ RD×dff and W2 ∈ Rdff×D are the weight matrices, and
b1 ∈ Rdff and b2 ∈ RD are the bias vectors. dff is the dimension of the intermediate layer.

3.2 Adaptively Learngene Clustering

3.2.1 Density metric on attention heads

Given a pre-trained ancestry model with L layers and Ha attention heads per layer, let the attention
weights for the hth head in the lth layer be denoted by the matrix A(l,h) ∈ RN×N . The element
A

(l,h)
i,j represents the attention weight from position i to position j. The distance matrix T ∈ RN×N

is defined with the Euclidean distance between any two positions i and j in the sequence, given

by Ti,j =
√
(xi − xj)

2
+ (yi − yj)

2. The mean attention distance for the hth head in the lth layer,
encapsulating the weighted distance for each position i across the sequence, is given by:

d̃(l,h) =
1

N

N∑
i=1

N∑
j=1

A
(l,h)
i,j × Ti,j . (4)

To deduce this metric for every head across all layers, iterate the above computation for every
l ∈ {1, . . . , L} and h ∈ {1, . . . ,Ha}. As depicted in Fig. 1 and Appendix A.1, while the lower layers
simultaneously attend to both local and global features, leading to a more dispersed distribution of
attention heads, the higher layers predominantly focus on global aspects, causing a tighter concen-
tration of attention heads. As a result, there is a significant overlap in the semantic representations
among many attention heads, especially in the higher layers, leading to weight redundancy.

3.2.2 Cluster for MSA

Motivated by the empirical observations, we extract cluster centroids [43, 6, 3] of attention heads
in ViTs as the learngene inherited into the descendant models, thus aggregating similar semantics

4

into the head centroids. To realize this, we select d̃ as a density metric for adaptively clustering the
attention heads of the ancestry model at each layer, without setting the number of clusters in advance.
This realization prompts the formulation of the definitions and lemmas, which scaffold our adaptive
clustering approach.
Definition 1 (Eps-neighborhood of an attention head). The Eps-neighborhood of an attention
head a, denoted as NEps(a), is defined as: NEps(a) = {b ∈ S | Dist(a, b) ≤ Eps}, where

Dist(a, b) =
∣∣∣d̃(a) − d̃(b)

∣∣∣ denotes the difference in d̃ values between attention heads a and b.

Our approach could require for each head in a cluster that there are at least a Minimum number of
Heads (MinHds) in an Eps-neighborhood of that head.

Definition 2 (density-reachable). Transitioning from the neighborhood concept, an attention head a
is considered density-reachable from another head b with respect to Eps and MinHds if there is a
sequence of heads a1, . . . , an such that a1 = b, an = a, and each head in this sequence lies within
the Eps-neighborhood of its preceding head.
Definition 3 (density-connected). Broadening our purview, attention heads a and b are labeled
density-connected with respect to Eps and MinHds if there exists an intermediary head o from
which both a and b are density-reachable.

Considering all attention heads in layer l as Sl, a cluster C based on Eps and MinHds is identified
as a non-empty subset of Sl that satisfies the conditions: (i) Maximality: For any heads a and b in
the sequence, if a resides within C and b is density-reachable from a dictated by Eps and MinHds,
then b seamlessly becomes part of C. (ii) Connectivity: Within C, each pairing a, b maintains a
density-connection, anchored by Eps and MinHds.

Therefore, upon satisfying these two conditions, we cluster all attention heads of each layer into
different lists of clusters. The pseudo-code for this process is summarized in Algorithm 1. For each
cluster C in the list of clusters, we select the attention head Clg closest to the cluster centroid as
the learngene. This is because it effectively represents the functionality of all attention heads in the
cluster. Formally, the formula can be expressed as follows:

Clg = argmin
c∈C

∣∣∣d̃(c) − d̄(C)
∣∣∣ (5)

where d̄(C) is computed as the average d̃ across all attention heads within this cluster C. The lemma
presented below is pivotal in substantiating the correctness of our clustering algorithm.

Lemma 1 Presuming an attention head a belongs to Sl and satisfies the condition |NEps(a)| ≥
MinHds. Then, the set O = {o | o ∈ Sl and o is density-reachable from a with respect to Eps and
MinHds} collectively shapes a cluster.

3.2.3 Cluster for FFN

Based on the distances between attention heads discussed earlier, we can further cluster FFNs as
the learngene. For adjacent layers sharing the same number NC of head centroids, a key criterion is
established: if the average distance across all head centroids between these layers is less than the
threshold ε, it suggests redundant similarity in their representational capabilities. This criterion is
formulated as:

1

NC

NC∑
k=1

Dist (Cl,k, Cl+1,k) < ε. (6)

Under this condition, we enhance model efficiency by preserving only the FFN from the shallower
of these adjacent layers as the FFN centroid, thereby maintaining essential functionality while
eliminating redundancy. Moreover, we also select those FFNs that do not fit this established criterion
as the learngene because they exhibit representational capacities independent of adjacent layers.

3.3 Learngene Inheriting

3.3.1 Expanding head centroids with priority weight-sharing

Since the head centroids have been extracted as the learngene, we further expand them for initializing
the descendant models with varying number of attention heads. For an ancestry model with L

5

Figure 2: Illustration of priority weight-sharing. The darker the color, the larger the cluster size
associated with the head centroid.

layers, the lth layer has cl head centroids of weight A(l,1), . . . ,A(l,cl). Importantly, the head
centroids at each layer are sorted in descending order based on the size of their respective cluster,
i.e., centroids representing more attention heads in the ancestry model are ranked higher. These head
centroids condense significant knowledge and ensure the initialization of descendant models without
performance degradation. Assume the descendant model has Hd attention heads for each layer. To
achieve the desired expansion of heads to initialize the descendant models, we adopt the priority
weight-sharing and Fig. 2 illustrates two scenarios:

• When Hd is divisible by cl: The weights of head centroids are shared Hd

cl
times in sequence. For

instance, centroids of weights A(L,1) and A(L,2) each share their weights across four attention
heads, which are then directly assigned to eight attention heads of the descendant model in layer L.

• When Hd is not divisible by cl: The weights of the head centroids are sequentially shared
⌊
Hd

cl

⌋
times, followed by appending A(l,1), . . . ,A(l,Hd mod cl) at the end. As an illustration, we share the
centroids of weights A(1,1), . . . ,A(1,5) once and then append A(1,1), . . . ,A(1,3), thus initializing
eight attention heads of the descendant model in the first layer.

For the attention heads in the descendant models, we introduce the hyperparameter ω = Ha

Hd
to denote

the factor by which the number of attention heads is reduced compared to the ancestry model. In
addition to uniformly setting the number of attention heads for each layer with the hyperparameter ω,
we also explore two other possibilities in Appendix A.7: incrementing and decrementing the count
of attention heads with layer depth. According to the adjustments in the number of attention heads,
the weights WO of the projection layer are also proportionally pruned and then inherited by the
descendant models. †

3.3.2 Expanding FFN

As outlined in Section 3.2, we retain the shallowest FFN determined by distance-based clustering. For
this FFN centroid, we introduce learnable parameters to transform it into multiple FFNs, facilitating
the initialization of descendant models at elastic scales. This process is summarized in the formula:

FFNt(x) = (ReLU((x(W1 + b1)Ŵt)W2 + b2)Ŵt, (7)

Here, Ŵt denotes the newly introduced learnable parameters to expand the tth FFN. These parame-
ters are designed for minimal learning overhead, yet they are highly effective in quickly adapting
descendant models to downstream tasks.

4 Experiments

4.1 Experimental Setting

Datasets. To condense the learngene, we employ the ImageNet-1K, a collection of 1.2 million training
images and 50,000 validation images distributed across 1,000 classes as part of the ILSVRC2012
competition [9]. After initializing the descendant models with the learngene, we proceed to fine-tune
these models on diverse downstream tasks. These tasks include iNaturalist-2019 [45], Food101 [4],
Oxford Flowers [38], Stanford Cars [12], CIFAR-10 [24], CIFAR-100 [24], CUB-200-2011 [48]. For
detailed dataset descriptions, see Appendix A.2.

†Please see Appendix A.3 for more details.

6

Training settings. During the learngene clustering, We set Eps, ε = 10,MinHds = 1 ‡, ensuring
that each attention head is included in a unique cluster. In the learngene inheriting phase, we train
the descendant models on downstream tasks for 500 epochs, including a 10-epoch warm-up period,
except for iNaturalist-2019, where we train for 100 epochs with a 5-epoch warm-up. The initial
learning rate is set to 5× 10−4 for most tasks, except for Stanford Cars where it is 5× 10−3, and a
weight decay of 0.05.

Architectures. Both the ancestry model and descendant models are variants derived from DeiT [46].
In terms of width, there are three types of DeiT: Tiny, Small, and Base. Furthermore, as detailed in
Section 4.2.4, we implement experiments on Swin Transformer [30] to demonstrate the applicability
of our method across various backbones. The learnable parameters in Eqns. (7) are implemented
through a nonlinear mapping such as a neural network with the rectified linear units (ReLU).

4.2 Main Results of Model Initialization

In this section, we validate the capabilities of Cluster-Learngene in efficiently initializing models and
measure model performance with Top-1 accuracy.

4.2.1 Initializing Descendant Models of Elastic Scales

Table 1: Comparisons of performance on
ImageNet-1K between models trained From-
Scratch with 100 epochs and those initial-
ized via Cluster-Learngene fine-tuned for 50
epochs.

Model Hd Ld Params (M) FLOPs (G) From-Scratch Ours

Tiny

2

6 1.3 0.3 50.06 52.73
9 1.9 0.4 54.64 59.60

12 2.5 0.5 57.99 61.84

3

6 3 0.6 58.16 59.58
9 4.4 0.9 60.58 65.47

12 5.7 1.2 61.44 70.28

Small

4

6 5 1 61.32 64.98
9 7.3 1.4 63.17 70.90

12 9.5 1.9 64.25 73.20

6

6 11.4 2.3 64.91 67.72
9 16.8 3.4 67.02 73.06

12 22 4.6 68.56 78.43

Base 12

3 22.8 4.5 68.77 67.82
4 29.9 5.9 70.32 70.41
5 36.9 7.4 72.04 72.13
6 44 8.8 73.73 73.95
7 51.2 10.2 74.42 74.87
8 58.2 11.7 76.14 76.90
9 65.3 13.1 76.46 77.11

10 72.4 14.6 76.81 77.99
11 79.5 16 77.03 78.82
12 86.6 17.5 77.22 79.50

As illustrated in Fig. 3, for the Tiny-scale descen-
dant models with only 32 attention heads, Cluster-
Learngene outperforms Pretraining-Finetuning on
ImageNet. Moreover, the performance of Cluster-
Learngene improves with an increase in the num-
ber of attention heads and FFNs. This shows that
Cluster-Learngene can adaptively initialize the de-
scendant models with varying number of attention
heads and FFNs, catering to downstream resource
constraints. In contrast, Pretraining-Finetuning re-
quires retraining for each model variant, signifi-
cantly raising storage and training costs, particularly
when dealing with models of elastic scales. There-
fore, our method resolves the limitations of the one-
size-fits-all approach seen in Pretraining-Finetuning.

Moreover, we initialize 22 descendant models on
ImageNet-1K, each with different configurations,
such as the number of attention heads Hd per layer
and the quantity of FFNs Ld in descendant mod-
els. As shown in Tab. 1, Cluster-Learngene swiftly
initializes models of varying scales and proves com-
petitive in overall performance. For example, the
Small-scale descendant model with Hd = 6 and
Ld = 12 illustrates this point. Cluster-Learngene not only outperforms From-Scratch by 9.87% but
also manages to reduce 2× training times.

4.2.2 Efficiently Initializing Large Models on ImageNet

The results in Fig. 4 reveal that Cluster-Learngene outperforms Pretraining-Finetuning with fewer
inherited parameters. For example, in the case of Small-scale descendant models, Cluster-Learngene
inherits only 15.1M parameters and attains a performance of 78.43%, while Pretraining-Finetuning
with 18.0M parameters achieves less than 75%. These results demonstrate the advanced initialization
ability of Cluster-Learngene, as the clustered learngene retains the critical generalizable knowledge.

4.2.3 Initialization Results on Different Downstream Tasks

We conduct a comparative analysis of our approach for initializing descendant or downstream
models, as follows: (i) Pretraining-Finetuning: This approach pre-trains DeiT on ImageNet and

‡Please see Appendix A.6 for more analysis.

7

Figure 3: Initializing descendant models of elastic scales. “L6/9/12" denote descendant models
with 6, 9, and 12 layers, respectively. For a fair comparison, the downstream models in Pretraining-
Finetuning inherit parameters from 12 layers of the pre-trained model, with the inherited number
of attention heads matching those in Cluster-Learngene. We fine-tune 50 epochs for all models. In
(a), the hyperparameter ω takes values ranging from 1 to 1

8 (i.e., the number of attention heads in
descendant models is eight times that of the ancestry model). In (b), ω ranges from 2 to 1

4 . Continuing
this pattern, in (c), ω ranges from a maximum of 4 to a minimum of 1

2 .

Figure 4: Efficiently initializing large models on ImageNet. “Front/middle/last" refer to inheriting
parameters from the front, middle, or last 10 layers of a pretrained model to initialize 12-layer
descendant models. All approaches are fine-tuned for 50 epochs. “I-Params” means the number of
Inherited parameters in the downstream/descendant models, measured in MB.

2.6× Speedup4.0× Speedup
3.0× Speedup

4.0× Speedup

Figure 5: Faster convergence. Different points represent results for varying epochs and the hyperpa-
rameter ω is set to 1.0 for our method.

Table 2: DeiT-Small Results on downstream datasets. ↑ represents the performance improvement
achieved by Cluster-Learngene, when compared to the best method excluding Pretraining-Finetuning.
All results are derived from the 6-layer downstream models.

Method I-Params iNat-2019 Food-101 Flowers Cars CIFAR-10 CIFAR-100 CUB-200

Pretraining-Finetuning 10.5 68.48 87.8 91.13 86.81 97.59 84.43 78.13
From-Scratch 0 50.79 74.64 72.91 71.63 92.49 73.32 62.75
Heuristic-Learngene 5.6 53.21 77.09 82.84 81.52 93.12 78.13 72.64
Weight-Transformation 10.5 59.83 81.79 86.37 85.01 93.67 75.98 70.28
Auto-Learngene 10.5 59.92 80.25 87.02 84.98 93.58 79.49 73.31
Cluster-Learngene 7.5 71.09(↑11.17) 89.53(↑7.74) 92.31(↑5.29) 89.87(↑4.86) 97.79(↑4.12) 85.38(↑5.89) 75.98(↑2.67)

subsequently fine-tunes the entire model on downstream tasks. (ii) From-Scratch: We commence
with a randomly initialized DeiT model on the downstream datasets. (iii) Heuristic-Learngene [49]:
This strategy involves extracting the last six layers from a DeiT model pre-trained on ImageNet
and then stacking them with randomly initialized lower layers to construct a new model. (iv)
Weight-Transformation [63]: This method employs Weight Transformation to pre-train DeiT on
ImageNet, followed by fine-tuning the entire model to adapt it to specific downstream tasks. (v)
Auto-Learngene [50]: The first six layers are extracted from the DeiT and then stacked with randomly
initialized higher layers to initialize the descendant models.

As illustrated in Tab. 2, our Cluster-Learngene significantly outperforms both From-Scratch and
Weight-Transformation. When compared to other Learngene methods, such as Auto-Learngene,
Cluster-Learngene exceeds by 11.17% on the iNaturalist-2019 (iNat-2019). These results highlight
the superior capability of Cluster-Learngene in efficiently initializing descendant models. Moreover,
on six datasets, the performance of Cluster-Learngene outperforms that of Pretraining-Finetuning,
where the entire model is fine-tuned. This phenomenon can be attributed to the more universally
significant knowledge within learngene, allowing it to adapt effectively to various downstream tasks.

8

4.2.4 Faster Convergence

We provide a detailed comparison of training efficiency between our approach and From-Scratch
on ImageNet. As shown in Fig. 5 (a), Cluster-Learngene requires only 4.0 × less training overhead
compared to From Scratch on Small-scale descendant models. A key advantage of our approach is
that descendant models initialized with the learngene achieve faster convergence, owing to a superior
initialization point.

4.2.5 Higher Data Efficiency
Table 3: Initialization of descendant mod-
els with diverse training samples. The sym-
bol ↑ denotes the performance gap between
our approach and the From-Scratch method.
Cluster-Learngene initializes the descendant
model over 50 training epochs. In contrast,
From-Scratch results are achieved after 300
training epochs.

Training data From-Scratch Cluster-Learngene

100% IN-1K 81.80 78.43
50% IN-1K 74.70 76.41(↑1.71)
25% IN-1K 65.73 72.82(↑7.09)

We further conduct experiments on Base-scale de-
scendant models over different percentages of train-
ing data from ImageNet-1K (IN-1K). As shown in
Tab. 3, while our method does not outperform the
From-Scratch on the entire dataset, its performance
exhibits greater stability as the amount of training
data decreases. For instance, with only 25% of the
training data, Cluster-Learngene outperforms From-
Scratch by 7.09%, while requiring only 1

6 of the
training cost. This higher data efficiency of our
method is attributed to the significant knowledge
within the learngene, which helps descendant mod-
els mitigate overfitting, especially in scenarios with limited data.

4.3 Analysis and Ablation

In this section, we provide further analysis and ablation of Cluster-Learngene. § Unless otherwise
specified, we conduct experiments on CIFAR-100 and use Small-scale DeiT as the ancestry model.

4.3.1 Comparison of the Clustering Method

Additionally, we compare the results of k-means clustering [20] of attention heads with cluster
centroids (k) set at 1, 2, and 3. Tab. 4 shows that Cluster-Learngene not only outperforms in
clustering efficiency but also adaptively adjusts the count of cluster centroids for each model layer,
unlike k-means that requires predefined the numbers of cluster centroids.
Table 4: Comparison of the clustering method. All results are from the 6-layer downstream models.

k-means, k = 1 k-means, k = 2 k-means, k = 3 Ours

80.12 81.02 81.41 85.38

4.3.2 Comparison of Priority Weight-sharing

In Table 5, our priority weight-sharing is compared against three alternative weight-sharing methods:
following the original sequence of heads, by ascending d̃ of heads, and by descending d̃ of heads.
The results validate the effectiveness of priority weight-sharing, as our method accounts for the fact
that the larger the cluster a head belongs to, the richer the critical knowledge it represents.
Table 5: Comparison of priority weight-sharing. All results are derived from the 6-layer down-
stream models.

Origin Increasing d̃ Decreasing d̃ Ours

83.98 84.24 84.63 85.38

4.3.3 Qualitative Visualization

We illustrate attention representations in Fig. 6 to explain which significant knowledge is inherited by
learngene. To clarify the visualization, we apply a power exponent of γ = 0.25. In the first layer of
the ancestry model, a head centroid is clustered from heads 1, 2, 4, and 5 to initiate the head 1 in

§Please see Appendix A.9 and A.10 for more visualization.

9

F
ir
s
t

la
y
e

r

o
f

a
n

c
e

s
tr

y

m
o

d
e

l

L
a

s
t

la
y
e

r

o
f

a
n

c
e

s
tr

y

m
o

d
e

l

First layer of

descendant

model

Last layer of

descendant

model

Figure 6: Visualization of attention representations (197 × 197). We perform the following
normalization operation on all attention heads A of the ancestry model and descendant model:(

Ai,j

255

)γ

. The descendant model is trained for 50 epochs, and ω is set to 1
4 .

the descendant model, and so forth. Then, weight-sharing is applied to expand head centroids, e.g.,
sharing twice to initialize the descendant model.

In the first layer, heads 1, 2, 4, and 5 with similar semantics form the largest cluster, mainly focusing
on attention patterns along the main diagonal. Additionally, heads 3 and 4 present distinct semantics,
with head 4 reflecting more abstract and high-level features akin to the final layer. Thus, the first
learngene layer integrates three principal representation patterns from the ancestry model. In contrast,
the representations in the final layer of the ancestry model exhibit significant repetition, leading to
the clustering of a single-head centroid for initializing the attention heads of the descendant model.

5 Conclusion

We propose Cluster-Learngene to adaptively cluster attention heads, extracting head centroids and
FFN centroids as the learngene. Subsequently, we adopt the priority weight-sharing of head centroids
for varying number of attention heads and leverage learnable parameters to expand the FFN centroids
into multiple FFNs, enabling adaptation to diverse downstream resource constraints. Extensive
experiments validate the efficiency and scalability of our initialization method.

Acknowledgments and Disclosure of Funding

This research was supported by the National Science Foundation of China (62125602, 62076063), the
Key Program of Jiangsu Science Foundation (BK20243012), the Fundamental Research Funds for the
Central Universities (2242024k30035) and the Big Data Computing Center of Southeast University.

References
[1] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm: A

comprehensive survey and performance evaluation. Electronics, 9(8):1295, 2020.

[2] Devansh Arpit, Víctor Campos, and Yoshua Bengio. How to initialize your network? robust initialization
for weightnorm & resnets. Advances in Neural Information Processing Systems, 32, 2019.

[3] Panthadeep Bhattacharjee and Pinaki Mitra. A survey of density based clustering algorithms. Frontiers of
Computer Science, 15:1–27, 2021.

[4] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative components
with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part VI 13, pages 446–461. Springer, 2014.

10

[5] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

[6] Adil Abdu Bushra and Gangman Yi. Comparative analysis review of pioneering dbscan and successive
density-based clustering algorithms. IEEE Access, 9:87918–87935, 2021.

[7] Shiming Chen, Ziming Hong, Guo-Sen Xie, Wenhan Yang, Qinmu Peng, Kai Wang, Jian Zhao, and Xinge
You. Msdn: Mutually semantic distillation network for zero-shot learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 7612–7621, June 2022.

[8] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hierarchical
clustering: Objective functions and algorithms. Journal of the ACM (JACM), 66(4):1–42, 2019.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In
International Conference on Learning Representations, 2021.

[12] Timnit Gebru, Jonathan Krause, Yilun Wang, Duyun Chen, Jia Deng, and Li Fei-Fei. Fine-grained car
detection for visual census estimation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[13] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

[14] Greg Hamerly and Charles Elkan. Learning the k in k-means. Advances in neural information processing
systems, 16, 2003.

[15] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural networks:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7436–7456, 2021.

[16] Boris Hanin and David Rolnick. How to start training: The effect of initialization and architecture.
Advances in Neural Information Processing Systems, 31, 2018.

[17] Uri Hasson, Samuel A Nastase, and Ariel Goldstein. Direct fit to nature: an evolutionary perspective on
biological and artificial neural networks. Neuron, 105(3):416–434, 2020.

[18] Haoyu He, Zizheng Pan, Jing Liu, Jianfei Cai, and Bohan Zhuang. Efficient stitchable task adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
28555–28565, June 2024.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[20] Abiodun M Ikotun, Absalom E Ezugwu, Laith Abualigah, Belal Abuhaija, and Jia Heming. K-means
clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data.
Information Sciences, 622:178–210, 2023.

[21] ZHAO Yongxin ZHANG Shenglin GONG Zican JI Yuhe, HAN Jing. Log anomaly detection through
gpt-2 for large scale systems. ZTE Communications, 21(3):70, 2023.

[22] Runhao Jiang, Jie Zhang, Rui Yan, and Huajin Tang. Few-Shot Learning in Spiking Neural Networks by
Multi-Timescale Optimization. Neural Computation, 33(9):2439–2472, 08 2021. ISSN 0899-7667. doi:
10.1162/neco_a_01423.

[23] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek. Density-based clustering. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 1(3):231–240, 2011.

11

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[25] Lujun Li, Peijie, Zhenheng Tang, Xiang Liu, Qiang Wang, Wenhan Luo, Wei Xue, Qifeng Liu, Xiaowen
Chu, and Yike Guo. Discovering sparsity allocation for layer-wise pruning of large language models. In
NeuIPS, 2024.

[26] Wei Li, Lujun Li, Mark Lee, and Shengjie Sun. Als: Adaptive layer sparsity for large language models via
activation correlation assessment. In NeuIPS, 2024.

[27] Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng. Contrastive clustering. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 8547–8555, 2021.

[28] Shuxia Lin, Miaosen Zhang, Ruiming Chen, Xu Yang, Qiufeng Wang, and Xin Geng. Linearly decomposing
and recomposing vision transformers for diverse-scale models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

[29] Biao Liu, Ning Xu, and Xin Geng. Progressively selective label enhancement for language model alignment.
arXiv preprint arXiv:2408.02599, 2024.

[30] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 10012–10022, 2021.

[31] WANG Jiabo LIU Yang LUO Wenjian LIU Qinbo, JIN Zhihao. Msra-fed: A communication-efficient
federated learning method based on model split and representation aggregate. ZTE Communications, 20
(3):35, 2022.

[32] Xuran Meng and Jianfeng Yao. Impact of classification difficulty on the weight matrices spectra in deep
learning and application to early-stopping. J. Mach. Learn. Res., 24(1), March 2024. ISSN 1532-4435.

[33] Xuran Meng, Difan Zou, and Yuan Cao. Benign overfitting in two-layer relu convolutional neural networks
for xor data. In Forty-first International Conference on Machine Learning.

[34] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances in
neural information processing systems, 32, 2019.

[35] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

[36] ZOU Xiaojing DOU Yutao Albert Y. ZOMAYA NAN Yucen, FANG Minghao. A collaborative medical
diagnosis system without sharing patient data. ZTE Communications, 20(3):3, 2022.

[37] Zanlin Ni, Yulin Wang, Jiangwei Yu, Haojun Jiang, Yu Cao, and Gao Huang. Deep incubation: Training
large models by divide-and-conquering. 2022.

[38] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of
classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages
722–729. IEEE, 2008.

[39] Zizheng Pan, Jianfei Cai, and Bohan Zhuang. Stitchable neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 16102–16112, June 2023.

[40] Yingzhe Peng, Chenduo Hao, Xu Yang, Jiawei Peng, Xinting Hu, and Xin Geng. Learnable in-context
vector for visual question answering. arXiv preprint arXiv:2406.13185, 2024.

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 8748–8763. PMLR, 2021.

[42] Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do
vision transformers see like convolutional neural networks? Advances in Neural Information Processing
Systems, 34:12116–12128, 2021.

[43] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. Dbscan revisited, revisited:
why and how you should (still) use dbscan. ACM Transactions on Database Systems (TODS), 42(3):1–21,
2017.

12

[44] Chongjie Si, Zhiyi Shi, Shifan Zhang, Xiaokang Yang, Hanspeter Pfister, and Wei Shen. Unleashing the
power of task-specific directions in parameter efficient fine-tuning. arXiv preprint arXiv:2409.01035, 2024.

[45] Kiat Chuan Tan, Yulong Liu, Barbara Ambrose, Melissa Tulig, and Serge Belongie. The herbarium
challenge 2019 dataset. arXiv preprint arXiv:1906.05372, 2019.

[46] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference on
machine learning, pages 10347–10357. PMLR, 2021.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[48] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

[49] Qiu-Feng Wang, Xin Geng, Shu-Xia Lin, Shi-Yu Xia, Lei Qi, and Ning Xu. Learngene: From open-world
to your learning task. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages
8557–8565, 2022.

[50] Qiufeng Wang, Xu Yang, Shuxia Lin, and Xin Geng. Learngene: Inheriting condensed knowledge from
the ancestry model to descendant models. arXiv preprint arXiv:2305.02279, 2023.

[51] Qiufeng Wang, Xu Yang, Haokun Chen, and Xin Geng. Vision transformers as probabilistic expansion
from learngene. In Forty-first International Conference on Machine Learning, 2024.

[52] Yu Wang, Xinjie Yao, Pengfei Zhu, Weihao Li, Meng Cao, and Qinghua Hu. Integrated Heterogeneous
Graph Attention Network for Incomplete Multi-modal Clustering. International Journal of Computer
Vision, 132(9):3847–3866, September 2024. ISSN 1573-1405. doi: 10.1007/s11263-024-02066-y.

[53] Yulin Wang, Rui Huang, Shiji Song, Zeyi Huang, and Gao Huang. Not all images are worth 16x16 words:
Dynamic transformers for efficient image recognition. Advances in neural information processing systems,
34:11960–11973, 2021.

[54] Yongrong Wu, Jingyu Lin, Houjin Chen, Dinghao Chen, Lvqing Yang, and Jianbing Xiahou. A graph-
transformer network for scene text detection. In International Conference on Intelligent Computing, pages
680–690. Springer, 2023.

[55] Shiyu Xia, Miaosen Zhang, Xu Yang, Ruiming Chen, Haokun Chen, and Xin Geng. Transformer as linear
expansion of learngene. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pages 16014–16022, 2024.

[56] Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang, Han Hu, and Yue Cao. Revealing the dark secrets
of masked image modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14475–14485, 2023.

[57] Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and Xinchao Wang. Deep model reassembly.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 25739–25753. Curran Associates, Inc., 2022.

[58] Xu Yang, Yingzhe Peng, Haoxuan Ma, Shuo Xu, Chi Zhang, Yucheng Han, and Hanwang Zhang. Lever lm:
Configuring in-context sequence to lever large vision language models. arXiv e-prints, pages arXiv–2312,
2023.

[59] Yao Yao, Zuchao Li, and Hai Zhao. Sirllm: Streaming infinite retentive llm. arXiv preprint
arXiv:2405.12528, 2024.

[60] Hua Yuan, Yu Shi, Ning Xu, Xu Yang, Xin Geng, and Yong Rui. Learning from biased soft labels.
Advances in Neural Information Processing Systems, 36, 2023.

[61] Wei Yuan, Hongzhi Yin, Tieke He, Tong Chen, Qiufeng Wang, and Lizhen Cui. Unified question generation
with continual lifelong learning. In Proceedings of the ACM Web Conference 2022, WWW ’22, page
871–881, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450390965. doi:
10.1145/3485447.3511930.

[62] Anthony M Zador. A critique of pure learning and what artificial neural networks can learn from animal
brains. Nature communications, 10(1):1–7, 2019.

13

[63] Jinnian Zhang, Houwen Peng, Kan Wu, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Minivit:
Compressing vision transformers with weight multiplexing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12145–12154, 2022.

[64] Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-distillation: Towards efficient and compact neural
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(8):4388–4403, 2021.

[65] Pengfei Zhu, Xinjie Yao, Yu Wang, Binyuan Hui, Dawei Du, and Qinghua Hu. Multi-view deep subspace
clustering networks. arXiv preprint arXiv:1908.01978, 2019.

14

Dataset # Total #Training #Validation #Testing #Classes

Oxford Flowers [38] 8,189 1,020 1,020 6,149 102
CUB-200-2011 [48] 11,788 5,394 600 5,794 200
Stanford Cars [12] 16,185 7,329 815 8,041 196

CIFAR10 [24] 65,000 50,000 5,000 10,000 10
CIFAR100 [24] 65,000 50,000 5,000 10,000 100

Food101 [4] 101,000 75,750 25,250 0 101
iNaturalist-2019 [45] 268,243 265,213 3030 / 1010

Table 6: Characteristics of the downstream datasets

A Appendix / supplemental material

A.1 Mean Attention Distance in DeiT-S and DeiT-Ti

Fig. 7 illustrates the mean attention distance for two other variants of DeiT. In both variants, the
lower layers exhibit a dual focus on both local and global aspects, resulting in a relatively sparse
distribution of attention heads. Conversely, the higher layers prioritize the global context, leading to
a more compact distribution of attention heads. Importantly, many attention heads in these layers
exhibit repetitive functionality, contributing to weight redundancy. In the process of FFN clustering,
the shallowest layers are preserved as the FFN centroids across different configurations: in DeiT-Tiny,
this applies to layers (2,3) and (11,12); in DeiT-Small, to layers (10,11,12); and in DeiT-Base, to
layers (7,8) and (10,11,12).

Figure 7: The distribution density of attention heads across the different layers of the ancestry model,
which employs the DeiT-S and DeiT-Ti [46].

A.2 Downstream Datasets

Tab. 6 presents the details of all downstream tasks.

A.3 Projection Layer

According to the adjustments in the number of attention heads, the weights WO of the projection
layer are also proportionally pruned or expanded with the hyperparameter ω and then inherited by

15

3.3× Speedup
4.0× Speedup

Figure 8: Faster convergence. Different points represent results for varying epochs and the hyperpa-
rameter ω is set to 1.0 for our method.

the descendant models. Additionally, we directly inherit the weights of layer normalization, patch
embeddings, and position embeddings in the ancestry model, which constitute only a small fraction
of all weights.

A.4 Faster Convergence

We provide a detailed comparison of training efficiency on ImageNet for the Tiny-scale descendant
models. As shown in Fig. 8 (b), Cluster-Learngene requires only 4.0 × less training overhead
compared to From Scratch on Small-scale descendant models. A key advantage of our approach is
that descendant models initialized with the learngene achieve faster convergence, owing to a superior
initialization point.

A.5 Ablation on the Selection of Head Centroids

We conduct an ablation to assess whether inheriting parameters from the nearest module to the cluster
centroid or averaging parameters after clustering heads and FFNs is more effective. Table 7 shows
Cluster-Learngene excelling when inheriting from the closest heads/FFNs to the centroid, a logical
approach as these modules aptly represent similar semantics within a cluster.

MSA FFN Acc (%)

average average 85.12
argmin average 84.29
average argmin 84.76
argmin argmin 85.38

Table 7: Ablation on the selection of head centroids. All results are derived from the 6-layer
downstream models. we conduct experiments on CIFAR-100 and use DeiT-Small as the ancestry
model.

A.6 Ablation on ε

Table 8 shows the results for different values of ε. ε = 1 implies no FFN clustering, potentially
causing negative transfer. ε = 100 means clustering all FFNs in adjacent layers with identical
head centroid counts, resulting in an excessive cluster of FFNs and subsequent degradation in the
performance of initialized descendant models. Our Cluster-Learngene (ε = 10) strikes a good balance
between these issues.

ε = 1 ε = 10 ε = 100

85.27 85.38 80.45
Table 8: Ablation on ε. All results are derived from the 6-layer downstream models.

16

Model Decrementing Incrementing

Tiny 76.56 78.01
Small 79.47 81.29
Base 80.18 81.65

Table 9: Increment or decrement the count of attention heads. “Decrementing” denotes halving
the number of attention heads in the first four layers, reducing them by a quarter in the middle
four layers, and maintaining them in the last four layers relative to the ancestry model. Conversely,
“Incrementing” represents the opposite pattern.

A.7 Variation in the Count of Attention Head with Model Depth

Tab. 9 presents two scenarios where the number of attention heads varies across different layers.
Across all descendant model configurations, “Incrementing” consistently outperforms “Decrementing”
by a margin of 1.45% in terms of accuracy. These findings align with previous research [34, 30],
which suggests that setting more attention heads in higher layers can assist these layers in learning
more abstract and high-level feature representations.

A.8 Initializing Descendant Models of Elastic Scales

As illustrated in Fig. 3, Cluster-Learngene incurs a total of 300 + 50 * 10 = 800 epochs. In contrast,
pre-trained models require retraining a new model of elastic scale for 300 epochs each, followed by
fine-tuning. Considering only the training expense of new models, training 10 such models would
require at least 300 * 10 = 3000 epochs. Therefore, our algorithm can reduce the computational
cost by at least 3×. This efficiency demonstrates how our method overcomes the one-size-fits-all
limitation inherent in the Pretraining-Finetuning approach.

A.9 Limitations

The performance of descendant models within Cluster-Learngene heavily depends on the quality
of the ancestry model. If the ancestry model harbors inherent limitations or biases, these issues
may propagate and even amplify within the descendant models, potentially compromising their
effectiveness. Therefore, ensuring the robustness and fairness of the ancestry model is paramount for
maintaining the performance of descendant models in Cluster-Learngene.

17

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

18

Justification: Please see Section 3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please see Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

19

Answer: [Yes]
Justification: Please see Appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please see Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Please see Appendix.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

21

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please see the Experimtent Section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

22

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

	Introduction
	Related Work
	Methodology
	Preliminary
	Adaptively Learngene Clustering
	Density metric on attention heads
	Cluster for MSA
	Cluster for FFN

	Learngene Inheriting
	Expanding head centroids with priority weight-sharing
	Expanding FFN

	Experiments
	Experimental Setting
	Main Results of Model Initialization
	Initializing Descendant Models of Elastic Scales
	Efficiently Initializing Large Models on ImageNet
	Initialization Results on Different Downstream Tasks
	Faster Convergence
	Higher Data Efficiency

	Analysis and Ablation
	Comparison of the Clustering Method
	Comparison of Priority Weight-sharing
	Qualitative Visualization

	Conclusion
	Appendix / supplemental material
	Mean Attention Distance in DeiT-S and DeiT-Ti
	Downstream Datasets
	Projection Layer
	Faster Convergence
	Ablation on the Selection of Head Centroids
	Ablation on
	Variation in the Count of Attention Head with Model Depth
	Initializing Descendant Models of Elastic Scales
	Limitations

