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Abstract Federated learning is a distributed optimization algorithm that enables cooperatively training a machine
learning model on resource�limited client nodes. Such a decentralized model training approach does not require
data exchange from client devices to global servers, therefore protecting data privacy and enhancing the model’s
generalizability by training on heterogeneous data. In this work, we perform a reproducibility study of a recent paper
”Towards understanding biased client selection in federated learning” [1]. We reproduce the majority of the various
experiments to validate the claim of the original paper that a biased client selection strategy can significantly speed
up the training convergence of federated learning compared to a conventional random client selection strategy. In
addition to reproduction, we explored the performance of proposed algorithm with different hyperparameters. The
implemented code, training metrics, hyperparameters and resulted models are open-sourced on DagsHub for easy
reproduction.
Keywords Federated Learning, Reproducibility Study, Image Classification, Sentiment Analysis, Logistic Regression,
Multi-layer Perceptron.

1 Reproducibility Summary

1.1 Scope of Reproducibility
This study investigates the reproducibility of the paper ”Towards understanding biased
client selection in federated learning” by Yae Jee Cho, JianyuWang, andGauri Joshi. The
authors propose the Power‐of‐Choice algorithm, claiming it converges three times faster
with a 10% higher test accuracy compared to the baseline random selection algorithm.
Their experiments cover (a) quadratic model optimization, (b) logistic regression on a
synthetic dataset, (c) multi‐layer perceptron on FMNIST for image classification, and (d)
multi‐layer perceptron on the Senti140 dataset for text sentiment analysis.

1.2 Methodology
The paper offers pseudo‐code for the Power‐of‐Choice algorithm, but the supplemen‐
tary material lacks completeness and necessitates a multi‐server setup. We address this
by re‐implementing the code for most experiments, optimizing computation on a single
node for server‐client communication. Using a laptop CPU and Purdue’s cluster, we suc‐
cessfully reproduce key figures and explore performance improvements under varied
hyperparameters, particularly focusing on different learning rates and local iteration
numbers.

1.3 Results
Our federated learning experiments confirm the Power‐of‐Choice algorithm’s faster con‐
vergence than the random selection algorithm across tasks like quadratic optimization
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and logistic regression. These advantages persist with small learning rates, limited lo‐
cal iterations, and constrained communication rounds. Yet, the biased client selection
algorithm falters without these conditions, and in extreme scenarios, like large learning
rates and infinite rounds, the random selection algorithmoutperforms Power‐of‐Choice.
Our study outlines the pros and cons of biased client selection compared to the conven‐
tional random approach.

1.4 What was easy
The original paper provides a detailed description of the Power‐of‐Choice algorithm,
clearly outlining dataset information and training procedures. The supplementary ma‐
terial includes code that serves as a solid foundation for reproducibility studies.

1.5 What was difficult
Implementing the Power‐of‐Choice algorithm and its variants posed various challenges,
including the need for code adaptation from a distributed (original codebase) to a single
CPU/GPU environment (our implementation). Unspecified hyperparameters and incon‐
sistencies complicated experimental setups, while the biased client selection algorithm
exhibited less significant performance gains in specific experiments. Ambiguities in the
training loss specification further hindered direct result comparisons with the original
paper.

1.6 Communication with original authors
Efforts to contact the authors via email have seen limited success. Issues include dis‐
crepancies in results, unresolved queries about negative loss values in Figures 4 and 5
of the original paper, and a fewminor clarifications pertaining to their implementation.

2 Introduction

Federated learning is a distributed optimization algorithm that enables cooperatively
training a machine learning model on resource‐limited client nodes [2, 3, 4]. Such a de‐
centralizedmodel training approach does not require data exchange from client devices
to global servers [5], therefore protects data privacy [6] and enhances the generalizability
of the model by training on heterogeneous data. In the conventional federated learning
scenario, the model is locally trained for a few iterations on selected clients and the ag‐
gregating server periodically updates the global model based on local model updates.
The conventional federated learning algorithm relies on unbiased client selection for
the server model update, which requires excessive communication between the server
and clients [7]. In paper [1], the authors perform a comprehensive study of their pro‐
posed biased client selection algorithm, called Power‐of‐Choice (pow-d). The authors
demonstrate that biased client selection towards higher local loss yields faster conver‐
gence and higher test accuracy than unbiased random client selection. In addition, the
authors provide several variants of their algorithm to reduce the computation (cpow-
d) and communication (rpow-d) costs. The adaptive selection skew variant (adapow-d)
simultaneously increases the converging speed and minimizes the non‐vanish bias, en‐
hancing the robustness of the Power‐of‐Choice algorithm.

In this work, we study the reproducibility of the paper “Towards understanding biased
client selection in federated learning” [1] by Yae Jee Cho, Jianyu Wang and Gauri Joshi.
We aim to reproduce their federated learning experiments to verify the main claims
of the paper and perform additional experiments to further assess their proposed algo‐
rithm Power‐of‐Choice. Our contributions are:
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1. Developing modular implementation of the algorithm Power‐of‐Choice for client
selection in federated learning.

2. Reproducing majority of the experiments included in the main text of the original
paper given the resource constraints.

3. Performing ablation studies for Power‐of‐Choice algorithm under various hyper‐
paramters.

2.1 Scope of reproducibility
In the paper, the authors propose a client selection algorithm, called Power‐of‐Choice,
for federated learning where the idea is to select clients with higher losses for each com‐
munication round. With extensive machine learning experiments, the authors claim
that the Power‐of‐Choice algorithm converges faster and gives higher test accuracy than
the baseline random selection algorithm proposed in [2]. The authors perform 5 differ‐
ent experiments to support their claim for fast convergence of Power‐of‐Choice. In each
experiment where the high‐level task is classification, the model and dataset are altered
keeping the underlying algorithm consistent to show the efficacy of their algorithm un‐
der diverse domains. The experiments performed to support their claims include

1. Quadratic model optimization

2. Logistic regression on synthetic dataset

3. Multi‐layer perceptron on FMNIST [8] for image classification

4. Convolution Neural Network on CIFAR10 for image classification

5. Multi‐layer perceptron on Senti140 dataset[9] for text sentiment analysis

We perform all except (4) to verify their claim on faster convergence due to resource
constraints.

The remainder of the paper is organized as follows: Section 3 serves as a pre‐requisite
for federated learning and explains the proposed Power‐of‐Choicemethod in detail. Sec‐
tion 4 presents our strategy for conducting a reproducible study. Section 5 highlights the
experiments conducted in more detail. Finally, Section 6 concludes our main findings
from the paper based on our assessment.

3 Client Selection in Federated Learning

Consider a federated learning setup with K clients, where client k has local dataset Bk

containingDk data samples. The central aggregating server can communicate with the
clients and aims to minimize the collective loss F (w) on the whole dataset.

F (w) =
1∑K

k=1 Dk

k∑
k=1

∑
ξ∈Bk

f(w, ξ) =

K∑
k=1

pkFk(w) (1)

Here, f(w, ξ) is the loss function for sample ξ and parameter w. Fk = 1
|Bk|

∑
ξ∈Bk

f(w, ξ)

and Pk = Dk∑K
k=1 Dk

are the local objective function and the fraction of data for client k,
correspondingly.
The traditional algorithm to solve the above optimization task is federated averaging (Fe‐
dAvg)[2]. The algorithm breaks the training task into communication rounds. For each
communication round, the global server selects m = CK clients for training, where C
is the selection fraction between 0 and 1. The selected client set for t‐th communication
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round is S(t). Each selected client takes τ iterations of local statistical gradient descent
(SGD)[10, 11, 12, 13] and updates the new local model to the server. Finally, the server
updates the global model by aggregating the local model updates and broadcasting the
global model to the clients. The global model update for each communication round is:

w̄(t+1) = w̄(t) − ηtḡ
(t) = w̄(t) − ηt

m

∑
k∈S(t)

gk(w
(t)
k , ξ

(t)
k ) (2)

where, w̄(t) is the global model parameter and ηt is the learning rate at the t−th commu‐
nication round.

RandomStrategy — In the above described algorithm, the strategy of client selection plays
a key role in the training performance. The conventional federated learning algorithm
applies an unbiased random selection strategy πrand: m clients are randomly sampled
from totally K clients with the probability of pk to construct S(t). πrand guarantees unbi‐
ased converges, however, shows slow converge speed for heterogeneously distributed
client datasets, which is the case for practical implementation of federated learning[14,
15].

Power-of-Choice Strategy — To increase the convergence speed, the author used a biased
client selection strategy.

S(t+1) = argmax
k∈S

(t+1)
d

Fk(w̄
(t)) (3)

Here, S(t+1)
d is the d candidate clients set sampled without replacement from a total of

K clients with probability pk. Fk(w̄
(t)) is the local client loss. S(t+1) is constructed by

selecting m clients with the largest client loss. The author claims that this Power‐of‐
choice (πpow−d) algorithm can speed up the training convergence by training the model
on selected high loss yielding clients.

In addition to πpow−d, the authors proposed three variants algorithm to accommodate
practical considerations[16, 17, 18].

1. πcpow−d, saving computation cost by estimating local loss on a mini‐batch of the
client dataset.

2. πrpow−d, saving both computation and communication cost by updating accumu‐
lated average loss over local iterations.

3. πadapow−d, minimizing the bias by gradually reducing candidate client set until
d = m, which approaches the unbiased selection πrand.

4 Methodology

The authors of the paper provide pseudo‐code for the Power‐of‐Choice algorithm and
its variants. The code included in the supplementary material is not complete and re‐
quires the use of a multi‐server environment. Several important hyperparameters of
the experiments are not specified. In this work, we re‐implement the code for most of
the experiments. We run our code on laptop CPU and cluster to validate the claims of
the paper. We are able to reproduce figures 2, 3, 4, and 6 of the main text. In addition to
reproduction, we explore performance improvement of the Power‐of‐choice algorithm
for various hyperparameters. We found out that the improvement of convergence speed
from Power‐of‐Choice is more significant when the learning rate is small.
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4.1 Experiments
To validate the claims in the paper, the authors performed various federated learning
tasks on various models and datasets, as summarized below:

Experiment 1: Quadratic Model Optimization — In this task, the objective is to optimize over
a linear combination of quadratic functions F (w), wherein each constituent quadratic
function represents a loss function Fk(w) at client k. The quadratic functions are de‐
signed synthetically as further described in next section. Note that since we are directly
optimizing over mathematical functions, we don’t need data.

Experiment 2: Logistic Regression on Synthetic Data — In this task, a plain logistic regression
model is used for classification task in conjunction with a synthetically generated fed‐
erated dataset Synthetic(1,1) [19]. The data consists of 100 users (clients) and 10
classes with data distributed in a non‐iid manner. The loss function used is cross en‐
tropy.

Experiment 3: MLP based Image Classification — Similar to above task, this task aims to learn
a multi‐layer perception (MLP) model using FMNIST dataset [8] using a negative log‐
likelihood loss function. The data is heterogeneously split across users in a non‐iidman‐
ner using Dirichlet distribution (Dir(α)) where α controls the amount of heterogeneity
in the data split.

Experiment 4: MLP based Sentiment Analysis — As the name suggests, in this task, an MLP
model is trained on Twitter dataset [9] using a negative log‐likelihood loss function. The
data is inherently split among users and we randomly filter 314 users with more than 32
tweets for our experiment due to large userbase with imbalanced data.

All the hyperparameters and model specifications have been used as specified in the
original paper.

4.2 Computational requirements
The training experiment for quadratic optimization andMLP sentiment analysis are con‐
ducted on a laptop with Intel i7‐13700H CPU. The training experiment for MLP based
image classification and logistic regression are conducted on Purdue cluster. Our repro‐
ducibility study comes at an estimated total computational cost of 100 CPU hours. As
our experiment requires trainingmultiplemodels for over 500 epochs, the required long
CPU time make it impossible to record all training process with MLflow. For example,
it takes 3 CPU hours to record one training process for quadratic optimization and an
estimated 100 hours to record all the experiment for quadratic optimization. Most of
the CPU time are used for communication instead of computation. As a result, we only
record the most important federated learning experiment with MLflow.

5 Results

5.1 Quadratic Model Optimization
Quadratic model optimization is among the basic machine learning tasks and is an im‐
portant test‐bed for federated learning algorithms where the loss function is strongly
convex and smooth for statistical gradient descent. Our implementation of quadratic
model optimization tests the performance of the proposed federated learning algorithm
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under ideal conditions. We show that candidate number d for πpow−d algorithmcontrols
the trade‐off between convergence speed and bias.
For quadratic model optimization, the local objective function is a convex function:

Fk(w) =
1

2
wTHkw − eTkw +

1

2
eTkH

−1
k ek (4)

Here, Hk = hkI is a diagonal matrix and hk is sampled from uniform distribution
U(1, 20). ek is a randomly generated vector, acting as the client data. The client data
size pk follows power law distribution P (x; a) = axa−1, where a determines the hetero‐
geneity of the training data. The gradient descent update of local clients is given by

gk(w
(t)
k ) = Hkw

(t)
k − ek (5)

To reproduce the result shown in Figure 2 of the original paper, we applied the same
hyperparameters as the paper: τ = 2, ν = 5, η = 2 × 10−5 and record the global loss as
a function of communication round. For πadapow−d, d decreases by half from d = K to
d = m for every 5000 communication rounds. The produced result is shown as Figure
1‐4, which agrees well with the experiment result of the original paper.

As shown in Figure 1 and Figure 2, the convergence speed of πpow−d algorithm is faster
than πrand when the communication rounds are limited (e.g. when the communica‐
tion rounds are less than 5000). The convergence speed boosting is more significant for
larger d, which indicates larger candidate clients set and more biased selection strategy.
However, as the πpow−d algorithm includes biased sampling into the training process,
the global loss at the final convergence is larger than πrand, which indicates training
with unbiased data. When the communication rounds are large enough (e.g. when the
communication rounds are 15000), the global loss of πpow−d for larger d is larger than
πrand due to the large bias. Figure 4 shows the bias and convergence speed trade‐off for
different algorithms and different hyperparameters. In particular, candidate set num‐
ber d is a key parameter to tune the bias level of πpow−d algorithm.

To balance the convergence speed and final global loss of biased client selection algo‐
rithm, the author proposed adaptive client selection strategy (πadapow−d). As we men‐
tioned before, while larger d indicates larger bias and higher initial convergence speed,
smaller d leads to smaller final global loss. As d approaches m, the difference πpow−d

and πrand vanishes. πadapow−d gradually reduce d, taking advantage of the fast initial
convergence speed of biased selection algorithm and low final global loss of the unbi‐
ased selection algorithm. As a result, πadapow−d achieve better performance than πrand

for a wide selection of communication rounds.

To validate the performance of πadapow−d, we conducted federated learning experiment
for πrand, πpow−d with a small d and πadapow−d, shown in figure 3. At the limit of large
communication rounds, global loss of πrand is less than πpow−d with a small d by 2.5
orders of magnitude. At the same time, πadapow−d holds a constant advantage compared
to πrand for a large communication rounds regime from 5000 to 45000.

ReScience C 4.1 – 2023 6

https://rescience.github.io/


[Re] Towards Understanding Biased Client Selection in Federated Learning UNDER REVIEW

Figure 1. Quadraticmodel optimization. Global loss of 1500 communication rounds for three client
selection strategies: πrand, πpow−d, πadapow−d with C = 0.1. (a) shows the global loss during the
training process for the case ofK = 30 clients. (b) shows the same loss curve in log scale.

Figure 2. Quadraticmodel optimization. Global loss of 1500 communication rounds for three client
selection strategies: πrand, πpow−d, πadapow−d with C = 0.1. (a) shows the global loss during the
training process for the case ofK = 100 clients. (b) shows the same loss curve in log scale.

Figure 3. Quadratic model optimization. Global loss of 50000 communication rounds for three
client selection strategies: πrand, πpow−d, πadapow−d with C = 0.1. (a) shows the global loss dur‐
ing the training process for the case of K = 100 clients. (b) shows the global loss ratio between
πadapow−d and πrand. The loss of πadapow−d is 40% smaller than πrand for moderate communica‐
tion rounds from 5000 to 45000. However, after 45000 communication rounds, the results from
the two algorithms are similar.
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Figure 4. Quadratic model optimization. Bias vs Convergence speed for different algorithms and
hyperparameters. The random client selection algorithm show slower convergence speed but a
smaller bias than the base Power‐of‐Choice algorithm. For the same Power‐of‐Choice algorithm,
larger candidate set number d shows faster convergence speed but larger bias in the end.

Figure 5. Logistic regression on Synthetic(1, 1). Three client selection algorithms πrand, πpow−d

andπadapow−d are compared against the same federated learning taskwithK=30. The result agrees
well with Figure 3 of the original paper. There is no significant difference for the final test accu‐
racy.

5.2 Logistic regression on Synthetic federated dataset
For this experiment, a relatively simple logistic regressionmodel is trained on a synthet‐
ically generated federated dataset Synthetic(1,1) [19]. We use the same hyperpa‐
rameters as mentioned in the original paper for this experiment and found a very good
match with their results. The results are shown in Figure 5. These figures show the
faster convergence of the proposed Power‐of‐Choice‐d (pow‐d) method and also suggest
that a higher value of d leads to a slightly sub‐optimal solution as can be seen through
the increased gap between the loss values. The corresponding comparison of accuracy
values is shown in Figure 6.

5.3 MLP for image classification on FMNIST dataset
The authors also show the usefulness of their algorithm, not only on synthetic but real‐
world datasets. The dataset used is FashionMNIST and is split among 100 clients in a
non‐iid manner using Dirichlet Distribution (Dir(α)) where the parameter α controls
the degree of heterogeneity in the data. The task is that of image classification and the
model used for training is MLP with two hidden layers. However, we find a departure
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Figure 6. Logistic regression on Synthetic(1, 1). Test accuracy of three client selection algorithms
πrand, πpow−d and πadapow−d are compared against the same federated learning task with K=30.

Figure 7. MLP for image classification on FMNIST dataset. For πpow−d with K = 100, C = 0.03 and
varying d, learning rate η = 0.005. In our implementation, there is no significant difference in
both convergence speed and final test accuracy for different algorithms.

from our results for those claimed in the paper. Figure 7 shows the closest result we
could get for the same hyperparameters. We tried other values of learning rates but
none of them produced desired results. Our implementation seemed to work with a
synthetic dataset but when the dataset and model are switched to a real‐world use case,
the effectiveness of the proposed approach is not apparent. We find out that the random
sampling approach is equally better and all of them beat the accuracy values claimed
in the paper. We, however, see a slightly faster convergence than the random approach
but the margin is very minimal. Moreover, we don’t find a gap in the converged value
of accuracy for various approaches but the paper seems to show an appreciable differ‐
ence in them. We also test with reducing the learning rate to η = 0.001 but the results
(Figure 8) don’t seem to align with the original paper.

5.4 MLP for sentiment classification on Twitter dataset
Sentiment analysis predicts the emotional tone from texts, which is an widely used tech‐
nique to help companies obtain feedback from clients and improve their products and
services. Sentiment analysis algorithmcanbe applied for a variety of tasks such as brand
monitoring, market research, and campaign performance tracking. Here our imple‐
mentation shows that biased client selection strategy improves the convergence speed
of sentiment analysis in federated learning tasks.
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Figure 8. MLP for image classification on FMNIST dataset. For πpow−d with K = 100, C = 0.03 and
varying d, learning rate η = 0.001. In our implementation, the convergence speed from πpow−d is
higher than πrand. There is no significant difference in the final reached test accuracy or training
loss.

Figure 9. MLP for sentiment analysis Test accuracy as a function of communication round for
πpow−d, πafl, πrpow−d and πrand with learning rate η = 0.05. d = 32 is chosen for the πpow−d

algorithm.

We randomly select 314 users that have more than 32 tweets from the Twitter dataset.
The data of each user are sent to individual clients, which naturally sets the data het‐
erogeneity as each user has a different language habit/style. The heterogeneity across
the clients can be further increased by reducing the number of tweets criteria when se‐
lecting the users. For each user, the data includes tweet content (text) and sentiment
(positive and negative with label 0 and 1 respectively). Prior to the training, extensive
text processing techniques are applied to clean the text for sentiment analysis. The data
processing procedures including, tagging urls/users/emojis/numbers, removing punc‐
tuation, Stemming, etc. The cleaned tweet texts are embedded with a pretrained 200D
Glove embedding[20] as the input of themodel. Themulti‐layer perceptron (MLP)model
for sentiment analysis has three hidden layers with units 128, 86 and 30.

In the original manuscript, the author claims to use b = 32 with τ = 100 and η = 0.05.
However, in our implementation, the difference between πrand and πpow−d is negligible
using the same conditions, shown in figure 9. After conducting the experiments with
different hyper‐parameter combinations, we find that training with a smaller learning
rate such as η = 0.005 showsmore significant differences. From the test accuracy curve
shown in figure 10, we observe increased convergence speed for Power‐of‐Choice client
selection algorithm, which supports the claims of the paper.
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Figure 10. MLP for sentiment analysis Test accuracy as a function of communication round for
πpow−d, πafl, πrpow−d and πrand with learning rate η = 0.005. d = 32 is chosen for the πpow−d

algorithm.

6 Discussion

We performed comprehensive federated learning experiments to validate the claim of
the paper [1] that biased client selection strategy can speed up the convergence com‐
pared to random client selection. Our implementation confirms that this advantage is
valid under the condition of small learning rate, small local iterations, and limited com‐
munication rounds, which can be the case for a lot federated learning scenarios. We
conducted further federated learning experiments and show that when the above three
conditions are not met, the performance of Power‐of‐Choice degrades faster than the
simple random client selection strategy. The conclusion is valid from simple quadratic
optimization and logistic regression to complexMLP‐based image classification and sen‐
timent analysis tasks.

6.1 What was easy
The original paper describes the Power‐of‐Choice algorithm in detail. Information re‐
garding the dataset and training procedures are clearly stated. The code provided in the
supplementary material is a good starting point for the reproducibility study. Moreover,
the machine learning model involved in the experiments is small and can be trained on
a Laptop CPUwith our implementation, enabling testing of the proposed algorithmwith
different hyperparameters.

6.2 What was difficult
(i) In addition to the Power‐of‐Choice algorithm, the author also provides several varia‐
tionmodels, including computational‐efficient variant, communication‐ and computation‐
efficient variant, adaptive selection skew variant. The four algorithms are compared
against the random selection algorithm on five federated learning scenarios, leading to
tons of replication experiments. (ii) The code in supplementary material requires a dis‐
tributed system with multiple GPU/CPU, which is not available for most of researchers.
We have re‐implemented the code to make it work on a single CPU/GPU environment.
(iii) Some of the hyperparameters for the model are not specified in the paper or are not
consistent with the experiment result. (iv) The performance improvement of biased
client selection algorithm on image classification and sentiment analysis experiments
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is less significant compared to the original paper. (v) The training loss applied in the
original paper is not clearly specified and is different from conventional negative log‐
likelihood loss (NLL) for classification tasks. This make it difficult to directly compared
our results with that presented in the original paper.

6.3 Communication with original authors
We have tried reaching the authors through email but had very little communication.
We posed the problem of differing results, primarily starting from Figure 4 onwards
where all the methods (including the baseline) performed similar without any apprecia‐
ble different in terms of convergence rates according to their specified hyperparameter
configuration. Another major unresolved query was regarding the negative loss values
in the Figures 4, 5, etc. The author responded that they used negative log‐likelihood
(NLL) for loss function. To our knowledge, NLL function produces always produces
positive values given the input in terms of probability. We hope to hear back from the
authors soon for a better resolution.
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7 Appendix

Here Figure 11 and Figure 12 show examples of Fashion MNIST dataset and Twitter
dataset for image classification and sentiment analysis tasks, respectively.

Figure 11. FashionMNIST dataset [21]. The dataset consists of 60000 28×28 gray‐scale images from
10 classes. Each class contains around 6000 images. The heterogeneous data partition among
client is achieved with Dirichlet distributionDirK(α), where α controls data heterogeneity.
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Figure 12. Twitter dataset [9]. The dataset consists of 1600000 tweets with sentiment label. For
the federated learning sentiment analysis experiment, we select 314 users with more than 32/64
tweets record. The tweets for each user are naturally heterogeneous data for the clients.
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