
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUANTUM SPECTRAL OPERATOR LEARNING FOR
SOLVING PARTIAL DIFFERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Partial differential equations (PDEs) are central to modeling physical and engi-
neering systems. Operator learning approximates their solution operators, en-
abling fast inference after training across diverse problem instances and strong
generalization. While recent advances have proposed unsupervised methods
that mitigate the cost of data generation, classical neural network–based ap-
proaches remain computationally expensive for high-dimensional operators and
fine-resolution problems. To address these challenges, we propose a quantum–
classical hybrid framework for unsupervised spectral operator learning. Our ap-
proach predicts spectral coefficients using quantum circuits, with gate parameters
mapped from PDE instances (e.g., forcing functions or PDE parameters) via a
classical neural network. To improve efficiency and feasibility, we introduce a
training objective that requires fewer measurement repetitions than standard vari-
ational quantum linear solvers (VQLS). With this, we design shallower circuits
by replacing controlled-unitary gates with direct Pauli measurements, which in
turn allows grouping of commuting measurement operators for further reduction
in runtime. The objective also resolves the sign ambiguity inherent in standard
VQLS and guarantees recovery of the correct solution sign for PDEs. Over-
all, our framework reduces the computational cost and improves solution accu-
racy of VQLS, while also demonstrating the potential efficiency and scalabil-
ity advantages of quantum operator learning over classical machine learning ap-
proaches. We validate our framework on one- and two-dimensional reaction–
diffusion, Helmholtz, and convection–diffusion equations under diverse boundary
conditions, achieving relative errors below 1%.

1 INTRODUCTION

Solving partial differential equations (PDEs) lies at the heart of scientific computing, underpinning
advances in physics, engineering, and data-driven modeling. Despite decades of progress in nu-
merical analysis, solving complex PDEs remains computationally prohibitive, particularly in high-
dimensional domains or when fine spatial and temporal resolution is required. Traditional solvers,
while accurate, often incur costs that scale poorly with the problem size, motivating the exploration
of new algorithmic paradigms. While machine learning (ML) methods have been actively investi-
gated to address these challenges (Li et al., 2020; Lu et al., 2021b;a), quantum computing (QC) has
recently emerged as a promising alternative for improved efficiency and scalability (Kyriienko et al.,
2021; Ali & Kabel, 2023; Morales et al., 2025).

Among the prominent directions in ML-based PDE solving is operator learning, where the goal
is to approximate the mapping from PDE inputs—such as forcing terms, coefficients, or bound-
ary conditions—to the corresponding solutions. By directly learning this operator, models such as
the Fourier Neural Operator (FNO) (Li et al., 2020) and DeepONet (Lu et al., 2021a) enable fast
inference, thereby significantly reducing the computational cost of solving PDEs repeatedly in para-
metric or multi-query settings. In parallel, quantum counterparts of operator networks have been
proposed, such as quantum Fourier networks and quantum DeepONet variants (Jain et al., 2024;
Xiao et al., 2025). These operator networks have been applied to diverse scientific problems, from
fluid dynamics to material science, highlighting their potential as surrogates for expensive numeri-
cal solvers (Azizzadenesheli et al., 2024). However, the utility of operator networks comes with an

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

important limitation: they require large training datasets consisting of pre-computed PDE solutions.
Generating such labeled data typically demands repeated runs of high-resolution numerical solvers,
which can be prohibitively expensive, especially for nonlinear, multi-dimensional, or multi-physics
PDEs. This data bottleneck has motivated unsupervised operator networks, which bypass labeled
training data by embedding PDE structure into the learning objective (Li et al., 2021), including
spectral operator learning that minimizes residuals in coefficient space (Choi et al., 2023; 2024). Al-
though these methods eliminate the need for precomputation, classical algorithms based on neural
networks still suffer from high training costs, particularly for high-dimensional operators or large
basis expansions at high resolution.

To overcome these limitations, we propose a quantum-classical hybrid framework for unsupervised
spectral operator learning. Our method combines the flexibility of neural operator learning with
the efficiency of quantum linear solvers. Specifically, a classical neural network maps PDE in-
puts (e.g. forcing functions, PDE parameters, boundary conditions) to the parameters of a varia-
tional quantum circuit, while a quantum subroutine based on the Variational Quantum Linear Solver
(VQLS) (Bravo-Prieto et al., 2023) prepares quantum states encoding spectral coefficients of the
PDE solution. To enhance efficiency of VQLS, we design a novel training loss based on overlap of
two quantum states, equipped with commutativity-aware Pauli measurement grouping. Compared
to existing VQLS methods, it reduces the number of required Pauli observables to be measured from
O(K2(logK)2) to O(K logK), where K = Nd, thus substantially enhancing training scalability
with growing system size N and spatial dimension d.

We validate our framework on a range of benchmark PDEs, including one- and two-dimensional
reaction–diffusion, Helmholtz, and convection–diffusion equations with Dirichlet and Neumann
boundary conditions. Across all experiments, the method achieves relative errors below 1% while
demonstrating stable convergence. By eliminating the data-generation bottleneck and enabling gen-
eralization across PDE families without re-optimization, our framework offers a practical pathway
for integrating quantum devices into PDE operator learning.

2 PRELIMINARIES AND RELATED WORKS

Spectral Operator Learning We start by considering the reaction–diffusion equation defined on
a bounded domain Ω ⊂ Rn, subject to boundary conditions, with a PDE parameter ϵ > 0 and an
external forcing term f :

−ϵ∆u+ u = f, x ∈ Ω

B(u) = 0, x ∈ ∂ Ω
(1)

where B represents a boundary operator, including Dirichlet, Neumann, and mixed boundary con-
ditions. This example corresponds to the class of second-order elliptic PDEs, which also includes
important models such as the Helmholtz and convection–diffusion equations. Thus, while we illus-
trate our method on the reaction–diffusion case for clarity, the formulation remains fully general.
For the one-dimensional domain I = [−1, 1] ⊂ R, the Legendre–Galerkin method provides an
approximation to the solution u in the form of û:

û(x) =

N−2∑
k=0

α̂kϕk(x), (2)

where the basis functions ϕk = Lk + akLk+1 + bkLk+2 are given by a compact linear combination
of Legendre polynomials {Lk}, and α̂ := (α̂0, . . . , α̂N−2) represents the vector of their coefficients.
Here, the coefficients ak and bk are chosen to strongly enforce the exact boundary conditions, in-
cluding Dirichlet, Neumann, and mixed types. Inspired by the weak formulation, the unsupervised
Legendre–Galerkin neural network (ULGNet) proposed by (Choi et al., 2023; 2024) trains a neu-
ral network, parameterized by weights w, to predict the spectral coefficients α̂ of the approximate
solution û from multiple forcing function inputs f (i), i = 1, . . . , D, using the following loss:

LULGNet(w) =

D∑
i=1

N−2∑
k=0

∣∣∣∣−ϵ∫
I

û(i)xx ϕk dx+

∫
I

û(i) ϕk dx−
∫
I

f (i) ϕk dx

∣∣∣∣2

=

D∑
i=1

∥(−ϵS +M)α̂(f (i);w)− F (i)∥22

(3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where F (i) is the forward transform vector of the i-th forcing function and ∥ · ∥2 represent the L2

norm. Here, the spectral matrix A = −ϵS +M is composed of the stiffness matrix S and the mass
matrix M , which are diagonal and symmetric penta-diagonal, respectively. A complete derivation
of the weak formulation together with the exact entries of the matrices S and M is presented in
Appendix A.2. More generally, the size of the spectral matrix A is K = (N − 1)d, growing expo-
nentially with d and reflecting the curse of dimensionality inherent in spectral methods. Utilizing this
matrix, the residual loss is computed to guide the learning process. Unlike physics-informed neural
networks (PINNs) (Raissi et al., 2019), which typically learn a single instance, ULGNet leverages
the residual loss to learn and predict across multiple instances. By leveraging the basis functions of
spectral methods, the predicted solution exactly satisfies various boundary conditions. In general,
this framework enables the neural network to take not only external forcing functions, but also PDE
parameters and boundary conditions as inputs.

VQLS Given a linear system Ax = b, where x ∈ RK is the solution vector, the variational
quantum linear solver (VQLS) (Bravo-Prieto et al., 2023) is one of the most widely used approaches
to solve such systems using variational quantum algorithms. In this framework, the matrix A ∈
RK×K is expressed, via a Pauli decomposition, as a linear combination of Pauli operators:

A =

L∑
l

clAl, (4)

where cl denotes the coefficient corresponding to the Pauli basis element Al. The goal is to find a
quantum state |x⟩ such that for the normalized right-hand side b, A|x⟩/∥A|x⟩∥2 = |b⟩ = b/∥b∥2.
Here, |x⟩ = V (θ)|0⟩ with V (θ) a parameterized quantum circuit optimized variationally. In VQLS,
the loss function is defined in terms of the squared magnitude of the inner product (i.e., the fidelity)
as

LVQLS(global)(θ) = 1−
∣∣∣∣ ⟨b|A|x⟩∥A|x⟩∥2

∣∣∣∣2 = 1−
∑L

l,l′ c
∗
l′cl⟨0|V (θ)A†

l′ |b⟩⟨b|Al|V (θ)|0⟩∑L
l,l′ c

∗
l′cl⟨0|V (θ)|A†

l′Al|V (θ)|0⟩
. (5)

Due to the double summation over l and l′, the number of Pauli measurements required via the
Hadamard test becomes substantial, scaling as O(L2). Moreover, since it relies on a fidelity loss
based on the squared magnitude, the standard VQLS framework ignores the relative phase and thus
discards the solution’s sign information, potentially causing issues in PDE applications.

Related Works Many studies have applied the VQLS framework to PDEs, but most efforts have
been limited to relatively simple cases such as the Poisson and heat equations (Liu et al., 2021; 2022;
Trahan et al., 2023; Ali & Kabel, 2023). Other works have focused on improving the practicality
of VQLS and broadening its scope of applications (Turati et al., 2024; Pellow-Jarman et al., 2023;
Patil et al., 2022; Pellow-Jarman et al., 2021; Surana & Gnanasekaran, 2024; Hosaka et al., 2023;
Gnanasekaran & Surana, 2024). Moreover, there has been no attempt to generalize PDE solutions in
a multi-instance setting using quantum variational algorithms, rather than being limited to a single
forcing term.

3 METHODOLOGY

3.1 MODEL ARCHITECTURE

Building on VQLS frameworks, we introduce the neural variational quantum linear solver
(NVQLS), a hybrid variational quantum algorithm. NVQLS employ a classical neural network to
predict spectral coefficients by mapping multiple data instances to circuit parameters and optimiz-
ing them via residual loss minimization. We further modify the loss structure and implementation
scheme of VQLS, improving computational efficiency and mitigate the problem of local minima.
Figure 1 illustrates an overview of our framework.

We simplify the formulation by defining A = −ϵS +M ∈ R(N−1)×(N−1) in Equation 3, yielding
the linear system Aα = F , where F is the forward transform of the forcing f . This system is solved
by our hybrid quantum model NVQLS (denoted h), which maps f ∈ RN+1 to α̂ = h(f) ∈ RN−1,
then used in Equation 2 to construct the approximate solution û. Inspired by VQLS, we employ a
parameterized circuit V (θ) to prepare |α̂⟩ = V (θ)|0⟩, with θ optimized as a function of f subject to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

PDE Instances

Numerator

Denominator

Angle NetworkWeak Formulation

Figure 1: Overview of the proposed NVQLS framework. A classical network g maps the input
instance f to circuit parameters θ = g(f ;w); the parameterized quantum circuit V (θ) prepares
|α⟩. Training minimizes the overlap loss with A =

∑
l clAl. The numerator and denominator are

estimated via Pauli measurements with commuting-term grouping to reduce shot complexity. After
convergence, we rescale α̂ = (∥F∥⟩/∥A|α̂⟩∥) |α̂⟩ and reconstruct the solution û from α̂.

A|α̂⟩/∥A|α̂⟩∥2 = F/∥F∥2. In general, for dimension d, the number of qubits n is determined by
2n = (N − 1)d, where N denotes the number of basis functions (or collocation points).

Neural Embedding for Multi-instance Training In our method, the circuit parameters θ of V (θ)
are produced by an angle network g, a classical neural network parameterized by trainable weights
w, which maps the input forcing function f to θ = g(f ;w). Consequently, the variational circuit
can be written as

V (θ) = V (g(f ;w)) . (6)
By leveraging the expressive power of the classical neural network, our method efficiently finds
the optimal circuit paramters θ so that the model can generalize effectively across multiple inputs
{f (i)}Di=1. As the ansatz V (θ), we used a strongly entangling circuit (Schuld et al., 2020) and
a hardware-efficient RY ansatz (Kandala et al., 2017), with parameters scaling in the number of
qubits. The classical network g employed fully connected layers. Further architectural details are
given in Appendix A.3.

Overlap Cost Function Unlike the original VQLS, which uses the squared magnitude of the
inner product (i.e., fidelity) as in Equation 5, our method directly employs the real part of the inner
product. We call this the overlap cost function. The resulting refined loss function is then defined
as:

LNVQLS(w) =
1

D

D∑
i=1

1−
∑L

l=1 Re
(
⟨F (i)|Al|α̂(f (i);w)⟩

)√∑L
l,l′=1 ⟨α̂(f (i);w)|A

†
l′Al |α̂(f (i);w)⟩

 , (7)

where D represents the number of data instances f (i), and |α̂(f (i);w)⟩ = V (g(f (i);w))|0⟩ is ex-
pressed in a simplified notation. This overlap cost function replaces one of double summations in the
original VQLS with a single summation over the real part of expectation values, significantly reduc-
ing the number of required circuit measurements and improving computational efficiency. Moreover,
unlike the original VQLS loss, which discards the sign information of solutions, the overlap loss
captures the relative phase between two quantum states, making it physically meaningful in various
PDE settings. For training stability, we also utilize L̂NVQLS(w) which is obtained by multiplying
the denominator and squaring with details in Appendix A.3.

Implementation Scheme Unlike the original VQLS implementation, which employs the
Hadamard test for both the numerator and the radicand in the denominator in Equation 5, our con-
tribution lies in a novel method for implementing the cost function. This approach substantially

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Training Computational complexity of as a function of the matrix size K = Nd where N
is the number of basis and d represent the dimension of PDEs.

ULGNet VQLS NVQLS (Ours)

Complexity measure Arithmetic operations Pauli measurements Both measures
Neural embedding O(K2) - O(K logK)
Loss evaluation O(K) O(K2(logK)2) O(K logK)
Total complexity O(K2) O(K2 log2K) O(K logK)

reduces the computational overhead involved in cost evaluation, leading to more efficient quantum
computations. In our cost function, Equation 7 (or Equation 33), two quantities need to be computed:

β
(i)
l ≡ Re

(
⟨F (i)|Al|α̂(f (i);w)⟩

)
, γ

(i)
ll′ ≡ ⟨α̂(f (i);w)|A†

l′Al|α̂(f (i);w)⟩ . (8)

where A =
∑L

l=1 clAl, yielding L distinct values for β(i)
l and L(L + 1)/2 distinct values for γ(i)ll′

for each F (i). The key idea of our method is to estimate β(i)
l and γ(i)ll′ via Pauli measurements as

illustrated in Figure 1. Moreover, for both β(i) ≡
∑

l β
(i)
l and γ(i) ≡

∑
ll′ γ

(i)
ll′ evaluations, the

total number of measurements can be reduced by exploiting commutativity among observables, as
the outcome of one observable can be reused to evaluate the expectation values of other commuting
terms. To construct β(i), we group mutually commuting terms among the L operators Al and,
from each group, select one Pauli operator as the measurement observable. Using the measurement
outcomes of the selected observables, the remaining terms within each group can be reconstructed to
evaluate β(i). For γ(i), we first express each product A†

l′Al as a single Pauli string, thereby reducing
the total number of distinct terms from L(L + 1)/2 to M . Similar to the case of β(i), further
grouping of commuting terms among the M operators allows us to reduce the number of required
measurements and to reconstruct

∑
l,l′ γ

(i). A detailed explanation of how commutativity reduces
the cost of loss evaluation, along with a concrete example, is provided in Appendix A.5. Finally, the
predicted vector α̂ of the predicted solution û is obtained from the optimized parameter w⋆ as

α̂(f ;w⋆) =
∥F∥ |α̂(f ;w⋆)⟩
∥A |α̂(f ;w⋆)⟩∥

. (9)

3.2 COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of the training procedure with respect
to the matrix size K = (N − 1)d, where N denotes the number of basis functions and d is the
spatial dimension of the PDE. We analyze, in terms of big–O notation, the costs of neural network
embedding and loss evaluation for NVQLS, and compare them with those of classical ULGNet and
the original VQLS. Table 1 provides a summary of the results.

For the neural network embedding, the angle network of NVQLS maps a K-dimensional input f to
the circuit parameters θ of sizeO(n) = O(logK), as the shallow ansatz V (θ) is utilized. It results in
a basic arithmetic operation complexity ofO(K logK) for computing θ via the angle network. Eval-
uating the loss requires Pauli measurements to compute β and γ in Equation 8, which correspond to
the numerator and denominator terms in the NVQLS loss expression 1−β/γ. Assisted by grouping
commuting Pauli operators, β scales as O(K) and γ as O(K logK), increasing relatively slowly
with K, as empirically shown in Figures 6 and 7 across all PDEs considered—reaction–diffusion,
Helmholtz, and convection–diffusion. Combined with the neural embedding cost, this results in a
total Pauli measurement complexity of O(K logK) for NVQLS.

On the other hand, the neural network of ULGNet directly outputs spectral coefficients of dimension
K. Due to the matrix multiplication involved in the fully connected layer, this results in a compu-
tational complexity of O(K2). Although the loss evaluation in ULGNet scales as O(K) thanks to
the sparsity of the spectral matrix and assuming an efficient implementation, the primary bottleneck
remains the network that directly produces the spectral coefficients. In VQLS, the number of Pauli

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Numerical results. Top row: predicted solution û versus the exact solution u. Bottom row:
absolute error |û−u|. Left column: reaction–diffusion with ϵ = 0.1 (Dirichlet BC). Middle column:
Helmholtz with k = 15.2 (Neumann BC). Right column: convection–diffusion with ϵ = 0.05
(Dirichlet BC).

measurements required to evaluate the loss scales as O(L2), where L is the number of Pauli opera-
tors (Section 2). Using the empirical relation L = O(K logK) illustrated in Figure 8, the total cost
in terms of Pauli measurements becomes O(K2(logK)2).

Overall, the total computational complexity of NVQLS, O(K logK), demonstrates a clear advan-
tage over the original VQLS, which scales as O(K2(logK)2), and the classical ULGNet approach,
with O(K2) complexity, highlighting the potential for quantum advantage. Our complexity anal-
ysis has so far focused on to the number of Pauli measurements, without considering the depth of
quantum circuits. Once the complexity of quantum gate operations is taken into account, the advan-
tage over VQLS becomes even more pronounced, since NVQLS requires a shallower circuit depth
than VQLS. Although Big-O analysis may not capture the real computational overhead due to large
hidden constants (e.g. repetitions for estimating the expectation value), the comparison between
classical and quantum complexity measures highlights the potential for a quantum advantage. For
further efficiency, we also analyze a truncation method detailed in Appendix A.9.

4 EXPERIMENT RESULTS

4.1 SPECTRAL OPERATOR LEARNING WITH FORCING INSTANCES

We describe the experimental setup and numerical results for various one-dimensional equations to
assess the numerical accuracy of our model. In these experiments, the training objective of NVLQS
is to map a set of forcing functions, serving as model inputs, to the corresponding spectral coeffi-
cients of the solutions. To this end, we generate input forcings f (i) (i = 1, 2, · · · , D) as random
sums of trigonometric functions of the form

f (i)(x) = h
(i)
1 sin(m

(i)
1 x) + h

(i)
2 cos(m

(i)
2 x) (10)

where the coefficients h(i)1 , h
(i)
2 ,m

(i)
1 ,m

(i)
2 are drawn from the uniform distribution on [0, 1]. The

functions and their corresponding predicted solutions are then evaluated at collocation points xkNk=0,
whose number matches the number of basis functions. Figure 2 summarizes the numerical results.
Figures 2(a)–(c) present the solutions u and predictions û for the reaction–diffusion, Helmholtz,
and convection–diffusion equations, with representative parameter values indicated in the figures.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Numerical examples of operator learning with joint parameter and forcing inputs for the
Helmholtz equation under Dirichlet boundary conditions. Top: input pairs for the angle network: (a)
case 1: a forcing function f1 and a diffusion coefficient k2 = 4.457, (b) case 2: f2 and k2 = 4.310,
(c) case 3: f3 and k2 = 4.408. Middle: exact solutions ui and predicted solutions ûi for each
case: (d) case 1, (e) case 2, (f) case 3. Bottom: absolute error plots |ûi − ui| on collocation points
excluding the boundary points (g) case 1, (h) case 2, (i) case 3.

The experiments mathematically enforce both Dirichlet and Neumann boundary conditions, where
Dirichlet conditions are realized via basis functions

ϕk(x) = Lk(x)− Lk+2(x), (11)

while a different set is adopted for Neumann conditions, as specified in Equation 48. These ex-
periments on various boundary conditions highlight the flexibility and robustness of NVLQS in
accurately predicting solutions across different PDE constraints. Figures 2(d)–(f) show the absolute
error |û− u| along with the corresponding error metrics for each equation. The relative L2 and L∞
errors remain below 1%, and the mean absolute error (MAE) is approximately 0.1% in all cases,
demonstrating the strong generalization capability of the NVLQS. The exact form of all equations
and the full descriptions of their weak formulation are provided in Appendix A.10. Details of the
training procedure are also provided in Appendix A.3.

4.2 OPERATOR LEARNING WITH JOINT PARAMETER AND FORCING INPUTS

This section introduces operator learning with joint parameter and forcing inputs, a framework in
which the learned operator maps both a forcing function and a PDE parameter to the corresponding
PDE solution. We demonstrate this approach using the Helmholtz equation with a homogeneous
Dirichlet boundary condition:

uxx(x) + k2u(x) = f(x), x ∈ Ω := (−1, 1)

u(x) = 0, x ∈ ∂ Ω
(12)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

To implement operator learning with joint inputs, the input instances are tuples of a forcing func-
tion f (i) and a wave number k(i), represented as {k(i), f (i)}Di=1 and mapped to angle parameters
θ(i) = g(k(i), f (i);w) via the angle network g. Given an input instance (k, f), the spectral method
matrix for the Helmholtz equation, A(k), is determined by the parameter k and expressed as a linear
combination of the fixed stiffness and mass matrices, S and M . We next perform Pauli decomposi-
tions of these fixed matrices where the Pauli terms Pl1 and Pl2 can represent the same operator:

A = S + k2M =
∑
l1

cl1Pl1 + k2
∑
l2

cl2Pl2 , (13)

Since the fixed matrices S and M are independent of k, their Pauli decompositions need only be
computed once and can be reused for any value of k. Denoting |α̂⟩ = |α̂(k, f ;w)⟩, we finally
express the numerator of the proposed cost function 7 as:∑

l1

Re (⟨F |Pl1 |α̂⟩) + k2
∑
l2

Re (⟨F |Pl2 |α̂⟩) (14)

Similarly, the term inside the square root in the denominator of the cost function is given by the
following expression, where Pauli terms Pl3 , Pl4 , Pl5 , and Pl6 are representing the matrices S†S,
S†M , M†S, and M†M , respectively, with their corresponding coefficients:∑

l3

cl3 ⟨α̂|Pl3 |α̂⟩+ k2
∑
l4

cl4 ⟨α̂|Pl4 |α̂⟩+ k2
∑
l5

cl5 ⟨α̂|Pl5 |α̂⟩+ k4
∑
l6

cl6 ⟨α̂|Pl6 |α̂⟩ (15)

Figure 3 presents three representative examples of operator learning with joint parameter and forcing
inputs for the Helmholtz equation, using Dirichlet boundary conditions. The top row, shown in
Figures 3(a)–(c), presents three input instances, (k1, f1), (k2, f2), and (k3, f3), where the wave
numbers ki are sampled from the uniform distribution U [4, 5) and the forcing functions are linear
combinations of trigonometric functions. The middle and bottom rows (Figures 3(d)–(f) and (g)–(i),
respectively) present NVQLS predictions versus exact solutions and absolute differences along with
MAE values. The predictions exhibit small relative errors (below 0.3%) and MAE values (below
2 × 10−3), demonstrating the model’s ability to approximate the solution operator across varying
parameters. Details on operator learning with joint inputs for the reaction-diffusion equation are
provided in Appendix A.10.

4.3 SPECTRAL OPERATOR LEARNING FOR TWO-DIMENSIONAL PDES

The remaining sections of the numerical experiments focus on results for various two-dimensional
problems. For two-dimensional problems, the solution is expressed as a linear combination of basis
functions constructed by the tensor product of the corresponding one-dimensional bases in x and y:

u(x, y) =

N−2∑
k,j=0

αkjϕk(x)ϕj(y) (16)

Similar to the one-dimensional case described in Section 4.1, NVLQS is trained in an unsupervised
manner to predict solutions from forcing function inputs in the two-dimensional setting. The forcing
functions for two-dimensional PDEs are also a linear combination of trigonometric functions, and
the details of their generation process are described in Appendix 34. As an illustrative example, we
consider the two-dimensional reaction–diffusion equation with diffusion coefficient ϵ under homo-
geneous Dirichlet boundary conditions, as given in Equation 1. Using the weak formulation, the
two-dimensional reaction–diffusion equation is transformed into the following matrix representa-
tion.

A = −ϵ (S ⊗M +M ⊗ S) +M ⊗M ∈ R(N−1)2×(N−1)2 (17)
where ⊗ presents the tensor product. The exact representation and corresponding spectral matrices
of the Helmholtz and convection–diffusion equation in 2D are fully detailed in Appendix A.10.
Figure 4 presents numerical results for two-dimensional PDEs. The top row, shown in Figures 4 (a)–
(c), displays the exact solutions for the reaction–diffusion, Helmholtz, and convection–diffusion
equations, respectively. The corresponding NVLQS predictions are presented in the middle row,
Figures 4 (d)–(f), where relative errors remain below 0.6%. The absolute differences are shown in
the bottom row, Figures 4 (g)–(i), with MAE for each case remaining below 2× 10−4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Numerical results for two-dimensional PDEs. Top row: the exact solution û, middle
row: predicted solution û, bottom row: absolute error |û− u|, Left column: reaction–diffusion with
ϵ = 0.1 (Dirichlet BC), middle column: Helmholtz with k = 10.6 (Neumann BC), right column:
convection–diffusion with ϵ = 30.0 (Dirichlet BC).

5 CONCLUSION

In summary, to address the scalability limitations of classical operator learning in high-resolution
and high-dimensional settings, we developed NVQLS which is a quantum-classical hybrid frame-
work based on VQLS. NVQLS defines its cost function in terms of state overlap, which not only
reduces the number of required Pauli terms from O(K2) to O(K logK) but also enables shallower
circuits with fewer quantum gate operations. Since the cost function of NVQLS is motivated by
the weak formulation, the training procedure is fully unsupervised. This weak formulation allows
NVQLS to incorporate multiple instances of parametric PDEs as model inputs (e.g., forcing func-
tions and PDE parameters) to predict the spectral coefficients of the solution. Leveraging the capa-
bilities of classical neural networks, NVQLS naturally embeds input data into the rotation angles of
the quantum circuits, ensuring efficient convergence.

By analyzing the classical and corresponding quantum computational complexity, we suggest a
potential quantum advantage in scalability, in terms of the matrix size K = O(Nd) where N is
the number of basis and d represents the PDE dimension. Assisted by the use of commutativity-
aware grouping in the Hadamard test, the number of required Pauli operators that remains below
O(K logK) in all three cases (reaction–diffusion, Helmholtz, convection–diffusion). The numer-
ical experiments demonstrate that NVQLS accurately predicts PDE solutions from multiple input
instances, including PDE parameters and forcing functions. It also generalizes to higher dimen-
sions, where it provides accurate predictions and mathematically enforces boundary conditions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

USAGE OF LARGE LANGUAGE MODELS (LLMS)

While an LLM was solely used to assist in sentence editing and code debugging, all outputs were
carefully verified and rigorously revised by the author to ensure academic accuracy and appropriate-
ness.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we provide the following details. The detailed derivation
of the Legendre–Galerkin weak form used in this work is provided in Appendix A.2. The spe-
cific experimental settings and data instance generation scheme are provided in Appendix A.3 and
Appendix A.4, respectively. The concrete example for our implementation scheme is provided in
Appendix A.5. The figures supporting the complexity analysis of our model are provided in Ap-
pendix A.6. In Appendix A.8, we report a simple experiment using a shallow circuit instead of
amplitude embedding for hardware-efficient training. In Appendix A.9, we investigate further com-
putational efficiency by considering the perturbed system both analytically and numerically. The
code used in the experiments is included in the supplementary material.

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu), 2019. URL https://
arxiv.org/abs/1803.08375.

Mazen Ali and Matthias Kabel. Performance study of variational quantum algorithms for solving
the poisson equation on a quantum computer. Physical Review Applied, 20(1):014054, 2023.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. Nature
Reviews Physics, 6(5):320–328, 2024.

Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M. Sohaib Alam, Shahnawaz Ahmed,
Juan Miguel Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri, Keri McKiernan, Jo-
hannes Jakob Meyer, Zeyue Niu, Antal Száva, and Nathan Killoran. Pennylane: Automatic dif-
ferentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968, 2020.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018.

Carlos Bravo-Prieto, Ryan LaRose, Marco Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J Coles.
Variational quantum linear solver. Quantum, 7:1188, 2023.

Junho Choi, Namjung Kim, and Youngjoon Hong. Unsupervised legendre–galerkin neural network
for solving partial differential equations. IEEE Access, 11:23433–23446, 2023.

Junho Choi, Taehyun Yun, Namjung Kim, and Youngjoon Hong. Spectral operator learning for
parametric pdes without data reliance. Computer Methods in Applied Mechanics and Engineering,
420:116678, 2024.

Abeynaya Gnanasekaran and Amit Surana. Efficient variational quantum linear solver for structured
sparse matrices. In 2024 IEEE International Conference on Quantum Computing and Engineering
(QCE), volume 1, pp. 199–210. IEEE, 2024.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Aruto Hosaka, Koichi Yanagisawa, Shota Koshikawa, Isamu Kudo, Xiafukaiti Alifu, and
Tsuyoshi Yoshida. Preconditioning for a variational quantum linear solver. arXiv preprint
arXiv:2312.15657, 2023.

Nishant Jain, Jonas Landman, Natansh Mathur, and Iordanis Kerenidis. Quantum fourier networks
for solving parametric pdes. Quantum Science and Technology, 9(3):035026, 2024.

10

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M
Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small
molecules and quantum magnets. nature, 549(7671):242–246, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2017.

Oleksandr Kyriienko, Annie E. Paine, and Vincent E. Elfving. Solving nonlinear differen-
tial equations with differentiable quantum circuits. Phys. Rev. A, 103:052416, May 2021.
doi: 10.1103/PhysRevA.103.052416. URL https://link.aps.org/doi/10.1103/
PhysRevA.103.052416.

Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differ-
ential equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola B. Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021.

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45:503–528, 1989. URL https://api.semanticscholar.
org/CorpusID:5681609.

Hai-Ling Liu, Yu-Sen Wu, Lin-Chun Wan, Shi-Jie Pan, Su-Juan Qin, Fei Gao, and Qiao-Yan Wen.
Variational quantum algorithm for the poisson equation. Physical Review A, 104(2):022418, 2021.

YY Liu, Zhen Chen, Chang Shu, Siou Chye Chew, Boo Cheong Khoo, Xiang Zhao, and YD Cui.
Application of a variational hybrid quantum-classical algorithm to heat conduction equation and
analysis of time complexity. Physics of Fluids, 34(11), 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021a.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021b.

Mauro E. S. Morales, Lirandë Pira, Philipp Schleich, Kelvin Koor, Pedro C. S. Costa, Dong An,
Alán Aspuru-Guzik, Lin Lin, Patrick Rebentrost, and Dominic W. Berry. Quantum linear system
solvers: A survey of algorithms and applications, 2025. URL https://arxiv.org/abs/
2411.02522.

Hrushikesh Patil, Yulun Wang, and Predrag S Krstić. Variational quantum linear solver with a
dynamic ansatz. Physical Review A, 105(1):012423, 2022.

Aidan Pellow-Jarman, Ilya Sinayskiy, Anban Pillay, and Francesco Petruccione. A comparison
of various classical optimizers for a variational quantum linear solver. Quantum Information
Processing, 20(6):202, 2021.

Aidan Pellow-Jarman, Ilya Sinayskiy, Anban Pillay, and Francesco Petruccione. Near term algo-
rithms for linear systems of equations. Quantum Information Processing, 22(6):258, 2023.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Maria Schuld, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe. Circuit-centric quantum
classifiers. Phys. Rev. A, 101:032308, Mar 2020. doi: 10.1103/PhysRevA.101.032308. URL
https://link.aps.org/doi/10.1103/PhysRevA.101.032308.

11

https://link.aps.org/doi/10.1103/PhysRevA.103.052416
https://link.aps.org/doi/10.1103/PhysRevA.103.052416
https://api.semanticscholar.org/CorpusID:5681609
https://api.semanticscholar.org/CorpusID:5681609
https://arxiv.org/abs/2411.02522
https://arxiv.org/abs/2411.02522
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://link.aps.org/doi/10.1103/PhysRevA.101.032308

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jie Shen, Tao Tang, and Li-Lian Wang. Spectral Methods: Algorithms, Analysis and Applications,
volume 41 of Springer Series in Computational Mathematics. Springer Berlin, Heidelberg, 1
edition, 2011. ISBN 978-3-540-71040-0. doi: 10.1007/978-3-540-71041-7. URL https:
//doi.org/10.1007/978-3-540-71041-7.

Amit Surana and Abeynaya Gnanasekaran. Variational quantum framework for partial differential
equation constrained optimization. ACM Transactions on Quantum Computing, 2024.

Corey Jason Trahan, Mark Loveland, Noah Davis, and Elizabeth Ellison. A variational quantum
linear solver application to discrete finite-element methods. Entropy, 25(4), 2023. ISSN 1099-
4300. doi: 10.3390/e25040580. URL https://www.mdpi.com/1099-4300/25/4/580.

Gloria Turati, Alessia Marruzzo, Maurizio Ferrari Dacrema, and Paolo Cremonesi. An em-
pirical analysis on the effectiveness of the variational quantum linear solver. arXiv preprint
arXiv:2409.06339, 2024.

Pengpeng Xiao, Muqing Zheng, Anran Jiao, Xiu Yang, and Lu Lu. Quantum deeponet: Neural
operators accelerated by quantum computing. Quantum, 9:1761, 2025.

12

https://doi.org/10.1007/978-3-540-71041-7
https://doi.org/10.1007/978-3-540-71041-7
https://www.mdpi.com/1099-4300/25/4/580

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 NOMENCLATURE

Table 2: Notations and Descriptions
Notation Description

n Number of qubits
N Number related to the basis function and node point
d Dimension of PDE
L Number of Pauli tensor product matrices for Pauli-decomposition
xn The n-th nodal points on a spatial domain
Lk The Legendre polynomial of degree k
ϕk The k-th basis function
D Differential operator
B Boundary operator
u(·) Solution of PDE
αk The coefficient of k-th basis function representing the solution u(·)
û(·) Approximated solution
α̂k The coefficient of k-th basis function representing the approximated solution û(·)

f(·) or f (i)(·) The (i-th) forcing function
f̃k or f̃ (i)k The k-th forward transformation of the forcing function f or f (i)

S Stiffness matrix
M Mass matrix
R Convection matrix

F or F (i) The forward-transformed vector (matrix) of forcing vector f or f (i)
D Size of dataset
V (·) Parameterized quantum circuit
L Cost function
θ Parameters for quantum circuit (output of angle network)
g(·) Angle network
w Parameters for angle network
β Numerator in our loss LNVQLS

γ Radicand (i.e., the quantity inside the square root) in the denominator in LNVQLS

lV Number of layers of the parameterized quantum circuit V (·)

A.2 DERIVATION OF WEAK FORMULATION

In this section, we present the weak formulation in detail. For more details on the spectral methods
employed here, we refer the reader to the standard reference (Shen et al., 2011). We begin by
examining second-order elliptic partial differential equations on a bounded domain Ω ⊂ Rn under
boundary conditions given a PDE parameter ϵ > 0 and an external forcing function f :

−ϵ∆u+D(u,∇u) = f, x ∈ Ω ⊂ Rn,

B(u,∇u) = 0, x ∈ ∂Ω.
(18)

where D denotes a possibly nonlinear differential operator and B represents a boundary operator.
For clarity, we first consider the one dimensional reaction–diffusion case where D(u) = u and
Ω = (−1, 1). For k = 0, 1, . . . , N − 2, the Legendre–Galerkin weak formulation is given by∫

Ω

−ϵ∆u(x)ϕk(x) dx+

∫
Ω

u(x)ϕk(x) dx =

∫
Ω

f(x)ϕk(x) dx. (19)

where basis functions are compact combinations of Legendre polynomials {Lk}:

ϕk = Lk + akLk+2 + bkLk+2 (20)

where the exact boundary conditions, including Dirichlet, Neumann, and mixed types, are mathe-
matically enforced by selecting the coefficients ak and bk. By representing the solution u as a finite

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

linear combination of the basis functions {ϕk}N−2
k=0 , the weak formulation gives

−ϵ
N−2∑
j=0

αj

(∫
Ω

ϕ′′j (x)ϕj(x)dx

)
+

N−2∑
k=0

αj

(∫
Ω

ϕj(x)ϕk(x)dx

)
=

∫
Ω

f(x)ϕk(x) dx. (21)

Then, this produces a linear system (−ϵS + M)α = F corresponding to the one-dimensional
reaction–diffusion equation where S denote the stiffness matrix,M represent the mass matrix. Their
entries are specified as, for k, j = 0, . . . , N − 2:

Skj =

∫
Ω

ϕ′′j (x)ϕk(x) dx, Mkj =

∫
Ω

ϕj(x)ϕk(x) dx, (22)

with the forward transformed vector given by

F =
[
f̃0 f̃1 · · · f̃N−2

]T
, f̃k =

∫
Ω

f(x)ϕk(x) dx, (23)

By solving this linear system, one obtains the spectral coefficients

α = [α0 α1 · · · αN−2]
T
. (24)

The stiffness matrix S is diagonal and the mass matrix M is symmetric penta-diagonal, whose
entries are given by

Skj :=

∫
I

ϕ′′j ϕkw dx =

{
(4k + 6)bk, j = k,

0, otherwise,
(25)

and

Mjk =Mkj :=

∫
I

ϕjϕkwdx =


2

2k+1 + a2k
2

2k+3 + b2k
2

2k+5 , j = k,

ak
2

2k+3 + ak+1bk
2

2k+5 , j = k + 1,

bk
2

2k+5 , j = k + 2,

0, otherwise.

(26)

Similarly, for the one-dimensional convection–diffusion equation with Dirichlet boundary condi-
tions, we define the convection matrix R (given in Equation 27) to represent the first spatial deriva-
tive ux:

Rkj = −Rjk =

∫
I

ϕ′jϕkw dx =

{
2 k = j + 1

−2 k = j − 1
(27)

For the two-dimensional reaction–diffusion equation, shown in Equation 1, we employ two-
dimensional basis functions constructed as tensor products of one-dimensional basis functions:

{ϕk(x)ϕj(y) : k, j = 0, . . . , N − 2}, (28)

where ϕ·(·) denotes the one-dimensional basis functions, each formed as a compact combination of
Legendre polynomials. Consequently, the predicted solution û(x, y) on the two-dimensional domain
is expressed as a linear combination of these tensor-product basis functions, with coefficients α̂kj :

û(x, y) =

N−2∑
k=0

N−2∑
j=0

α̂kjϕk(x)ϕj(y). (29)

The weak formulation in two dimensions can be expressed as

−ϵ
∫∫

Ω

∆u(x, y)ϕk(x)ϕj(y)dxdy+

∫∫
Ω

u(x, y)ϕk(x)ϕj(y)dxdy =

∫∫
Ω

f(x, y)ϕk(x)ϕj(y)dxdy,

(30)
or equivalently

(−ϵM ⊗M + S ⊗M +M ⊗ S)α̂ = F (31)
where α̂ and F are vectors formed by

F = (f̃0,0, f̃1,0, · · · , f̃N−2,0; f̃0,1, · · · , f̃N−2,1; f̃0,N−2, · · · , f̃N−2,N−2)
T (32)

and ⊗ represents the operation A⊗B = (Abij)i,j=0,1,··· ,N−2 (i.e. the tensor product).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Ansätze used in our study. (a) Strongly Entangling Layer, (b) Hardware efficient RY
ansatz.

A.3 TRAINING DETAILS

In this section, we describe the specific structures of each model components discussed in Sec. 3.1,
used in our experiments. Our model employed the ansatz V (θ) to prepare |α⟩ = V (θ)|0⟩ and utilize
the classical neural network g to represent θ as θ = g(w;F) with its parameters w for given forcing
vector f . Furthermore, two types of loss functions are employed in this work.

Ansatz We used two types of ansatz V (θ): the strongly entanglying circuit and the hardware-
efficient RY ansatz. Figure 5 describes each ansatz structure.

The strongly entanglying layer consists of rotation gates R and CNOT gate. The rotation gate R
can represent a general rotation by using three parameters ϕ, θ, ω through two types of single qubit
rotation gate RY and RZ , defined as R ≡ R(ϕ, θ, ω) = RY (ϕ)RZ(θ)RY (ω). This ansatz contains
strong entanglements where each qubit is entangled with two other qubits with CNOT gates in
each layer, employing the different patterns of entanglements per layer. Due to its characteristics,
this possess high representation capacity which can be quantified with high expressibility and high
entangling capacity. The number of parameters for this ansatz is (3× n× lV) which is proportional
to the number of qubits n and the number of the ansatz layer lV .

The Hardware efficient RY ansatz is composed of Hadamard gates H , single qubit rotation gates on
y-axisRY , and CNOT gates. The Hadamard gates are applied first on each qubit, and rotation gates
RY ≡ RY (θ) are paramterized with θ. In each layer, the nearest neighbour qubits are entangled
by CNOT as well as the first and the last qubits. This ansatz is hardware efficient. Moreover, it
maps the initial state |0⟩ to real-valued vector |α⟩ ∈ R2n so we don’t need to consider the imaginary
part when extracting the vector components from |α⟩. The number of parameters for this ansatz is
(n× lV), also proportional both to n and lV .

Classical Neural Network As the angle networks for one-dimensional PDEs, we employ feed-
forward (FF) neural networks with Rectified Linear Unit (ReLU) (Agarap, 2019) activation func-
tions. To ensure stable and fast convergence, the L-BFGS optimizer (Liu & Nocedal, 1989) is uti-
lized for the cost function. For the operator learning with joint inputs, a deeper and wider network
structure with six FF layers was utilized to enhance the generalization ability of the angle networks.
For two-dimensional PDEs, we use a hybrid network combining three convolutional neural network
(CNN) layers followed by three FF layers, with the Gaussian error linear units (GELU) (Hendrycks
& Gimpel, 2016) activation functions. For the convection–diffusion equation with preconditioner,
the adaptive moment estimation (Adam) Kingma & Ba (2017) optimizer is utilized.

Loss functions

In the main text, we defined our loss function in Equation 7. For training stability, we also consider
an unnormalized cost function L̂NVQLS defined as

L̂NVQLS(w) =
1

D

D∑
i=1

 L∑
l=1

Re
(
⟨F (i)|Al|α(f (i);w)⟩

)
−

√√√√ L∑
l,l′=1

⟨α̂(f (i);w)|A†
l′Al|α̂(f (i);w)⟩

2

.

(33)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Details of the structure of the angle networks

PDE d BC NN LAYER OPTIMIZER ACTIVATION

RD 12 1D Dirichlet FF 3 L-BFGS ReLU
Helmholtz 13 1D Neumann FF 3 L-BFGS ReLU
RD 16 1D Dirichlet FF 6 L-BFGS ReLU
Helmholtz 3 1D Dirichlet FF 6 L-BFGS ReLU
RD 17 2D Dirichlet CNN+NN 3+3 L-BFGS GELU
Helmholtz 18 2D Dirichlet CNN+FF 3+3 L-BFGS GELU
Helmholtz 14 1D Dirichlet FF 3 L-BFGS ReLU
CD 15 1D Dirichlet FF 3 Adam (lr = 10−4) ReLU

Algorithm 1 Training procedure of NVQLS

Require: Forcing functions {f (i)}Di=1 with corresponding forward transformation {f̃ (i)}Di=1

1: Compute the unitary decomposition A =
∑L

l=1 clAl

2: Initialize NVQLS parameters w
3: for t = 1 to T do
4: Evaluate the circuit parameter θ(i) = g(f (i);w)

5: Evaluate β(i)
l =

∑L
l=1 Re

(
⟨F (i)|Al|α̂(θ(i))⟩

)
where α̂(θ(i)) = V (θ(i))|0⟩

6: Evaluate γ(i)l,l′ =
∑L

l=1,l′=1⟨α̂(θ(i))|A
†
lAl′ |α̂(θ(i))⟩

7: Evaluate LNVQLS(w)
8: Update NVQLS parameter w
9: end for

10: return Trained parameters w

In practice, this loss function often provides better convergence, whereas the fractional form in
Equation 7 can sometimes become unstable during training.

Simulation Details

All simulation trainings are performed using PennyLane (Bergholm et al., 2020), supported by the
JAX framework (Bradbury et al., 2018).

A.4 GENERATION OF DATA INSTANCES

Table 4: Generation details for the input PDE instances (800 training, 200 testing).

PDE d INSTANCE n N
FORCING

DISTRIBUTION
(h1, h2,m1,m2)

PARAMETER
DISTRIBUTION

RD 12 1D Forcing 5 33 U [0, 1) 0.1
Helmholtz 13 1D Forcing 5 33 U [0, 1) 29.4
RD 16 1D Forcing/parameter 4 17 U [0, 2) U [0.1, 1.1)
Helmholtz 3 1D Forcing/parameter 4 17 U [0, 2) U [4, 5)
RD 17 2D Forcing 6 9 U [0, 1) 0.1
Helmholtz 18 2D Forcing 6 9 U [0, 1) 10.6
CD 15 1D Forcing 5 33 U [0, 1) 0.05

Table A.4 details the generation of data instances, including the external forcing function f and
PDE parameters (e.g., diffusion parameter ϵ and wave number k2). For one-dimensional PDEs, the
forcing functions are a linear combination of trigonometric functions, according to Equation 10. The

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

coefficients h1, h2,m1 andm2 are drawn from a uniform distribution U . Similarly, PDE parameters
are also sampled from a uniform distribution. Specifically, for the reaction–diffusion equation 16,
diffusion parameters {ϵ(i)}Di=1 are drawn from the uniform distribution U [0.1, 1.1), representing a
small parameter regime. For the Helmholtz equation 3, wave numbers {(k(i))2}Di=1 are sampled
from U [4, 5). For the two-dimensional PDEs, the forcing functions are constructed as sums of
trigonometric functions of x and y, with coefficients h(i)1 , h

(i)
2 ,m

(i)
1 , and m(i)

2 :

f (i)(x, y) = h
(i)
1 sin(m

(i)
1 (x+ y)) + h

(i)
2 cos(m

(i)
2 (x+ y)), i = 1, 2, · · · , D (34)

A.5 COMMUTATIVITY-BASED GROUPING METHOD FOR LOSS EVALUATION

In this section, we present a concrete example of loss evaluation using the commutativity-based
grouping strategy, as discussed in Sectoin 3.1. This strategy constitutes one of the key contributions
of our model and leads to a quantum advantage over classical methods.

Consider the operator

A = c1A1 + c2A2, A1 = Z1 ⊗ Z2, A2 = Z1 ⊗ I2, (35)

where σq with σ ∈ {X,Y, Z, I} denotes the Pauli operator acting on the q-th qubit.

For β(i), we need to evaluate β(i)
1 and β(i)

2 . Since [A1, A2] = 0, the value of β(i)
2 can be reconstructed

from the measurement outcomes used for β(i)
1 . Specifically, let the probabilities of the computational

basis states |00⟩, |01⟩, |10⟩, |11⟩ be a, b, c, d, obtained from the measurement associated with β(i)
1 .

Then, we obtain
β
(i)
1 = a− b− c+ d, β

(i)
2 = a+ b− c− d. (36)

For γ(i), each component A†
lAl′ can be expressed as a Pauli string. In this example,

A†
lAl′ = (|c1|2 + |c2|2) I1 ⊗ I2 + (c1c

∗
2 + c∗1c2) I1 ⊗ Z2. (37)

Thus, the relevant observables are
I1 ⊗ I2, I1 ⊗ Z2. (38)

Since these two operators commute, we can select I1 ⊗ Z2 as the observable to be measured. Con-
sequently, the full quantity can be reconstructed as

γ(i) = γ
(i)
11 + γ

(i)
12 + γ

(i)
21 + γ

(i)
22 , (39)

using only the outcomes of this measurement. The reconstruction follows the same procedure as in
the case of β(i).

A.6 NUMBER OF PAULI MEASUREMENTS

This section presents the plots in Figures 6, 7, and 8, which demonstrate the results of the complexity
analysis summarized in Tab. 2.

A.7 PERFORMANCE METRICS

To measure the prediction errors, we employ three metrics: batch-wise mean absolute error (MAE),
batch-wise relative L2 error, and batch-wise relative L∞ error. Given a collection {û(i)}Di=1 of
predicted solutions and the corresponding true collection {u(i)}Di=1, the batch-wise mean absolute
error (MAE) is defined by

MAE =
1

D(N + 1)

D∑
i=1

N∑
j=0

∣∣û(i)(xj)− u(i)(xj)
∣∣, (40)

where D is the number of data instances, N corresponds to the number of basis functions (or spatial
points), and û(i)(xj) and u(i)(xj) are the predicted and true solutions at the collocation point xj ,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Empirical analysis of the number of Pauli measurements using commutativity-aware
grouping. Top: Number of Pauli measurements for increasing resolution (as a function of the number
of basis functions N): (a) one-dimensional case, (b) Two-dimensional case. Bottom: number of
Pauli measurements for increasing dimension of PDEs (as a function of the dimension d of PDEs):
(c) N = 5, (d) N = 9.

respectively. The batch-wise relative L2 error is given by

RelL2 =
1

D

D∑
i=1

∥û(i) − u(i)∥2
∥u(i)∥2

=
1

D

D∑
i=1

√∫
|û(i) − u(i)|2dx√∫

|u(i)|2dx
, (41)

where the integrals are computed using the Legendre–Gauss–Lobatto (LGL) quadrature. Finally,
the batch-wise relative L2 error is defined by

RelL∞ =
1

D

D∑
i=1

∥û(i) − u(i)∥∞
∥u(i)∥∞

=
1

D

D∑
i=1

N∑
j=0

maxj |û(i)(xj)− u(i)(xj)|
maxj |u(i)(xj)|

. (42)

A.8 HARDWARE-EFFICIENT TRAINING

We present a hardware-efficient, circuit-parameterized training scheme to validate our framework
on near-term quantum devices. While the main text employs amplitude embedding, its practical
implementation on current hardware is constrained by circuit depth. To address this limitation, we
adopt a shallow state-preparation routine that uses only single-qubit Ry rotations to construct the
forward-transformed forcing vector F . This approach substantially reduces circuit depth, making it
more suitable for noisy intermediate-scale quantum (NISQ) hardware.

We define an angle vector θ = (θ1, . . . , θn) and prepare the product state

|ψ(θ)⟩ =
n⊗

i=1

Ry(θi)|0⟩ with Ry(θ) = exp
(
− i

2θ Y
)
, (43)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: Empirical analysis of the number of Pauli measurements of A†A using commutativity-
aware grouping. Top: number of Pauli measurements ofA†A for increasing resolution (as a function
of the number of basis functions N): (a) one-dimensional case, (b) two-dimensional case. Bottom:
Number of Pauli measurements of A†A for increasing dimension of PDEs (as a function of the
dimension d of PDEs): (c) N = 5, (d) N = 9.

where Y denotes the Pauli-Y operator. Let a(θ) ∈ R2n denote the real amplitudes of |ψ(θ)⟩ in the
computational basis. We set

Fk = ak(θ) , k = 1, . . . , N − 1, (44)

so that F ∈ RN−1. The dataset is generated classically by sampling θ, computing F , and storing
the resulting pairs (θ, F). When executing on quantum hardware, F is not loaded via amplitude
embedding; instead, the shallow circuit specified by the stored θ is executed.

We evaluate on the 1D Helmholtz equation with Dirichlet boundary conditions using a 4-qubit sys-
tem representing 18 nodes and a discrete angle set θi ∈ {0, π2 , π,

3π
2 }. We compare NVQLS to

a classical ULGNet on 10,000 samples (train=8,000, test=2,000). Our framework employs a fully
connected neural network with 11,080 parameters, while the ULGNet baseline uses a similar net-
work with 12,688 parameters. Figure 9 (a) shows the average test L2 and L∞ errors, where our
framework attains lower test errors. Figures 9 (b)-(d) visualize test solutions from our framework
corresponding to the best, median, and worst relative error cases. The visualizations suggest that our
framework generalizes effectively to previously unseen instances.

A.9 TRUNCATION METHOD

For further computational efficiency, we approximate the target system Aα = F by truncating the
Pauli-decomposed terms of A, yielding Ãα̃ = F . In this approach, we retain only L′ Pauli terms,
Ã =

∑L′

l=1 clAl, instead of the full L terms, A =
∑L

l=1 clAl, with L′ < L. This truncation reduces
the computational cost of the loss evaluation.

We set the truncation level such that the relative l2 error between the reference solution u (with the
full operator A) and the approximated solution ũ (with Ã) is on the order of 10−3. To this end, we

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: Empirical analysis of the number of Pauli terms of A without commutativity-aware
grouping. Top: number of Pauli terms of A for increasing resolution (as a function of the number of
basis functions N): (a) one-dimensional case, (b) two-dimensional case. Bottom: number of Pauli
terms ofA for increasing dimension of PDEs (as a function of the dimension d of PDEs): (c)N = 5,
(d) N = 9.

rank the Pauli components by coefficient magnitude |cl| and retain the largest terms until the error
criterion ∥u− ũ∥2/∥u∥2 ∼ O(10−3) is met.

We applied this truncation method to the 1D Helmholtz case with Neumann boundary conditions
and observed a reduction in the computational cost of loss evaluation. The simulation was conducted
under the same experimental settings as the non-truncated case in Figure 14.

Figure 10 and Figure 11 summarize the results. In Figure 10, (a) shows the scaling behavior of the
number of Pauli terms in the truncated operator Ã compared to the original A, with the complexity
reduced from O(N logN) to O(N). Figure 10 (b) and (c) presents the corresponding number of
Pauli measurements required for our loss evaluation in the calculation of β and γ, comparing the
truncated Ã with A, respectively. Here, the scaling is reduced from O(N) to O(logN) for both β
and γ, leading to a combined reduction from O(N) to O(logN).

Figure 11 present simulation results for the truncated 5-qubit system. While the performance is
somewhat worse than in the full case, this indicates that a truncation threshold of 10−3 is insuf-
ficient to obtain a solution close to the exact one. Nevertheless, there remains room to identify a
more suitable threshold that balances acceptable accuracy with reduced loss evaluation cost, thereby
yielding further quantum advantages.

A.10 DETAILED NUMERICAL EXPERIMENTS

In this section, we provide the exact form of the PDEs, their corresponding spectral matrices, and
the numerical results of our experiments.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Epoch

10 1

100

101
Re

la
tiv

e
Er

ro
r

Average Test L2 and L Errors
NVQLS L2
NVQLS L

ULGNet L2
ULGNet L

1.0 0.5 0.0 0.5 1.0
x (Collocation)

0.0

0.1

0.2

0.3

u(
x)

NVQLS: L2=4.823e-04, L =5.579e-04
ULGNet: L2=3.088e-03, L =3.476e-03

NVQLS
ULGNet
True Solution

1.0 0.5 0.0 0.5 1.0
x (Collocation)

0.02

0.01

0.00

0.01

0.02

u(
x)

NVQLS: L2=8.218e-03, L =8.599e-03
ULGNet: L2=2.818e-01, L =2.994e-01

NVQLS
ULGNet
True Solution

1.0 0.5 0.0 0.5 1.0
x (Collocation)

0.010

0.005

0.000

0.005

u(
x)

NVQLS: L2=5.967e-01, L =4.385e-01
ULGNet: L2=2.257e-01, L =1.891e-01

NVQLS
ULGNet
True Solution

(a) (b)

(c) (d)

Figure 9: Comparison with a classical ULGNet on the 1D Helmholtz equation with Dirichlet
boundary conditions. (a) average test L2 and L∞ errors over the 2,000 test samples; (b)–(d) repre-
sentative test solutions from NVQLS at the best/median/worst relative error cases, shown alongside
ULGNet and the ground truth. NVQLS uses a fully connected network with 11,080 parameters
(4-qubit setting representing 18 nodes), while the ULGNet baseline uses 12,688 parameters.

Figure 10: Empirical comparison ofA and the truncated Ã with respect to the number of Pauli terms
and Pauli measurements required for loss evaluation (β and γ) in the 1D Helmholtz problem with
the Neumann boundary conditions.

Reaction–diffusion Equation with Dirichlet Boundary We start with the one-dimensional
reaction–diffusion equations (RDEs) with a diffusion coefficient ϵ under the homogeneous Dirichlet
boundary condition 45:

−ϵuxx(x) + u(x) = f(x), x ∈ Ω := (−1, 1)

u(x) = 0, x ∈ ∂ Ω
(45)

As derived in Appendix A.2, the corresponding matrix is given by
A = −ϵS +M. (46)

Figure 12 shows numerical results on a reaction–diffusion equation with a diffusion coefficient ϵ =
0.1. Figure 12 (a)–(b) shows a representative example of the NVLQS prediction û(x) to the true

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 11: Simulation results for the truncated 5-qubit system with truncation threshold 10−3 in the
1D Helmholtz problem with the Neumann boundary condition.

solution u(x) with the absolute error |û(x) − u(x)| over the spatial domain Ω = (−1, 1). This
figure shows that the predicted solution û(x) is sufficiently close to the exact solution u(x). The
relative L2 error (4.974 × 10−3) and relative L∞ error (5.611 × 10−3) both remain below 0.6%,
with a MAE of 1.396×10−3. Figure 12,(c) shows that the training and test losses decrease smoothly,
indicating stable convergence. As illustrated in Figure 12 (d), the batch mean relative L2 and L∞
errors steadily decrease as the loss decreases, suggesting that the chosen loss function effectively
aligns with the intended error objectives.

Helmholtz Equation with Neumann Boundary To demonstrate the ability of the proposed
method to handle various boundary conditions, we conduct a numerical experiment on the Helmholtz
equation with homogeneous Neumann boundary conditions for representing a wave propagation
problem with a wave number k2:

uxx(x) + k2u(x) = f(x), x ∈ Ω := (−1, 1)

ux(x) = 0, x ∈ ∂ Ω.
(47)

The corresponding matrix of spectral methods isA = S+k2M , a linear combination of the stiffness
matrix S and the mass matrix M . Here, the homogeneous Neumann boundary condition is strongly
enforced by constructing basis functions as

ϕk(x) = Lk(x)−
k(k + 1)

(k + 2)(k + 3)
Lk+2(x). (48)

Figure 13 illustrates numerical results of a numerical experiment on the Helmholtz equation with
wave number k2 = 15.2. Figure 13 (a) presents the exact solution alongside the NVLQS prediction.
The relative error remains below 0.4%, indicating a close agreement between the two. Figure 13 (b)
displays the absolute error, with a mean absolute error (MAE) of 1.572 × 10−4. Figure 13 (c)–
(d) illustrates the training and test loss curves, together with their batch-mean relative errors. As
the training cost decreases, the relative errors also decline. Although the test loss curve begins to
increase after 50,000 epochs, the test relative error continues to decrease, justifying the continuation
of training.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 12: Numerical results for the one-dimensional reaction–diffusion equation with homoge-
neous Dirichlet boundary conditions and diffusion coefficient ϵ = 0.1; Top row: (a) predicted
solution û versus exact solution u, (b) absolute error |û − u|. Bottom row: (c) batch-wise training
and test losses, (d) batch-wise relative L2 and L∞ errors over epochs.

Helmholtz Equation with Dirichlet Boundary Now, we focus on the homogeneous Helmholtz
equation with another boundary condition–Dirichlet BC. The exact form of the equations is given in
Equation 12. The corresponding matrix isA = S+k2M , which is the same matrix of Neumann BC.
To strongly enforce Dirichlet boundary condition, the basis functions are constructed as illustrated
in Equation 11.

Given a wave number k2 = 29.4 Figure 14 (a) compares the exact solution with the model’s pre-
diction, showing a relative error below 0.3%, which confirms their strong consistency. The cor-
responding absolute error is depicted in Figure 14 (b), yielding a mean absolute error (MAE) of
5.827×10−5. Figures 14 (c)–(d) track the training and test dynamics, including both the loss curves
and the relative errors. A steady decrease in relative error accompanies the reduction of training
cost. Even though the test loss begins to rise early, the continued decrease in the test relative error
indicates that further training remains beneficial for achieving better solution accuracy.

Convecion-diffusion Equation with Dirichlet Boundary We now focus on the convec-
tion–diffusion equation, characterized by a convection velocity v and a small diffusion coefficient
ϵ:

−ϵuxx(x) + vux(x) = f(x), x ∈ Ω := (−1, 1),

u(x) = 0, x ∈ ∂ Ω.
(49)

The linear system (−ϵS+vR)α = F , constructed by the weak formulation, involves the convection
matrixR to represent the first spatial derivative ux shon in Equation 27. The matrixR is asymmetric
and can be singular, which may induce numerical instability during optimization. As a remedy,
incomplete LU (ILU) preconditioning is applied to transform the spectral method matrix into a
better-conditioned form, ensuring stable convergence.

With a small diffusion coefficient ϵ = 0.05, Figure 15 (a) confirms that the model prediction aligns
closely with the exact solution, maintaining a relative error below 0.4%. This accuracy is attributed
to the use of an ILU preconditioner, which, when applied to both sides, improves the conditioning
of the spectral system matrix. The corresponding absolute error is reported in Figure 15 (b), with a

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 13: Numerical results for the one-dimensional Helmholtz equation with the homogeneous
Neumann boundary condition and a wave number k2 = 15.2; Top: (a) example of the predicted
solution û compared to the exact solution u, (b) absolute error between û and u. Bottom: (c) batch-
wise training and test losses, (d) batch-wise relative L2 and L∞ errors over epochs.

MAE value of 1.145× 10−3. Figures 15 (c)–(d) further depict the evolution of training and testing,
including both loss curves and relative error metrics.

Operator Learning with Joint Inputs for Reaction-diffusion Equation To evaluate the capa-
bility of our model in learning PDE operators with joint inputs of parameters and forcing terms, we
present numerical experiments on the reaction–diffusion equation, whose exact form is provided in
Equation 45. By leveraging classical neural networks, each pair of diffusion coefficients and forcing
terms is mapped to the circuit parameters through the angle network:

θ(i) = g(ϵ(i), f (i);w). (50)

Figure 16 presents the results of operator learning combining parameter and forcing inputs for the
reaction–diffusion equation under Dirichlet boundary conditions. The figure is structured into three
rows: the top row (a)–(c) displays three distinct input configurations (ϵ1, f1), (ϵ2, f2), and (ϵ3, f3),
where the diffusion coefficients ϵi are sampled from U [0.1, 1.1) and forcing functions utilize a linear
combination of trigonometric terms. The middle and bottom rows (d)–(f) and (g)–(i) compare the
NVQLS predictions with their exact counterparts and illustrate the resulting absolute differences
alongside MAE values. The model consistently achieves highly accurate approximations across
varying parameter regimes, substantiated by relative errors below 0.07% and MAE values under
2× 10−4.

Two-dimensional Reaction-diffusion Equations with Dirichlet Boundary We now extend our
study to two-dimensional reaction–diffusion equations with a diffusion coefficient ϵ, subject to ho-
mogeneous Dirichlet boundary conditions:

−ϵ∆u(x, y) + u(x, y) = f(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ ∂ Ω
(51)

Using the weak formulation, the two-dimensional reaction—diffusion equation is transformed into
the following matrix representation shown in Equation 17. Note that the size of the spectral matrix
A grows exponentially in the two-dimensional case compared to the one-dimensional case.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 14: Numerical results for the one-dimensional Helmholtz equation with the homogeneous
Dirichlet boundary condition and a wave number k2 = 29.4. Top: (a) example of the predicted
solution û compared to the exact solution u, (b) absolute error between û and u. Bottom: (c) batch-
wise training and test losses, (d) batch-wise relative L2 and L∞ errors over epochs.

With a diffusion parameter ϵ = 0.1, Figure 17 (a)–(c) presents a representative NVQLS prediction,
the corresponding exact solution, and the pointwise absolute error |û(x, y)− u(x, y)|, respectively.
The relative errors remain below 0.2%, indicating that NVQLS closely reproduces the numerical
solution. The training and test loss curves are displayed in Figure 17 (d). In this experiment, although
the test loss curve rises at an early stage, the relative errors continue to decrease, justifying the
continuation of training.

Two-dimensional Helmholtz Equations with Dirichlet Boundary We now present numerical
results for the two-dimensional Helmholtz equation. The specific form of the equation is given
below, characterized by the wave number k2:

∆u(x, y) + k2u(x, y) = f(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ Ω
(52)

The two-dimensional Helmholtz equation corresponds to a linear system involving matrices ex-
pressed as tensor products of one-dimensional matrices:(

S ⊗M +M ⊗ S + k2 (M ⊗M)
)
α = F (53)

Figure 18 presents the exact solution, the NVQLS prediction, and their absolute difference. Fig-
ures 18(a)–(c) demonstrate a close match, with relative errors remaining below 0.1%. The conver-
gence is further supported by subfigures (d) and (e), where (d) presents the training and test loss
curves, and (e) shows the steady decrease in batch-mean relative L2 and L∞ errors throughout
training.

Two-dimensional Convection-diffusion Equations with Dirichlet Boundary We finally explain
the convection–diffusion equations with Dirichlet BC in the two dimension, whose exact form is
given by

−ϵ∆u(x, y) + ν · ∇u(x, y) = f(x, y), (x, y) ∈ Ω

u(x, y) = 0, (x, y) ∈ Ω
(54)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 15: Numerical results for the one-dimensional convection–diffusion equation with the ho-
mogeneous Dirichlet boundary condition and with a diffusion coefficient ϵ = 0.05. Top: (a) Exam-
ple of the predicted solution û compared to the exact solution u, (b) Absolute error between û and
u. Bottom: (c) Batch-wise training and test losses, (d) Batch-wise relative L2 and L∞ errors over
epochs.

From the weak formulation, the corresponding matrix can be written as

A = −ϵ (S ⊗M +M ⊗ S) + ν1R⊗M + ν2M ⊗RT (55)

Figure 19 compares the exact solution, the NVQLS prediction, and the pointwise absolute error
for the convection–diffusion equation with a diffusion parameter ϵ = 30.0. Panels (a)–(c) reveal a
strong agreement between the prediction and the exact solution, with relative errors around 1% and
a mean absolute error (MAE) of 1.241×10−5. Convergence behavior is further illustrated in panels
(d) and (e). The evolution of training and test losses is depicted in (d) , while (e) shows that the
batch-mean relative L2 and L∞ errors steadily decrease over the course of training.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 16: Numerical results for the reaction–diffusion equation with homogeneous Dirichlet
boundary conditions. Top: input pairs for the angle network. (a) case 1: a forcing function f1
and a diffusion coefficient ϵ = 0.360, (b) case 2: f2 and ϵ = 0.205, (c) case 3: f3 and ϵ = 0.458.
Middle: exact solutions u(i) and predicted solutions ûi for each case: (d) case 1, (e) case 2, (f) case
3. Bottom: absolute error plots |ûi − ui| on collocation points excluding the boundary points: (g)
case 1, (h) case 2, (i) case 3.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 17: A representative example for the two-dimensional reaction–diffusion equation with the
homogeneous Dirichlet boundary condition and a diffusion coefficient ϵ = 0.1. Top: (a) The exact
solution u, (b) The predicted solution û of NVQLS, (c) Absolute error between û and u. Bottom:
(d) Batch-wise training and test losses, (e) Batch-wise relative L2 and L∞ errors over epochs.

Figure 18: A representative example for the two-dimensional Helmholtz equation with the homo-
geneous Dirichlet boundary condition and a wave number k2 = 10.6. Top: (a) the exact solution u,
(b) the predicted solution û of NVQLS, (c) absolute error between û and u. Bottom: (d) batch-wise
training and test losses, (e) batch-wise relative L2 and L∞ errors over epochs.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 19: A representative example for the two-dimensional convection-diffusion equation with
the homogeneous Dirichlet boundary condition and a wave number ϵ = 30.0. Top: (a) the exact
solution u, (b) the predicted solution û of NVQLS, (c) absolute error between û and u. Bottom: (d)
batch-wise training and test losses, (e) batch-wise relative L2 and L∞ errors over epochs.

29

	Introduction
	Preliminaries and Related Works
	Methodology
	Model Architecture
	Complexity Analysis

	Experiment Results
	Spectral Operator Learning with Forcing instances
	 Operator Learning with Joint Parameter and Forcing Inputs
	Spectral Operator Learning for Two-dimensional PDEs

	Conclusion
	Appendix
	Nomenclature
	Derivation of Weak Formulation
	Training Details
	Generation of Data Instances
	Commutativity-Based Grouping Method for Loss Evaluation
	Number of Pauli Measurements
	Performance Metrics
	Hardware-Efficient Training
	Truncation Method
	Detailed Numerical Experiments

