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ABSTRACT

We introduce a new framework of adversarial attacks, named calibration attacks,
in which the attacks are generated and organized to trap victim models to be mis-
calibrated without altering their original accuracy, hence seriously endangering
the trustworthiness of the models and any decision-making based on their confi-
dence scores. Specifically, we identify four novel forms of calibration attacks: un-
derconfidence attacks, overconfidence attacks, maximum miscalibration attacks,
and random confidence attacks, in both the black-box and white-box setups. We
then test these new attacks on typical victim models with comprehensive datasets,
demonstrating that even with a relatively low number of queries, the attacks can
create significant calibration mistakes. We further provide detailed analyses to
understand different aspects of calibration attacks. Building on that, we investi-
gate the effectiveness of widely used adversarial defences and calibration methods
against these types of attacks, which then inspires us to devise two novel defences
against such calibration attacks.

1 INTRODUCTION

Figure 1: Calibration diagrams of a normal
ResNet-50 classifier before and after three
forms of calibration attacks. Red bars show
the average accuracy on the test data binned
by confidence scores and blue bars represent
the actual average confidence in each bin.
The yellow line depicts perfect calibration.
Despite the accuracy being unchanged, the
miscalibration is severe after the attacks.

Adversarial attacks (Ren et al., 2020) have proven to
be a critical tool to reveal the susceptibility of deep
neural networks (Ibitoye et al., 2019; Zimmermann
et al., 2022; Xiao et al., 2023), where, in a typical
setup, adversarial examples are generated by intro-
ducing imperceptible perturbations on an original in-
put to cause model misclassification. The existing
attacks have mainly focused on trapping victim mod-
els to make incorrect predictions.

In this paper, we highlight a serious set of threats,
named Calibration Attack, which focus on attack-
ing the calibration of victim models by deceiving the
models to be over or under-confident without modi-
fying their prediction accuracy, hence endangering
any decision-making based on a classifier’s confi-
dence scores. We briefly illustrate this in Figure 1.

Calibration attacks are insidious and arguably harder
to detect than standard attacks, which we empirically
demonstrate in Table 2, when using popular adver-
sarial attack detection techniques. The harm pre-
sented from these attacks is that on the surface the
model appears to still be making mostly correct de-
cisions, but the level of miscalibration could make the model’s decisions unusable for downstream
decision making. Consider the case of autonomous driving, where after a set of detected street signs
images are calibration-attacked, it can appear as though an object recognition model is performing
well even when scrutinized, but the confidence levels on ambiguous cases that need review by fur-
ther backup processing systems will be altered, and hence compromise the affected decision-making
leading to potential complications.
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In our study, we propose four forms of calibration attacks: underconfidence attack, overconfidence
attack, maximum miscalibration attack, and random confidence attack. We test these newly iden-
tified attacks primarily in the black-box setup due to it being a more realistic and applicable threat
scenario, but we also test white-box variations. We use benchmark image classification datasets to
evaluate the models. We also analyze the adequecy of existing adversarial defenses and calibra-
tion techniques against maintaining good calibration post-attack, as well as formulate and study two
novel forms of defence, Calibration Attack Adversarial Training (CAAT) and Compression Scaling
(CS), helping to bring additional insights for how to best resist these calibration attacks.

To the best of our knowledge, this is the first study that provides a comprehensive investigation
on calibration attacks, especially on the threat of inducing overconfidence. In summary, our main
contributions are as follows. 1) We introduce and investigate a new form of adversarial attack, the
calibration attack, and advocate that particular caution should be seriously taken for such attacks. 2)
We construct four specific forms of calibration attacks and show their danger to typical deep learning
models. Detailed analyses are provided on the effectiveness of different attacks and the vulnerability
of different architectures of victim models. 3) We show the severity of calibration attacks on many
models using current calibration and defence methods, and demonstrate the compromise often pre-
sented between robustness and calibration, but offer additional insights for future defences based on
our two novel methods.

2 RELATED WORK

Calibration of Machine Learning Models. Calibration methods are generally divided into two
types. Post calibration can be applied directly to the predictions of fully trained models at test time,
which include classical approaches like temperature scaling (Guo et al., 2017), Platt scaling (Platt,
1999), isotonic regression (Zadrozny & Elkan, 2002), and histogram binning (Zadrozny & Elkan,
2001). Training-based approaches, however, typically add a bias during training to help a model to
be better calibrated (Zhang et al., 2018; Thulasidasan et al., 2019; Kumar et al., 2018; Tomani &
Buettner, 2021). In this work we investigate how a diverse range of calibration methods cope against
calibration attacks and study the limitations that require them to be overhauled to deal with attacks,
including the vulnerability of models on convolutional (Guo et al., 2017; Minderer et al., 2021), and
Transformer architecture ViT (Dosovitskiy et al., 2021).

Adversarial Attacks and Training. We provide a more detailed overview of adversarial attack
methods in Appendix A. Black-box attacks (Carlini & Wagner, 2017) have less information about
victim models. Many methods of this type are based on some form of gradient estimation through
querying the model and finding the finite differences (Bhagoji et al., 2018). In contrast, white-
box attacks often have access to the full details of a victim model such as model architectures and
gradients. For example, a typical example of this type, among many others, is the Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015).

In terms of adversarial training, many approaches have also been introduced (Stutz et al., 2020;
Chen et al., 2022; Qin et al., 2021; Patel et al., 2021; Dhillon et al., 2018). For example, Stutz
et al. (2020) improve the robustness of the models against previously unseen attacks by rejecting
low-confidence adversarial examples through confidence-thresholding; Chen et al. (2022) design a
post processing adversarial defence method against score-based query attacks. Nevertheless, none
of the prior works comprehensively study calibration attacks and systematically investigate how well
victim models would remain well calibrated under such attacks.

3 CALIBRATION ATTACK

In a standard multi-class classification task, we have a set of input vectors X = {x1, . . . ,xN}
with dimensionality d. True labels are denoted as Y = {y1, . . . ,yN}, where yi is a class label
in a finite set {1, . . . ,K}. The goal in neural network-based classification is to find a mapping to
predict the class label of a given x, i.e., F : x → (ŷ, p̂), where ŷ represents the predicted class
label obtained by taking the argmax of the probability distribution p̂. This probability distribution
p̂ is often generated using a softmax function on the output layer of the network, ensuring that∑K

i=1 p̂i = 1. The highest probability in p̂ corresponds to the predicted class and serves as the
prediction confidence.
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3.1 OBJECTIVE OF CALIBRATION ATTACK

Calibration attack aims to generate adversarial samples to maximize the miscalibration function
M(x̃,k) for a predicted class k and an adversarial sample x̃. As will be detailed in Section 3.2,
we propose four specific forms of calibration attacks, in which the miscalibration function M(x̃,k)
has different implementations. The adversarial sample x̃ is created by adding adversarial noise δ
to an input vector x: x̃ = x + δ. To ensure that the adversarial example and the original do not
differ a notable amount and following convention, a maximum lp-ball norm difference bounded by
an ϵ is defined between them. For completeness of the paper, we include the details of adversarial
constraint to be satisfied for certain p ∈ {0, 1, ..,∞} norm:

∥x̃− x∥p < ϵ, s.t ŷ ̸= y, (1)

where ϵ controls the amount of perturbation allowed.

In general, our attacks are based on the most popular and easiest-to-measure view of calibration
called classwise calibration that focuses on the predicted class (Kull et al., 2019). The equation
below details the notion for all input datapoints (xn,yn) ∈ D = {(xn,yn)}Nn=1 in a dataset D:

P(yn = ŷ(xn) | p̂k(xn) = pk) = pk, (2)

where pk is the confidence score for the predicted class k. Any mismatch between the left and right
hand sides of the equation creates undesirable miscalibration.

3.2 FOUR TYPES OF CALIBRATION ATTACK

Within the aforementioned framework, we propose to construct four forms of calibration attack:
underconfidence attack, overconfidence attack, maximum miscalibration attack, and random confi-
dence attack. The first two types serve as the basis for the latter, while the maximum miscalibration
and random confidence attacks are developed to create a higher and more problematic degree of
miscalibration compared to the base attacks.

Underconfidence and Overconfidence Attack. These two base attacks aim to solve the con-
strained optimization problem involving the miscalibration function M(x̃,k) for the predicted class
k. Specifically for the underconfidence attacks, the loss function is defined as:

M(x̃,k) = p̂k(x̃)−max
j ̸=k

p̂(x̃). (3)

The aim is to reduce the confidence scores on all predictions. For overconfidence attacks, the loss
function is M(x̃,k) = 1 − p̂k(x̃), and the objective is updated so that adversarial examples are
crafted to have the highest level of confidence. Both of these come with the added constraint that
the examples are generated to try to keep predicted class label ŷ(x) = ŷ(x̃), irrespective of true
label y, and with the goal of ensuring that the maximum amount of calibration error over the set of
adversarial inputs X̃ , maxX̃ (P(yn = ŷ(x̃n) | p̂k(x̃n) = pk)− pk) is produced.

The overall algorithm for the underconfidence and overconfidence attacks can be seen in Algo-
rithm 1. The basis of our primary implementation of calibration attacks is the popular and highly
effective Square Attack (SA) (Andriushchenko et al., 2020), a black-box score-based adversarial
attack approach. It has attained state-of-the-art results in terms of query efficiency and success rate,
even outperforming some white-box methods. Unlike the standard adversarial attack settings, we do
not only run the attacks on correctly classified examples, but also the originally misclassified inputs,
since they can also be further miscalibrated; attacking misclassified inputs in such a manner could
be an additional avenue for adversaries to pursue to harm downstream decision-making. There are
two basic forms of SA attacks, based on the l∞ or l2 norm. We create a version of calibration attack
for each norm. In addition to SA, we also create white-box variations of calibration attack using the
effective Projected Gradient Descent (PGD) framework in the l∞ threat model. These attacks follow
the same algorithm but have additional implementation details, which can be seen in Appendix B.

Maximum Miscalibration Attack. The main principle behind the maximum miscalibration attack
is that to create the most amount of miscalibration in classifier for a given set of data, one needs
to have all of the incorrectly classified samples have near 100% confidence, and all of the correctly
classified samples have the minimum confidence scores.
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Algorithm 1 General Calibration Attack
1: Input: Classifier f , input x, original predicted

class k, ϵ, I attack iterations, attack type a
2: Output: Adversarial example x̃
3: x̃← x
4: if a=underconf then
5: Loss function L returns the loss margin between

predicted class and second highest class
6: else if a=overconf then
7: Loss function L returns softmax probability of

predicted class
8: end if
9: l∗ ←− L(f(x̃), k)

10: for i = 1 to I do
11: Perturb x̃ to find δ according to attack algorithm

bounded by lp norm e.g. Square Attack
12: xnew ← Project x̃ + δ to be within ϵ of the lp

norm
13: lnew ← L(f(xnew)), k)
14: if a=underconf and lnew < l∗ and

argmax(f(xnew)) = k then
15: x̃←− xnew, l

∗ ←− lnew

16: else if a=overconf and lnew > l∗ then
17: x̃←− xnew, l∗ ←− lnew

18: end if
19: if (a=underconf and l∗ < 0.01) or (a=overconf

and l∗ > 0.99) then
20: break for loop
21: end if
22: end for

Consider that, to achieve the highest amount of
calibration error (100%) for a given set of data
requires the following:

pk = 1, p̂k(xn) = 1,yn ̸= ŷ(xn)∀xn,

Based on Eq. 2 , that will satisfy:

P(yn = ŷ(xn) | p̂k(xn) = pk) = 0.

In other words, this occurs when a classifier
only outputs 100% confidence scores, while its
accuracy is 0.

Let a classifier have non-zero accuracy that is
unchangeable. We cannot expect to reach the
error of 100% since pk = 0 cannot be the case
(for the top predicted class) nor can P(yn =
ŷ(xn)) = 0 be true for all yn. However, to
achieve the highest calibration error on a set of
data points in this scenario, one can first isolate
the misclassified data points and if the classifier
is made to output confidence scores of 100% on
all of them, using calibration attack for exam-
ple, it would create a total calibration error of
100% on this set of misclassified data points ex-
actly as in the theoretical highest miscalibration
scenario discussed previously. Next, with the
remaining correctly classified points, which we
know the classifier has an accuracy of 100% on,
one can create the largest difference between
the accuracy and average confidence by making the average confidence on this set as low as pos-
sible. Consider Eq. 2, since confidence scores can only range from 1/K to 1, the largest possible
difference between the average confidence score and the accuracy of 100% is 1 − 1/K. Again, if
pk = 1/K, and every p̂k(xn) = 1/K, while yn = ŷ(xn)∀xn, then this makes the calibration
error: P(yn = ŷ(xn) | p̂k(xn) = pk) − pk = 1 − 1/K. It is not possible to create a higher
level of calibration error since if pk > 1/K on some number of the correctly classified samples,
then P(yn = ŷ(xn) | p̂k(xn) = pk) will still be 1, while pk > 1/K will lead to less calibration
error on that subset of samples. With errors on both mutually exclusive subsets of data maximized,
the theoretical highest miscalibration will be created on the full data. Finally, to emulate this sce-
nario, underconfidence attacks are conducted on all data points correctly classified by the model,
and overconfidence attacks are conducted on all of the misclassified data yielding the maximum
miscalibration attack.
Random Confidence Attack. This variation of attacks attempt to completely decouple the model’s
confidence scores and predictive performance in a randomized fashion by modifying inputs, such
that the confidence scores produced by the model on them are randomized. Specifically, random
confidence attacks are performed by choosing a random goal confidence score for each input, and
then, depending on the original confidence score, running the corresponding underconfidence or
overconfidence attacks to produce a new target confidence score on the input. Although this form
of attacks are theoretically less effective than the maximum miscalibration attacks, they are less
predictable, since unlike the other attacks it does not lead the model to produce one or two ter-
minal confidence scores for each input, and instead can produce more initially reasonable looking
confidence scores that are completely meaningless due to being randomized.

3.3 DEFENCE AGAINST CALIBRATION ATTACK

As we will show in Section 4, calibration attacks are very effective on existing victim models, hence
developing defence strategies is important. In addition to investigating existing defence approaches
against regular adversarial attacks, we propose two novel methods specifically against calibration
attacks: Calibration Attack Adversarial Training (CAAT) and Compression Scaling (CS).
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CAAT is a variation of PGD-based adversarial training utilizing our white-box calibration attacks
to generate adversarial training samples for each minibatch during training. Hence, both under
and overconfident samples with the model’s original predicted label preserved are exclusively used
to train the model. CS is a post-process scaling technique primarily designed for dealing with
maximum miscalibration attacks. It is based on the assumption that since effective classifiers have a
high level of accuracy (and confidence), calibration attacks will typically do most of the damage by
lowering confidence scores on highly confident correctly classified samples. Therefore, by scaling
the low scores to a high confidence range, CS can help mitigate the most severe miscalibration.

Table 1: Results of four types of l∞ calibration at-
tacks: underconfidence (und-atk), overconficence (ovr-
atk), maximum miscalibration (max-atk), and random
confidence attack (rnd-atk). Accuracies of victim mod-
els are included.

ResNet
Avg #q Med. #q ECE KS Avg. Conf.

CIFAR-100 (Accuracy: 0.881±0.002)
Pre-atk - - .052±.006 .035±.006 .916±.006

Und-atk 74.3±3.4 42.7±1.5 .540±.005 .479±.001 .465±.005

Ovr-atk 16.0±0.8 1.0±0.0 .124±.002 .124±.002 .996±.000

Max-atk 72.9±2.8 41.5±2.8 .606±.002 .497±.002 .502±.002

Rnd-atk 68.9±4.6 42.7±1.2 .558±.011 .461±.003 .514±.003

Caltech-101 (Accuracy: 0.966±0.004)
Pre-atk - - .035±.003 .031±.004 .936±.001

Und-atk 333.8±13.8 259.7±17.4 .361±.005 .362±.005 .605±.006

Ovr-atk 75.7±9.3 1.0±0.0 .028±.003 .028±.004 .992±.000

Max-atk 182.6±5.6 286.5±16.1 .397±.008 .379±.007 .618±.005

Rnd-atk 178.5±14.9 289.3±8.1 .344±.014 .342±.010 .638±.006

GTSRB (Accuracy: 0.972±0.000)
Pre-atk - - .019±.006 .008±.002 .980±.002

Und-atk 197.5±10.3 103.0±7.3 .396±.017 .390±.013 .591±.014

Ovr-atk 12.1±1.3 1.0±0.0 .029±.008 .029±.008 .998±.000

Max-atk 142.1±6.0 102.2±3.6 .419±.009 .402±.012 .597±.011

Rnd-atk 139.4±1.5 104.7±3.5 .399±.009 .386±.005 .599±.007

ViT
CIFAR-100 (Accuracy: 0.935±0.002)
Pre-atk - - .064±.006 .054±.005 .882±.004

Und-atk 118.5±2.4 62.0±3.1 .572±.007 .553±.004 .404±.003

Ovr-atk 524.7±88.7 510.5±114.3 .043±.007 .043±.006 .974±.001

Max-atk 104.8±7.5 62.7±4.7 .616±.003 .564±.000 .431±.001

Rnd-atk 106.4±3.0 70.3±1.5 .549±.002 .505±.003 .471±.007

Caltech-101 (Accuracy: 0.961±0.024)
Pre-atk - - .137±.059 .136±.060 .825±.083

Und-atk 325.5±16.7 273.7±23.7 .426±.044 .426±.044 .536±.068

Ovr-atk 52.1±40.9 1.0±0.0 .081±.042 .079±.040 .881±.067

Max-atk 150.7±12.1 269.7±25.1 .415±.036 .414±.034 .551±.058

Rnd-atk 129.0±17.3 315.0±17.4 .364±.016 .364±.016 .598±.040

GTSRB (Accuracy: 0.947±0.006)
Pre-atk - - .040±.005 .026±.017 .922±.024

Und-atk 169.8±15.0 88.3±6.7 .459±.015 .452±.019 .498±.026

Ovr-atk 94.9±45.9 3.7±4.6 .029±.003 .030±.004 .976±.011

Max-atk 137.1±4.3 88.3±6.7 .519±.020 .480±.020 .509±.024

Rnd-atk 129.5±7.4 97.2±9.9 .454±.012 .432±.016 .538±.019

For our algorithm, the range of pos-
sible confidence scores are first split
into M equally sized bins, which we
select to be 3 (or 4). Any samples
whose confidence scores fall within the
bin m ∈ {1, ...,M} in original group
O are mapped to a corresponding bin
in high confidence bin group Q with
a compressed confidence range. In
our case, we divide confidence scores
into 15 bins and chose the top 3 (or
4) highest confidence bins as the cor-
responding compressed bins. A lin-
ear mapping is applied and the sam-
ples’ positions in the new bin are kept
to be the same as in the original one.
Next, the sample’s logit vector is scaled
by finding a scaling factor by iterat-
ing through a large range of possible
values so that the new desired confi-
dence score for the sample achieved
within the new confidence range. For-
mally, for a sample x with logit dis-
tribution l = {l1, ..., lk} and original
predicted probability p̂og , we find tem-
perature T such that it is mapped from
a relative bin in bin group O to bin
group Q. The new predicted prob-
ability p̂new is argmaxi(

exp(li/T )∑
jexp(lj)/T

)

such that p̂new = min conf(Qm) +
p̂og−min conf(Om)

range(Om) ∗ range(Qm), where
min conf(Qm) is the minimum con-
fidence level of bin m in Q, while
max conf(Om) is the maximum confidence level of bin m in O, and range() gives the range of
confidence vales in a bin. That is, for bin group O it is max conf(Om)−min conf(Om).

4 EXPERIMENTAL RESULTS OF CALIBRATION ATTACK

Metrics. Two widely used metrics are used to assess calibration error: Expected Calibration Er-
ror (ECE) (Pakdaman Naeini et al., 2015) and Kolmogorov-Smirnov Calibration Error (KS error)
(Gupta et al., 2021). We evaluate attacks’ query efficiency using the average and median number of
queries for the attacks to complete (Andriushchenko et al., 2020). Average confidence of predictions
is used to judge the degree that the confidence scores are affected. (See Appendix B for details.)

Datasets. We use CIFAR-100 (Krizhevsky & Hinton, 2009), Caltech-101 (Fei-Fei et al., 2004), and
the German Traffic Sign Recognition Benchmark (GTSRB) (Houben et al., 2013) with respect to
safety critical applications.

Models. To explore the effect of attacks on different architecture, we use ResNet-50 (He et al., 2016)
and the popular non-convolutional attention-based model, the Vision Transformer (ViT) (Dosovit-
skiy et al., 2021). Details can be seen in Appendices B and C.
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Attack Settings. Key attack settings, e.g., l∞, l2 and attack iterations, can be found in Appendix B.
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Figure 2: The influence of ϵ (the left three subfigures) and attack iterations (the right subfigure)
in the attacks effectiveness. Subfigure-1 (the left most) presents the comparison between the ECE
scores of the different calibration attacks at different ϵ values using ResNet-50 models trained on
CIFAR-100. Subfigure-2: ECE vs. ϵ using maximum miscalibration attacks on ViT models trained
on CIFAR-100. Subfigure-3: ECE vs. ϵ using maximum miscalibration attacks on the ResNet-50
models trained on Caltech-101 and GTSRB. Subfigure-4: Effect of the numbers of attack iterations
on the ability of the attack algorithm. The first three subfigures are created at the 1000th iteration.

4.1 OVERALL PERFORMANCE

The performance of l∞ attacks on different victim models are shown in Table 1. The results of l2
attacks can be found in Table 6 of the Appendix F.6, and the main results for the white-box attacks
are in Table 5 of the Appendix F.1. The experiments show that the maximum miscalibration attack
is consistently the most effective in producing the highest levels of miscalibration in both black-
box and white-box setups. In most cases its efficiency is competitive, suggesting it has overall the
best performance under the same number of attack iterations. The underconfidence and random
confidence attack also create substantial calibration error. They perform similarly to one another
in terms of overall error, with the underconfidence attacks largely edging in in effectiveness. The
results are obtained on three runs of each model with different random seeds.

The overconfidence attack results are of particular interest—the attack successfully raises the aver-
age confidence level to around 99% in most cases. Given the very high level of accuracy of each
of these models, increasing the confidence level of the predictions does not have as drastic an effect
on the calibration error since the gap between the average confidence level and accuracy will still
be small when confidence levels are raised to 100%. It can even appear to make the model produce
better calibrated scores on the new adversarial data if the model was originally underconfident on
the data. However, the effect of the overconfidence attacks is still dangerous since it can make the
model output near certain confidence scores irrespective of the input. In practice this can render the
use of confidence scores meaningless as they would be the same for every input, so the low calibra-
tion error does not necessarily reflect the severity of the attacks. Figure 1 demonstrates the effects of
each form of attacks in calibration diagrams, in which we can observe the severity of miscalibration.

The general trends between the l2 and l∞ attacks are similar, although the latter are more effective,
leading to more severe miscalibration whilst being more query efficient and faster by as much as
two or three times. There are only a few cases where l2 attacks yield higher miscalibration or
more efficient attacks in terms of the number of queries. We focus our remaining analyses on the
more effective l∞ norm. Regarding different architectures, the ViT models tend to be slightly more
miscalibrated after the attacks, compared to the ResNet models on ECE and KS, but the ViT models
also are notably more miscalibrated before the attacks.

Even with the relatively low amount of queries under the black-box setting, all of the types of
attacks are generating severe miscalibration, increasing ECE and KS error often by over 10 times
the original amount. Calibration attacks are very effective in achieving their goals even with the
prediction accuracy unchanged, raising serious concerns for safety critical applications.

4.2 DETECTION DIFFICULTY ANALYSIS

Calibration attacks are difficult to detect given they do not affect the decisions of the classifier.
To show this, we run experiments using ResNet-50 on our three tested datasets using the popular
adversarial attack detection methods: Local Intrinsic Dimensionality (LID) (Ma et al., 2018), Ma-
halanobis Distance (MD) (Lee et al., 2018), and SpectralDefense (Harder et al., 2021). The details
behind the settings for each detection method can be seen in Appendx E. We show our main results
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Table 2: Adversarial attack detection results comparing original version of PGD and SA attacks with
their calibration attack counterparts.

PGD PGD-Under PGD-Over PGD-Max SA SA-Under SA-Over SA-Max
AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc

CIFAR-100
LID 93.7 87.7 64.5 67.1 88.7 84.3 63.3 66.0 90.1 82.9 54.2 54.3 63.9 61.6 54.5 54.0
MD 99.3 98.5 83.1 74.4 96.7 93.8 81.9 73.3 99.8 98.9 90.2 80.5 78.1 74.8 89.4 79.9
Spect. 100.0 100.0 74.9 67.0 94.2 90.0 64.8 62.5 100.0 98.0 70.5 65.5 52.3 50.5 71.6 65.5

Caltech-101
LID 84.8 78.1 53.6 54.8 89.1 81.9 53.9 55.1 70.2 64.4 62.5 61.1 65.3 62.3 58.6 59.5
MD 91.6 84.6 60.1 57.9 90.6 84.7 62.6 60.3 88.9 81.3 81.9 74.7 73.9 70.1 81.8 74.5
Spect.l 93.4 88.5 67.8 66.5 93.7 90.5 64.2 62.0 98.0 94.5 59.1 53.0 51.8 50.0 56.9 53.0

GTSRB
LID 95.7 89.1 88.8 86.3 94.6 87.4 87.0 85.3 86.3 77.1 71.4 68.1 72.5 69.8 72.4 66.7
MD 100.0 99.8 94.6 93.6 97.9 97.7 92.9 92.6 95.5 89.6 83.7 77.8 74.4 74.9 85.6 79.0
Spect. 99.4 98.5 94.8 93.0 99.0 99.9 99.0 99.9 99.1 98.0 83.0 79.0 50.4 50.5 83.1 79.0

of the effectiveness of the detectors in terms of Area Under the Curve (AUC) and detection accu-
racy when running the different types of calibration attacks compared to their original counterparts
in Table 2, under both the white-box and black-box setups. We observe how in most cases, with
one exception, there is a notable decrease in detection performance, with the effects being most
pronounced in SA, where the decrease of more than 20% in accuracy can often be seen. Existing
detection methods appear less reliable for calibration attacks.

4.3 IMPACT OF KEY ASPECTS OF ATTACK Table 3: Comparison between the efficiency of the
underconfidence (shortened as und.) and overcon-
fidence (shortened as ovr.) attacks.

ResNet
# Samples Avg. #q Med. #q Avg. Conf.

CIFAR-100
90% -10% und. 186.0±4.4 8.5±0.5 5.7±0.6 77.9±1.4

90% +10% ovr. 186.0±4.4 36.5±1.5 31.0±1.7 99.0±0.0

80% -10% und. 94.0±4.2 6.5±0.5 4.3±0.7 67.9±0.4

80% +10% ovr. 94.0±4.2 9.8±1.7 7.0±1.4 91.3±0.1

Caltech-101
90% -10% und. 160.7±7.8 39.4±11.8 31.7±8.5 80.2±0.0

90% +10% ovr. 160.7±7.8 225.6±55.5 212.8±63.3 98.8±0.2

80% -10% und. 53.3±24.0 17.5±12.1 16.0±19.1 63.1±2.1

80% +10% ovr. 53.3±24.0 30.0±10.3 21.7±11.3 89.5±0.4

GTSRB
90% -10% und. 48.0±4.2 11.7±0.1 8.2±1.4 77.5±1.2

90% +10% ovr. 48.0±4.2 98.5±4.0 62.8±5.7 99.1±0.0

80% -10% und. 30.0±0.7 9.2±0.9 6.0±1.1 70.5±0.7

80% +10% ovr. 30.0±0.7 18.6±3.4 12.8±0.4 91.0±0.1

ViT
CIFAR-100
90% -10% und. 392.7±33.5 20.0±1.6 9.3±1.2 76.1±0.3

90% +10% ovr. 392.7±33.5 883.7±120.2 883.7±120.2 97.1±0.1

80% -10% und. 138.7±5.1 8.8±1.7 5.5±0.5 66.1±0.3

80% +10% ovr. 138.7±5.1 55.8±1.4 20.7±4.7 90.0±0.1

Caltech-101
90% -10% und. 472.0±161.0 264.7±56.6 198.0±51.0 81.1±0.5

90% +10% ovr. 472.0±161.0 700.7±518.5 700.7±518.5 93.2±0.2

80% -10% und. 222.0±17.3 149.5±19.3 66.5±9.8 70.0±0.6

80% +10% ovr. 222.0±17.3 323.9±123.5 269.3±210.7 86.0±0.2

GTSRB
90% -10% und. 184.0±27.5 31.0±6.5 12.7±1.9 76.1±0.9

90% +10% ovr. 184.0±27.5 235.3±69.5 180.0±92.0 96.5±0.2

80% -10% und. 79.0±28.6 16.1±6.7 7.7±2.3 67.3±0.2

80% +10% ovr. 79.0±28.6 140.1±63.2 41.7±43.7 89.6±0.8

We examine the impact of key aspects of cali-
bration attacks, including adversarial noise, at-
tack iterations, and attack types. More details
can be found in Appendix F, including addi-
tional analyses. All the analyses are conducted
over the more effective l∞ attacks in the black-
box setup using our regular attack settings un-
less stated otherwise.

Epsilon. We study how successful the differ-
ent attacks are at different ϵ levels to ascertain
how low the value can be in order to have no-
table harm. The results are shown in Figure 2.
Our first set of experiments seen in the leftmost
figure is based on CIFAR-100 using ResNet-
50, where we track the ECE at five different
ϵ values after being attacked using all the dif-
ferent attacks. The attacks are successful even
with low ϵ values. The rise in ECE is sharp
when ϵ increases, but it plateaus at higher val-
ues. The middle figure shows similar results
when using ViT with the maximum miscali-
bration attack, revealing that the phenomena is
not architecture dependent. The rightmost fig-
ure, where a maximum miscalibration attack is
used against ResNet over both Caltech-101 and
GTSRB, shows similar patterns across different
datasets.

Iterations. Creating attacks that are effective without requiring a large number of queries is impor-
tant. Figure 2 shows the results of varying the number of iterations using the maximum miscalibra-
tion attack on the two tested models on CIFAR-100. We find that even at 100 iterations the ResNet
model becomes heavily miscalibrated. In Appendix F.2, we also provide detailed comparison on
the effectiveness of the maximum miscalibration attack to the base SA algorithm. We find that our
attacks consistently produces higher amounts of miscalibration compared to the original SA across
different number of iterations, showing how effective calibration attacks are at specifically targeting
creating miscalibration, and how optimizing targeting accuracy and calibration are separate objec-
tives and worth considering independently.
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Table 4: Effectiveness of calibration methods
and adversarial defences, evaluated with pre-
and post-ECE and KS scores.

Avg#q Med#q Acc PrECE PsECE PrKS PsKS
WideResNet (CIFAR-100)
Gowal, ’20 63.5 86.5 .690 .137 .248 .137 .200
Rebuffi, ’21 36.4 51.0 .622 .190 .209 .189 .198
Pang, ’22 50.5 64.5 .638 .185 .214 .187 .195

ResNet-50
CIFAR-100
TS 74.1 40.0 .880 .034 .643 .007 .530
Splines 6.6 83.0 .876 .020 .681 .019 .573
DCA 68.0 39.0 .866 .049 .604 .039 .492
SAM 83.8 44.5 .882 .033 .609 .014 .506
AAA 7.7 31.5 .880 .038 .225 .011 .123
AT 65.9 60.0 .790 .035 .431 .022 .279
CAAT 66.9 44.0 .842 .048 .504 .036 .440
CS 64.4 39.0 .880 .051 .218 .041 .145
Caltech-101
TS 194.7 276.0 .970 .014 .347 .005 .322
Splines 4.5 150.0 .970 .019 .104 .010 .095
DCA 189.6 269.0 .962 .038 .418 .027 .392
SAM 191.1 276.0 .970 .051 .429 .049 .414
AAA 1.1 20.0 .964 .061 .100 .058 .085
AT 23.7 194.0 .918 .038 .079 .018 .068
CAAT 127.5 206.0 .972 .017 .264 .012 .266
CS 179.4 254.0 .970 .026 .065 .017 .067
GTSRB
TS 160.6 111.0 .972 .019 .396 .018 .377
Splines 0.7 22.0 .972 .018 .129 .007 .123
DCA 130.2 97.0 .976 .017 .389 .011 .372
SAM 117.4 87.0 .978 .012 .384 .003 .371
AAA 3.1 51.0 .972 .023 .071 .014 .059
AT 37.7 117.5 .962 .017 .160 .007 .135
CAAT 121.7 115.0 .968 .020 .324 .017 .317
CS 151.2 111.0 .972 .019 .097 .020 .095

ViT
CIFAR-100
TS 117.7 73.0 .938 .014 .568 .010 .515
Splines 9.9 130.5 .938 .023 .405 .016 .358
DCA 125.6 69.0 .944 .024 .565 .011 .519
SAM 123.0 66.0 .942 .072 .607 .064 .561
AAA 0.8 42.0 .938 .106 .200 .092 .161
AT 86.8 77.0 .886 .066 .519 .063 .439
CAAT 102.4 56.0 .922 .026 .537 .010 .506
CS 97.0 59.0 .938 .044 .137 .033 .142
Caltech-101
TS 154.8 280.0 .972 .030 .313 .023 .264
Splines 0.5 45.0 .972 .035 .071 .017 .049
DCA 140.9 254.5 .976 .039 .345 .025 .345
SAM 145.9 278.0 .962 .170 .459 .170 .459
AAA 0.3 20.5 .972 .189 .196 .189 .198
AT 48.2 188.0 .946 .132 .229 .132 .231
CAAT 136.2 341.0 .986 .048 .316 .049 .318
CS 143.3 277.0 .934 .205 .068 .018 .068
GTSRB
TS 132.9 80.0 .950 .038 .463 .033 .410
Splines 1.7 16.0 .950 .040 .115 .041 .067
DCA 132.8 92.0 .950 .052 .506 .037 .476
SAM 133.9 103.0 .944 .070 .505 .069 .473
AAA 0.1 4.0 .950 .053 .128 .049 .110
AT 66.9 124.0 .930 .132 .320 .130 .317
CAAT 118.9 85.0 .932 .066 .446 .055 .431
CS 130.5 81.5 .950 .027 .092 .035 .089

Underconfidence vs. Overconfidence. To under-
stand which form of attack is most query efficient
when the amount of change in confidence is the
same, for each attack type we identify all of im-
ages in the test set that are around a given confi-
dence level. We use the corresponding attack to
made the model produce either an increase of 10%
in confidence, or a decrease of 10%. We choose
two base confidence levels of 80% and 90% and
find all the data points within 1% of each. When
an attack causes a change at or past the set thresh-
old for the given goal probability, the attack stops
and the number of queries is recorded. The results
can be seen in Table 3. The consistent pattern we
observe for both base confidence levels is that it
takes notably fewer queries to create underconfi-
dence than overconfidence, and the former attack is
more effective at affecting the average confidence.

Qualitative Analysis. We perform qualitative
analyses on the effect of calibration attacks.
Appendix F.3 provides t-SNE visualization for
calibration-attacked data samples. In Figure 3 be-
low, we demonstrate the difference in the coarse
localization maps using the GradCAM technique
(Selvaraju et al., 2017) for images before and af-
ter calibration attack (see Appendix F.5 for details).
In the first case, we confirm that all of the attacks
are leading to the expected behaviour in the rep-
resentation space, with the overconfidence attacks
in particular being successful in pushing affected
samples far from the decision boundary. With the
Grad-CAM visualizations, we find that there are
minimal changes to the maps after the attacks are
conducted, making it difficult to identify using gra-
dient visualization methods.

5 RESULTS OF DEFENDING
AGAINST CALIBRATION ATTACKS

In this section, we investigate 11 types of defence based on common or effective adversarial de-
fences and calibration techniques. We compare the performance to the two methods we propose. A
complete description with training details for each method is in Appendix C.2.

Baseline Defence Methods. For the calibration-focused models, we use two popular and highly
effective post-calibration methods, Temperature Scaling (TS) (Guo et al., 2017) and Calibration
using Splines (Gupta et al., 2021). For training-based regularization methods we use two effective
models, DCA (Liang et al., 2020) and SAM (Foret et al., 2021). Regarding adversarial defence
methods, we test the top-3 state-of-the-art defence models under the l∞ attack for CIFAR-100,
using WideResNet on the RobustBench leaderboard (Croce et al., 2021). We include one of the
most common defences in the form of a PGD-based adversarial training (AT) (Madry et al., 2018)
baseline, which is tuned to be well calibrated on clean data, and a recent post-process defense called
Adversarial Attack Against Attackers (AAA) (Chen et al., 2022), due to its effectiveness against SA.

Results and Analyses. The results for the comparison between the different methods can be seen
in Table 4. We show the results of the best performing models trained in each case, and we measure
query efficiency, accuracy, along with the ECE and KS error, before and after the attack. The attack
model is the l∞ maximum miscalibration attack using the same settings described in Appendix B.
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Figure 3: GradCAM visualizations on samples showing the
image regions most responsible for the decisions of ResNet-
50 before (top row) and after being attacked by the under-
confidence and overconfidence attacks (bottom row). The
left set of images shows the underconfidence attack visual-
izations and the right displays the overconfidence attack vi-
sualizations. Examples are picked to have large confidence
differences after being attacked.

The RobustBench models compro-
mise substantially on accuracy, and
have a high level of miscalibration on
clean data. They do largely avoid get-
ting extremely miscalibrated as a re-
sult of the attacks compared to the
defenceless models, except the top
model on the leaderboard. Never-
theless, the high inherent miscalibra-
tion of these classifiers means they
are unfavourable in situations where
the model must be well calibrated.

In terms of the calibration methods,
TS tends to be among the best meth-
ods at reducing calibration error prior
to the attacks, but after the attacks it
offers very little, if any, robustness
compared to the vanilla models. The Splines method is similar in its pre-attack calibration bene-
fits, but differs greatly in its performance post-attack. In some cases, like CIFAR-100 ResNet, it
is easily the worst performing defence method. In other cases, particularly for Caltech-101 and
GTSRB ViT, it is able to keep ECE at relatively reasonable values post-attack. This discrepancy
shows that finding an ideal recalibration function has the potential to be a strong defence. The
training-based DCA and SAM methods tend to bring few benefits after being attacked, even when
they improve the calibration on clean data, the post-attack ECE and KS errors are not substantially
different compared to the vanilla models.

The performance of the regular adversarial defence techniques is mixed. In terms of robustness,
AAA is in most cases the technique with among the lowest post-attack ECE. Even in the best cases
like Caltech-101 ResNet, the ECE tends to be at least double compared pre-attack, and in most
cases we still observed multiple-fold increases. This technique is also among the poorest calibrated
on clean data. Regarding AT, our approach does not compromise on accuracy and miscalibration on
clean data. Likewise, it does bring some notable robustness, especially compared to the calibration
methods, but it is not among the strongest.

Lastly, CAAT tends to perform more poorly in resisting the attacks than AT, likely because the train-
ing samples do not deceive the model so there is less inductive bias towards general adversarial
robustness. In contrast, the performance of CS is quite strong, and it is the strongest method at
maintaining low calibration error post-attack overall, even compared to the adversarial-based meth-
ods. Moreover, the technique tends to have better calibration error on clean data compared to AAA.
It shows how it is key that high confidence values are retained to have decent calibration after the
attacks. Altogether, despite some promising results with the defences, as a whole there are still
limitations particularly with the strongest adversarial defences. The compromise of poor ECE on
clean data for better calibration robustness against the attacks that we observe, as well as the general
inconsistent performance means that further refinement on defences is warranted.

6 CONCLUSION AND OUTLOOK

We introduced and studied a new form of adversarial attack that targets the calibration of deep
models. Specifically, we developed four forms of calibration attacks and showed the danger of them
on typical victim models, and also on models using current calibration and defence methods. We
empirically showed that calibration attacks can present a major problem for safety critical systems,
as they can be more difficult to detect than standard attacks, and if the calibration of the model on the
data is not being closely monitored it is easy to be unaware that the model is not being attacked since
the accuracy is unchanged. Also, we devised two novel defences against such calibration attacks,
and empirically showed their effectiveness.

Our study here indicates that creating models that are robust against such calibration attacks through
different defence methods is of tantamount importance for future work, especially with the mixed
performance of various techniques we have observed, and because creating theoretically stronger
and more efficient attacks is possible, particularly in terms of the overconfidence attack.
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Meelis Kull, Miquel Perelló-Nieto, Markus Kängsepp, Telmo de Menezes e Silva Filho, Hao Song,
and Peter A. Flach. Beyond temperature scaling: Obtaining well-calibrated multiclass probabili-
ties with Dirichlet calibration. In NeurIPS, 2019.

Ananya Kumar, Percy Liang, and Tengyu Ma. Verified Uncertainty Calibration. In NeurIPS, 2019.

Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. Trainable Calibration Measures for Neural Net-
works from Kernel Mean Embeddings. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 2805–2814, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
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A A MORE DETAILED SUMMARY OF RELATED WORK

In the field of calibration, a great deal of current research is devoted to the creation of new calibration
methods that can be applied to create better calibrated models while possessing as minimum over-
head in applying them as possible. Methods are generally divided into two types. Post-calibration
methods can be applied directly to the predictions of fully trained models at test time, and methods
of this class include temperature scaling (Guo et al., 2017). More traditional methods of this type
include Platt scaling (Platt, 1999), isotonic regression (Zadrozny & Elkan, 2002), and histogram
binning (Zadrozny & Elkan, 2001). All of these three methods are originally formulated for binary
classification settings, and work by creating a function that maps predicted probabilities based on
their values more in tune with the model’s level of performance. Although they are easy to apply,
they often come with the limitation of needing a large degree of validation data to tune, especially
with isotonic regression, and performance can struggle when applied to more out of distribution
data.

The second class of methods are training-based methods, which typically add a bias during training
to ensure that a model learns to become better calibrated. Often times these methods help by act-
ing as a form of regularization that can punish high levels of overconfidence late into training. In
computer vision, Mixup (Zhang et al., 2018) is a commonly used method of this type that serves as
an effective regularizer by convexly combining random pairs of images and their labels and helps
calibration primarily due to the use of soft, interpolated labels (Thulasidasan et al., 2019). Other
methods work by adding a penalty to the loss function, like in the case of MMCE, an RKHS kernel-
based measure of calibration that is added as a penalty on top of the regular loss during training so
that both are optimized jointly (Kumar et al., 2018). Similarly, Tomani & Buettner (2021) create
a new loss term called adversarial calibration loss that directly minimizes calibration error using
adversarial samples. Given the effectiveness of many of these methods in regular testing scenarios,
we desire to illustrate how well a diverse range of these methods can cope against attacks targeting
model calibration and whether they possess limitations that require them to be overhauled to deal
with an attack scenario.

With respect to adversarial attacks, attacks in this field are wide ranging. Well known white-box at-
tacks include the basic Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015). This method
works by finding adjustments to the input data that maximizes the loss function, and uses the back-
progogated gradients to produce the adversarial examples. Projected gradient descent (PGD) (Madry
et al., 2018) is popular iterative-based method that similarly uses gradient information, and has been
shown to be a universal first-order adversary, and thus is the strongest form of attacks making us-
ing of gradient and loss information. In the black-box space of attacks, ZOO (Chen et al., 2017)
is an example of a popular score-based attack that uses zeroth order stochastic coordinate descent
to attack the model, and avoids training a substitute model. The authors make use of attack-space
dimension reduction, hierarchical attacks and importance sampling to make the attack more query
efficient, which is required as black-box attacks generally need a lot of queries to run compared to
white-box methods.

A broad range of defences against adversarial attacks have been developed, but among the most
popular and effective is adversarial training (Goodfellow et al., 2015), where during training the loss
is minimized over one of or both clean and generated adversarial examples. Adversarial training
however greatly increases training time due to the need to fabricate adversarial examples for every
batch. Gradient masking (Carlini & Wagner, 2017) is a simple defence based on obfuscating gradi-
ents so that attacks cannot make use of gradient information to create adversarial examples, although
it can easily be circumvented in many cases for white-box models (Athalye et al., 2018), and black
box attacks do not need gradient information in the first place. It is by and large difficult for adver-
sarial defences to keep pace with the broad range of attacks and to be provably robust against a large
number of them. Although the main topic of this work is calibration, we do focus on modelling
adversarial defences and their effectiveness against our new form of attack.

B DETAILS OF EXPERIMENTAL SETUP

Metrics. To assess the degree of calibration error caused by each attack, we use two metrics,
the popular binning-based Expect Calibration Error (ECE) (Pakdaman Naeini et al., 2015), and

14



Under review as a conference paper at ICLR 2024

Kolmogorov-Smirnov Calibration Error (KS error) (Gupta et al., 2021), which are formulated in
detail in Section D.

Datasets. The datasets we use in our study are CIFAR-100, Caltech-101, and the German Traffic
Sign Recognition Benchmark (GTSRB). CIFAR-100 and Caltech-101 are both popular image recog-
nition benchmark datasets, containing various objects divided into 100 classes and 101 classes re-
spectively. Given the importance of calibration in safety critical applications, we include a common
use case of autonomous driving with the GTSRB dataset, which consists of images of traffic signs
divided 43 classes. CIFAR-100 has 50,000 images for training, and 10,000 for testing. Caltech-101
totals around 9000 images. GTSRB is split into 39,209 training images and 12,630 test images

Models. ResNet-50 (He et al., 2016) is primary model we train and test on due to it being a standard
model for image classification. Non-convolutional attention-based networks have recently attained
great results on image classification tasks, so we also experiment with the popular Vision Trans-
former (ViT) architecture (Dosovitskiy et al., 2021). Both of these models are the versions with
weights pretrained on ImageNet (Deng et al., 2009). We use the VIT B 16 variant of ViT, and the
pretraining dataset used for each model is ImageNet 1K for ResNet and ImageNet 21K for ViT, and
are fine-tuned on the target datasets. Pretrained models are advantageous to study given they can
increase performance over training from randomly initialized weights and is a more practical use-
case. The specific details behind our training procedures and our various model hyperparameters
can be seen in Section C.

Attack Settings. Regarding the SA version of the attacks, for the l∞ and l2 norm attacks we use
the default SA settings for ϵ and p, which are ϵ = 0.05 and p = 0.05 for l∞ and ϵ = 5.0 and
p = 0.1 for l2. For our primary results we run the attacks on a representative 500 test samples from
the test set of each dataset. Each attack is ran for 1000 iterations, far less than the default 10,000
in Andriushchenko et al. (2020), but since there is no need to change the label, less iterations are
required, bolstering the use-case and threat for this form of attacking.

The settings for the PGD version of the attacks differ due to the accommodations that need to be
made to prevent the PGD algorithm from changing the label while still being able to have a large
effect on the confidence. In terms of general settings, we again use ϵ = 0.05 as the adversarial noise
value for an l∞ norm. We use an α attack step size value of 5/255. For our white-box results we use
10 iterations of the attack. In addition to these settings, some were made to the attack algorithm as
simply preventing PGD from changing the class label while trying to calculate the adversarial noise
often leads to poor performance in practice as many updates are prevented. Instead, a dropout factor
is added to the (h ∗w ∗ c) adversarial noise matrix after each attack iteration that only applies a select
portion of the updates, lessening the effect of updates that are too strong and have a high chance of
flipping the label. The value for the dropout is dependent on whether it is the overconfidence or
underconfidence attack. The most effective values in our experiments were found to be a dropout
value of 0.95 for the underconfidence attack, and 0.2 for the overconfidence attack.

C SPECIFIC TRAINING DETAILS

C.1 GENERAL SETTINGS

As mentioned previously, for our general attack implementation we use Square Attack, which works
by using a randomized search scheme to find localized square-shaped perturbation at random po-
sitions which are sampled in such a way as to be situated approximately at the boundary of the
feasible set. We still use the original sampling distributions, however we remove the initialization
(initial perturbation) for each attack since it is prone to changing the predicted labels. Naturally, we
use the untargeted versions of the attacks, whereby the perturbations lead to increases in the proba-
bilites of random non-predicted classes for the underconfidence attack, since we only care about the
probability of the top predicted class.

The details of the training procedure for each of the models and datasets is as follows: For CIFAR-
100 and GTSRB, we use the predefined training and test sets for both but use 10% of the training
data for validation purposes. For Caltech-101, which comes without predetermined splits, we use an
80:10:10 train/validation/test split. For all of the datasets, we resize all images to be 224 by 224. We
also normalize all of the data based on the ImageNet channel means and standard deviations. We
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apply basic data augmentation during training in the form of random cropping and random horizontal
flips to improve model generalizability. The hyperparameters we used for training the ResNet-50
models include: a batch size of 128, with a CosineAnnealingLR scheduler, 0.9 momentum, 5e-
4 weight decay, and a stochastic gradient descent (SGD) optimizer. For ViT, the settings are the
same, except we also use gradient clipping with the max norm set to 1.0. We conduct basic grid
search hyperparameter tuning over a few values for the learning rate (0.1,0.01,0.005,0.001) and
training duration (in terms of epochs). Generally, we found that a learning rate of 0.01 worked best
for both types of models. The training times vary for each dataset and model. For the ResNet-
50 models we trained for 15 epochs on CIFAR-100, 10 epochs on Caltech-101, and 7 epochs on
GTSRB. Likewise for ViT, we trained for 10 epochs on CIFAR-100, 15 epochs on Caltech-101, and
5 epochs on GTSRB. The results reported in Sections 3 and 5 are shown for models on the epoch
at which they attained the best accuracy on the validation set. We use the TorchVision (Paszke
et al., 2019) implementation of ResNet-50, and the Huggingface Transformers (Wolf et al., 2019)
implementation of ViT. All of the training occurred on 24 GB Nvidia RTX-3090 and RTX Titan
GPUs. Finally, we use 15 bins to calculate the ECE.

C.2 DEFENSE TRAINING SETTINGS

In this section, we describe each of the defences we used in Section 5, and the settings we use to
train them (if applicable).

Temperature Scaling (TS) (Guo et al., 2017). TS is a post-process recalibration technique applied
to the predictions of an already trained model that reduces the amount of high confidence predictions
without affecting accuracy. TS works by re-scaling the logits after the final layer of the neural
network to have a higher entropy by dividing them by a temperature parameter T , that is tuned
by minimizing negative log likelihood (NLL) loss on the validation set. Temperature scaling only
works well when the training and test distributions are similar (Kumar et al., 2019), but by reducing
overconfidence it may have an advantage against overconfidence attacks.

Calibration of Neural Networks using Splines (Spline) (Gupta et al., 2021). Spine is another
post-process recalibration technique that uses a recalibration function to map existing neural network
confidence scores to better calibrated versions by fitting a spline function approximates the empirical
cumulative distribution. It is lightweight, and often performs better than TS.

Difference between confidence and accuracy (DCA) (Liang et al., 2020). DCA is a training-based
calibration method that adds an auxiliary loss term to the cross-entropy loss during training that
penalizes any difference between the mean confidence and accuracy within a single batch, inducing
a model to not produce confidence scores that are miscalibrated. We set the weight of DCA to 10
based on the recommendation by Liang et al. (2020). Training settings are kept the same as described
in the general settings.

Sharpness Aware Minimization (SAM) (Foret et al., 2021). SAM is a technique that improves
model generalizability by simultaneously minimizing loss value and loss sharpness. It finds parame-
ters that lie in neighbourhoods having uniformly low loss by computing the regularized ”sharpness-
aware” gradient. The motivation behind using this technique as a defence is that models with pa-
rameters that lie in uniformly low loss areas may be harder to create adversarial examples, and may
be more regularized. We use a neighbourhood size ρ = 0.05. We kept the training settings the same
as we described in the general settings.

RobustBench (Croce et al., 2021). To understand how state-of-the-art adversarial defences work
against our attack, we take the top 3 performing (in terms of adversarial robustness) WideResNet
(Zagoruyko & Komodakis, 2016) defences on the popular RobustBench defence model benchmark
for CIFAR-100 under the l∞ ϵ = 8/255 attack model. We only choose the WideResNet models
given their closer similarity to the primary model we study in this work, ResNet-50. The defences
we choose are those of Gowal et al. (2020) (ranked first), Rebuffi et al. (2021) (ranked third) and
Pang et al. (2022) (ranked fifth). These defences use a combination of adversarial training and en-
sembling to produce models that are robust against a wide range of conventional adversarial attacks.
In addition, they use different techniques, like combining larger models, using Swish/SiLU activa-
tions and model weight averaging, and data augmentation to significantly improve robust accuracy.
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Adversarial Training (AT). AT is among the most common and effective defences against a wide
range of adversarial attacks where models are trained on adversarially attacked images. We imple-
ment our version similar to Madry et al. (2018) and Xie et al. (2019), where we run PGD-based
adversarial training, given how this form of defence has been shown to be effective across a wide
range of attacks due to PGD being close to a universal first-order l∞ attack. We train exclusively
on images attacked with an n-step l∞ PGD attack each batch, with the number of steps chosen
depending on the model and dataset. Since we already test RobustBench models that often make
use of AT with a large amount of steps, we specifically tune our AT models to have less steps to
compromise less on accuracy and miscalibration. We wish to see whether more lightly-tuned AT
can still provide major benefits given calibration attacks are not as severe. For the PGD attack, we
attack each image in a batch using an ϵ norm of 0.1. We use an attack stepsize relative to ϵ of 0.01 /
0.3, with random starts. The number of attack iterations ran for each batch was carefully chosen to
balance performance and adversarial robustness. We used 15 iterations on all of the ResNet models,
while for ViT we generally required much fewer, with three for the CIFAR-100 models, and five for
the remaining two datasets. In terms of remaining training details, we keep them largely the same
as described in the general settings, although the training durations were sometimes varied by a few
epochs to optimize accuracy. We use the Foolbox implementation of the PGD attack (Rauber et al.,
2020; 2017).

Adversarial Attack Against Attacks (AAA) (Chen et al., 2022). A recent adversarial defence
specifically tuned towards black box score based methods like Square Attack, this is a post process-
ing method that works on an already trained neural network’s logits that uses a function that misleads
the attack methods towards incorrect attack directions by slightly modifying the output logits. The
method is shown to be very effective against score-based query methods at a low computational cost,
and is purported to maintain good calibration, which makes it of particular interest in this case as a
defence against calibration attacks.

Calibration Attack Adversarial Training (CAAT). Our novel form of adversarial training that uses
calibration attacks to generate adversarial samples rather than the regular attack algorithm. Although
the general methodology is still the same as PGD-based adversarial training, the primary difference
is that for each minibatch, both the underconfidence PGD calibration attack and its overconfidence
version are applied to the images and the loss between the two sets of images is added. As this uses
calibration attack, the labels of these images are unaffected. The settings we use for the attacks are
the same as those described in B for the white-box version. Regarding the settings for each model
and dataset, they are largely similar to those of regular AT, although the number of attack iterations
is kept consistent at 10, even for ViT. The number of training epochs are the same as those we use
for regular fine-tuning.

Compression Scaling (CS). This is a novel post-process defence that does not require training and
is specifically designed to maintain the regular confidence score distribution and thereby preventing
extreme miscalibration while undergoing a calibration attack. Since calibration attacks does not
flip the original label, For any given classifier, the strongest effect of calibration attacks will be
reducing the confidence score on correctly classified “easy” samples while making the model more
overconfident on difficult, misclassified samples. This creates a shift in the distribution where for a
given high performing classifier the average confidence will drop dramatically while the accuracy
remains high, and some misclassified samples will shift to a higher confidence level. In any case,
a distribution that was originally skewed towards high confidence scores is now essentially shifted
lower. Therein lies the goal of CS, to essentially shift back the distribution by scaling it such that it
lies in high confidence space as before. If we assume that already low confidence correctly classified
samples will be more affected by a calibration attack than one that is much higher confidence, and
if we assume that incorrectly classified samples will have lower confidence then due to the relative
inefficiency of the overconfidence attacks they will likely not reach extremely high confidence levels
unless the attack is ran for a very large amount of iterations, then the relative ordering between many
of the samples is still preserved even if the distribution is shifted, meaning the misclassified samples
may still get mapped to the lower end of the confidence scale. The advantage of this method is that
it largely does not incur a lot of calibration error even on clean data while being among the most
effective and consistent defence methods against calibration attack. In addition, if one wants to do
downstream decision making then one can still filter out the bottom p percentage of images with a
confidence score. For the number of bins, we mostly choose 3 or 4 as this leads to the smallest error
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post attack. We find the scaling factor by iterating through a large range of possible values so that
the new desired confidence score for the sample is then achieved within the new confidence range.

D CALIBRATION METRIC FORMULATION

Here we forumalate the two calibration metrics that we use in our experiments. As Equation 2 is an
idealized representation of miscalibration that is intractable to calculate, approximations have been
developed which are grouped into the more common binning-based metrics, and non-binning based
metrics.

Expected calibration error (Pakdaman Naeini et al., 2015) is the most widely used calibration metric
in research. It is a binning-based metric where confidence scores on the predicted classes are binned
into M number evenly spaced bins, which is a hyperparameter that must be carefully chosen. In each
bin, the difference between the average confidence score and accuracy of all data points within the
bin is calculated, representing the bin-wise calibration error. Afterwards, the weighted sum over the
error in each bin constitutes the expectation of the calibration error of the model. The equation for
ECE is as follows given Bm are the data points in the mth bin, and nm is the number of data points
in that bin.

ECE =

M∑
m=1

nm

N
|acc(Bm)− conf(Bm)|. (4)

ECE can underestimate the levels of miscalibration due to being sensitive to the number of bins
(Ovadia et al., 2019) and by having underconfident and overconfident data points overlapping in one
bin (Nixon et al., 2020). Kolmogorov-Smirnov Calibration Error (Gupta et al., 2021) is an alterna-
tive evaluation metric, that instead of binning, leverages the Kolmogorov-Smirnov statistical test for
comparing the equality of two distributions. The error is determined by taking the maximum differ-
ence between the cumulative probability distributions of the confidence scores and labels. Specif-
ically, the first step is to sort the predictions according to the confidence score on class k, i.e., p̂k,
leading to the error being defined as:

KS error = max
i

|hi − h̃i|,

where, h0 = h̃0 = 0,

hi = hi−1 + 1(yi = k)/N,

h̃i = h̃i−1 + pk(xi)/N.

(5)

E ADVERSARIAL ATTACK DETECTION DETAILS

Local Intrinsic Dimensionality (LID) (Ma et al., 2018). This detection method exploits the es-
timated Local Intrinsic Dimensionality (LID) characteristics across different layers of a model of
a set of adversarial examples, which are found to be notably different than that of clean samples
or those with added random noise. First, a training set is made up of clean, noisy, and adversarial
examples, and a simple classifier (logistic regression) is trained to discriminate between adversarial
and non-adversarial samples. For each training minibatch, the input features to the classifier are
generated based on the estimated LID across different layers for all of the samples. The two main
hyperparameters for this method are batch size and the number of nearest neighbours involved in
estimating the LID. We choose a consistent batch size of 100 in line with previous work such as
(Harder et al., 2021), and for each case we test the possible nearest neighbors from the following list
{10, 20, 30, 40, 50, 60, 70, 80, 90} and report the results for the best value, which vary for different
datasets and models. We use the implementation of LID from (Lee et al., 2018).

Mahalanobis Distance (MD) (Lee et al., 2018). The premise behind this method is to use a set of
training samples to fit a class-conditional Gaussian distribution based on the empirical class means
and empirical covariance of the training samples. Given a test sample, the Mahalanobis distance
with respect to the closest class-conditional distribution is found and taken as the confidence score.
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A logistic regression detector is built from this which determines whether a sample is adversarial.
The main hyperparameter for this method is the magnitude of the noise used, which we vary be-
tween {0.0, 0.01, 0.005, 0.002, 0.0014, 0.001, 0.0005} for each case and pick the value that results
in the highest detection accuracy. In addition, calculating the mean and covariance is necessary
to use the method, which we utilize the respective training set to do for each dataset. We use the
implementation of MD from (Lee et al., 2018).

SpectralDefense (Harder et al., 2021). This detection method makes use of Fourier spectrum
analysis to discriminate between adversarial and clean images. The spectral features from Fourier
coefficients, which are computed via two-dimensional discrete Fourier transformation applied to
each feature map channel, are found for each image, and a detector based on logistic regression is
trained using the Fourier coefficients. The magnitude Fourier spectrum based detector (InputMFS)
is the version we use in our experiments.

F ADDITIONAL ANALYSIS AND RESULTS

In this section we provide additional results with white-box attacks, more details on the analyses
described in Section 4.3, and qualitative analysis of the properties of our attacks, as well as a quan-
titative analysis under a common real world issue of imbalanced data distributions. Apart from the
white-box results, the remaining analyses are conducted using our black-box setup.

F.1 WHITE BOX VARIATION OF ATTACK

Table 5: Results of white-box PGD variant of
calibration attack.

ResNet
ECE KS Avg. Conf.

CIFAR-100 (Accuracy: 0.881±0.002)
Pre-atk 0.052±0.006 0.035±0.006 0.916±0.006
Und-atk 0.213±0.003 0.175±0.007 0.747±0.011
Ovr-atk 0.072±0.003 0.07±0.001 0.951±0.002
Max-atk 0.187±0.008 0.161±0.007 0.746±0.007
Rnd-atk 0.187±0.016 0.156±0.013 0.759±0.015
Caltech-101 (Accuracy: 0.966±0.004)
Pre-atk 0.035±0.002 0.031±0.004 0.936±0.001
Und-atk 0.388±0.019 0.38±0.022 0.599±0.022
Ovr-atk 0.018±0.003 0.019±0.002 0.984±0.001
Max-atk 0.375±0.022 0.376±0.022 0.591±0.021
Rnd-atk 0.353±0.019 0.352±0.021 0.619±0.022
GTSRB (Accuracy: 0.972±0)
Pre-atk 0.019±0.006 0.008±0.002 0.98±0.002
Und-atk 0.233±0.02 0.232±0.016 0.752±0.014
Ovr-atk 0.02±0.002 0.019±0.003 0.991±0.003
Max-atk 0.226±0.006 0.227±0.007 0.75±0.008
Rnd-atk 0.217±0.014 0.218±0.009 0.763±0.008

ViT
CIFAR-100 (Accuracy: 0.935±0.002)
Pre-atk 0.064±0.006 0.054±0.005 0.882±0.004
Und-atk 0.277±0.001 0.274±0.004 0.671±0.006
Ovr-atk 0.045±0.003 0.017±0.002 0.928±0.002
Max-atk 0.26±0.006 0.262±0.007 0.675±0.005
Rnd-atk 0.236±0.013 0.239±0.015 0.699±0.013
Caltech-101 (Accuracy: 0.961±0.024)
Pre-atk 0.137±0.059 0.136±0.06 0.825±0.083
Und-atk 0.489±0.071 0.489±0.071 0.472±0.095
Ovr-atk 0.086±0.045 0.082±0.049 0.879±0.073
Max-atk 0.488±0.07 0.488±0.07 0.473±0.094
Rnd-atk 0.435±0.048 0.435±0.048 0.527±0.071
GTSRB (Accuracy: 0.947±0.006)
Pre-atk 0.04±0.005 0.026±0.017 0.922±0.024
Und-atk 0.321±0.047 0.315±0.045 0.641±0.052
Ovr-atk 0.037±0.013 0.02±0.011 0.936±0.024
Max-atk 0.302±0.037 0.302±0.036 0.645±0.043
Rnd-atk 0.292±0.03 0.293±0.029 0.657±0.037

The results for the white-box variation of our
attacks can be found in Table 5 on the three
datasets and across our two tested models, sim-
ilar to how we presented our black-box results.
For each scenario, we show the ECE, KS error
and average confidence. We used 10 attack steps
to generate the results for an ϵ noise value of
0.05.

Much like the SA results, the PGD attack man-
ages to create significant miscalibration com-
pared to before the attack with only a small num-
ber of attack steps. The results are less severe
than for SA where the level of miscalibration
achieved are worse despite the base PGD attack
being far more effective at affecting classifica-
tion accuracy. We believe this is because the
modifications that are made to ensure that the
calibration attack algorithm does not cause the
predicted class to change greatly reduce the ef-
fectiveness of PGD as the most effective gradi-
ent updates that cause a great swing in the confi-
dence score cannot be used since they are likely
to change the predicted class, and instead much
less significant updates that do not change the
confidence score a great deal serve as the primary
noise that gets added to the adversarial images.

F.2 DETAILED
ANALYSIS OF EPSILON AND ITERATIONS

Epsilon. The ϵ parameter plays a major role in
adversarial attacks, as it controls how much noise
can be added when creating perturbations. Al-
though setting a higher ϵ value for an attack lets
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it easier and more efficient for the algorithm to create adversarial examples, it potentially cause the
visual changes to images more perceptible, so a small ϵ is preferable while still being able to produce
good adversarial examples. In the case of calibration attack, there is no need to go as far as flipping a
label, so lower ϵ-bounds have the potential to create some miscalibration. To provide further details
on our results in Figure 2, for the leftmost figure as mentioned previous we tested on CIFAR-100
using ResNet-50. The five different ϵ values we use are (0.005, 0.01, 0.05, 0.1, 0.25) after being
attacked using all four of the attacks with the other settings the same as in Appendix B, with the
results averaged over three models. In addition to the miscalibration being strong for most of the
attacks at low ϵ values, we can see that maximum miscalibration attack consistently outperforms the
rest across the different values. The underconfidence attack does not have much change with higher
ϵ, but it is largely because the models has already almost reached the peak level of attacking the con-
fidence with low epsilon values, and as such does not have a large effect on ECE. As middle figure
largely displays the same trends as ResNet, revealing that the results are not architecture dependant.
The rightmost figure uses ResNet and goes over the same ϵ values as before, except the maximum
miscalibration attack is run over both Caltech-101 and GTSRB models. Again the trends are similar,
although the increase in ECE is not as severe as for CIFAR-100.
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Figure 4: The contrast between the effects on ac-
curacy and ECE between the original version of
the Square Attack algorithm and the maximum
variation of the calibration attack algorithm at
1000 attack iterations. (Top) ResNet-50 results.
(Bottom) ViT results.

Iterations. Expanding on the results in the
rightmost figure in Figure 2, the number of it-
erations of the maximum miscalibration attack
is varied from 100, 500, 1000, to 5000, whilst
attack both ViT and ResNet models trained and
tested on CIFAR-100 with the same settings as
in Appendix B. We note how the ECE begins
to saturate at close to 500 iterations, after which
the benefits of running the attack longer are mi-
nor, though even at 100 iterations the ResNet
model becomes heavily miscalibrated despite
the standard ϵ value of 0.05 being used. In our
tests showing the effectiveness of the original
SA versus its calibration attack version, seen in
Figure 4 we specifically compare over accuracy
and ECE between the maximum miscalibration
attack and the regular untargeted Square Attack
across the four aforementioned iteration values
for both ResNet and ViT on CIFAR-100. As
expected, Square Attack greatly reduces the ac-
curacy even with a small number of iterations.
Nevertheless, in terms of ECE, the calibration
attacks consistently produce higher amounts of miscalibration compared to the original Square At-
tack across the different iteration amounts.

F.3 T-SNE VISUALIZATIONS

To help visualize the effect of each of the attack types in latent space and to confirm they are having
the expected effects, we run a t-SNE analysis (van der Maaten & Hinton, 2008) on the representa-
tions of ResNet-50 right before the classification layer. The datasets we use throughout this study,
with their large number of classes, are not ideal for visualization purposes. Instead, we create a
binary subset using CIFAR-100 by taking all of the images from two arbitrary classes, bicycles and
trains. We create a separate training set and test set to perform this procedure independently, and
fine-tune a ResNet-50 model on the training set. The specific details are similar to those described
in Section C for CIFAR-100 ResNet. We train the model for 5 epochs with a learning rate of 0.005.
The attack settings are the same as in Section B for the l∞ version, and we only run the attacks
for 500 iterations. We run the t-SNE analysis on a balanced slice of 200 images from the new test
set for easy visualization purposes, before and after all of the different attacks. The model achieves
95% accuracy on the full test set. Figure 5 shows the graphs. It can be seen the effect on the rep-
resentations for the adversarially attacked data is as expected. The overconfidence attack causes the
representations for both class predictions, even incorrect ones, to be split apart as much as possi-
ble, while the underconfidence attack causes a more jumbled representation between the two classes
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Figure 5: t-SNE visualization of the effect of different forms of calibration attacks on a ResNet
model trained and tested on a binary subset from CIFAR-100, with the test set (consisting of 200
data points) results being displayed. In the order from top left to bottom right, the plots for the pre-
attack (vanilla model), and the underconfidence, overconfidence, random, and maximum variations
of the attacks can be seen.

with most falling closely to the decision boundary. The maximum miscalibration attack has a similar
effect to the underconfidence attack, except the misclassified images are pushed far away from the
decision boundary to make it appear as if the model is more confident in its decisions. Lastly, the
random attack causes two distinct random clusters for each prediction type to form, as random data
points are pushed to be more overconfident or more underconfident than they originally were. With
these results, we can see visually confirm that the attacks possess their intended behaviour.

F.4 IMBALANCE RATIO
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Figure 6: Graphs comparing the vulnerability of ResNet and ViT models trained with different
imbalance ratios on CIFAR-100 to the maximum miscalibration attack at 1000 iterations and an ϵ of
0.05, and their corresponding overall trends in average queries and accuracy.

Dataset imbalance has a profound effect on how a model learns and how well it performs, with detri-
mental effects occurring when imbalance ratios are very high. With how common imbalanced data
distributions are in real world scenarios, we believe it is worth studying the influence of imbalance
ratio and its relationship with robustness against calibration attacks as an additional point of analy-
sis. We choose CIFAR-100 as our primary dataset for this analysis, and we follow the procedures
in Tang et al. (2020) and Cao et al. (2019) to create training sets with long-tail imbalance. This is
a form of imbalance where the sample sizes in the classes follow an exponential decay. We use the
variable ρ to denote the ratio between sample sizes of the class with the smallest sample size, and
those of the one chosen to be the biggest. We create training sets with ρ values of 0.01, 0.02, and
0.01 (for 1:100, 1:50 and 1:10 ratios of smallest to biggest class). We then train 3 ResNet-50 and 3
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ViT models on each imbalanced set. The training details are again the same as those described in the
general settings Section C, although the training times are different. 15 epochs is used to training
the 1:100 ratio models, while 10 epochs is used for the rest. We subject the models to the maximum
miscalibration attack using the same settings as in Section B for CIFAR-100 (test data is balanced),
and calculate the resulting average and deviation of the pre and post attack ECE, average number of
queries, and accuracy. The graphs displaying the results can be seen in Figure 6. Unsurprisingly, the
higher the imbalance ratio, the lower the accuracy is on the balanced data. In terms of robustness,
the more balanced the data the more resistant it is against getting miscalibrated from the attacks, for
both the ResNet and ViT architectures. This is similar to the trends in the inherent miscalibration
present before the attacks, although the calibration differences between the different ratio models are
not as severe, and ViT at the 1:500 imbalance ratio is the best calibrated beforehand but becomes the
worst after the attack. The trend in the number of queries it takes for a successful attack is reversed
for ResNet and ViT, with ViT requiring more queries the more balanced the data is, while ResNet is
vice-versa. Overall, dataset imbalance does not create favourable conditions for robustness, though
the use of imbalance data techniques could potentially remedy some of these issues.

F.5 GRADCAM VISUALIZATION DETAILS

Given the effectiveness of the attacks at leading a model to produce highly miscalibrated outputs,
for both base styles of attacks, we endeavour to explore whether they also lead to any changes
in where the model focuses on in an image when making its decision, and especially with novel
overconfidence attack. Knowing this can lead to further insights as to how models are affected
by various forms of the attacks. To accomplish this analysis, we use Grad-CAM (Selvaraju et al.,
2017), a popular visualization method that produces a coarse localization map highlighting the most
important regions in an image that the model uses when making its prediction by making use of
the gradients from the final convolutional layer (or a specific layer of choice) of a network. We
apply Grad-CAM to our ResNet-50 models fine-tuned on Caltech-101 to images from the Caltech-
101 test set before and after the underconfidence and overconfidence attacks at the standard attack
settings used in Section B and using the GradCAM implementation of Gildenblat & contributors
(2021). Since the method calculates relative to a specific class, we do so in-terms of the predicted
class. Figure 3 shows the results with some representative images. We specifically choose images
where the attacks led to large change in predicted confidence (at least 10%). On the whole, we
have observed that the coarse localization maps have minimal to no noticeable changes after the
adversarial images are produced, especially in the case of the overconfidence attacked images. This
leads us to believe the primary mechanism of the attacks changing the model confidence is in the
final classification layer as opposed to the convolutional layers. This analysis also shows that it might
be difficult to identify these attacks are occurring based on these types of gradient visualization
methods.
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F.6 L2 RESULTS

Table 6: Results of the l2 calibration attacks for the three different datasets.
ResNet

avg #q median #q ECE KS Avg. Conf
CIFAR-100
Accuracy: 0.881±0.002
Pre-Attack - - 0.052±0.006 0.035±0.006 0.916±0.006
Underconf. Atk. 182.7±13.0 94.0±11.0 0.399±0.012 0.356±0.010 0.566±0.008
Overconf. Atk. 44.6±3.3 1.0±0.0 0.129±0.007 0.129±0.007 0.995±0.000
Maximum Atk. 137.3±5.8 92.7±10.6 0.496±0.001 0.391±0.002 0.604±0.003
Random Atk. 125.2±7.3 99.7±4.9 0.431±0.016 0.350±0.012 0.614±0.011
Caltech-101
Accuracy: 0.966±0.004
Pre-Attack - - 0.035±0.003 0.031±0.004 0.936±0.001
Underconf. Atk. 293.5±14.9 195.0±61.7 0.156±0.002 0.157±0.003 0.810±0.002
Overconf. Atk. 60.9±4.4 1.0±0.0 0.019±0.004 0.017±0.006 0.982±0.002
Maximum Atk. 40.8±1.8 227.2±91.9 0.143±0.006 0.140±0.005 0.836±0.005
Random Atk. 33.5±5.3 205.0±38.3 0.120±0.009 0.121±0.008 0.848±0.008
GTSRB
Accuracy: 0.972±0.000
Pre-Attack - - 0.019±0.006 0.008±0.002 0.980±0.002
Underconf. Atk. 291.5±22.4 196.7±16.6 0.190±0.032 0.187±0.029 0.793±0.030
Overconf. Atk. 19.5±3.3 1.0±0.0 0.022±0.002 0.022±0.002 0.997±0.000
Maximum Atk. 91.4±21.1 142.8±44.8 0.239±0.038 0.225±0.034 0.771±0.035
Random Atk. 97.5±16.8 211.0±41.1 0.200±0.014 0.191±0.011 0.794±0.011

ViT
CIFAR-100
Accuracy: 0.935±0.002
Pre-Attack - - 0.064±0.006 0.054±0.005 0.882±0.004
Underconf. Atk. 199.6±7.1 111.2±12.5 0.383±0.014 0.382±0.013 0.555±0.011
Overconf. Atk. 681.3±408.4 681.3±408.4 0.022±0.002 0.021±0.003 0.958±0.003
Maximum Atk. 111.9±7.4 131.5±17.7 0.405±0.010 0.383±0.010 0.590±0.007
Random Atk. 108.2±6.9 137.8±17.0 0.343±0.010 0.334±0.007 0.614±0.004
Caltech-101
Accuracy: 0.961±0.024
Pre-Attack - - 0.137±0.059 0.136±0.060 0.825±0.083
Underconf. Atk. 258.7±47.2 207.8±64.0 0.233±0.057 0.233±0.057 0.729±0.081
Overconf. Atk. 23.2±15.0 1.0±0.0 0.100±0.048 0.100±0.048 0.859±0.073
Maximum Atk. 31.5±2.2 236.5±52.0 0.224±0.058 0.224±0.058 0.740±0.080
Random Atk. 21.9±8.1 293.8±24.5 0.196±0.038 0.196±0.038 0.764±0.064
GTSRB
Accuracy: 0.947±0.006
Pre-Attack - - 0.040±0.005 0.026±0.017 0.922±0.024
Underconf. Atk. 258.3±27.8 169.7±31.5 0.261±0.012 0.262±0.011 0.686±0.016
Overconf. Atk. 70.2±31.3 1.0±0.0 0.030±0.005 0.024±0.012 0.968±0.016
Maximum Atk. 99.6±10.9 210.5±33.0 0.274±0.037 0.257±0.038 0.718±0.044
Random Atk. 94.7±11.2 213.8±59.9 0.245±0.020 0.241±0.016 0.714±0.007
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