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Abstract

With the continuous advancement of large language models (LLMs), it is essential
to create new benchmarks to effectively evaluate their expanding capabilities and
identify areas for improvement. This work focuses on multi-image reasoning,
an emerging capability in state-of-the-art LLMs. We introduce ReMI, a dataset
designed to assess LLMs’ ability to Reason with Multiple Images. This dataset
encompasses a diverse range of tasks, spanning various reasoning domains such
as math, physics, logic, code, table/chart understanding, and spatial and temporal
reasoning. It also covers a broad spectrum of characteristics found in multi-image
reasoning scenarios. We have benchmarked several cutting-edge LLMs using ReMI
and found a substantial gap between their performance and human-level proficiency.
This highlights the challenges in multi-image reasoning and the need for further
research. Our analysis also reveals the strengths and weaknesses of different
models, shedding light on the types of reasoning that are currently attainable and
areas where future models require improvement. To foster further research in
this area, we are open-sourcing ReMI: https://huggingface.co/datasets/
mehrankazemi/ReMI.

1 Introduction

Large Language Models (LLMs) have demonstrated an extraordinary evolution, not only in their
output quality but also in their burgeoning capabilities. A significant direction of development has
been models’ ability to perform increasingly general forms of reasoning that were previously not
possible. The emergence of these novel capabilities necessitates the development of robust evaluation
benchmarks and metrics to measure and enhance model performance in these specific areas.

The ability of LLMs to reason over text has improved in leaps and bounds, and has been studied
extensively [24, 48, 36]. More recent developments in multi-modal models has opened up a new
space of reasoning problems, moving toward the capability to reason across multiple, potentially
disparate, sources of information presented in various formats [37, 45, 1, 5, 23, 19, 27]. This
multi-modal reasoning capability has numerous applications, from complex problem-solving to
information synthesis. In this paper, we focus on a specific aspect of this capability: multi-image
reasoning. A large portion of the current benchmarks for multi-modal evaluation are based on a
single image [32, 33, 31, 20]. We address the lack of dedicated evaluation frameworks in this domain
by introducing a comprehensive benchmark designed to specifically assess and improve this skill in
LLMs. We focus specifically on reasoning problems where besides visual understanding, one needs
to find a step-by-step solution to a problem. This process often involves combining information across
text and multiple images – a skill that is currently not extensively evaluated in existing benchmarks.
This contribution aims to catalyze progress in multi-image reasoning, ultimately enabling LLMs
to better navigate and extract insights from the increasingly complex information landscape of our
digital world.
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We introduce ReMI, a new benchmark designed for Reasoning with Multiple Images. Our goal is
to cover a broad spectrum of domains where integrating information across multiple modalities is
necessary, as well as various key properties unique to multi-image reasoning. To achieve this, we
developed 13 tasks that span a range of domains and properties. The domains covered in ReMI include
algebra, calculus, geometry, graph theory, physics, temporal and spatial/maps reasoning, tabular and
chart understanding, coding, and logic. The properties covered by ReMI include sequential vs set
consumption of image information, problems that require reasoning over images demonstrating a
similar concept (e.g., two charts) or different concepts (e.g., geometry shape and a table), images
that are interleaved with the text or not, and the number of separate images provided as input. Our
tasks require reasoning over at least two and up to six images. Table 1 outlines the tasks, domains
and properties. Our images comprise a variety of heterogeneous image types including charts,
tables, equations, emojis, graphs, shapes, maps, clocks, objects, LaTeX diagrams, functions, etc.
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Figure 1: Model performances on ReMI.

We evaluate state-of-the-art LLMs on
ReMI and compare their performance
to humans, showing that model perfor-
mances remain substantially behind
human performance (see Fig 1). In-
terestingly, our results also reveal that
models may perform better when mul-
tiple images are fed to them separately
as opposed to all in one image; this is
especially true in the case where the
images are interleaved with the ques-
tion text. A detailed failure analysis
reveals model shortcomings that can
guide future improvement efforts.

2 Related Work

Vision-language foundation models. In our work, we focus on vision language generation models,
i.e. models that produce open-ended text conditioned on text and images. Frozen [46] and Flamingo
[3] first transformed LLMs into vision-language models by adding a vision transformer tower and
training cross/self-attention layers to enable LLMs to perceive visual information. Subsequently, a
large volume of research emerged focusing on the approach of stitching a pretrained visual encoder
(usually vision transformer) to a pretrained langauge model. PaLI [9], BLIP [26], LLaVA [30],
OpenFlamingo [6], PaLIGemma [8] all follow similar techniques. The latest closed-source frontier
models such as GPT-4 [1], Gemini [45] and Claude 3 [5] all have vision input support and are also
reported to be the best performing models across popular vision-language reasoning benchmarks [32].
These frontier models are able to condition fairly arbitrarily on sequences of interleaved image and
text. However, most vision-language benchmarks test models’ performance on a single image-text
pair; the focus of this paper is to take a step toward evaluating more flexible vision-language abilities.

Reasoning Benchmarks. Reasoning has been a core area of interest for NLP systems. The initial
benchmarks focused on ‘simpler’ reasoning tasks which largely involve language understanding (e.g.
SuperGLUE [47], HellaSwag [50], Lambada [35]). With LLMs making remarkable strides in recent
years, a plethora of benchmarks requiring much stronger reasoning abilities have emerged. Some
of these like MMLU [15] and ARC [10] focus on science questions. MATH [16], GSM8K [11] and
MGSM [39] focus on mathematical problem solving. There is also a line of works [44, 38, 21] which
construct semi-synthetic benchmarks to evaluate the logical deductive reasoning abilities of LLMs.
In addition, the BIG-Bench [41] suite of tasks contains many which focus on reasoning.

Vision-language reasoning benchmarks. Some recent benchmarks like [49, 32, 20] present reason-
ing problems that require conditioning on images; however, they predominantly require only a single
image, and do not directly measure how well the model can integrate information across different
images. Cross-image reasoning benchmarks exist but are restricted to the entailment task or focus on
limited number of domains. NLVR [42] creates pairs of images composed of synthetic 2D objects and
the task is identifying whether the caption is entailed from the image. NLVR2 [43] extends NLVR by
replacing synthetic images with pairs of images sampled from MS COCO [28]. MaRVL [29] expands
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a similar idea to multi-cultural and multilingual scenarios and only focuses on the natural image
domain. MileBench [40] develops a multi-modal long-context benchmark. SEED-Bench-2 [25]
proposes a hierarchy of different vision-language datasets including multi-image datasets composed
of frames extracted from videos. BLINK [13] is a collection of 14 visual perception tasks where some
of the tasks involve multiple images, e.g. visual similarity and multi-view reasoning. None of these
mentioned benchmarks aim to test vision-language models for complex reasoning in multi-image
scenarios. We aim to propose a holistic benchmark covering a wide range of visual information in the
world and focuses on complex reasoning of multi-images.

3 The ReMI Dataset
Table 1: The properties of the tasks in our benchmark.
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EmojiAlgebra Algebra Seq Same Yes 6
FuncRead Calculus Mix Same Yes 3
GeomShapes Geometry Seq Same No 2
GeomCost Geometry, Tabular Seq Diff Yes 2
Collisions Physics Set Same No 2
Clocks Time Arithmetic Set Same No 2
Schedule Time, Tabular Seq Diff Yes 2
Charts Charts Set Same No 2
CodeEdit Code Seq Same Yes 2
Isomorphism Graph Theory Set Same Yes 2
Maps Spatial, Maps Mix Same Yes 4
RefCOCO Spatial Seq Diff No 2
IQ Logic Mix Same Yes 5

Multi-image reasoning can arise in
many domains and the problems in-
volving reasoning over multiple im-
ages may differ in some key proper-
ties. We aim to create a benchmark
that exhibits many domains and cov-
ers those key properties as much as
possible. To this end, we included
13 tasks in our benchmark that covers
the following domains: Algebra, Cal-
culus, Geometry, Tabular Reasoning,
Time Arithmetic, Logic, Physics, Spa-
tial Reasoning, Graph Theory, Charts,
Maps, and Coding. We also identified
the following key properties specific
to multi-image reasoning and aimed
for having tasks that provide a good coverage of them:

• Sequential vs Set: In some tasks, the provided images have to be consumed in a sequence (e.g.,
computing a quantity from one image and then using that quantity in the second image), whereas in
some other tasks, the provided images constitute a set. When more than two images are provided,
they may be grouped into subsets that have to be consumed sequentially.

• Same vs Different Concept: In some multi-image reasoning problems, the provided images all
correspond to the same concept (e.g., all of them are charts, or function graphs) whereas in some
other problems, the provided images may correspond to different concepts (e.g., one image might
be a geometry shape, and the other might be a table).

• Interleaving: For all our tasks, we can either provide all the images first and then ask a question
about them, or the images can be interleaved with the question task when they are referred to. To
enable experimenting for both settings, we make a subset of the tasks interleaved while for the
others we provide the image at the beginning of the prompt.

• Number of images: In some tasks, a variable number of images may be provided as input.

Solving our tasks requires parsing and understanding the information in the images and text of
the question provided as input, which is often followed by the model having to reason using this
information to arrive at the correct answer. We provide a brief description of each task below and a
more detailed description in the Appendix. In Figure 2, we illustrate a sample from each of the tasks
in ReMI. Moreover, in Table 1, we specify the domain and properties for each of the tasks in ReMI.

(1) EmojiAlgebra: Solve a system of linear equations involving digits and emojis. Each image
contains an equation or the final expression to be computed. (2) FuncRead: Given multiple function
graphs in separate images, answer questions about them. (3) GeomShapes: Given two shapes (in
two different images) with a common property, compute a missing value of one of the shapes. (4)
GeomCost: Given the shape of an object (in one image) on which an operation is to be done and a
table of various costs (in a different image), compute the total cost of the operation. (5) Collisions:
Given the before and after snapshots of two objects colliding (each in a separate image), answer
questions about their state. (6) Clocks: Given two clocks with different designs (each in a separate
image), compute the time difference between them. (7) Schedule: Given the current time (in one

3



Question: <image1><image2>The two clocks in the images show 
two different times in the same day. Find the absolute difference in 
terms of minutes between the times shown by the two clocks.

(a) Clocks

Question: The graph of f(x) is as follows <image1> and 
g(x) as follows <image2>. Compute f(g(2)).

(b) FuncRead

Question: <image1><image2>The mean of Low in first chart and 
Lower Middle in second chart is X% (assuming same sample size). 
Find X. Round to 1 decimal.

(c) Charts

Question: <image1><image2>Which of the numbered circles in the 
second image would overlap most with the reflection of man in front 
in the first image if they were overlaid?

(d) RefCOCO

Question: Compute the value of the expression in the image 
below <image1> by using the emoji equations in the 
following images <image2> <image3> <image4>.
 

(e) EmojiAlgebra

Question: <image1><image2>If the area of the ABC sector is 
157, the length of the BC side is equal to the length of the EF 
side, compute the the degree of the EFD angle. Assume 
PI=3.14. Round computations to 2 decimal places.
.
 

(f) GeomShapes

Question: Ross is renovating a room shaped like the magenta 
rectangle in the following image <image1>. They plan to install vinyl 
flooring. The price per unit area is given in the following figure 
<image2>. What will be the total cost of the flooring? All the 
computations are rounded to two places of decimal.

23

6

(g) GeomCost

Question: Below is an IQ test <image1>. From the possible 
options A, B, C, and D shown in the following images in order 
<image2> <image3> <image4> <image5>, which one logically 
belongs to the spot of the question mark?

(h) IQ

Question: <image1><image2>The following images show two 
graphs. Each graph is represented in a separate image. Are 
these two graphs isomorphic?

(i) Isomorphism

Question: Here are two images. The first image is image A 
<image1> and the second image is image B <image2>. These 
images are from Google Maps that depict two different 
regions around W Glendale Avenue in Glendale, AZ. In which 
image are there more bus stops along Glendale Avenue. The 
answer is either 'A', 'B' or 'equal'.

(j) Maps

Question: <image1><image2>The images demonstrate the 
before and after a collision between two balls. Is the 
momentum conserved in this collision? Answer with 1 if it is 
conserved, and with 0 if it is not.

(k) Collisions

Question: The image below shows the current time <image1>. 
And the image below shows the departure times for all trains 
departing today <image2>.  Find the destination city for the 
next scheduled train.

(l) Schedule

Question: I have some tikz code:
\begin{tikzpicture}
\filldraw[fill=yellow!80, draw=orange, line width=1pt] (0,0) ellipse (1.5cm and 0.8cm);
\filldraw[fill=yellow!80, draw=orange, line width=0.8pt] (1,0.8) circle (0.5cm);\n\n\\filldraw[fill=orange] (1.4,0.8) -- 
(1.7,0.65) -- (1.4, 0.5) -- cycle;\n\n\\filldraw[fill=black] (1.2,0.95) circle (0.1cm);
…………..
\end{tikzpicture}
It renders to look like:\n<image1>. I instead want it to look like:\n<image2>. You just need to remove one of the 
lines in the original tikz code to create this new figure. Can you tell me which line to remove? Only quote the line I 
should remove.

(m) CodeEdit

Figure 2: Sample problems from the tasks in ReMI. Note that the images are provided to the models
separately in place of the <image i> markers.

image) and a table of train schedules (in another image), answer questions about the next scheduled
train. (8) Charts: Given two charts (each in a separate image), possibly in different formats – e.g.,
one bar chart and one pie chart, identify the differences between the reported values or reason jointly
from values in both charts. (9) CodeEdit: Given a TikZ code, the rendered image, and the goal
image, determine which line of code should be removed to get to the goal image. (10) Isomorphism:
Given two graphs (in two images), determine if they are isomorphic or not. (11) Maps: Given a

4



Em
oj

iA
lg

eb
ra

Fu
nc

Re
ad

Ge
om

Sh
ap

e
Ge

om
Co

st
Co

llis
io

ns
Cl

oc
ks

Sc
he

du
le

Ch
ar

ts
Co

de
Ed

it
Iso

m
or

ph
ism

M
ap

s
Re

fC
oc

o IQ

102

103

Av
g.

 Q
ue

st
io

n 
Le

ng
th

(a) Average length of the questions for each
of the tasks in ReMI.
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(c) Number of problems in ReMI that have
n images, for different values of n.
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(d) Average time spent on each problem by hu-
mans for the human performance results.

Figure 3: Statistics for ReMI and its tasks.

description of a navigation and four navigation routes on a map (each in a different image), determine
which one corresponds to the one in the description. (12) RefCOCO: Given a real-world image and
another image of same dimensions with non-overlapping circles marked on it, determine which circle
overlaps the most with a target entity in the real image. (13) IQ: Given a matrix of shapes that have a
logical connection and with one missing value, predict the shape that goes into the missing part.

Figure 3 presents some extra statistics for the tasks in ReMI, including the average length of the
questions per task, the number of unique labels per task, the number of problems with n images for
different values of n, and the average time spent by humans for solving problems from each task.

4 Experiments

We report the performance of multiple state-of-the-art models on our benchmark.

Metrics: We mainly report accuracy for our tasks. For textual outputs, we compute exact match
while handling slight variations such as spacing issues, lowercase vs uppercase, etc. For numeric
answers, we compute a relaxed accuracy with 1% tolerance, mainly to avoid penalizing rounding
errors. In the case of relaxed accuracy with tolerance ε, a numeric prediction p is considered correct
if (1 − ε)l ≤ p ≤ (1 + ε)l where l is the label. Following the original GeomVerse paper [20], we
report relaxed accuracy with 3% tolerance for our GeomShapes and GeomCost tasks as intermediate
operations are also rounded and different operation orders lead to slight variations in the final result.
For the Clocks, we allow 10 minutes tolerance to account for slight variations in reading times from
analog clocks. In our analyses, we also use a metric named error reduction percentage(ERP) with
respect to a baseline, which corresponds to how much a model reduces the error with respect to a
baseline. We define ERP for a baseline as follows:

ERPT (baseline,model) = 100 ∗ baseline error on task T − model error on task T
baseline error on task T

Conceptually, the numerator corresponds to how much of the error has been reduced compared to the
baseline, and the denominator normalizes by how much room for error reduction existed.

Naive Baseline: We provide the expected accuracy for a naive baseline that predicts the answers
without looking at the images, by only guessing the final answer based on the text of the question. For
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Table 2: The performance of SoTA models on ReMI and its individual tasks. The winner for each
task is in bold and the second winner is underlined.

Task Name Naive
Baseline Idefics2 Claude3

Sonnet
Gemini
Ultra

Gemini
Flash

Gemini
1.5

GPT4
Turbo Human

EmojiAlgebra 0.0 1.0 28.0 2.5 15.0 44.5 57.5 100.0
FuncRead 5.5 11.0 24.0 15.0 36.0 40.0 26.0 100.0
GeomShapes 0.0 14.0 17.5 14.5 34.0 51.5 32.5 100.0
GeomCost 0.0 2.0 58.5 47.0 75.0 81.5 70.5 90.0
Collisions 30.8 31.5 51.5 36.5 56.5 50.5 62.0 100.0
Clocks 2.0 3.0 5.0 4.0 4.0 2.5 4.0 80.0
Schedule 0.0 21.5 36.0 33.0 43.0 40.5 49.5 90.0
Charts 2.5 1.0 40.0 30.0 53.0 54.0 44.0 95.0
CodeEdit 14.9 12.5 20.0 24.5 46.0 41.0 42.0 95.0
Isomorphism 50.0 35.5 57.0 65.0 67.0 72.0 71.5 100.0
Maps 28.0 38.0 39.5 39.0 47.0 47.0 36.5 100.0
RefCOCO 12.0 14.5 30.0 31.0 49.0 56.0 37.5 95.0
IQ 25.0 19.0 50.5 30.0 53.0 76.0 62.5 100.0

ReMI 13.1 15.7 35.2 28.6 44.5 50.5 45.8 95.8

multi-choice questions, we assume this baseline will predict the answer correctly with 1/c chance
where c is the number of choices (for CodeEdit, we consider any line ending in semi-colon to be
one of possible choices); for Charts, for every question asking about which cell changed, we assume
this baseline responds with (0, 0), and for every question about the number of cells that changed,
we assume this baseline responds with 1; for Clocks, when asking about the difference in time, we
assume this baseline always predicts 12 ∗ 60 minutes; for RefCOCO, we assume this baseline always
predicts the circle labeled 0.

Models: We experiment with four state of the art model families, namely Idefics [23], Gemini
[45, 37], Claude 3 [5], and GPT4 [34]. From the Idefics family, we experiment with Idefics2. From
the Gemini family, we experiment with three models with different sizes and properties, namely
Gemini Ultra, Gemini 1.5 Pro, and Gemini Flash. From the Claude 3 family, we experiment with the
Sonnet model, and from the GPT4 family, we experiment with GPT4 Turbo. We ran Idefics2 on a
single GPU (we used the float16 case without image splitting to ensure the model fits in one GPU)
and for the other models we used their APIs.

Human Performance: For each task we sampled 20 examples from the test set and had them solved
by someone knowledgeable (but not necessarily expert) in that area. We also asked them to measure
the amount of time they spent on solving the 20 problems. The average time per problem for each
task is reported in Figure 3(d). We observe that some tasks have been more time consuming than the
others with EmojiAlgebra being the most time consuming and the IQ being the least time consuming.

4.1 Human Baseline Substantially Beats SoTA Models in Multi-Image Reasoning

In Table 2, we present the results of the models as well as the naive baseline and the human
performance on the tasks in ReMI. We make the following observations from the obtained results.
Firstly, all the models significantly outperform the naive baseline, almost on any task; however, their
performance remains far behind the human performance in general, and also in most of the tasks.
Secondly, there are some tasks where none of the current models are good at, including Clocks and
Isomorphism, where the performances remain quite low1. This reveals a potential capability gap
in the current state-of-the-art models. Thirdly, we observe that different models perform well on
different tasks. For example, Gemini 1.5 substantially outperforms GPT4-Turbo on the IQ, whereas
GPT4-Turbo substantially outperforms Gemini 1.5 on EmojiAlgebra. This hints that the frontier
models may have different capabilities and limitations.

Hereafter, unless stated otherwise, we do the rest of the experiments with Gemini Pro 1.5, the best
overall performing model on ReMI.

1In the case of the Isomorphism, the dataset is imbalanced with a majority class accuracy of 67 percent.
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4.2 Single-Image vs Multi-Image Reasoning

We measure whether models perform better when we provide the multiple images separately or
when we put them all in a single image and feed them to the model. To this end, we report
ERPT (single-image model,multi-image model) corresponding to how much the multi-image model
reduces the error with respect to the single-image model for each task T . The results are pro-
vided in Figure 4. We observe that for most of the tasks, feeding images separately results in
positive gains (positive ERP) compared to a single-image case. A manual analysis of the model
outputs in the two settings shows that the model may even employ different strategies for solv-
ing the problem in these settings. For example, in the case of EmojiAlgebra, we observe that in
the single-image case, the model mostly starts by assigning a variable (e.g., a, b, etc.) to each
emoji and then solving the problem by using those variables; However, in the case of multi-image,
the model mostly uses either the emojis themselves or their names when doing the calculations.
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Figure 4: ERP when the images are provided to
Gemini 1.5 as multiple vs a single image.

Interleaved tasks are affected more: Out
of the six tasks that are positively affected
the most (FuncRead, IQ, CodeEdit, Schedule,
Isomorphism, and RefCOCO), we observe that
five of them (the first five) are interleaved tasks.
Averaging the ERP for the interleaved and non-
interleaved datasets, we observe a gain of 19.8%
for the former case and a gain of 4.9% for the lat-
ter case. This hints that reasoning with multiple
images might be easier for the models than feed-
ing all images in one image, especially when the
images are provided interleaved with text at the
right positions.

Table 3: Major error sources for each task, identified with a manual inspection of 20 failed examples.
Task Name Major Source(s) of Error

EmojiAlgebra 1- Calculation errors, 2- Confusing similar emojis, 3- Misreading from the images (especially minus signs).

FuncRead 1- Model value readings are typically off by about 1 unit.

GeomShapes &
GeomCost

1- Calculation errors, 2- Going on a wrong solution path (e.g., computing irrelevant unknown values), 3- Misreading and mis-assigning
values (e.g., assigning a length value to the height), 4- Hallucinating non-existent values.

Collisions 1- Not recognizing when two objects are moving together after a collision, 2-Ignoring the velocity vector direction when calculating absolute
velocity difference between two objects.

Clocks 1- Not able to read the time properly, 2- Mistaking the minute hand for the hour hand, 3- Not paying attention to the prompt specifying the
times are in the same day.

Schedule 1- Not able to read the time properly, 2- Retrieving the wrong values from the table given the time, 3- Sometimes ignoring the 24h format.

Charts 1- Mis-assigning values to the correct row/column in heatmap charts, 2- Under-counting the number of differences in two charts, 3- Reason-
ing errors of the type The value decreased from X to X.

CodeEdit 1-Suggesting removal of nonexistent parts of code, 2-Not properly understanding what each line of code represents in the compiled image.

Isomorphism 1- Jumping prematurely to a conclusion after finding one or two nodes that map to each other, 2- Hallucinating non-existent nodes or edges.

Maps 1- Incorrectly counts similar pins as the same type of objects (e.g., pins that share the same color but different icon), 2- Not paying attention
to the prompt specifying the certain area of interest, 3- Gives arbitrary directions that don’t match the situation shown in the grid map.

RefCOCO 1- For the image with the circles, coordinate reading is off by 100-200, 2- Not a proper understanding of spatial clues such as top right.

IQ 1- Unfaithful-ness to model’s own CoT (e.g., it explains the color should be green, but selects the red), 2- Overly predicting the operation
to be rotation (despite no rotation being in the dataset).

4.3 Failure Analysis

For each task, we manually examined 20 examples where the answers given by overall best performing
model (Gemini 1.5 Pro) was incorrect and analyzed the dominant reasons behind the failures. This
analysis revealed several interesting failure modes – some intuitive and some not – as described
below and summarized in Table 3. The diversity of errors observed highlights that this multi-image
reasoning domain elicits a wide range of different behaviors that can go wrong in a range of different
ways, and that our benchmark tests this wide range of abilities. Calculation errors were present in
many of the math-related datasets, so we do not discuss them separately for each task.
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For EmojiAlgebra, the overall reasoning process of the model is mostly correct. However, the model
sometimes confuses similar emojis. As an example, it assigns a similar (or the same) name to and

or to and and then these variables get confused in the later calculations. We also observe
some misreading of the expressions.

Model Time Read

Gemini Ultra 1:00 AM

Gemini Flash 9:15 AM

Gemini 1.5 1:50 AM

Claude3 Sonnet 3:25 PM

GPT4 Turbo 5:00 AM

Figure 5: Time read by different models
for one of the clocks in the Clocks.

For both Clocks and Schedule, the model suffers from not
being able to read the time correctly; e.g. often the minute
hand was mistaken for the hour hand. Figure 5 shows
a sample clock and times read by the various models.
Despite reading the wrong times, the model generally
does a good job of computing the time difference given
these wrong times, though it sometimes ignores the prompt
instructing it to consider both times to be on the same day.
In the case of the Schedule, the value retrieved from the
table is often not the right value, even given the wrong time read by the mode; Sometimes, this is due
the model confusing AM vs PM.

For GeomShapes and GeomCost, the model mostly understands the high-level task (extracting a
value from the first shape and using it in the next) and executes it correctly. But it makes reasoning
errors on the geometry side where it tries to compute the values for unknown sides/angles that are
irrelevant to the question. We also observe some misreading of values or mis-assigning the value for
one element to another element (e.g., assigning a side value to a height). Hallucinating non-existent
values is another issue. In both cases, the model performs well in understanding and executing the
high-level task of extracting a value from the first shape and then using it in the next shape.

For Isomorphism, the model tended to jump to conclusions prematurely, based on some initial guesses.
For example, it found one or two nodes that had similar structures and jumped to the conclusion that
the graphs are isomorphic, whereas other nodes had different structures. The model also suffered
from hallucinating non-existent nodes and edges.

For RefCOCO, the model understands how to use the provided coordinates; however, the coordinates
it reads for the circles tends to be off by 10-20%. Moreover, sometimes the model correctly explained
that the object of interest is, e.g., on the top left but then selected a circle that was not on the top left,
showing a potential gap in truly understanding what top left or other spatial clues are.

For IQ, the model was sometimes unfaithful to its own reasoning (e.g., it explained that the answer
must be a green shape, but selected a red shape as the final answer). Also, even though we had
no rotation operations in the dataset, the model tended to over-predict the logical operation being
rotation, probably due to a prior bias on the presence of rotation in IQ questions.

For FuncRead, the model understands the general logic and follows the calculations correctly, but
it fails to correctly read values from the function graphs; the values are mostly off by about 1 unit
showing the model can locate the vicinity of the point, but lacks precision.

For Collisions, the model demonstrates issues in interpreting physics diagrams and calculations,
particularly in differentiating between elastic and inelastic collisions. It struggles to account for
implicit information such as orientation component of the objects velocity.

For Charts, the model reads the correct values from heatmaps, but assigns values to the wrong
row/column (typically off by one row/column). Moreover, when we ask the model to identify how
many differences there are between two charts, it mostly under-counts. We also see multiple cases
where the model claimed a value decreased from X to X (i.e. to the same amount).

For CodeEdit, while correctly identifying the visual changes in the rendered image, the model lacks
understanding of how each line of code contributes to the final image. In some cases incorrectly
suggests removing code segments that are not present in the original code. Despite these flaws, the
model demonstrates some understanding of the code structure, as it avoids suggesting the removal of
critical code components that would prevent code from compiling.

For Maps, the model has difficulty counting objects of interest accurately, especially when there are
many distractions on the map. It sometimes hallucinates information about restaurants and bars or
lists those outside the area of interest. Also, it struggles to differentiate between similar pins, such as
coffee shops, bars, and restaurants. When asked about directions, the model’s suggestions are often
random. While it may list correct streets, the directions it describes do not match the map.
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Figure 6: Model performances as a function of the task properties presented in Table 1.

In Figures 9, 10, 11, 12, 13, 14, 15 16 and 17 we present some examples of model failures.

Reasoning Errors vs Image Reading Errors: Besides computation errors, we observed that
reasoning errors and image reading errors are two of the most dominant sources of failures
across the tasks in ReMI. We examined 125 failed examples and verified whether there ex-
isted a reasoning error or image reading error in them. The results are provided in Figure 7.

Figure 7: The confusion matrix of rea-
soning errors vs image reading errors.

We observe that in 12% of the cases, the values were
read correctly from the image and the reasoning was also
sound; the failures in these cases were primarily due to
minor calculation errors suggesting that while the model
understood the problem and approached it correctly, it
stumbled in the final execution. In 37.6% of the cases, the
image values were read correctly, but the reasoning was
incorrect, This is the most frequent error type, indicating
that correct reasoning still remains one of the critical gaps
even in the state-of-the-art models. In 24.8% of the cases,
the model misread some information from the images, but
the reasoning is sound. That is, had the model extracted
the correct information, the final answer could have been correct. This result indicates a second gap in
terms of extracting and parsing the correct values from the images and assigning them to the correct
components. Finally, in 25.6% of the cases, the model struggled both in extracting information from
the image and in applying correct reasoning.

4.4 Performance as a Function of Task Properties

In Table 1, we identified multiple distinguishing factors for each of the tasks in ReMI. Here, we aim
to measure and compare model performances for tasks exhibiting each property. We note that a naive
averaging of a model’s performance for datasets in each category and comparing to the other category
may be flawed due to: 1- Performances on some tasks being generally higher due to the label space
being binary or categorical, and 2- some tasks being generally easier/harder than the other tasks.
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To account for the first issue mentioned above, for each model M and task T we compute PM,T as
ERPT (naive,M), i.e. the model’s error reduction percentage compared to the naive baseline. This
corresponds to how much of the error has been reduced by the model when accounting for random
guess, normalized by how much room for error reduction existed when accounting for random
guess. To account for the second issue, as a proxy for the hardness of the tasks, we use the average
performance of our models on each task PT =

∑
M PM,T

number of models . We then compute the relative gain
compared to the average as P ′M,T =

PM,T−PT
PT

. Conceptually, this corresponds to the following:
After accounting for random noise, how much each model reduced the error with respect to the
model-average baseline, on each task. For each model and each group of tasks τ (e.g., all interleaved
tasks), we compute and report the average

∑
T∈τ P

′
M,T

|τ | .

For this experiment, we excluded Idefics2 due to its poor performance. The results for the other
models are reported in Figure 6. According to Figure 6(a), GPT4 Turbo and Gemini 1.5 (the two
best performing models) outperform other models on interleaved tasks more than non-interleaved
tasks, showing the progress in the frontier models for this recently emerged capability. Figure 6(b)
compares the tasks that have a maximum of two images to the tasks where the maximum number
of images is more than two. We observe a similar behavior as the interleaved vs non-interleaved
case, with Gemini 1.5 gains more on the latter tasks. GPT4 Turbo, however, gains equally on both
cases. Interestingly, we observe that while Gemini Flash remains competitive on the former tasks, its
performance falls behind on the latter group. According to Figure 6(c), for sequence vs set inputs, we
see a stark difference for Claude3 Sonnet and Gemini 1.5. Claude3 Sonnet performs better on set
type tasks and Gemini 1.5 performs better on sequence type tasks, but almost loses its advantage on
set type tasks. Finally, Figure 6(d) shows that when provided with images corresponding to different
concepts, most models show a similar behaviour except for Gemini Ultra that performs better when
the concepts are different and GPT4 Turbo that performs better when the concepts are the the same.

4.5 Zeroshot vs Fewshot Performance

So far, we examined the performance of various models in a zero-shot setting. We now exam-
ine how much of the gap between the model performance and the human performance can be
closed by providing fewshot examples as demonstration to the model. Specifically, we prepend
two examples along with their manually-written chain of thought solutions to the prompt. We
then measured and report ERPT (zeroshot, fewshot) corresponding the how much the fewshot
model reduced the error compared to the zeroshot model. The results are reported in Figure 8.
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Figure 8: ERP(0-shot, 2-shot) for Gemini 1.5.

According to the results, we observe that the
overall performance of the model on ReMI im-
proves from 51.5% to 57.9% corresponding to
almost 12.5% relative improvement. This shows
that LLMs may be capable of learning multi-
image reasoning tasks in context and improve
their performance. However, the overall per-
formance still remains significantly behind the
human baseline which is 95.8%. We also see
that the amount of improvement is task depen-
dent with some tasks gaining from fewshot examples substantially more than the others.

5 Conclusion

We introduced ReMI, a dedicated benchmark for multi-image reasoning that covers several domains
and several key properties that arise when reasoning with multiple images. We evaluated the frontier
LLMs on ReMI and compared their performance to humans. The results show a stark gap between
model performance and human performance showing a significant room for improvement in the
reasoning capabilities of the current state-of-the-art LLMs. Future work can focus on improving
LLMs for the limitations found in our failure analysis and measure how much they translate to
improvements on ReMI.
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[12] Paul Erdős and Alfred Rényi. On random graphs. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

[13] Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see
but not perceive. arXiv preprint arXiv:2404.12390, 2024.

[14] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008.

[15] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

11



[16] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
J. Vanschoren and S. Yeung, editors, Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, volume 1. Curran, 2021.

[17] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

[18] Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao
Lv, Lei Cui, Owais Khan Mohammed, Barun Patra, et al. Language is not all you need: Aligning
perception with language models. Advances in Neural Information Processing Systems, 36,
2024.

[19] Dongfu Jiang, Xuan He, Huaye Zeng, Cong Wei, Max Ku, Qian Liu, and Wenhu Chen. Mantis:
Interleaved multi-image instruction tuning. arXiv preprint arXiv:2405.01483, 2024.

[20] Mehran Kazemi, Hamidreza Alvari, Ankit Anand, Jialin Wu, Xi Chen, and Radu Soricut.
Geomverse: A systematic evaluation of large models for geometric reasoning. arXiv preprint
arXiv:2312.12241, 2023.

[21] Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung Kim, Xin Xu, Vaiva Imbrasaite, and
Deepak Ramachandran. Boardgameqa: A dataset for natural language reasoning with contradic-
tory information. In NeurIPS, 2023.

[22] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring
to objects in photographs of natural scenes. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages 787–798, 2014.

[23] Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
vision-language models? arXiv preprint arXiv:2405.02246, 2024.

[24] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving
quantitative reasoning problems with language models. Advances in Neural Information
Processing Systems, 35:3843–3857, 2022.

[25] Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying
Shan. Seed-bench-2: Benchmarking multimodal large language models. arXiv preprint
arXiv:2311.17092, 2023.

[26] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

[27] Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila:
On pre-training for visual language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 26689–26699, 2024.

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[29] Fangyu Liu, Emanuele Bugliarello, Edoardo Maria Ponti, Siva Reddy, Nigel Collier, and
Desmond Elliott. Visually grounded reasoning across languages and cultures. In Marie-Francine
Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pages 10467–10485,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

[30] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

12



[31] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281, 2023.

[32] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical
reasoning of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

[33] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. Advances in Neural Information Processing Systems,
35:2507–2521, 2022.

[34] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[35] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

[36] Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yourself!
leveraging language models for commonsense reasoning. arXiv preprint arXiv:1906.02361,
2019.

[37] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

[38] Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Mehran Kazemi,
Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
models using ood examples. Advances in Neural Information Processing Systems, 36, 2024.

[39] Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are
multilingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057, 2022.

[40] Dingjie Song, Shunian Chen, Guiming Hardy Chen, Fei Yu, Xiang Wan, and Benyou Wang.
Milebench: Benchmarking mllms in long context. arXiv preprint arXiv:2404.18532, 2024.

[41] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

[42] Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A corpus of natural language for visual
reasoning. In Regina Barzilay and Min-Yen Kan, editors, Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
217–223, Vancouver, Canada, July 2017. Association for Computational Linguistics.

[43] Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus
for reasoning about natural language grounded in photographs. In Anna Korhonen, David
Traum, and Lluís Màrquez, editors, Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 6418–6428, Florence, Italy, July 2019. Association for
Computational Linguistics.

[44] Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. ProofWriter: Generating implications, proofs,
and abductive statements over natural language. In Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, pages 3621–3634, Online, August 2021. Association for
Computational Linguistics.

[45] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

13



[46] Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models. Advances in Neural Information
Processing Systems, 34:200–212, 2021.

[47] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. Advances in neural information processing systems, 32, 2019.

[48] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 24824–24837. Curran
Associates, Inc., 2022.

[49] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

[50] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

14



Figure 9: Model failure: Although the model arrives at the correct answer, the mapping showing the
isomorphism between the two graphs is wrong.

Figure 10: Model failure: The model mixes the minutes and hours hand on the clock and also reads
08:34 as 9:34 from the table.

A Details About the Tasks in ReMI

Below, we provide a detailed description of how each task in ReMI has been created.

• EmojiAlgebra: We created random systems of linear equation where the values for the variables
can be derived one-by-one by looking at the equation for which the value for all variables on
the right-hand side is known. We also created a random expression with those variables whose
value was to be computed. We then created images by replacing the variables with emojis.

• FuncRead: To create this task, we sampled polynomial functions of degree 1, 2, or 3 and plotted
their graphs using the matplotlib library. Then we ask the following questions about them:
reading values from different functions and summing or subtracting them, computing the limit
of a function that is defined as one of the graphs for some domain of values and the other graph
for the values outside that domain, function composition, finding a value of interest (e.g., where
the derivative is zero) from one graph and reading the other function value at that point, and
finding the graph that corresponds to a given function.

• GeomShapes: We generated this dataset by sampling a shape from a set of pre-defined shapes.
Each shape has fixed number of pre-defined formulas associated with it corresponding to area,
perimeter, angles etc. For each formula, we have input elements and output elements. We first
sample one shape and its formula and assign values to input elements, the output element of this
formula would be shared with another shape. We then sample another shape and formula whose
atleast one input element say x is of same type as output element of the first shape. We assign
this element x from the computation of first shape but hide it in the question. We then proceed
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Figure 11: Model failure: The model fails to recognize the category Astronomy whose value has
changed and instead outputs that no value has changed.

Figure 12: Model failure: The model read’s the values wrong from the graph.

to ask the question based on this output formula of second shape. The two questions share this
element x which is indicated in the question.

• GeomCost: We generated this dataset by sampling a shape from a pre-selected set of shapes like
triangle, parallelogram, square, rectangle etc and selecting one formula out of perimeter and
area corresponding to this shape and assigned all the values corresponding to the perimeter or
area value. We then choose a template story correspondinf to fencing a boundary, icing the cake
etc. out of 10 pre-defined template texts and choose a table corresponding to this template. The
table designs are also varied slightly out of fixed number of styles. The cost values are assigned
randomly from 1-100.

• Collisions: We created visualizations of two-object collisions, varying initial positions (hori-
zontal, vertical, angled) and randomly assigning masses and velocities. For each collision pair,
we then assessed elasticity, coefficient of restitution, and conservation of kinetic energy and
momentum.

• Clocks: We generated clock images with different shape, color, style, number representations,
etc. using tikz code. Each clock shows a random time and a AM or PM is also added randomly
to the image as well. Then, for each pair of images, we compute the difference between their
times in terms of minutes and use that as the label.
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Figure 13: Model failure: The model wrongly interprets the sides of a parallelogram as its base and
height and gets completely off track.

Question: Here are two images. The first image is image A 
<image1> and the second image is image B <image2>. These 
images are from Google Maps that depict two different regions 
around Liberty Avenue in Pittsburgh, PA.  In these images 
restaurants are represented by orange pins that depict a knife and a 
fork. Coffee shops are represented by orange pins and/or boxes 
with an image of a coffee cup in them. Bars are represented by 
orange pins with an image of a wine glass inside them. Bus stops 
are represented by a blue square box with an image of a bus inside 
it. [...] In which image are there more bus stops along Liberty 
Avenue? The answer is either 'A', 'B' or 'equal'.

Model Response: "Image A shows 3 bus stops along Liberty 
Avenue, while image B shows 2. ", "answer": "A"

Figure 14: Model failure: The model reads the incorrect number of bus stops along Liberty Avenue
in both the images but luckily gets the answer correct.

• Schedule: We generated one clock image showing a random time, similar to the way it was gen-
erated for the Clocks. Then, we also generated a random table with different columns (departure
time, arrival time, train name, gate, etc.) and with different styles (colors, horizontal/vertical
line separators, text rotation, multi-line text, etc.) that included information about the events
happening at various times. We then asked questions about the next event happening given the
current time shown on the clock.

• Charts: We first randomly generate data matrices and series that are suitable for plotting into
four different types of charts: (1) heatmap (2) bar chart (3) line chart (4) pie chart. Then we
create a modified version of the data series or matrices by randomly editing one to a few values.
This way we obtain pairs of edited data matrices/series. Then we use the Matplotlib library to
plot each data matrix/series into a chart by randomly selecting a suitable chart type and randomly
choosing a color scheme, layout, etc. for the chart. Heuristics is applied to guarantee that the
selected chart type is suitable for plotting the data. Finally we sample from a set of question
templates to form QA pairs for each pair of chart. The templates include simple elementary
reasoning questions across the two charts or detecting differences of the two charts.
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Question: Here are four images. The first image is image A <image1>. The second image is image B <image2>. The third 
image is image C <image3> and the fourth image is image D <image4>. [...] At exactly one of the intersections there is a 
green pin indicating the starting location. At exactly one of the intersections there is a red pin indicating the ending 
location. Here is a set of directions describing a path from the starting location to the ending location. Directions: Head 
south on M street. Turn right onto G street. Turn left onto F street. Continue for 2 blocks to arrive at your destination. In 
each image there is a partial (incomplete) path outlined in the color blue. Exactly two of the four images have the 
property that their partial paths when combined together match the path that is described in the directions above. 
Please identify the pair of images. The answer is simply a pair of names (e.g. A,B or C,D and so on).

Model Response: "The directions indicate starting on M street 
and heading South, then turning right on G street. This matches 
the partial path shown in image C.  The directions then say to 
turn left on F street and continue for two blocks. This matches 
the partial path shown in image B.", "answer": "B,C"

Figure 15: Model failure: The model interprets the wrong image as showing the path described in
the text.

Figure 16: Model failure: The model doesn’t seem to understand the pattern properly but guesses the
right answer.

• CodeEdit: We first asked a language model to generate tikz code for a list of random objects.
We then comment out a single line in the code and recompile it. We only keep the examples
where the edited version compiles correctly, and the compiled image is not equal to the original
image. A few filters were applied to ensure that the edited image is sensible (e.g. the code being
removed is not a variable definition or the beginning of a for loop); specifically, the removed
code line had to start with \draw or \filldraw and end with a ;.

• Isomorphism: We used the NetworkX library [14] to generate random graphs using one of the
following generators: Erdős-Rényi (ER) graphs [12], scale-free networks (SFN) [7], graphs
following the Barabási–Albert (BA) model [4] and stochastic block model (SBM) [17], as well
as star, path and complete graphs. Then, for positive examples (i.e. examples where the two
graphs are isomorphic), we visualized the same graph with different NetworkX layout, different
names for the nodes, and different styles. For the non-isomorphic case, we either sampled
two random graphs (this produces easy negative examples) or sampled one random graph and
slightly modified it by adding/removing one or two nodes/edges (this produces hard negative
examples).

• Maps: Our curated Maps dataset consists of both synthetic and real world examples. We first
describe the curation process for the synthetic examples. For synthetic counting queries, we
first generate a grid with five horizontal streets and five vertical streets. The street names are
randomly assigned in [A..Z]. We then place points of interest (POIs) (gas stations, coffee shops,
shopping center and bus stops) at various blocks. We process each block and with a sampling
probability of p = 0.1 decide whether to place a POI or not. We then pick a POI at random
from the list and place it at the block. Similarly, we place traffic lights and stop signs at each
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Figure 17: Model failure: The model fails to correctly match the vertices of the cube to their implicit
locations in the image and ends up suggesting to remove the right line of code.

corner with a sampling probability of p = 0.1. To generate the second image we copy the above
constructed grid and pick at random a particular street. We then pick at random a particular POI
on the street and place additional copies of the POI on the street. With a small probability of
0.05 we leave the second image unchanged.

Similarly, for the direction matching queries we generate a grid image as above. We pick a
random start and end point and pick a random set of directions between them. We split this
direction at a random point to generate two of the four images containing the partial directions.
The remaining two images are constructed by picking two different distinct directions at random.

For the case of real data we first prompted a language model to generate a list of 100 cities and
an associated street/avenue in that city. We then take this list and for each entry we get two
images from Google Maps API that are centered at the particular street. We then manually study
the two images and look for distinguishing features (such as bus stops, places of worship, hotels
etc.) to construct the query.

• RefCOCO: We sampled 500 imagees from the refCOCO [22] dataset. We then sample 15 points
to lie uniformly randomly across the image. We then choose the points that overlap with the
goal object as follows. We have the ground truth bounding box of the referred object from the
original dataset. We first select the datapoints where at least 1, but less than 8, and include
these in label_inbbox. We th ar ethe points in the center 25% of the bbob, and so on for
provide various precisions for points with ‘most overlap’: label_mindist_bboxcenter is
the point that is the closest to the center of the bounding box. label_25p_tolerance are the
labels in the middle 25% of the bounding box and so on for the label_50p_tolerance and
label_75p_tolerance. Finally we manually check all the datapoints to ensure that the labels
points actually overlap with the goal object.

• IQ: We created simple IQ tests where a grid of 2x2 is given as input whose bottom-left value
is missing, and four choices are provided as the possible answers from which the model has
to select one. The images on the top row are two shapes that are different only in terms of
one logical operation. The model has to identify that operation and apply it to the image on
the bottom left to find the final answer. We included a number of different shapes (triangles,
rectangles, pentagons, parallelograms, etc.) and a number of different logical operations (border
color, border pattern, fill color, hatch style, change in shape, etc.). This task is similar in nature
to the IQ tasks in [2, 18], but the choices are provided as separate images.

Quality Check: To ensure high quality, we went through multiple rounds of checking, where the
questions and answers for each task were examined by multiple authors to see any problems can
be identified, including whether the label is correct, whether the instructions provided are sufficient
to solve the problem and output it in the right format, whether the text of the question is clearly
written, whether the images are clearly understandable and the quantities are easily readable, etc.
This procedure was done until no more issues could be found for any of the tasks. As a second level
of quality check, once we performed our human evaluation, we manually looked into the questions
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Figure 18: Model gain over naive baseline as a function of the time spent by humans for solving the
problems.

where the label provided by the humans disagreed with our labels to ensure that our labels are indeed
the correct ones.

B Performance as a Function of Human Time

In the main text, we reported the average time per problem spent by humans for each task. One may
expect that if humans spent more time on a set of problems, those problems might be more difficult
for the models. To verify this hypothesis, we fit linear functions to the model performances as a
function of time spent by humans and report the results in Figure 18. We observe that only for two of
the models (Gemini Ultra and Gemini Flash) the performance goes down as a function of spent time.
For other models, the performance almost remains flat.

C Experimental Setup

For all of the tasks in ReMI, we allowed the models a maximum of 512 output tokens as we
observed that when models went beyond that, they were mostly stuck in a wrong path that did not
reach a solution and that models could not recover from it. We prompted the model to produce a
JSON with two fields: "explanation" containing the step by step reasoning of the model, and the
"answer" containing the final answer. We measured the average number of responses that either
ended prematurely or did not produce a valid JSON for each model and observed that the numbers
were small. Specifically, the numbers for Claude3 Sonnet, Gemini Ultra, Gemini Flash, Gemini 1.5,
and GPT4 Turbo were 0.4, 0.3, 0.5, 0.8 and 1.9 percent respectively. For Gemini and Claude, we
used the Vertex AI API. For GPT4 Turbo, we used the OpenAI API. For Idefics2, we used the float16
case without image splitting to ensure the model fits in one GPU.

To compute the final performance, we did the following postprocessing on the golden and predicted
labels: 1- in the case of string outputs, we lowercased both golden and predicted answers before
comparing them, 2- if the predicted label had an extra or missing () around the final answer, we still
counted it as true, 3- if the predicted label contained extra units (e.g., producing 20% instead of 20),
we still counted it as true, 4- for the CodeEdit, some lines of codes contained a comment after the
code; we considered a predicted label to be true regardless of whether it output the comments or
not, 5- we ignored spacing issues and assumed a predicted label to be correct even if it had extra or
missing spaces, and finally 6- for the FuncRead, if the golden label was, e.g., f and the predicted
label was f(x), we counted it as correct.

D Limitations

• While our dataset covers a wide range of domains where reasoning over multiple images is
required, there may still be many other domains where such reasoning is required that are not
covered in our dataset e.g., reasoning about chemicals, reasoning about music sheets, etc.).
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• In our experiments for measuring performance as a function of task properties, we had to use
proxies to tease apart the effect of random chance and task difficulty. It is possible that with a
different procedure for teasing these effects apart, the results change slightly. For this reason,
the general patterns observed in those experiments are more important that the small numeric
differences.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
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5. If you used crowdsourcing or conducted research with human subjects...
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human performance. The instruction was simple; we just asked them to solve the
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