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ABSTRACT

Improvements in the performance of computing systems, driven by Moore’s Law,
have transformed society. As such hardware-driven gains slow down, it becomes
even more important for software developers to focus on performance and efficiency
during development. While several studies have demonstrated the potential from
such improved code efficiency (e.g., 2x better generational improvements compared
to hardware), unlocking these gains in practice has been challenging. Reasoning
about algorithmic complexity and the interaction of coding patterns on hardware
can be challenging for the average programmer, especially when combined with
pragmatic constraints around development velocity and multi-person development.
This paper seeks to address this problem. We analyze a large competitive pro-
gramming dataset from the Google Code Jam competition (Google Code-Jam) and
find that efficient code is indeed rare, with a 2x runtime difference between the
median and the 90th percentile of solutions. We propose using machine learning to
automatically provide prescriptive feedback in the form of hints, to guide program-
mers towards writing high-performance code. To automatically learn these hints
from the dataset, we propose a novel discrete variational auto-encoder, where each
discrete latent variable represents a different learned category of code-edit that
increases performance. We show that this method represents the multi-modal space
of code efficiency edits better than a sequence-to-sequence baseline and generates
a distribution of more efficient solutions.

1 INTRODUCTION

The computational efficiency of code is often front-and-center in any computer science curriculum.
While there are many ways to solve a particular problem, there is often wide variance in the runtime of
different implementations. This variance is often attributed to many different factors: the algorithmic
complexity of the code in question, the data structures that are used, the libraries that are called, and
lower-level execution effects like efficient caching or memory usage.

Similarly, computational efficiency is a critical component of professional software development.
The computing industry as a whole has relied on the automatic performance increases of Moore’s
Law to scale massive warehouse computing systems to meet the internet requirements of the world.
As these automatic performance increases slow down, the burden of reducing computational cost and
carbon footprint now falls on writing high-performance code (Patterson et al. (2021)).

Writing efficient code is challenging, even for experienced programmers, as it requires understanding
computational complexity as well as the underlying hardware. Lower-level performance optimizations
are therefore automated by compilers which automatically apply a small set of known, sound low-
level program transformations to an already written program to increase its efficiency. However,
compilers and current tooling have more difficulty identifying higher-level optimizations, such as
more efficient algorithms for the same problem. So far, these types of optimizations could only be
identified by humans. We hypothesize that machine learning can be used to guide humans towards
such optimizations, by suggesting edits that optimize code efficiency.

To study this problem, we examine a competitive programming dataset where tens of thousands of
developers have submitted answers to about 180 different questions. Studying these solutions, we
find wide variance in computational cost: the runtime difference between a median solution and the
90th percentile is over two-fold. The scarcity of high-performance solutions highlights the difficulty
of our task. Therefore, we aim to provide prescriptive feedback to developers to guide them towards
writing high-performance code.
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We develop a framework to apply multiple categorical transformations to a single program using a
novel discrete variational autoencoder where different vectors in the latent dictionary lead to different
code transformations. We find that these learned categories are often consistent (e.g., a particular
latent variable may control the data structure that is used for a particular problem or a for-loop vs. a
while-loop), and that by applying these transformations to the program, we can move solutions into a
more efficient computational efficiency category vs. the code that the developer wrote.

This paper makes the following contributions:

• We frame code efficiency optimization as a generative problem.
• Using the Google Code Jam competitive programming dataset (Google Code-Jam), we

analyze the distribution and characteristics of high-performance solutions. We find that
high-performance solutions are uncommon and consist of a combination of many distinct
optimizations. We then derive a canonicalized program-edits dataset to train models to
improve code efficiency.
• We propose a novel discrete generative latent-variable model of program edits to model a

distribution of fast programs, conditioned on their slower counterparts. We find that this
model outperforms a sequence-to-sequence baseline along three different axes: correctness,
efficiency, and diversity.
• We qualitatively demonstrate that the learned discrete latent variables represent different

edits, and that the edits that are assigned to one latent variable are generally consistent. As a
side-effect, we learn an interpretable program embedding space.

We believe that these results are a promising step towards automating the process of identifying
and applying higher-level performance optimizations, which would fundamentally increase the
capabilities of current developer tools while reducing the carbon footprint of computing.

2 BACKGROUND

2.1 PROBLEM FORMULATION

There are many different ways to implement a particular algorithm. For algorithms like matrix
multiplication, small syntactic changes like loop reordering have a dramatic impact on execution
cost (Leiserson et al. (2020)). From low-level hardware effects like caching and branch prediction,
to higher-level code choices like data structures, termination conditions, and loops - navigating the
space of implementation options is a key element of software engineering.

We find many of these performance archetypes when looking at competitive programming solutions.
Figure 1 shows three example programs on the left and faster versions of those programs on the
right. The first example showcases using a more efficient datastructure (a heap), which then enables
early termination of the main loop. The second example highlights a performance bug, where fewer
API calls can accomplish the same task. The third example highlights how using built-in libraries
can be faster than writing bespoke implementations. These examples represent just three of the
many discrete design choices that developers make while coding their solutions. We hypothesize
that these discrete choices can be learned, such that a generative model can suggest different code
transformations that a developer could leverage to increase code efficiency.

2.2 PROGRAM EDIT DATASET

To study this problem, we use the dataset from the Google Code Jam international competitive
programming competition (Google Code-Jam). Each question consists of a problem description,
along with up to three test cases – inputs and desired outputs – of increasing complexity. For each
question, the dataset contains solutions from competition participants. If the submission passes each
test, it is labeled as correct and annotated with run-time, otherwise it is marked as incorrect.

For our study, we focus on the solutions that are written in Python. As we aim to study execution
complexity, we focus only on correct submissions and consider the run-time of the largest test case.
This distribution of run-times is shown in Figure 2.

Even for this constrained competitive programming task (with a natural focus on efficient solutions),
Figure 2(a) illustrates a wide distribution in run-time – supporting our hypothesis that writing efficient
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Figure 1: Examples from the program pair dataset. Each row corresponds to a data point, containing
the input (slow) submission and the output (fast) submission.

(a) Program runtime (b) Program length (c) Pairwise relative runtime

Figure 2: Dataset statistics.

code is a difficult problem. We observe solutions with run-times that are fractions of a second, as
well as those that time-out after 5 seconds. High-performance solutions are rare. Additionally, Figure
2(b) indicates that the data is multi-modal with a wide textual distribution of solutions. Solutions are
as short as a handful of lines of code and stretch to over a thousand. We aim to discover the common
patterns in these solutions that lead to efficient code, so that we can provide hints to programmers to
improve performance.

We frame this task as a sequence-to-sequence problem: given an input code sequence, output a more
efficient version of the code. While sequence-to-sequence modeling is often posed as a one-to-one
problem, our task is a one-to-many problem, as there are an overwhelmingly large number of such
solutions to a single problem. Trivially, one could simply rename variables or change syntax. We
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would like to focus on substantive changes, so we deal with this in two ways: first, we canonicalize the
code submissions by renaming variables, function names, and strings with generic tokens. Next, we
construct a dataset of inputs and outputs by pairing programs according to their similarity. Specifically,
we use the ROUGE-8 metric to score the similarity between all pairs of canonicalized submissions.
Similar programs with a significant run-time difference (we choose 1.2x speedup or larger) are added
to the dataset. Figure 2(c) shows the relative runtime difference between the slow/fast pairs in the
dataset. Consistent with 2(a), we observe a broad distribution of run-time differentials.

We find that this canonicalization approach enables the model to learn on this dataset, but also means
that we lose the ability to execute the edited program to evaluate run-time. However, even in canonical
form, edits are qualitatively sufficient to identify optimizations. Section 4.3 describes the quantitative
metrics that we use to further evaluate the quality of these edits.

3 METHOD

3.1 MOTIVATION

Our goal is to create a model that can condition on a given program and help developers identify
more computationally efficient variants of that program. There are three factors that we use to drive
our modeling choices and evaluation. 1) The resultant hints should be syntactically coherent. As the
model provides suggestions, the suggested changes do not need to be perfect, but still need to make
sense. 2) The changes suggested by the model should lead to more computationally efficient code.
To quantify efficiency, we rely on textual similarity to other known correct code in the data-set that is
more efficient. 3) For a given source program, there are a multitude of discrete transformations that
could lead to more efficient code (that is, the problem is one-to-many). For example, more efficient
code versions could change the data structures involved, wrap/unwrap code in functions, or adjust
loop bounds. These edits are not known a priori, so the model should automatically learn which
transformations increase efficiency, and then communicate those choices to developers. Therefore, an
ideal model would be able to generate many different distinct hints, so we consider code diversity as
an auxiliary objective. The criteria mentioned above (efficiency, correctness, diversity) inform our
modeling choices. In Section 4.3, we describe specific metrics to quantify each of these criteria.

3.2 NOTATION

We denote an input sequence x = [x1, x2, ..., xTin ] and an output sequence y = [y1, y2, ..., yTout ],
where xi, yj are tokens in a vocabulary V . We will represent the encoder as fθ(·) and the decoder
as gφ(·), where θ and φ are the parameters of the networks. As is standard in sequence modeling,
we embed tokens using an embedding function e(·) and add positional encodings PE. Unless it is
informative to say so, we will assume that this is done implicitly.

3.3 BASELINE MODEL: TRANSFORMER

Prior work in program optimization often operates at the compiler or assembly-code level (Schkufza
et al., 2013). As we aim to provide much higher-level natural language hints to edit source code
instead, we use a state-of-the-art natural language model as a baseline (Vaswani et al., 2017). The
baseline Transformer is trained in a sequence-to-sequence fashion, where given a pair of programs
with runtimes rslow and rfast, we use the slower program as the input x, and the faster program as the
output y. We encode the input program using fθ(x) and decode the output program using gφ(fθ(x)).
We train the network to minimize cross entropy loss. To generate different programs given one input
program, we simply randomly sample outputs.

3.4 DISCRETE VARIATIONAL AUTO-ENCODERS

As an alternative to a fully black-box solution, we propose solving the problem with a more explicit
and interpretable model. Since we observe in the dataset that there are many discrete categories of
efficiency-improving code transformations, we propose using a discrete variational auto-encoder to
learn these categories in an unsupervised way.
Furthermore, we are interested in learning fine-grained edits of code, where each category of learned
edit ideally represents a single conceptual or localized change. Towards that end, we encode x
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Figure 3: Conditional program edit VQ-VAE.

Correctness Delta
Original Program

import heapq
T = int(input())
for i in range(1, T + 1):
  n, b = [int(s) for s in input().split(" ")]
  A = [int(N) for N in input().split(" ")]
  heapq.heapify(A)
  m = 0
  for j in range(n):
    e = heapq.heappop(A)
    if b - e >= 0:
      b -= e
      m += 1
    else:
      break
  print("Case #" + str(i) + ": " + str(m))

Optimized Program(1.6x faster)
Efficiency Idea: This is a greedy knapsack implementation where we pick 
elements from a list in increasing order until we run out of space. sorted has to 
sort the entire list while heapify+heappop only sort the part we actually visit.

Program Canonicalized Program Proposed Edit Manually Apply Changes
ModelCanonicalize

import heapq
v = int(input())
for v in range(1, v + 1):
 (v, v) = [int(v) for v in input().split(‘STRING’)]
  v = [int(v) for v in input().split(‘STRING’)]
  f.heapify(v)
  v = 0
  for v in range(v):
    v = heapq.heappop(v)
    if v - v >= 0:
      v -= v
      v += 1
    else:
      break
  print(‘STRING’.format(v, v))

t = int(input())
for i in range(1, t + 1):
  N, B = [int(s) for s in input().split(" ")]
  costs = [int(cost) for cost in input().split(" ")]
  costs = sorted(costs)
  n_houses = 0
  while n_houses < len(costs):
    if B>=costs[n_houses]:
      B-=costs[n_houses]
      n_houses +=1
    else:
      break
  print("Case #{}: {}".format(i, n_houses))

v = int(input())
for v in range(1, v + 1):
 (v, v) = [int(v) for v in input().split(‘STRING’)]
  v = [int(v) for v in input().split(‘STRING’)]
    v = f(v)
    v = 0
    while v < len(v):
      if v>=v[v]:
          v-=v[v]
          v +=1
      else:
          break
  print(‘STRING’.format(v, v))

Edit Suggestion (Canonicalized Program)

Figure 4: An end-to-end example of the model’s output and its intended use by a programmer. The
model directionally suggests a code efficiency optimization for the programmer to consider.

and y into latent vectors zfast and zslow, and take their difference zedit = zfast − zslow to capture
the necessary information to edit x into y. This two-tower encoding approach with tied encoders
allows the model to learn a relative edit encoding, which we find helps training stability. We find
that code canonicalization aids in learning this relative encoding, as it removes semantic differences
between the input and output programs. The embedding vectors zfast and zslow are computed using a
multi-headed attention layer between the encoded outputs from fθ and a learned query vector c. This
form of pooling has been found in other works as well (Lee et al., 2019).

To capture the one-to-many relationship of code edits, and to further emphasize the idea of broad and
interpretable edit categories, we choose a VQVAE to quantize zedit (Van Den Oord et al., 2017). This
allows us to train a generative model of K discrete edit types. Each type, when applied to a piece
of code, produces a different result. This also has the advantage of preventing posterior collapse, a
pervasive issue with variational auto-encoders, especially with respect to discrete sequence modeling.

Specifically, we learn a dictionary of embedding vectors Z = [z1, z2, . . . , zK ]. When encoding the
difference vector, we set zedit = argmink ‖zk − (fθ(y) − fθ(x))‖2. Our Edit-VQVAE model is
illustrated in Figure 3.4 and our forward and decoding procedure is outlined in Algorithms 1 and 2 in
the Appendix. To support this model, we modify the decoder to take zedit as an auxiliary input. The
total input to the decoder is therefore the sum of the token embeddings, positional encodings, and
difference vector: e(x) + PE + zedit.

4 EVALUATION

4.1 METHODOLOGY

The primary utility of our model is to provide hints to programmers that identify improvement
opportunities for their code. This means that changes suggested by the model do not need to be
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perfect; they just need to point programmers in the right direction. We evaluate these hints first
qualitatively in Section 4.2 then quantitatively in Section 4.3.

Experimental setting. The program pair dataset for training and evaluating program optimization
tasks is constructed from the raw dataset following the procedures described in Section 2.2. After
processing the raw program submission dataset into program pairs, we randomly split the program
pairs into training, validation and testing set. The training/validation sets contain 806, 041/1, 458
program pairs. The test set contains 100 input programs that are not visible during training. The
program pair runtime distribution is illustrated in Figure 2(c).

We implemented all models in Jax (Bradbury et al., 2018), and trained the models using a peak
learning rate of 0.01 with both warmup and decay schedules. All models were trained with a batch
size of 16 for 100 epochs, using distributed data parallel training on 64 Google Cloud TPU cores
and 16 host machines. We performed rudimentary hyperparameter tuning for all models. For all
Transformer blocks, we set the dropout rate to pdropout = 0.1, the attention layer embedding size to
dmodel = 128, and the feed-forward inner layer size to dff = 512. We use 6 Transformer layers, each
with 8 attention heads, for both encoders and decoders. The Edit-VQVAE has K = 64 latents. In the
quantitative evaluation, we randomly sample N = 64 programs from each model for evaluation. The
Edit-VQVAE generates 1 program per latent.

4.2 EDIT VQ-VAE QUALITATIVE ANALYSIS

One of the main benefits of a discrete latent variable model is an interpretable latent space that we can
use to visualize the learned efficiency archetypes. After training and during generation, we remove
the encoder and directly feed the canonicalized program into the decoder along with a categorical
variable that selects one of 64 discrete latent edits. A real learned example of this is shown in Figure
4. The canonicalized program is edited by the decoder to increase performance (in this case the model
suggests a heap). We find that these edits expose the key optimization idea that can then be translated
back into code by the programmer.

We often find that each of the discrete latents is responsible for a single syntactic change (adding a
heap data structure, changing a for-loop to a while-loop and vice versa, adding functions, etc.) – and
that we can take different transformations on the same program by varying the latent code provided
to the VQ-VAE. The model learns many different efficiency archetypes (Table 2), including those
discussed in Section 2.

We can visualize the effect that the transformations have on different program pairs through PCA
decomposition as well (shown in the Appendix). If the latent variable has learned to apply a similar
edit to its input programs, one would expect that the slow programs would be collectively moved to a
faster region of latent space. We observe this behavior in Figure 5.

4.3 QUANTITATIVE RESULTS

Beyond the qualitative analysis in Section 4.2, we quantitatively evaluate the suggestions provided
by the Edit VQ-VAE vs. a vanilla sequence-to-sequence Transformer on three axes: correctness,
efficiency, and diversity.

Evaluation metrics. We use syntactic program similarity as a tool to measure model performance.
Program similarity is computed between the generated programs and a set of reference programs,
where the reference programs are programs in the dataset that solve the same question more efficiently
than the original input program. For each input program x in the test set, we construct its reference
program set as follows,

R(x) = {y ∈ Dqx | runtime(y) < runtime(x) and ROUGE_8(y, x) < t}, (1)

where Dqx ∈ D is the subset of program submissions in the dataset D that solves the same question
qx as input program x, and t > 0 is a threshold for the program neighborhood. We propose the
axis-specific metrics below, which are built upon conventional text similarity metrics such as the
BLEU score (Papineni et al., 2002) and the ∆BLEU score (Galley et al., 2015).

• Correctness Delta, i.e., similarity between the generated program and an existing solution to the
same question as the input program. We adopt the BLEU score here as a surrogate. For any
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Average results (64 Samples) Maximum results

Corr. Effi.-hard Effi.-soft Corr. Effi.-hard Effi.-soft Diversity

Edit-VQVAE 0.760 0.059 0.765 0.867 0.359 0.875 0.807
VQVAE - - - - - - -

Edit-VAE - - - 0.785 0.027 0.789 -

Transformer 0.572 0.006 0.608 0.733 0.125 0.769 0.655
Transformer* 0.575 0.015 0.611 0.769 0.242 0.808 0.684

Table 1: Performance of the proposed model and baselines measured by correctness (Corr.), efficiency
(Effi.), and diversity metrics. Numbers are between 0 and 1, higher is better. The best result is bolded.
The numbers from the first three columns are obtained by taking the average over the metric scores of
all N samples, the middle three columns by taking the maximum. The last column is computed based
on all N samples. The VQVAE does not converge and thus results in poor performance (denoted by
a ‘-’); Edit-VAE suffers from severe posterior collapse, so there is only one sample generated from
the model. Hard metrics require exact matches while soft metrics use ∆BLEU.

generated program ŷ, the correctness score is defined as,

SC(ŷ, x) , BLEU(candidate = ŷ, references = R(x)). (2)

SC gives a score in [0, 1], a score of 1 indicates there is a perfect overlap between ŷ and the
reference programs in R(x), while a score of 0 means there is no overlap. A higher Sc score
indicates that the generated program is more similar to the reference programs, implying less
programmer effort to translate the suggestion into a correct program.

• Efficiency Delta, i.e., similarity between the generated program and an existing more efficient
solution to the same question as the input program. There are two considerations: 1) how much
more efficient an alternative program is compared to the input, and 2) how different this alternative
program is to the suggestion. We adopt two metrics for efficiency, a hard metric using an exact
match, and a soft metric using ∆BLEU.

– If the generated program ŷ has an exact match with one of the reference programs inR(x),
we can directly use its runtime to compute the efficiency for ŷ. The exact match score is
defined as,

SEH(ŷ, x) , max
y∈R(x)

1[ŷ == y]
miny′∈R(x) runtime(y′)

runtime(y)
. (3)

SEH gives a score in [0, 1], a score of 1 indicates an exact match with the most efficient
program in the reference set, while a score of 0 means no exact match.

– Requiring generated programs to be exactly the same as a reference program will undervalue
good suggestions that are close to an efficient solution, but not exactly the same. Therefore
we also employ the ∆BLEU score as a soft version for efficiency. ∆BLEU is a variant of
BLEU where each reference can be assigned with a unique weight indicating the quality of
the reference. The score is defined as,

SES(ŷ, x) , ∆BLEU(ŷ,R(x),weight(y) =
miny′∈R(x) runtime(y′)

runtime(y)
). (4)

A reference program is assigned a higher weight if it is more efficient. SES is in [0, 1], a score
of 1 indicates a perfect overlap between ŷ and a more efficient reference program. As with
correctness, this approximates how much additional work would be required to transform the
suggestion into an efficient solution.

• Diversity, i.e., whether the model can generate diverse efficient programs given one input program.
We define diversity as the model’s ability to recover the set of reference programs using the
generated programs Ŷ(x) = {ŷ1, ŷ2, · · · , ŷn}. The diversity score is defined as,

SD ,
1

|R(x)|
∑

y∈R(x)

max
ŷ∈Ŷ(x)

BLEU(ŷ, y). (5)

SD is in [0, 1]. A score of 1 indicates perfect recovering of the reference set.
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Our results are summarized in Table 1. For metrics on correctness and efficiency, we show both
average and maximum performance over the N samples. We find that Edit-VQVAE outperforms
the sequence-to-sequence Transformer baseline by a large margin on all metrics. As a one-to-many
model, the Edit-VQVAE is able to learn the program edit distribution from program pairs that share
the same input programs in the training dataset. Conversely, sequence-to-sequence models perform
better when learning a one-to-one mapping with a single mode, but do not guarantee the quality of
multiple random samples. This is supported by our data showing that the gap between the Transformer
baseline and the Edit-VQVAE is smaller on the maximum results than on the average results.

The Transformer baseline is trained using all the program pairs in the same training set as the
Edit-VQVAE. What if the Transformer baseline is only trained on the program pairs with the largest
relative performance? Would its maximum results outperform Edit-VQVAE? Interestingly, the answer
is no. For program pairs that share the same input program in the training set, we only keep the pair
with maximum runtime improvement. This filtered dataset is used to train another Transformer model,
denoted as Transformer*. Transformer* significantly outperforms Transformer on the maximum
metrics, but it still underperforms Edit-VQVAE.

To understand the effect of the design decisions in Edit-VQVAE, we perform an ablation study by
removing the discrete and edit-based structure in the model. This results in two ablated models:
1) VQVAE without the edit structure, and 2) Edit-VAE. In the VQVAE, the latent is obtained by
directly feeding the concatenation of the program pairs into the Transformer encoder, leading to a
model with 4x parameters. In the Edit-VAE, the discrete latent space is replaced by the original
continuous Gaussian latent space. Empirically, we found that it is difficult for VQVAE to converge.
We hypothesize this is due to the fact that it is hard to control the scale of the output of a Transformer
encoder block. The edit-based structure instead uses a relative encoding, which potentially controls
the scale of the encoder output, and helps stabilize training. Additionally, we found that the Edit-VAE
model suffers from posterior collapse and is not able to generate more than one program during test
time. Edit-VQVAE is more robust to posterior collapse due to a discrete latent space (Van Den Oord
et al., 2017).

5 RELATED WORK

Program Synthesis Program synthesis involves automatically writing code from a program spec-
ification. Many deep learning approaches have been proposed in recent years (Balog et al., 2016;
Bunel et al., 2018; Devlin et al., 2017b; Kalyan et al., 2018; Devlin et al., 2017a; Lee et al., 2018;
Nye et al., 2019; Odena & Sutton, 2020; Parisotto et al., 2016). However, these works generally
focused on writing code to satisfy a given specification without regard for its efficiency. There are
neural (Zhao et al., 2018) and non-neural (Meng et al., 2011) models that edit code, but these are
used for different applications such as fixing errors (Yasunaga & Liang, 2020; Chen et al., 2021b).

Language models and large-scale program synthesis Large language models (LLMs) built on
Transformers (Vaswani et al., 2017) and trained with massive amounts of data have begun to yield
significant improvements in many natural language tasks (Chowdhery et al., 2022). These break-
throughs have been ported over to program synthesis where LLMs have demonstrated an impressive
ability to solve coding challenge problems (Austin et al., 2021; Chen et al., 2021a). These approaches
have been concerned with generating a program from a high-level specification, as opposed to editing
an existing program to make it faster.

Other forms of optimization Program optimization has been applied to efficiency-related areas:
Query optimization (e.g., using deep learning (Krishnan et al., 2018; Marcus et al., 2019)) seeks to
optimize query execution plans for database systems. Stochastic superoptimization (Schkufza et al.,
2013) uses random search to optimize x86 assembly code. Assembly and queries are both highly
structured languages and the programs are loop-free and quite small. We aim to optimize higher-level
source code, which translates to vastly larger assembly programs, using a generative approach.

Discrete representations Many real-world problems are discrete, and discrete representations can
often be more composable and interpretable. Learning discrete representations using generative
modeling is challenging due to the lack of gradients, necessitating the use of gradient estimators
like the Gumbel-softmax (Jang et al., 2016; Maddison et al., 2016) and REINFORCE (Williams,
1992). The VQ-VAE (Van Den Oord et al., 2017) avoids this by using vector quantization and treating

8
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(a) A transformation that adds an early termination to a while loop. We see that the model also applies other
semantics-preserving transformations that can be safely ignored.

for v in range(int(input())) :
 (v , v) = [ int(v) for v in input() . split() ]
  v = list(map(int , input() . split()))
  v = 0
  v.sort()
  for v in v :
    if(v <= v) :
      v -= v
      v += 1
f('STRING'. format((v + 1) , v))

Original

for v in range(int(input())) :
 (v , v) = [ int(v) for v in input() . split() ]
  v = list(map(int , input() . split()))
  v.sort()
  v = 0
  for v in v :
    if(v <= v) :
      v -= v
      v += 1
    else:
      break
f(f 'STRING{(v + 1)}STRING{v}')

Edit #1

v = int(input())
for v in range(v) :
 (v , v) = [ int(v) for v in input() . split() ]
  v = list(map(int , input() . split()))
  v = 0
  v.sort()
  for v in v :
    if(v <= v) :
      v -= v
      v += 1
    else:
      break
f('STRING' . format((v + 1) , v) , flush = True)

Edit #2

(b) A notable change this transformation identified was to replace a [] operator with a custom lambda using a
map operation with a builtin, which is indeed a pattern that should lead to speed-ups.

for v in range(int(input())): 
  (v, v) = [int(v) for v in input().split()]
   v = list(map(int, input().split()))
   v = 0
   v.sort()
   for v in v: 
        if(v <= v): 
            v -= v 
            v += 1 
   f('STRING'.format((v+1), v))

Original

for v in range(int(input())):
  (v, v) = map(int, input().split())
   v = list(map(int, input().split()))
   v.sort() 
   v = 0 
   for v in v: 
        if(v <= v): 
            v -= v 
            v += 1 
        else:
            break 
   f(f'STRING{(v+1)}STRING{v}')

Edit #1

v = int(input()) 
v = 0
while (v > 0): 
   v += 1 
  (v, v) = [int(v) for v in input().split()]
   v = list(map(int, input().split()))
   v = 0
   v.sort()
   for v in v: 
        if(v <= v): 
            v -= v 
            v += 1 
   f('STRING'.format(v, v))
   v -= 1

Edit #2

(c) In the first sample, the model identified an optimization to expressing a loop condition. In the second example,
it identified a different way to express integer division (note that it even added the required math import).

def f() :
  for v in range(1, (int(input()) + 1)):
  (v, v) = [int(v) for v in input().split()]
  v = [int(v) for v in input().split()]
  v = v
  for v in f(range(len(v))) :
    v = ((v // v[v]) * v[v])
  f(((('STRING' + f(v)) + 'STRING') + f(v)))
if(f == 'STRING') :
  f()

Original

def f(v, v):
  v = (len(v) - 1)
  while (v > 0):
    v =((v // v [ v ]) * v [ v ])
    return v
def f():
  for v in range(1, (int(input()) + 1)):
  (v, v) = [int(v) for v in input().split()]
  v = [int(v) for v in input().split()]
  v = f(v , v)
  f(((('STRING' + f(v)) + 'STRING') + f(v)))
if(f == 'STRING'):
  f()

Edit #1

import math
def f(v, v, v):
  v = v
  for v in f(range(v)):
    v = (f.floor((v / v [ v ])) * v [ v ])
    return v
v = int(input())
for v in range(1, (v + 1)):
  (v, v) = [int(v) for v in input().split()]
  v = [int(v) for v in input().split()]
  f(((('STRING' + f(v)) + 'STRING') + f(f(v , v , v))))

Edit #2

Table 2: Generated edits (middle and right column) for given input programs (left column) in the test
set. Strings, variables and function names are canonicalized.

these latent codes as targets. It has shown tremendous success in generative modeling for images,
and largely avoids the posterior collapse issue that is prevalent in continuous VAEs (Kingma &
Welling, 2013). We are therefore able to use VQ-VAEs with powerful Tranformer-based encoders
and decoders, thus reaping the benefits of both large language models and discrete representations.

6 CONCLUSION

In this work, we apply discrete categorical transformations to source code. These transformations
are aimed at increasing code efficiency, but could be useful for a variety of natural language tasks or
discrete structures such as molecules or graphs.

We take one step towards learned models that improve code efficiency by demonstrating that discrete
transformations can be learned from a supervised dataset – and that the VQ-VAE provides one archi-
tecture for doing so. To move beyond this paper and enable automatic optimization, canonicalization
is the first challenge that needs to be solved. There are many potential solutions, like using specialized
pointer networks for variables or using a Transformer pre-trained on a very large code corpus.

As we move towards building more ML models that can write code, it is critical that we also consider
computational efficiency. Code that is run in datacenters across the world today contributes to not
only cost, but also the carbon footprint of machines. We believe that optimizing this footprint is an
exciting application of deep learning.
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A APPENDIX

A.1 EDIT-VQVAE PSEUDOCODE

Algorithm 1 Forward pass of Edit-VQVAE
Require: Input sequence x, output sequence y, encoder fθ(·), decoder gφ(·), embedding dictionary

Z, positional encodings PE
1: zfast ← fθ(x)
2: zslow ← fθ(z)
3: k ← argmink ‖zfast − zslow‖2
4: zedit ← Zk
5: return gφ(x + PE + zedit)

Algorithm 2 Generating from Edit-VQVAE
Require: Input sequence x, output sequence y, encoder fθ(·), decoder gφ(·), embedding dictionary

Z, positional encodings PE
1: zfast ← fθ(x)
2: zslow ← fθ(z)
3: k ← argmink ‖zfast − zslow‖2
4: zedit ← Zk
5: return gφ(x + PE + zedit)

A.2 ADDITIONAL FIGURES
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(a) (b) (c)

Figure 5: 3D PCA visualization of the program pairs assigned to the same learned latent variable.
(a)/(b)/(c) are program pair samples from latent #8/#20/#40, respectively. The blue dots represent
input (slow) programs. Upon making the edit, the programs move to become the green dots, the
corresponding output (fast) programs. We observe that the fast programs belong to a different region
of latent space than the slow programs and that within each latent category, the programs tend to
move together - demonstrating that the edits that each latent applies tend to be coherent (or similar).

v = int(input())
v = 0
while v:
  (v, v) = map(int, input ().split())
   v = list(map(int, input().split()))
   v = 0
   v.sort()
   …

Original

v = int(input())
v = 0
for v in range(v)
  (v, v) = map(int, input ().split())
   v = list(map(int, input().split()))
   v = 0
   v.sort()
   …

Suggested Edit

v = int(input())
v = 0
while (v > 0):
  (v, v) = map(int, input ().split())
   v = list(map(int, input().split()))
   v = 0
   v.sort()
   …

Original
v = int(input())
v = 0
for v in range (v)
  (v, v) = map(int, input ().split())
   v = list(map(int, input().split()))
   v = 0
   v.sort()
   …

Suggested Edit

def f (v, v):
 v.sort()
 v = 0
 for v in v:
    …

v = int(input())
for v in range (1, v+1):
  (v, v) = [ int(v) for v in input().spit()]
  V = [ int(v) for v in input().split()]
  f(f`STRING{v}STRING{f(v, v)}

Original

v = int(input())
for v in range (1, v+1):
  (v, v) = [ int(v) for v in input().spit()]
  V = [ int(v) for v in input().split()]
  v.sort()
  v = 0
  for v in range (v):
    …
  f(STRING.format(v, v))

Suggested Edit

Figure 6: Sampling programs from latent #20 above, we see that the edits that the latent proposes
tend to be similar. In the first two examples, a while loop is turned into a ranged for loop. In the third,
a more complex edit is proposed. The function call is inlined into the original loop body and the for
loop argument is changed to a range statement. For the other latents pictured in Figure 5, latent #8
proposes using a map data structure and latent #40 factors code into functions.
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Figure 7: 2D UMAP visualization of the learned latent space. The programs are colored by runtime
interpolated between 0.01 seconds (yellow) and 5 seconds (green). The yellow/green dots tend to
cluster together.This color pattern exists locally, instead of globally.
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